
Abstract
Traditional image processing techniques have proven inade-
quate for urban mapping using high spatial resolution remote-
sensing images. This study examined and evaluated wavelet
transforms for urban texture analysis and image classification
using high spatial resolution ATLAS imagery. For the purpose
of comparison and to evaluate the effectiveness of the wavelet
approaches, two different fractal approaches (isarithm and
triangular prism), spatial autocorrelation (Moran’s I and
Geary’s C), and spatial co-occurrence matrix of the selected
urban classes were examined using 65 � 65, 33 � 33, and
17 � 17 samples with a pixel size of 2.5 m. Results from this
study suggest that a multi-band and multi-level wavelet ap-
proach can be used to drastically increase the classification
accuracy. The fractal techniques did not provide satisfactory
classification accuracy. Spatial autocorrelation and spatial
co-occurrence techniques were found to be relatively effective
when compared to the fractal approaches. It can be concluded
that the wavelet transform approach is the most accurate of
all four approaches.

Introduction
The traditional classification approach has been criticized for
not being able to classify complex urban features accurately
when fine spatial resolution imagery is used (Cushnie, 1987;
Gong and Howarth, 1990; Fung and Chan, 1994). The higher
the spatial resolution of remotely sensed image data, the more
detailed features and smaller objects (e.g., single-family vs.
multi-family homes, roads, trees, shrubs, grass land, pools,
footpaths, driveways, parking lots) can be detected. Conse-
quently, the spectral signatures of urban features as a whole
become more heterogeneous. Moreover, urban features are
composed of spectrally diverse materials concentrated in a
small area (e.g., plastic, metal, rubber, glass, cement, wood,
shingle, sand, gravel, brick, stone, soil, vegetation, water). In
fact, the high frequency spatial appearance or complex nature
of urban areas may be the major limitation in urban mapping
using high spatial resolution image data (Myint et al., 2002).

Unfortunately, common image processing algorithms
do not take the local structure or the spatial arrangement of
neighborhood pixels into consideration in their classification.
The traditional classification method, such as the maximum
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likelihood classifier, uses spectral information (pixel values)
as a basis to analyze and classify remote sensing images. To
extract the heterogeneous nature of urban features in high-
resolution images, we need to consider the spatial arrange-
ments of neighborhood pixels, instead of an individual pixel
value. Traditional spectral based algorithms use the individ-
ual pixel value and ignore any spatial information which may
be crucial in urban land use and land cover mapping. This is
especially true when most of the urban land-cover classes
generally contain a number of spectrally different pixels or
objects. For example, roads, houses, grasses, trees, bare soil,
shrubs, swimming pools, and footpaths, each of which may
have a completely different spectral response are together
considered as a residential class. Moreover, the training statis-
tics of urban classes may exhibit a very high standard devia-
tion and violate one of the basic assumptions of the widely
used maximum-likelihood decision rule, namely, that the
pixel values follow a multivariate normal distribution (Sadler
et al., 1991).

There have been efforts to increase the accuracy of the
spectral analysis of remotely sensed data by using texture
transforms in which some measure of variability in digital
number (DN) values is estimated within local windows; e.g.,
contrast between neighboring pixels (Edwards et al., 1988),
the standard deviation (Arai, 1993), or local variance (Wood-
cock and Harward, 1992). A number of researchers used vari-
ograms to describe the spatial patterns manifested in remote
sensing imagery (e.g., De Jong and Burrough, 1995; Woodcock
et al., 1988). Emerson et al. (1999) analyzed the fractal dimen-
sion using the isarithm method and the spatial autocorrelation
of satellite sensor imagery using Moran’s I and Geary’s C to
observe the differing spatial structures of the smooth and
rough surfaces in remotely sensed images. Lam and Quat-
trochi (1992) demonstrated that the fractal dimension of re-
mote sensing data could yield quantitative insight on the spa-
tial complexity and information content contained within
these data. Quattrochi et al. (1997) used a software package
known as the Image Characterization and Modeling Systems
(ICAMS) to explore how fractal dimension is related to surface
texture using the isarithm method (Lam and De Cola, 1993),
the variogram (Mark and Aronson, 1984), and the triangular
prism methods (Clarke, 1986).

