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Abstract

The pitch contour in speech contains information about differ-

ent linguistic units at several distinct temporal scales. At the

finest level, the microprosodic cues are purely segmental in na-

ture, whereas in the coarser time scales, lexical tones, word ac-

cents, and phrase accents appear with both linguistic and para-

linguistic functions. Consequently, the pitch movements hap-

pen on different temporal scales: the segmental perturbations

are faster than typical pitch accents and so forth. In HMM-

based speech synthesis paradigm, slower intonation patterns are

not easy to model. The statistical procedure of decision tree

clustering highlights instances that are more common, result-

ing in good reproduction of microprosody and declination, but

with less variation on word and phrase level compared to hu-

man speech. Here we present a system that uses wavelets to

decompose the pitch contour into five temporal scales ranging

from microprosody to the utterance level. Each component is

then individually trained within HMM framework and used in

a superpositional manner at the synthesis stage. The resulting

system is compared to a baseline where only one decision tree

is trained to generate the pitch contour.

Index Terms: HMM-based synthesis, intonation modeling,

wavelet decomposition

1. Introduction

The fundamental frequency (f0) contour of speech contains in-

formation about different linguistic units at several distinct tem-

poral scales. Likewise prosody in general, f0 is inherently

hierarchical in nature. The hierarchy can be viewed in pho-

netic terms as ranging from segmental perturbation (i.e., mi-

croprosody) to a levels that signal phrasal structure and beyond

(e.g., utterance level downtrends). In between there are levels

that signal relations between syllables and words (e.g., tones

and pitch accents). Consequently, the pitch movements happen

on different temporal scales: the segmental perturbations are

faster than typical pitch accents, which are faster than phrasal

movements and so on. These temporal scales range between

several magnitudes from a few milliseconds to several seconds

and beyond.

In HMM-based speech synthesis paradigm, all modeling

is based on phone sized units. In principle, slower intonation

patterns are more difficult to model than segmentally deter-

mined ones. Moreover, the statistical procedure of decision tree

clustering highlights instances that are more common, result-

ing in a good reproduction of microprosody and overall trends

(such as general downtrends) and relatively poor reproduction

of prosody at the level of words and phrases. This shortcoming

calls for methods that take into account the inherent hierarchical

nature of prosody.

Traditionally the problem has been approached by using

superpositional models which separate syllable and word level

accents from phrases [2, 7]. On feature extraction side, dis-

crete cosine transform parameterization of f0 has been inves-

tigated, providing compact representation of the pitch contour

[12]. Typically, each voiced segment or syllable and phrase

are parameterized with a constant number of DCT coefficients,

statistical clustering is performed based on contextual features,

and synthesis is performed in additive fashion [11]. However,

the constant number of coefficients is problematic for variable

length units, and natural continuity between units is difficult to

achieve.

In HMM framework, decomposition of f0 to its hierarchi-

cal components during acoustic modeling has been investigated

[4, 15]. These approaches rely on exposing the training data to

a level-dependent subset of questions for separating the layers

of the prosody hierarchy. The layers can then be modeled sepa-

rately as individual streams [4], or jointly with adaptive training

methods [15]. Results indicate that syllable level modeling im-

proves prosody whereas higher levels do not provide benefits.

In HMM-based speech synthesis, f0 is modeled jointly with

voicing decision. The unit of modeling is typically a phone

HMM with five states. For each state, predefined contextual

questions concerning phones, syllables, words and phrases are

used to form a set of possible splits in a decision tree. The split-

ting decisions are made in a greedy fashion based on likelihood

increase. Thus the hierarchical nature of intonation is only im-

plicitly addressed by questions on different levels of hierarchy.

With multiple levels, including voicing decision, modeled by a

single set of trees, the rare or slow events can not be modeled

robustly, due to fragmentation of the training data by previous,

more urgent splits for the short time scale of the model.

In this paper, we present a solution to the problems out-

lined above based on continuous wavelet transform (CWT). The

CWT is used to decompose the f0 contour into several temporal

scales that can be used to model the levels ranging from micro-

prosody to the utterance level separately. As well as separating

the contour into meaningful temporally assigned levels – rang-

ing from microprosody to utterance level prosody – the CWT

produces a continous f0 contour which has further merits. Ear-

lier, wavelets have been used in speech synthesis context for

parameter estimation [3, 6, 10].

