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Chapter

Wavelets for EEG Analysis
Nikesh Bajaj

Abstract

This chapter introduces the applications of wavelet for Electroencephalogram
(EEG) signal analysis. First, the overview of EEG signal is discussed to the recording
of raw EEG and widely used frequency bands in EEG studies. The chapter then
progresses to discuss the common artefacts that contaminate EEG signal while
recording. With a short overview of wavelet analysis techniques, namely; Continues
Wavelet Transform (CWT), Discrete Wavelet Transform (DWT), and Wavelet
Packet Decomposition (WPD), the chapter demonstrates the richness of CWT
over conventional time-frequency analysis technique e.g. Short-Time Fourier
Transform. Lastly, artefact removal algorithms based on Independent Component
Analysis (ICA) and wavelet are discussed and a comparative analysis is demon-
strated. The techniques covered in this chapter show that wavelet analysis is well-
suited for EEG signals for describing time-localised event. Due to similar nature,
wavelet analysis is also suitable for other biomedical signals such as Electrocardio-
gram and Electromyogram.

Keywords: EEG, artefacts, wavelet analysis, CWT, DWT, WPD, artefact removal
algorithms, time-frequency analysis

1. Introduction

Biomedical signals are electrical activities recorded by sensors from a part of the
body, such as the brain, heart, muscles, etc. They can be recorded as images e.g.
functional Magnetic resonance Image (fMRI) from brain or a temporal signal e.g.
Electrocardiogram (ECG), Electroencephalogram (EEG), Electromyogram (EMG),
Galvanic Skin Response (GSR), etc. These signals contain useful information to
analyse and understand the underlying physiological response of the body, thus
they are also referred to as physiological signals. Biomedical signals are extensively
used in healthcare to diagnose deceases and monitor health. With recent advance-
ments and ease of using the devices to record the biomedical signals have open a
window to use it to analyse and understand the day-to-day activities, emotions,
and, experiences [1–3]. While recording the physiological activities through sen-
sors, the signals are usually contaminated by noise and various artefacts [4].
Corrupted signals mislead the analysis and understanding of the underlying physi-
ology [5]. The characteristics of wavelet to identify the time-localised events makes
it suitable for the biomedical signals to clean, process, feature extraction, and
analyse for various applications. Recent studies have shown the promising results of
using wavelet in biomedical signals [6].

In this chapter, first, we introduce one kind of biomedical signal - EEG. We will
explain the conventional features used in EEG studies. We will introduce the arte-
facts that commonly contaminate EEG signals, which makes it harder to use. The
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chapter then will move towards a short description of Wavelet analysis techniques,
namely Continues Wavelet Transform (CWT), Discrete Wavelet Transform
(DWT), and Wavelet Packet Decomposition (WPD). We would, then, compare
CWT and STFT for EEG signal. Then, we will discuss artefact removal algorithms,
with more details on Wavelet-based algorithms. The chapter will show the com-
parative analysis of artefact removal algorithm. The approach and analysis shown in
this chapter for EEG signals can easily be applied to other biological signals.

2. Electroencephogram - EEG

The brain processes any information by means of neurons that use electrical and
chemical signals to communicate by releasing and receiving neurotransmitters. The
neural activity in the human brain is an electrical change. The brain generates
electrical signals throughout the day for various activities. Studying these electrical
signals is vital to understanding the neurophysiological behaviour of the brain [4].
A number of techniques are used to study brain activities. Functional magnetic
resonance imaging (fMRI), Functional Near-Infrared Spectroscopy (firs), and
Electroencephalography (EEG) recordings widely used techniques. The fMRI mea-
sures brain activity by scanning the blood flow. The fNIRS measures brain activity
by measuring hemodynamic response in the brain through detecting the temporal
changes in infrared light source. The EEG measures the electrical activity of the
brain by electrodes placed on the scalp. Comparing to the other two, EEG measures
brain activity directly, with high temporal resolution and most accessible and por-
table for the research. The fMRI has a high spatial resolution but very expensive,
therefore it is mostly limited to medical diagnosis and treatments.

2.1 The EEG measure

The EEG signal is measured by placing multiple electrodes on the scalp that
measure the current flow from neurons. A setup for EEG recording is shown in
Figure 1. Each neuron (brain cell), when activated, it produced an electrical and
magnetic field around the scalp. Since there are 100 billion neurons in the brain,
when an electrode is placed on the scalp, it measures the accumulative activity of
many neurons together. The complex structure of the brain attenuates the electrical
signals, therefore an electrode can record the brain activity, only when a large
number of neurons generate enough potential. The EEG devices amplify the
recorded signal to store and process it [4].