These methods alone may not provide satisfactory accu-
racy when applied to fine-resolution remotely sensed images
for urban land-use and land-cover mapping. Recent develop-
ment of the wavelet transform could be used to extract different
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texture features at different scales, thus providing a useful al-
ternative for urban land cover classification.

Multiresolution Wavelet Decomposition
Mallat (1989) developed the multiresolution analysis theory
using an orthonormal wavelet basis. The multiresolution
wavelet transform decomposes a signal into a low frequency
approximation and its high frequency detail information at a
coarser spatial resolution. In satellite image analysis using 2-D
wavelet transform techniques, rows and columns of image pix-
els are considered signals. The approximation (A) and details
(Ds) of a two-dimensional image f(x, y) at spatial resolution 2j

can be defined by the coefficients computed by the following
convolutions:

Ad
2j f � ((f(x, y) * �2j(�x)�2j(�y))(2�jn, 2�jm))(n,m)�Z2 (1)

D1
2j f � ((f(x, y) * �2j(�x)�2j(�y))(2�jn, 2�jm))(n,m)�Z2 (2)

D2
2j f � ((f(x, y) * �2j(�x)�2j(�y))(2�jn, 2�jm))(n,m)�Z2 (3)

D3
2j f � ((f(x, y) * �2j(�x)�2j(�y))(2�jn, 2�jm))(n,m)�Z2 (4)

where integer j is a decomposition level, m, n are integers,
�(x) is a one-dimensional scaling function, and �(x) is a one-
dimensional wavelet function. In general, �(x) is a smoothing
function, which provides low frequency information (low-
pass filter), and �(x) is a differencing function, which pro-
vides high frequency information (high-pass filter). Ad

2 j�1f can
be perfectly reconstructed from Ad

2j f , D1
2j f , D2

2j f , D3
2j f . The ex-

pressions 1 through 4 show that in two dimensions, Ad
2j f and

Dk
2j f are computed with separable filtering of the signal along

the abscissa and ordinate. The wavelet decomposition can
thus be interpreted as signal decomposition in a set of inde-
pendent, spatially oriented frequency channels (Mallat, 1989).

Dilation equation �(x) and wavelet equation �(x) can be
defined as:

�(t) � �2��
k

c(k)�(2t � k) (5)

�(t) � �2��
k

d(k)�(2t � k). (6)

For example, Haar, the simplest wavelet transform, has 
coefficients: c(0) � c(1) � , d(0) � , and d(1) � � . 
Thus, its dilation equation and wavelet equation can be
expressed as:

�(t) � �(2t) � �(2t � 1) (7)

�(t) � �(2t) � �(2t � 1) (8)

(Strang and Nguyen, 1997).
The approximation and detail coefficients can be computed

with a pyramid algorithm based on convolutions with the above
mentioned two one-dimensional parameter filters. Figure 1 il-
lustrates the application of the filters and the down sampling
procedure for computing the approximation and detail coeffi-
cients. Approximation of a signal Ad

2j f , also known as trend, can
be obtained by first convolving the rows of the input signal Ad

2j�1f
with the low pass filter (L). Next, the filtered signals are down
sampled by keeping one column out of two. Then, the columns
of the resulting signals are convolved with another one-dimen-
sional low pass filter, retaining every other row.

To obtain a horizontal detail image, first the rows of the
input image are convolved with a low pass filter L, and the
filtered signals are down sampled by keeping one column out
of two, as we do in processing approximation images. However,
for the next stage, the columns of the signals are convolved
with a high pass filter H, and again every other row is retained.
Following the above procedure, for the vertical details, the
original signals are convolved first with a high pass filter H and
then with a low pass filter L. For the diagonal detail image, the

1
�
�2�

1
�
�2�

1
�
�2�

same down sampling procedure is carried out, using two high
pass filters, consecutively. Figure 2 represents a standard ortho-
normal wavelet decomposition with two levels of an image.
The image is a randomly selected training sample of a resi-
dential area generated from the ATLAS image of Baton Rouge,
Louisiana, the study area. The pyramid decomposition can be
applied continuously to the approximation image until the de-
sired level of spatial resolution 2–j(�1 � j � �J) is reached.