We chose four f0 modeling methods for comparison: (1)

The normal HTS method using the MSD stream, and two
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wavelet-based setups modeling the f0 contour on several dis-

tinct levels: (2) one with a joint model and (3) one where five

separate CWT based levels are modeled separately. In addi-

tion, (4) a continous interpolated f0 stream model was added.

The fourth method was added in order to evaluate the wavelet

based methods against another model using continuous trajec-

tories since interpolation alone has been reported to improve f0
modeling [14].

Objective comparison of the proposed methods is pre-

sented against single-stream baselines using two GlottHMM [9]

Finnish voices trained from a male and a female corpus.

2. Pitch decomposition and wavelets

2.1. Extraction and preprocessing of f0

GlottHMM vocoder was used for estimating the fundamental

frequency (f0) of speech. GlottHMM is a physiologically ori-

ented vocoder that uses glottal inverse filtering for separating

speech into the glottal source signal and the vocal tract filter.

The iterative adaptive inverse filtering (IAIF) method is used for

the separation, and the f0 is estimated from the glottal source

signal that is free from the distracting vocal tract resonances [9].

The autocorrelation method [8] was used to estimate the f0.

A range of possible f0 values is defined based on the speaker’s

f0 range in order to reduce gross errors. The voiced-unvoiced

decision is made based on the energy of the low frequency band

(0–1 kHz) and the number of zero-crossings in the frame. The

length of the frame from which the f0 is estimated is longer

than the speech analysis frame in order to estimate the lowest

possible f0 values, as low as 30 Hz. The frames determined as

unvoiced are marked as zeros. Parabolic interpolation was used

in order to reduce the estimation error due to finite sampling

period; a quadratic function is fitted to the peak of the autocor-

relation function (ACF) to find the refined f0 value.

Finally, post-processing is applied to the estimated f0 tra-

jectory. A repetitive process is applied which consists of 3-point

median filtering, filling small unvoiced gaps and removing out-

lier voiced sections, and detection of unnatural discontinuities

based on weighted linear estimation of each individual f0 es-

timate from previous and following samples. If the difference

between the estimated and the actual values is greater than a

specific threshold (based on the mean and variance of the f0
trajectory), the original value may be replaced with a secondary

f0 estimate from the ACF. This replacement depends on the

goodness of the fitting and the relative jump of the original f0
estimate. An example of extracted f0 is shown in the top pane

of Figure 1.

2.2. Completion of f0 over unvoiced passages

The wavelet method is sensitive to the gaps in the f0 contour

and therefore, the f0 contour is completed to yield a contin-

uous f0 trajectory. Since the wavelet approach aims at con-

necting the signal to the perceptually relevant information, the

linear frequency scale is transformed to the logarithmic semi-

tone scale. A simple linear interpolation method is used. First,

smoothed version of the original f0 was created, and then inter-

polated over unvoiced passages. The smoothed unvoiced parts

are then added to the original f0 with 3 point median smooth-

ing to reduce discontinuities in voicing boundaries. In addition,

to alleviate edge artifacts, constant f0 was added prior to and

after the utterance. The pre-utterance f0 value was set to the

Figure 1: Example of f0 parameterization. Top pane depicts

the baseline method, base, in linear frequency scale; the sec-

ond pane shows the interpolated baseline, contf0; third pane

shows the continuous wavelet transform of the f0 signal with

the ten chosen scales separated by an octave (method wave1);

the bottom pane shows the five scales that are merged from the

continuous wavelet picture forming the basis of wave5

mean f0 value calculated over the first half (in seconds) of the

utterance; the post-utterance f0 was set to the respective mini-

mum. Finally, the interpolated logf0 contour is normalized to

zero mean, unit variance as required by wavelet analysis. An

example of an interpolated pitch contour is depicted in the sec-

ond pane of Figure 1.