Figure 1.
EEG recording setup: (a) a wireless device Emotiv Epoch mounted on a subject, transmitting EEG signal to a
computer. (b) Electrode positions as 10–20 system, source: https://www.emotiv.com/.
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The placement of electrodes has been standardised with the specific anatomical
landmarks with a distance between electrodes as 10% or 20% of total length. This
placement is called the 10–20 system, as shown in Figure 1b. The number of
electrodes used for EEG recording varies, depending on the device. One of the low
spatial resolutions can be of a 14-channel EEG device and high spatial resolution
with 128 or 256 channels. The name of the electrode position is labelled as character
followed by a number to identify the part of the brain. The characters are Fop for
pre-frontal, F for frontal, P for parietal,T for temporal, O for occipital, and C for
central lobe of the brain. A few in between two landmarks are named with two
characters, such as AF, between Fp and F and FC, between F and C [4]. An example
of 14-channel is shown in Figure 1b.

The raw recording of EEG signal in the time-domain is complex to interpret.
Similar to many other signals, frequency domain analysis has been widely used. The
decades of work on EEG studies have identified five major frequency bands for EEG
signals and established the correlation between behaviour and neural activity of a
certain part of the brain. The frequency bands widely used are; Delta (0:1� 4 Hz or
0:5� 4 Hz), Theta (4� 8 Hz), Alpha (8� 14 Hz), Beta (14� 30 Hz), Gamma
(30� 63 Hz). A raw EEG signal from a channel and corresponding signal in differ-
ent bands are shown in Figure 2. It can be observed that low frequency, Delta
activity, is the dominating wave in raw EEG and high-frequency Gamma is almost
noise like with a little amplitude [4].

Due to multichannel signals, it is usually viewed as topographical brain activity
(heatmap over an image of head) under different frequency bands. An example of
5 seconds EEG recording with a 14-channel device is shown in Figure 3. The first
second of all the channels are used to compute the energy distribution over brain
regions. In Figure 3, the top left shows the raw EEG signal and corresponding brain
activity, which shows a high activity in the frontal lobe of the brain. However,
under different frequency bands, the different part of the brain shows higher
activity.

The frequency bands; Delta, Theta, Alpha, Beta, and Gamma, are also called
brain rhythms. Brain rhythms have been investigated over decades and a few
characteristic behaviour of these brain rhythms have been established [4].

Figure 2.
The signal channel raw EEG signal and corresponding frequency bands: Delta (0:1� 4Hz), theta (4� 8Hz),
alpha (8� 14 Hz), Beta (14� 30 Hz), gamma (30� 63 Hz).
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• Delta: Delta waves were first introduced by Walter in 1936, it ranges from 0.1
(or 0.5) to 4 Hz in frequency. Delta waves are usually observed in deep sleep.
Since delta wave is the low-frequency wave, it is easily confused by the
movement artefact, due to similar nature. Delta waves have also been linked to
continuous attention tasks.

• Theta: Theta waves were introduced by Dovey and Wolter, ranges from 4 to
8 Hz in frequency. Theta waves are linked to drowsiness and deep meditation
state.

• Alpha: Alpha waves, perhaps are the most widely investigated waves in EEG
studies. Alpha waves were introduced by Berger in 1929. They lie in a range
from 8 to 14 Hz. Alpha waves usually appear on the occipital lobe of the brain.
Alpha waves are the most common indication of a relaxing state of mind and
are also linked to closing eyes. Any sign of anxiety or attention reduces the
alpha waves.

• Beta: Beta waves lie in the range of 14–30 Hz of frequency. Beta waves have
been associated with active thinking, anxious, high alert, and focus of the
brain.

• Gamma: Gamma waves are the higher frequency waves, ranges from 30 to
onwards. Gamma wave is considered to play a complex role in brain
functionality, such as combining information from two different sensory
inputs. It is also used to confirm certain brain diseases.