Data and Study Area
Advanced Thermal Land Application Sensor (ATLAS) image
data at 2.5 m spatial resolution acquired with 15 channels
(0.45 �m to 12.2 �m) were used for this study. The data were
collected by a NASA Stennis LearJet™ 23 flying at 6,600 feet
over Baton Rouge, Louisiana, on 07 May 1999 (Figure 3). Lo
et al. (1997) developed a spatial model of warming and cool-
ing characteristics of commercial, residential, agricultural,
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Figure 1. Decomposition procedure of an image by the
multiresolution analysis (Modified from Myint et al., 2002).

Figure 2. Multiresolution wavelet decomposition of an
image (Residential area—Thermal band). (a) original
image, (b) wavelet representation at level 1, (c) wavelet
representation at level 2. Upper left sub-image of (b) or
(c) corresponds to the lowest frequencies (approximation),
upper right sub-image gives the horizontal high frequen-
cies (horizontal detail), lower left the vertical high frequen-
cies (vertical detail), and lower right the high frequency in
both directions (the diagonal detail).
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vegetation, and water features using a GIS approach. It is
important for city planners and environmental officers to
observe the relationship among urban land-use land-cover
classes associated with surface vegetation, water availability,
and associated temperature fluctuation within an urban area.
These are crucial information for city officials and environ-
mental agencies to develop a better infrastructure manage-
ment plan to avoid environmental degradation caused by
increase in air pollution, noise pollution, traffic congestion,
urban heat island effect, chemical contamination, and soil
loss. Following Lo et al. (1997), six urban land-use and land-
cover features with different textural appearances were se-
lected: single-family homes with less than 50 percent tree
canopy (residential-1), single-family homes with more than
50 percent tree canopy (residential-2), commercial, woodland,
agriculture, and water body (Figure 4). Band-2 (0.52 �m to
0.60 �m), band-6 (0.76 �m to 0.90 �m), and band-12 (9.60 �m
to 10.20 �m) were selected for wavelet based texture analysis
and classification in this study. In addition to these three
bands, principal component analysis (PCA), a technique that
compresses redundant data and produces new bands that are
often more interpretable than the original data, was applied
to all available bands in the ATLAS data. PCA1 band was the
only band selected to examine if a composite band could pro-
duce an increased accuracy, since it contains the largest per-
centage of the total scene variance. Figure 5 shows the differ-
ences in texture features of the same area in four different
bands: band-2, band-6, band-12, and PCA1 band.

Two segmented regions containing each land-use and
land-cover class were identified visually with the help of local
area knowledge, ground information collection, and existing
maps. Five training pixels were then selected randomly from
each region leading to a sample of 10 pixels. Unlike the previ-
ous studies where 65 � 65 and 33 � 33 local window sizes
were used (Myint, 2001; Myint, et al., 2002), a 17 � 17 square
window size (corresponding to 42.5m � 42.5m) centered at
the randomly selected pixels in each region was used to sub-
set training samples (Figure 6). The purpose is to examine if a
smaller local window, with the use of the wavelet transform
techniques, produces a satisfactory accuracy. The use of 17 �
17 pixels still exceeds the minimum distance required to
cover individual texture features containing each land-cover
class. It should be noted that smaller window does not cover
as much spatial/texture information as larger window does.
On the other hand, if the window size is too large, too much
information from other land-cover features could be included,
and hence the algorithm might not produce accurate results.

To be consistent with previous studies and for comparison
purposes, we selected all 17 � 17 samples from the previously

selected larger homogeneous texture samples (i.e., 33 � 33,
65 � 65). All 17 � 17 samples were subsets of the respective
33 � 33 and 65 � 65 samples. We define a homogeneous tex-
ture sample as a sample without having two or more visually
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Figure 3. A subset of Baton Rouge area (Near Infrared Band 0.76 �m–0.90 �m).