2.3. Wavelet based decomposition of f0 contour

Wavelet transforms can be used to decompose a signal into fre-

quency components similar to the Fourier transform. Although

several alternatives exist, here we have chosen to use contin-

uous wavelet transforms for f0 decomposition. To define the

wavelet transform, consider a (bounded) pitch contour f0. The

continuous wavelet transform W (f0)(τ, t) of f0 is defined by

W (f0)(τ, t) = τ
−1/2

Z

∞

−∞

f0(x)ψ

„

x− t

τ

«

dx
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Figure 2: Example of synthesized f0 contours with evaluated methods on a female corpus test utterance, overlaid three semitones apart.

where ψ is the Mexican hat mother wavelet. The original signal

f0 can be recovered from the wavelet representation W (f0) by

inverse transform (for the proof, see [1, 5]):

f0(t) =

Z

∞

−∞

Z

∞

0

W (f0)(τ, x)τ
−5/2

ψ

„

t− x

τ

«

dxdτ.

However, the reconstruction is incomplete, if all information on

W (f0) is not availabe. Here, the decomposition and reconstruc-

tion is approximated by choosing ten scales, one octave apart.

f0 is represented by the wavelets as ten separate streams given

by

Wi(f0)(t) =W (f0)(2
i+1

τ0, t)(i+ 2.5)−5/2
(1)

where i = 1, . . . , 10 and τ0 = 5 ms, and the original signal is

approximately recovered by

f0(t) =

10
X

i=1

Wi(f0)(t) + ǫ(t) (2)

where ǫ(t) is the reconstruction error. The reconstruction for-

mula (2) is ad hoc and no attempts were made in this stage to

optimize the computational efficiency. The accuracy of the re-

construction was evaluated by decomposing and reconstructing

ten utterances spoken by a male and a female. The correlation

between the original and the reconstructed f0 signal was 99.7%
with root mean square reconstruction error of 1.03Hz.

The continuous wavelet transform and ten distinct scales

are shown in the third pane of the Figure 1. The scales 0 and 1

correspond to phone level (50 and 25 Hz), scales 2 and 3 cor-

respond to syllable level (6 and 13 Hz), scales 4 and 5 show

word level (1.6–3 Hz), scales 6 and 7 correspond to phrase level

(0.4–0.8 Hz), and scales 8 and 9 correspond to utterance level.

The adjacent scales are combined and shown in the bottom pane

of the Figure 1. These five broad scales are separated by two

octaves from each other. The correspondance of the prosodic

levels of hierarchy and the wavelet scales is approximative and

the wavelet scales are not adjusted to optimize the fit. Hence,

e.g., not all the syllables have a duration that would fall in the

“syllable scale”.

3. Constructing the synthesis

3.1. Speech material

In order to carry out evaluation of the proposed f0 modeling

methods, two Finnish HMM-voices were trained, a male and

a female one. The male database (MV) used is a traditional

synthesis corpus, with rather carefully articulated set of 692

isolated sentences, while the female one (HK) is more diverse,

consisting of 600 phonetically rich sentences as well as contin-

uous prosodically rich read speech; 266 long sentences of fact

and 607 sentences of diverse prose. 92 sentences of the male

database was left out for evaluation purposes and 60 utterances

of prose for the female. Both corpora have been tagged for word

prominence on discrete scale ranging from 0 to 3, using acoustic

features [13]. The prominence labels were used in both train-

ing and evaluation as contextual features. Thus the evaluation

was not affected by TTS symbolic prosody prediction errors.

In addition to word prominence, full context labels were gen-

erated with conventional features: quinphones with positional

and length features of phones, syllables, word and phrases. No-

tably, more enriched labeling above word level would have been

preferable for the current topic of modeling the prosodic hierar-

chy.

3.2. Parameterization of f0 contours

Four different HMM-based statistical models for f0 generation

were compared. Synthesized f0 contours based on these four

and the original sentence f0 are depicted in Figure 2.

3.2.1. base

A standard MSD model for f0 is trained where each continuous

f0 passage between unvoiced segments is independently gener-

ated.

3.2.2. wave5

In the model wave5, five different f0 components w1, . . . , w5,

defined by

wi(t) =W2i−1(f0)(t) +W2i(f0)(t),

are independently trained by HMMs.

3.2.3. wave1

The different time scales correlate especially with their neigh-

bors, so a plausible alternative would be to jointly model all

the scales. This is done in wave1 where one vector V (t) =
{Wi(f0)(t)}

10
i=1 contains the time scales.
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3.2.4. contf0

Since the wavelet based methods wave5 and wave1 generate a

continuous f0 trajectory, and since interpolating the pauses in

the training data improves the synthesized contours [14], an al-

ternative, contf0, is offered where the unvoiced segments are

interpolated in the same way as in the preprocessing of the

wavelets.