2.2 Artefacts in EEG

While recording, EEG signals are frequently contaminated with various arte-
facts. The most common types of artefacts are motion, muscular, ocular, and car-
diac artefacts [4], which are shown in Figure 4. The motion artefacts are caused by

Figure 3.
Topographical view of brain activity: Energy distribution of EEG recording over different brain regions under
five frequency bands and raw signal.
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the physical movement of the person’s body. As shown in Figure 4a, motion
artefacts produce a sudden high valued spike in all the channels of EEG recording.
The muscular artefacts, shown in Figure 4b are caused by any muscular contraction
such as grinding the teeth. It produces high-frequency bursts in EEG recording as
circled in the Figure 4b. The cardiac artefacts, shown in Figure 4c, are caused by
the electrical activities of the heart. They appear as a weak form of QRS wave of
heart and most likely to be appeared in the channels near to ears (temporal lobe),
though it can be sometimes present in channels from the frontal lobe [7]. The ocular
artefacts are slow oscillating waves appear on the frontal lobe, caused by the eye
movements or closed eyes, as circled in the Figure 4d. The higher magnitude of the
artefacts corrupts the EEG recording and leads to misinterpretations of the results
and analysis [5]. Even though there are many algorithms to remove the artefacts,
but there is always a possibility of losing the cerebral information while removing
the artefacts.

3. Wavelet analysis

Most of the real-life signals are non-stationary in behaviour, which means their
properties change over time. To localise the events of interest, time-frequency
analysis is widely used. The conventional way of time-frequency analysis is the
Short-Time Fourier Transform (STFT), where Fourier transform of the signal is
taken over short-windows, resulting spectrogram plot. STFT has limitations on
resolutions, due to Heisenberg’s uncertainty principle, e.g. improvement in time
resolution results in poorer frequency resolution and vice-versa. The alternative to
STFT is wavelet transform, which exploits the property of low-frequency signals

Figure 4.
Common type of artefacts in EEG. Corresponding artefacts are circled in the figure.
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being widespread over time and high-frequency bursts occurring on short intervals.
Wavelet transform uses the variable size of windows with a wavelet function.

Wavelet analysis is usually applied in two ways, Continuous Wavelet Transform
(CWT) and Discrete Wavelet Transform (DWT). CWT uses a wavelet function
ψ tð Þ and produces a scalogram, similar to a spectrogram for time-frequency analy-
sis. However, DWT decomposes a signal into two (1) average or lowpass signal,
using scaling function and (2) difference or highpass signal using wavelet function.
The conventional DWT recursively decomposes lowpass signal with the same scal-
ing and wavelet functions to the desired level of decomposition. A decomposition
tree for DWT is shown in Figure 5a. For some applications, it is useful to decom-
pose highpass signal at each level too, this is called Wavelet Packet Decomposition
(WPD). A tree for WPD is shown in Figure 5b.

As shown in Figure 5, block LP is a lowpass filter h nð Þ and block HP is a highpass
filter g nð Þ, both followed by downsampler (↓2). The coefficients of lowpass filter
are corresponds to scalling function ϕ nð Þ and coefficients of highpass filter are
corresponds to wavelet funciton ψ nð Þ. A N-level DWT decomposes a signal x nð Þ
into set of signals: [XN

L ,X
N
H,X

N�1
H , … ,X1

H], each with different dimensions. How-

ever, aN-level WPD decomposes a signal x nð Þ into set of packets: [X1
N,X

2
N, … ,X2N

N ],
each with same dimensions.

4. Time-frequency analysis of EEG using CWT

As discussed, a conventional way to time-frequency analysis is STFT, however,
using CWT with different wavelet functions can enrich the analysis with more
details. In this section, we will show, how a continuous wavelet function (ψ tð Þ), can
be applied to a discrete EEG signal x nð Þ, and compare the spectrogram with scalo-
gram of different wavelet functions.

A spectrogram is obtained using STFT, which is Fourier Transform computed
for a short windows. STFT Xstft τ,ωð Þ of signal x tð Þ as given as Eq. (1), where w tð Þ is a
window function. On the other hand, CWT Xcwt a, bð Þ of a signal x tð Þ is given by

Figure 5.
4-level decomposition tree for (a) discrete wavelet transform (DWT), (b) wavelet packet decomposition
(WPD).
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Eq. (2), where ψ ∗
a,b tð Þ is a complex conjugate of scaled and shifted version of mother

wavelet ψ tð Þ, a is scaling parameter and b is shifting parameter.