Figure 4. Samples of six urban
texture features (PCA1 band).
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different texture features of land-use or land-cover classes. In
other words, texture appearances of samples in a land-use or
land-cover class are visually similar to each other. Criteria, for
the selection of sample size, include image spatial resolution,
minimum mapping unit size, and the nature of the classes
(minimum distance to completely cover a class, repetition
of spatial objects and features of a class, size of the regions,
classes selected, level of heterogeneity, and orientation of fea-
tures) to be identified. This paper reports the classification ac-
curacy of all four approaches (wavelets, spatial co-occurrence,
spatial autocorrelation, fractals) for the selected window sizes
(i.e., 17 � 17, 33 � 33, 65 � 65). Moreover, based on previous
results which show that band-2, band-6, and band-12 pro-
duced an increased accuracy, this study will therefore exam-
ine the performance of all approaches using these three bands
both separately and in combination.

Analysis Procedure
Wavelet Transform and Its Textural Measures
In general, further decomposition is performed in the low fre-
quency channels. This is known as the standard wavelet de-
composition. However, decomposition can also be done with

the high frequency sub-images. Myint et al. (2002) demon-
strated the effectiveness of four different wavelet decomposi-
tion procedures with 33 � 33 samples: (1) standard decomposi-
tion, (2) horizontal decomposition, (3) vertical decomposition,
and (4) diagonal decomposition. Figure 7a illustrates the first
level decomposition of an original image and Figure 7b through
7e represent four different decomposition procedures with
three levels of an original image. It was demonstrated in the
previous analyses that with 33 � 33 samples, the standard de-
composition was the most accurate among all decomposition
approaches. For this reason, the standard decomposition was
the only approach employed in this analysis to evaluate the
discirminant power of texture measures using 17 � 17 samples.
To evaluate the power of the wavelet transform technique for
texture classification, a linear discirminant analysis approach
was used. The texture measures (e.g., entropy of the decom-
posed sub-images) for the sample generated above were sub-
jected to discirminant analysis using the Minitab© software
package. The procedure generates a discriminate function (or,
for more than two groups, a set of discirminant functions) based
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Figure 5. Different tex-
ture appearances of a
sample (Residential-1)
shown in each of the
four selected bands:
Band-2 (0.52 �m–0.60
�m), Band-6 (0.76
�m–0.90 �m), band-12
(9.60 �m–10.20 �m),
and PCA1.

Figure 6. (a) Two visually identified segmented regions of a
land-cover type (e.g., Woodland) with randomly selected
points/pixels; (b) Diagram of three different sizes of sam-
ples (17 � 17, 33 � 33, 65 � 65) centered at the ran-
domly selected pixels from a visually identified region.
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on linear combinations of the predictor variables which pro-
vide the best discrimination between the groups.

Haralick et al. (1973) proposed a variety of measures to
extract textural information from the gray level co-occurrence
matrices (GLCM), also known as the spatial co-occurrence ma-
trix. Gong and Howarth (1992) demonstrated the efficiency of
occurrence frequency methods with the use of several mea-
sures: mean, standard deviation, skewness, kurtosis, range,
and entropy measures. Zhu and Yang (1998) used entropy as
a measure to identify texture features in twenty five types of
aerial relief samples selected from remote sensing images.
Albuz et al. (1999) used the sum of squares of the wavelet
coefficients of each sub-band for their image retrieval system.
Sheikholeslami et al. (1999) calculated the mean and variance
of wavelet coefficients to represent the contrast of the image.
In this study, we used the same four texture measures as in
the previous studies (Myint, 2001; Myint et al., 2002): log en-
ergy (LOG), Shannon’s index (SHAN), entropy (ENT), and angu-
lar second moment (ASM) to characterize the texture of the
land-cover classes. The four measures are defined as follows: 

LOG � �
K

i�1 
�
K

j�1
log(P(i, j )2) (9)

SHAN � ��
K

i�1 
�
K

j�1
P(i, j) * log(P(i, j)) (10)

ASM � �
K

i�1 
�
K

j�1
P(i, j)2 (11)

ENT � ��
K

i�1 
�
K

j�1
Q(i, j) * log�Q(i, j)�;

Q(i, j) � (12)

where P(i, j) is the (i, j)th pixel wavelet coefficient value of a
decomposed image at a particular level. The Matlab© software
package was used to compute the above mentioned texture
measures in the analysis. The computed texture feature values
of the decomposed sub-images of each original sample at differ-
ent levels were used to discriminate samples of urban classes.