3.3. HMM-training

The speech was parameterized with GlottHMM vocoder [9],

yielding a 5-stream HMM structure: vocal tract spectrum LSFs

and Gain (31 parameters), voice source spectrum LSFs (10),

Harmonic-to-noise ratio (5) and logf0 (1). f0 was then pro-

cessed as described in the previous chapter. 5 streams (1 pa-

rameter each) for method wave5, 1 stream (10) for wave1 and

one stream for continuous logf0. The baseline f0 method was

modeled as an MSD stream, others as continuous streams. With

dynamic features further added, HMM training was perfomed

in a standard fashion using HTS [16]. Stream weights affect-

ing model alignment were set to zero for all streams except

vocal tract spectrum LSFs and logf0. Decision tree cluster-

ing was perfomed individually for each stream without stream-

dependent contextual question sets. Using the MDL criterion on

decision tree building, the wave5 trees tended to become very

large compared to baseline. Attempts were made to control the

tree size with minimum leaf occupancy count, which was set to

10 on baseline MSD logf0 stream and 20, 25, 30, 60 and 70 for

respective wave5 streams. In addition, MDL factor was set to

0.6 for logf0 stream and 1.5 for wave5 streams.

4. Evaluation

4.1. Evaluation data

The fundamental frequency parameters of the test utterances

were generated from HMMs using original time alignments.

For wavelet methods, the f0 trajectories were constructed from

generated scales using Equation (1). Voicing decision for con-

tinuous f0 methods was based on the base MSD stream as well

as mean and variance of f0 for normalized wavelet methods.

The alignments were aquired by force-alignment method

with the monophone models estimated during synthesis train-

ing. The synthesized sentences were checked manually for

gross timing errors, and bad ones were excluded. The final MV

test data consisted of 41 isolated utterances, spoken in the same

formal style as the training data. By contrast, the HK test utter-

ances consisted of 60 sentences of expressive prose.

4.2. Performance measures

The synthesized f0 contours were compared to the original f0
contours, estimated with GlottHMM, by measuring the correla-

tion between the two curves and by calculating the root mean

square error for each test utterance. Within an utterance, only

the frames that were voiced with all methods were included.

Also, due to frequent creaky voice with erratic pitch on origi-

nal trajectories, the frames where the distance between original

and at least one of the synthesized trajectories was more than

8 semitones, were excluded as outliers. It should be noted that

these frames were completely excluded from the evaluation so

that the comparisons were performed on exactly the same data

sets. For the error calculation, the f0 was converted to semitone

Figure 3: Evaluation results shown scale by scale. The top pane

shows the correlations between the four synthesized contours

and the original; second pane depicts the difference between the

wavelet method wave5 and base; third pane shows the absolute

RMSE; in the fourth pane, the values are normalized by the

variation at the scale; the bottom pane shows the difference in

RMSE between the wave5 and base.

scale with base 40 Hz. A Wilcoxon signed rank test was used

to assess the statistical significance of the results.

4.3. Performance results

The correlations between the generated f0 values and original

contours showed significantly better performance for wavelet

methods than for the baseline for both speakers. For the female

data, the correlations over the test utterances were 0.76, 0.72,

0.72, and 0.68 for wave5, wave1, contf0, and base, respectively,

as shown in Table 1. The wave5 was better than wave1 (V =
1298, p < 0.05), better than contf0 (V = 1324, p < 0.05) and

base (V = 1445, p < 0.005). In addition, the wave1 was better

than base (V = 1329, p < 0.05) but not significantly different
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Figure 4: The reconstruction can be weighted to enhance the word level (blue curve) or the phrase level (red curve) intonation.

from contf0 (V = 1064, p > 0.1). The contf0 was marginally

better than the base (V = 702, p < 0.1).

The male data showed similar patterns. The correlations

over the test utterances were 0.85, 0.84, 0.81, and 0.81, respec-

tively. The wave5 was marginally better than wave1 (V = 288,

p < 0.1), better than contf0 (V = 129, p < 0.001) and

base (V = 88, p < 0.001). In addition, the wave1 was bet-

ter than base (V = 136, p < 0.001) and contf0 (V = 196,

p < 0.005). The contf0 and the base were not significantly

different (V = 439, p > 0.1).