Xstft τ,ωð Þ ¼
ð

∞

�∞
x tð Þw τ � tð Þe�jωtdt (1)

Xcwt a, bð Þ ¼
ð

∞

�∞
x tð Þψ ∗

a,b tð Þdt: (2)

CWT operation from Eq. (2) can be seen as convolution of input signal x tð Þwith
scaled version of wavelet function ψ tð Þ.

Xcwt að Þ ¼ x tð Þ⊛ψ ∗
a tð Þ (3)

Xcwt fð Þ ¼ X fð Þψa ∗ fð Þ (4)

where X fð Þ is Fourier transform of x tð Þ, and the same for others. For computa-
tions with discrete signal x nð Þ, both equations; 3 and 4 can be used with discrete
operations, e.g. convolution and multiplication and discrete wavelet function ψ nð Þ,
while for Fourier Transform, Fast Fourier Transform (FFT) is used. For computa-
tional efficiency, however, Eq. (4) is widely used, by multiplying FFT of x nð Þ and
FFT of scaled and discrete version ψ nð Þ. Even though, for discrete signal x nð Þ,
discrete wavelet function ψ nð Þ is used, however, the conventional definitions of
wavelet functions for CWT are defined in continues time-domain. A set time-
domain and frequency-domain equations for six complex wavelet functions are
defined below. Figure 6 shows all the six wavelet functions, with their real and
imaginary part. All six functions are similar, in terms of smoothness and being
derived from exponential and sinusoidal functions, however, they have different
parameters to control the oscillation and frequency band to be captured.

GaussianWavelet: A time-domain wavelet it derived from a Gaussian function
centered at t0 andmodulated by a complex exponential functionwith frequency f 0 [8].

ψ tð Þ ¼ e�a t�t0ð Þ2 � e�2πjf 0 t�t0ð Þ (5)

ψ fð Þ ¼
ffiffiffiffiffiffiffiffi

π=a
p

e�2πjft0 � e�π2 f� f 0ð Þ2
� �

=a

� �

(6)

where a ¼ f 0
Q

� �2
.

Figure 6.
Continues wavelet functions.
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Gabor Wavelet: Gabor wavelet is perhaps the most widely used function for
various applications. It is essentially the same as Gaussian wavelet function, with
simplified equations, as follow [8, 9];

ψ tð Þ ¼ e� t�t0ð Þ2=a2e�jf 0 t�t0ð Þ (7)

ψ fð Þ ¼ e� f� f 0ð Það Þ2e�jt0 f� f 0ð Þ (8)

where a is oscillation rate and f 0 is center frequency, t0 is centred time.
Morlet Wavelet: Morlet is considered very similar to Gabor wavelet and Gabor

filters. The oscillation of Morlet wavelet is controlled by σ. A higher value of σ
results in higher oscillation [10].

ψ tð Þ ¼ Cσπ
�0:25e�0:5t2 ejσt � Kσ

� �

(9)

ψ wð Þ ¼ Cσπ
�0:25 e�0:5 σ�wð Þ2 � Kσe

�0:5w2
� �

(10)

where Cσ ¼ 1þ e�σ2 � 2e�
3
4σ

2
� ��0:5

, Kσ ¼ e�0:5σ2 , and w ¼ 2πf .

Poisson Wavelet: Poisson wavelet is defined by positive integers (n), unlike
other, and associated with Poisson probability distribution [11, 12].

ψ tð Þ ¼ 1

2π
1� jtð Þ� nþ1ð Þ (11)

ψ wð Þ ¼ 1

Γnþ 1
wne�wu wð Þ (12)

where w ¼ 2πf and u wð Þ is a unit step function, e.g. u wð Þ ¼ 1 if w> ¼ 0, 0 else.
Complex Mexican hat wavelet: Complex Mexican hat wavelet is derived from

the conventional Mexican hat wavelet. It is a low-oscillation wavelet which is
modulated by a complex exponential function with frequency f 0 [13].

ψ tð Þ ¼ 2
ffiffiffi

3
p π�

1
4

ffiffiffi

π
p

1� t2
� �

e�
1
2t
2 �

ffiffiffi

2
p

jtþ ffiffiffi

π
p

erf
j
ffiffiffi

2
p t

	 


1� t2
� �

e�
1
2t
2

� �� �

e�2πjf 0t

(13)

ψ wð Þ ¼ 2

ffiffiffi

2

3

r

π�1=4 w�w0ð Þ2e�1
2 w�w0ð Þ2 ifw≥0, 0else (14)

where w ¼ 2πf and w0 ¼ 2π f 0.
Complex Shannon wavelet: Complex Shannon wavelet is the most simplified

wavelet function, exploiting Sinc function by modulating with sinusoidal, which
results in an ideal bandpass filter. Real Shannon wavelet is modulated by only a cos
function [14].