Fractal, Spatial Autocorrelation, and Spatial Co-occurrence Matrix
For comparison purposes and to better evaluate the efficiency
of wavelet approaches in image classification, two different
fractal approaches (isarithm and triangular prism), spatial au-
tocorrelation techniques (Moran’s I and Geary’s C), and spatial
co-occurrence matrix of the selected features were examined
in this study. The discirminant analysis was carried out to
discriminate between classes of urban land use land cover on
the basis of these texture measures.

Fractal Analysis
There is voluminous literature on the concepts and uses of
fractals since Mandelbrot coined the term in 1975 (Mandelbrot,
1983). A potential use of fractals is the analysis of image tex-
ture (De Jong and Burrough, 1995). In these situations, it is
commonly observed that the degree of roughness or large
brightness differences in short spatial intervals in an image or
surface is a function of scale, and not of experimental tech-
nique. A number of fractal algorithms have been programmed
into a software package known as the Image Characterization
and Modeling System (ICAMS) (Quattrochi et al., 1997; Lam
et al., 1998) which was used in this study to explore the tex-
ture features of the study area. ICAMS provides the ability to
calculate the fractal dimension of remotely sensed images
using the isarithm method (Lam and De Cola, 1993), the vari-
ogram (Mark and Aronson, 1984), and the triangular prism
methods (Clarke, 1986). For detailed description of the fractal
approaches, see Jaggi et al. (1993). The variogram method was
not included in this analysis since it tends to be unstable with
non-stationary signals or features (e.g., remotely sensed im-
ages) (Lam et al., 2002).

Spatial Autocorrelation 
ICAMS also contains modules for analyzing the spatial auto-
correlation of images. Moran’s I and Geary’s C are two indices
of spatial autocorrelation which reflect the differing spatial
structures of the smooth and rough surfaces. Moran’s I is cal-
culated from the following formula:

I(d) �

where wij is the weight at distance d so that wij � 1 if point j is
within distance d from point i; otherwise, wij � 0; z’s are devi-
ations (i.e., zi � yi � ymean for variable y), and W is the sum of
all the weights where i � j. Moran’s I varies from �1.0 for per-
fect positive correlation (a clumped pattern) to �1.0 for per-
fect negative correlation (a checkerboard pattern).

Geary’s C contiguity ratio, another index of spatial auto-
correlation, is similar to Moran’s I, but uses the formula:

C(d) � .

(n � 1)�
n

i
�
n

j
wij(yi � yj)

2

���

2W�
n

i
zi

2

n�
n

i
�
n

j
wijzizj

�
W�

n

i
zi

2

�P(i, j)�2
�
��

i,j
�P(i�, j)��2
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Figure 7. Four different decomposition procedures with
three levels of an original image; (a) decomposition at the
first level, (b) standard, (c) horizontal, (d) vertical, and (e) di-
agonal decompositions (Adapted from Myint et al., 2002).
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With the same terms listed above. Geary’s C normally ranges
from 0.0 to 3.0, with 0.0 indicating positive correlation, 1.0 in-
dicating no correlation, and values greater than 1.0 indicating
negative correlation.

Spatial Co-occurrence Matrix and Its Textural Measures
One commonly applied statistical procedure for interpreting
texture uses image spatial co-occurrence matrix (SCM), which
is also known as gray level co-occurrence matrix (GLCM)
(Franklin et al., 2000; Pesaresi, 2000). The use of SCM or GLCM
in texture analysis is also referred to as the spatial gray level
dependence method. Spatial co-occurrence matrix is a widely
used texture and pattern recognition technique in the analysis
of remotely sensed data, and it has been successful to a cer-
tain extent. There are a number of texture measures which
could be applied to spatial co-occurrence matrices for texture
analysis (Haralick et al., 1973; Corners and Harlow, 1980;
Peddle and Franklin, 1991).