Table 1: A summary of the performance results of the syntheses.

The means of the performance measures for each of the two data

sets (female, male).

wave5 wave1 contf0 base

corr (F) 0.76 0.72 0.72 0.68

corr (M) 0.85 0.84 0.81 0.81

RMSE (F) 1.38 1.44 1.48 1.53

RMSE (M) 1.57 1.60 1.75 1.76

The root mean square error patterns are similar to the cor-

relation results of the previous paragraphs. For the female data,

the root mean square errors were 1.38, 1.44, 1.48, and 1.53

semitones for wave5, wave1, contf0 and base, respectively. The

wave5 outperformed the wave1 (V = 1551, p < 0.001), the

contf0 (V = 1666, p < 0.001, and the base (V = 1781,

p < 0.001). The wave1 and the contf0 were statistically not

different (V = 1085, p > 0.1), but the wave1 was better

than the base (V = 1419, p < 0.005). The contf0 was bet-

ter than base (V = 599, p < 0.01). For the male data, the

root mean square error was 1.57, 1.60, 1.75, and 1.76 semitones

for wave5, wave1, contf0 and base, respectively. The wave5

was not different from the wave1 (V = 307, p > 0.1) but

was better than the contf0 (V = 143, p < 0.001) and the base

(V = 96, p < 0.001). The wave1 outperformed both the contf0

(V = 206, p < 0.005) and the base (V = 145, p < 0.001). Fi-

nally, the contf0 and base did not differ significantly (V = 433,

p > 0.1).

4.4. Temporal scale analysis of the results

In Figure 3, the performance measures over the female test sen-

tences are decomposed to the scale-wise components. Overall,

the wave5 is better than the baselines at all scales. However, the

difference is pronounced for the middle scales.

5. Discussion and conclusions

The results of the objective evaluation are in line with previous

research. Continuous f0 modeling is found significantly better

than the standard HTS method. On male voice, the synthesis of

f0 is very accurate, suggesting that existing methods are capa-

ble of modeling higher level structures to an adequate degree,

given consistent style and accurate labels of word prominence.

Consequently, the differences between evaluated methods are

rather small, though the wavelet based methods provide some

gains. As expected, the performance of all evaluated methods is

lower on female voice due to difficult test utterances of contin-

uous expressive prose, and also possibly due to more errors in

f0 estimation during analysis. Here, the individually modeled

wavelet scales provide a large improvement. However, subjec-

tive evaluation is still required for final conclusions.

Overall, the results suggest that the proposed method

largely solves the fragmentation problem caused by simulta-

neous decision tree clustering of all levels of prosodic hierar-

chy. Yet, somewhat contrary to expectations the improvements

seem larger on word level and syllable level than on phrase

level. Although technical problems of higher scales affected

by boundary effects on wavelet analysis may have an effect, this

mainly highlights the need for new contextual features on supra-

word level, beyond position and number. With the proposed

method the features representing for instance constituent struc-

ture, phrase type and utterance modality could actually have an

effect on the synthesized prosody.

The wavelet decomposition offers a possibility of adjusting

the weights of individual scales prior to reconstruction. This

could have potential applications in speaking style modifica-

tion. For example, informal listening suggested that increas-

ing the weight of the word level makes the synthesized speech

sound more resolute and perhaps more intelligible, while lis-

tening longer passages is less displeasing when phrase level is

emphasized. Moreover, moderate modifications do not seem to

have adverse effect on naturalness. Figure 4 presents an ex-

ample of this type of modification. Local weighting within ut-

terance could also be applied for e.g. emphasis reproduction.

Rapid adaptation of speaking style based on transform of the

scale weights alone could also be considered.

The current paper has presented a novel method of f0 mod-

eling based on wavelet decomposition. Many open questions re-

main. Selection of scales and model structure were made based

on intuition alone, no other wavelets beyond mexican hat were

considered, neither more popular discrete wavelet transform.
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Also, while the proposed method seems quite suitable for the

current HMM-synthesis framework, it is deeply unsatisfying to

model utterance level f0 contour with inherently sub-segmental

models, when the discrete cosine transform or discrete wavelet

transform could represent the level with only a few coefficients.
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