ψ tð Þ ¼ Sinc t=2ð Þ � e�2jπ f 0t (15)

ψ wð Þ ¼
Y w�w0

π

� �

(16)

where
Q

xð Þ ¼ 1 if x≤0:5, 0 else and w ¼ 2πf and w0 ¼ 2π f 0.
An example of using the above six wavelet functions for a small single-channel

EEG segment is shown in Figure 7, along with spectrogram. It can be observed,
spectrogram highlights a few events in signal (sharp peaks and lowpass wave),
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however, using CWT with different Wavelet functions, much richer information
can be observed. Since, we observed that in the formulation of wavelet functions
that they are similar to the underlying principle, we could also observe the similar-
ities across different scalograms. Specifically, spectrogram using Complex Shannon
and Complex Mexican hat wavelet are much similar. Interestingly, Morlate and
Poisson wavelet functions are able to produce a better resolution towards lower
frequencies.

5. Artefact removal algorithms using DWT and WPD

Artefacts in EEG recording is a primary obstacle that all researchers have to deal
with. There are decades of research work in literature to remove these artefacts
[15, 16]. A range of methods have been proposed to remove the artefacts, starts with
a statistical with interpolation method [17] and regression method [18]. The most
commonly used approaches are based on Blind Source Separation (BSS) using
Independent Component Analysis (ICA) [19, 20]. ICA based approach have been
widely explored with statistical measures [21–24], and variant of ICA as FastICA,
InfoMax, and Extended InfoMax [25–27]. Wavelet-based approaches are well suited
for time-localised short events, as opposed to ICA. This property has been exploited
to remove artefacts from single-channel EEG. In contrast to a single channel,
wavelet has also been used for multi-channel EEG [28] and in combination with
ICA [29–34], in which identified artifactual component is cleaned with wavelet
rather than removed. The ICA-based approaches can only be applied to multi-
channel EEG and need an expert to select artifactual component, which has been

Figure 7.
Scalogram and spectrogram of a segment of signal channel EEG signal with six wavelet functions and STFT.
Figure obtained using spkit python library - https://spkit.github.iohttps://spkit.github.io
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automated with heuristics [21, 35, 36]. In contrast, most wavelet-based algorithms
remove artefacts from each channel individually.

The key idea of wavelet-based artefact removal algorithms is to apply DWT on
single-channel EEG signal x nð Þ and remove (set to zero) wavelet coefficients that
fall above some statistical threshold and reconstruct signal back using inverse-DWT
(IDWT) x̂ nð Þ [37–39]. With linear property of electrical activities, recorded EEG
signal is considered as x nð Þ ¼ s nð Þ þ v nð Þ, where s nð Þ is source signal of brain
activity and v nð Þ is artifactual components. The two most widely used threshold
formulations are used with wavelet.

Global Threshold: Also known as the optimal threshold for removing white-
gaussian noise from any signal [40] using DWT. Global Threshold (TG) is defined as;

TG ¼ σ̂
ffiffiffiffiffiffiffiffiffiffiffiffi

2logN
p

for σ̂ ¼ median jwjð Þ
0:6745

(17)

whereN is the length of signal and for wavelet coefficients w, σ̂ is the estimate of
noise variance. To denoise a signal, wavelet coefficients with magnitude below the
threshold TG are set to zero and reconstruct the signal back. However, for recorded
EEG signal x nð Þ, source signal s nð Þ is considered to be zero mean and normally
distributed, i.g. s nð Þ � N 0, σð Þ [4]. For which any wavelet coefficients with a
magnitude above the threshold TG is considered to be artifactual and removed
(set to zero).

Standard Deviation (STD) Threshold: As name suggests, STD threshold is
based on Standard Deviation (STD) of wavelet coefficients [39].