The construction of the four directional spatial co-
occurrence matrices for a 3 � 3 window from an example
image normalized to four gray levels (0 to 3) is illustrated in
Figure 8. The final matrix for a given point location in the
image contains the number of times each possible pair of
pixel values occurred in the selected orientation (e.g., hori-
zontal 0 degrees, vertical 90 degrees, left diagonal 135 de-
grees, and right diagonal 45 degrees) within the specified
neighborhood surrounding that point (Figure 8c). In this
study, five texture measures based on the co-occurrence ma-
trix were used: angular second moment or Energy (ASM);

entropy (ENT); homogeneity or inverse difference moment
(IDM); contrast or Inertia (CON); and correlation (COR). The for-
mulae used to compute each measure from the spatial co-
occurrence matrix and their performance in general are as
follows:

Angular Second Moment (or) Energy (ASM) � �
i
�
j
� �

2

,

Entropy (ENT) � �
i
�
j
	 
 * log	 
,

Inverse Difference Moment (or) 

Homogeneity (IDM) � �
i
�
j

	 
,

Contrast (or) Inertia (CON) � �
i
�
j

,

Correlation (COR) � �� .

The computed texture feature values of the samples were used
to discriminate selected urban land-use and land-cover classes.

Results and Discussion
Multi-band Approach with 17 � 17 Samples
Table 1 shows the accuracy of the urban land cover classes by
linear discriminant analysis on the decomposed sub-images at
two separate levels and combination of two levels for 17 � 17

(i � �x)( j � �y)Pij
��

�x�y

(i � j)2P(i, j)
��

R

P(i, j)
�

R
1

��
1�(i � j)2

P(i, j)
�

R
P(i, j)
�

R

P(i, j)
�

R
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Figure 8. (a) 3 � 3 window with gray tone range 0 to 3; (b) General form of
any spatial co-occurrence matrix for window with gray tone range 0 to 3. Num-
ber (i, j ) represents number of times gray tones i and j were neighbors; (c) se-
lected orientations (e.g., horizontal-0 degrees, vertical-90 degrees, left diago-
nal-135 degrees, and right diagonal-45 degrees); (d)–(f) spatial co-occurrence
matrices derived for four angular orientations (Peddle and Franklin, 1991).
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samples using the LOG, SHAN, ENT, and ASM measures. As ex-
pected, Table 1 shows that using a combination of two decom-
position levels would achieve higher accuracy than using
only one level. Also, higher levels produce lower accuracies.
band-6 was found to be the most effective band in characteriz-
ing urban texture features since 17 � 17 samples of band-6
with combination of two levels using the LOG measure reaches
an overall accuracy as high as 78 percent. This result is con-
sistent with what was reported earlier (Myint, 2001) with the
use of 65 � 65 samples.

Linear discriminant analysis with the combination of two
bands (i.e., band-6 and band 12) was carried out to increase
the classification accuracy of 17 � 17 samples. Table 2 shows
that the multi-band approach dramatically increase the over-
all accuracy. In the case of combining band-6 and band-12, the
highest accuracy (92 percent) achieved in the classification
was produced by a combination of two levels with the LOG or
ENT measure. In the combination of all three bands, the high-
est accuracy (98 percent) achieved in the classification was
produced by combining the two levels with the SHAN mea-
sure. Clearly, a combination of three bands significantly in-
creases the overall accuracy. The second highest accuracy
(97 percent) was produced by the combination of two levels
with the LOG, ENT or ASM measure. The overall accuracy pro-
duced by the multi-band approach with the combination of
two levels exceeds the standard acceptable accuracy 85 per-
cent (Townshend, 1981) for all measures (Figure 9).

Comparison with Fractal, Spatial Autocorrelation, and Spatial
Co-occurrence Matrix Using 65 � 65, 33 � 33, and 17 � 17
Samples
Figures 10 to 12 present the overall classification accuracies for
65 � 65, 33 � 33, and 17 � 17 samples produced by wavelet
transforms using log energy (W-LOG), Shannon’s index (W-SHAN),
entropy (W-ENT), and angular second moment (W-ASM); fractal
analysis using isarithm (Isarithm) and triangular prism (Trian-
gular) methods; spatial autocorrelation using Moran’s I (Moran)
and Geary’s C (Geary); and spatial co-occurrence matrix using
angular second moment or Energy (C-ASM), entropy (C-ENT),
homogeneity or inverse difference moment (C-IDM), contrast or
Inertia (C-CON), and correlation (C-COR). Table 3 also presents
the overall classification accuracies produced by different
algorithms for the three window sizes: 65 � 65, 33 � 33, and
17 � 17.

No results were available for the fractal approaches for
33 � 33 and 17 � 17 samples since ICAMS does not recom-
mend the computation of fractal estimates for small window
sizes. It may be inappropriate to apply fractal approaches in
small local window sizes since self-similarity of features,
shapes, areas, and distances need to be observed at different
scales (2N), and a regression analysis between them needs to
be performed to estimate the fractal dimension value. For
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TABLE 1. CLASSIFICATION OF 17 � 17 SAMPLES USING THE STANDARD
DECOMPOSITION PROCEDURE

Overall Accuray (%)

(Measures)

Bands L NSI LOG SHAN ENT ASM

Band-2 l1 4.0 48.3 68.3 65.0 70.0
(visible) l2 4.0 36.7 48.3 40.0 50.0

l1–l2 8.0 60.0 76.7 71.7 76.7

Band-6 l1 4.0 61.7 65.0 56.7 65.0
(near infrared) l2 4.0 58.3 58.3 56.7 50.0

l1–l2 8.0 78.3 73.3 73.3 75.0

Band-12 l1 4.0 55.0 66.7 56.7 66.7
(thermal) l2 4.0 46.7 45.0 51.7 43.3

l1–l2 8.0 63.3 75.0 66.7 73.3

PCA1 l1 4.0 51.7 66.7 63.3 66.7
l2 4.0 46.7 45.0 51.7 45.0
l1–l2 8.0 73.3 68.3 71.7 73.3

L � wavelet decomposition level; NSI � number of sub-images.

TABLE 2. CLASSIFICATION OF 17 � 17 SAMPLES GENERATED FROM MULTI-BAND
APPROACH USING THE STANDARD DECOMPOSITION PROCEDURE

Overall Accuray (%)

(Measures)

Bands L NSI LOG SHAN ENT ASM

Band-6 � 12 l1 4.0 80.0 83.3 78.3 83.3
l2 4.0 65.0 58.3 65.0 60.0
l1–l2 8.0 91.7 86.7 91.7 86.7

Band-2 � 6 � 12 l1 4.0 88.3 91.7 88.3 93.3
l2 4.0 73.3 71.7 75.0 68.3
l1–l2 8.0 96.7 98.3 96.7 96.7

L � wavelet decomposition level; NSI � number of sub-images.

Figure 9. Overall accuracies for SHAN, ENT, and ASM
plotted against different band and level combinations
(17 � 17 samples).

Figure 10. Overall classification accuracies for 65 � 65
samples generated from band-6 produced by wavelet,
spatial autocorrelation, spatial co-occurrence matrix,
and fractal analysis approaches.
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example, we can obtain only a few steps or observations (e.g.,
25 � 32) from a 33 � 33 sample to perform a regression analy-
sis for its fractal estimate. Figures 10 to 12 compare the accu-
racies produced by different textural approaches for band-6.
Table 3 shows that fractal analysis yields the lowest accuracy.
For fractal analysis a local window, the size needs to be suffi-
ciently large since all fractal approaches require a regression
on the logarithm of number of edges, total surface areas, or
variance against the logarithm of the cell size to perform the
regression analysis that determines the fractal dimension
value. Hence, an appropriate window size is very important
for more accurate fractal dimension estimates (Myint, 2003).
However, smaller window size is generally thought to yield
higher accuracy in image classification because if the window
is too large, much spatial information from other land-cover
features could be included, and this will create a mixed-
boundary feature problem. This is especially true in a very
complex urban environment; it could be very difficult for a
visual interpreter to identify and allocate a particular sample
to a class, especially when dealing with the very highly het-
erogeneous nature of mixed urban features. In this applica-
tion, a very accurate algorithm using a large local window
may not produce satisfactory accuracies.