TSTD ¼ 1:5� STD wð Þ (18)

ATAR algorithm: A recent study has shown that approaches based on above
thresholds are very aggressive, since, statistically, a few wavelet coefficients of any
signal will always fall above these thresholds [14]. In contrast, an Automatic and
Tunable Artefact Removal (ATAR) Algorithm based on WPD was proposed [41],
which provides three different wavelet filtering modes and a tunable parameter. As
shown a block diagram of ATAR algorithm in Figure 8, a single channel EEG signal
x nð Þ is first split into smaller windows xw nð Þ, apply L-level WPD to get wavelet
coefficients w ¼ XL kð Þ ¼ WPD xw nð Þð Þ, then wavelet coefficients are filtered using
wavelet filtering ŵ ¼ λ wð Þ to reconstruct signal x̂ nð Þ from corrected windows x̂w nð Þ.

Figure 8.
A block diagram of ATAR algorithm [41].
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The three filtering modes in ATAR algorithm are namely; Elimination λe �ð Þ, Linear
attenuation λa �ð Þ, and soft thresholding λs �ð Þ, which are defined below;

λe wð Þ ¼ w if ∣w∣ ≤ θα

0 else

�

(19)

λa wð Þ ¼

w if ∣w∣ ≤ θα

sgn wð Þθα 1� ∣w∣� θα

θβ � θα

� �

if θα < ∣w∣ ≤ θβ

0 else

8

>

>

<

>

>

:

(20)

λs wð Þ ¼
w if ∣w∣< θγ

1� e�αw

1þ e�αw
θα otherwise

8

<

:

whereα ¼ � 1

θγ
log

θα � θγ

θα þ θγ
(21)

where w is a wavelet coefficient, sgn �ð Þ is the signum function, and θα > θγ . A
default setting for θγ and θβ is; θγ ¼ 0:8θα and θβ ¼ 2θα. The characteristics of wavelet
filtering mode are shown in Figure 9. From Figure 9, it can be seen that Elimination
mode of filtering is the same as conventional filtering, however, Linear attenuation
and soft-thresholding modes do not remove the wavelet coefficient, rather suppress
them softly. Another distinction ATAR algorithm has over others is the threshold
selection. The threshold θα is computed from Interquartile Range (IQR) of wavelet
coefficients using Eq. (22), which is robust against outliers, as oppose to STD.

θα ¼
f β rð Þ if f β rð Þ≥ k1

k1 else

�

where f β rð Þ ¼ k2 exp �β
100

k2

r

2

� �

(22)

where r is Interquartile Range (IQR) of coefficients i.e. r ¼ IQR wð Þ and k1 and k2
are lower and upper bounds on filtering.

Figure 10 shows a visual comparative analysis of wavelet-based approaches (i.e.
Global threshold, STD threshold, and ATAR algorithm) and ICA based approaches
(FastICA, InfoMax, and Extended-InfoMax) to remove the artefacts. It is visually
apparent that wavelet-based approaches are better than ICA-based approaches.

Figure 9.
Wavelet filtering modes for ATAR algorithm. For θα ¼ 200, θγ ¼ 0:8θα ¼ 160, θβ ¼ 2θα ¼ 400 [41].
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Among wavelet-based approaches, using ATAR gives much control over Global and
STD based threshold selection. Other quantitative analyses of the above-mentioned
approaches are discussed in the article [41], which also demonstrate the effect of
tuning parameter and filtering modes on different predictive tasks of EEG signal.
The formulation of relationship, algorithmic implementation details, and compara-
tive results are given in article [41].

6. Conclusions

This chapter presents the overview of Wavelet for EEG analysis. The first chap-
ter introduces EEG signal, commonly used features for predictive analysis, and
artefacts that often contaminate EEG signal. Then chapter discusses the Wavelet
analysis approaches, namely CWT, DWT, and WPD. The richness of CWT over
STFT for time-frequency analysis using various wavelet functions is demonstrated.
Finally, the artefact removal algorithms based on wavelet and ICA are discussed.
The comparative analysis present in the chapter shows that the wavelet-based
approach outperforms ICA based approach. Specifically, a recent algorithm
(ATAR) allows controlling the removal or suppression of assumed artifactual com-
ponents in the signal, which can be tuned to improve the performance of any
predictive tasks. The techniques presented in this chapter show how wavelet can be
used for EEG studies to extract rich information and removing the artefacts. The
comparative analysis shows wavelet based approaches are well suited for EEG signal
processing. Further, similar approaches can be used with other biomedical signals
such as electrocardiogram (ECG or EKG), Electromyography (EMG) etc.

Figure 10.
Comparison of artefact removal approaches from [41].
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