From Figures 10 through 12, it can be observed that a
wavelet analysis technique is far more accurate than other
well-known and widely accepted methods. It was reported
earlier (Myint, 2001) that the wavelet transforms approach
with three different measures: ENT, ASM, and SHAN obtained
the highest accuracy, 100 percent for the 65 � 65 samples
(Table 3). The same approach with the LOG measure yielded
98 percent accuracy which is still much higher than accura-
cies produced by any other widely accepted approach. The
spatial co-occurrence matrix with the IDM or ENT measure
achieved the next higher accuracy (68 percent). It is noted that
there is a large gap between the lowest accuracy (98 percent)
achieved by wavelets versus the highest accuracies (68 per-
cent) achieved by the other advanced texture methods (fractal,
spatial autocorrelation, and spatial co-occurrence matrix
approaches).

In general, the highest accuracies for the 65 � 65 samples
produced by different texture methods are the wavelet trans-
form (100 percent), spatial autocorrelation (65 percent), spatial
co-occurrence (68 percent), and fractal analysis (57 percent).
The highest accuracies achieved by different approaches for
the 33 � 33 samples are the wavelet transform (88 percent),
spatial autocorrelation (62 percent), and spatial co-occurrence
(67 percent). The lowest accuracy of each method was pro-
duced by W-SHAN (83 percent), Moran (60 percent), and C-ENT
(52 percent). It is difficult to determine which approach is
more efficient between the spatial autocorrelation and spatial
co-occurrence matrix since the C-IDM approach produced more
accurate results than both autocorrelation methods, whereas
the remainder of the co-occurrence approaches produced
lower accuracy than that of Moran’s I and Geary’s C. However,
it is obvious that the accuracies for 33 � 33 samples achieved
by all wavelet transform approaches are much higher than the
other three texture methods.

The overall classification accuracies for the 17 � 17 sam-
ples are relatively low, ranging from 73 percent to 78 percent
for the wavelet approach, autocorrelation from 52 percent to
53 percent, and co-occurrence from 42 percent to 67 percent.
It is difficult to make a conclusion on which approach is
more accurate between spatial autocorrelation and spatial co-
occurrence techniques, since the latter produced the highest
and lowest accuracies, and the former is in between. Among
the five texture measures of the spatial co-occurrence matrix,
C-IDM appears stable since it consistently produced better ac-
curacy for all samples. In general, all accuracies obtained for
the 17 � 17 samples were relatively low. However, the overall
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Figure 12. Overall classification accuracies for 17 � 17
samples generated from band-6 produced by wavelet,
spatial autocorrelation, spatial co-occurrence matrix,
and fractal analysis approaches.

Figure 11. Overall classification accuracies for 33 � 33
samples generated from band-6 produced by wavelet,
spatial autocorrelation, spatial co-occurrence matrix,
and fractal analysis approaches.

TABLE 3. OVERALL CLASSIFICATION ACCURACIES FOR BAND-6 FOR THREE WINDOW
SIZES: 65 � 65, 33 � 33, 17 � 17 PRODUCED BY DIFFERENT ALGORITHMS

Overall Classification Accuracy

(Sample Size)

Techniques Measures 65 � 65 33 � 33 17 � 17

W-LOG 98.3 88.3 78.3
W-SHAN 100.0 83.3 73.3

Wavelet W-ENT 100.0 88.3 73.3
W-ASM 100.0 86.7 75.0

Spatial Moran 65.0 60.0 51.7
Autocorrelation Geary 65.0 61.7 53.3

C-IDM 68.3 66.7 66.7
Spatial Co- C-CON 63.3 55.0 58.3

occurrence C-ASM 41.7 55.0 61.7
Matrix C-ENT 68.3 51.7 51.7

C-COR 58.3 58.3 41.7

Fractal Isarithm 51.7 — —
Triangular 56.7 — —

�

�
�

�
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accuracies were significantly increased in wavelet analysis
with 17 � 17 samples when it included a multi-band ap-
proach. As demonstrated earlier (Table 2), the combination of
all three bands: band-2, band-6, and band-12 with the SHAN
measure achieved the highest accuracy (98 percent) for 17 �
17 samples in the standard decomposition procedure. All
other measures (LOG, ENT, and ASM) of the same wavelet ap-
proach produced 97 percent accuracy for the same samples. 

Conclusion
Results from this study confirm that the wavelet approach is
the most accurate of all approaches considered. Regarding the
power of spectral bands, band-6 (near infrared) was found to
be the most efficient band for 17 � 17 samples since it pro-
duced the highest accuracy (78 percent). This result is partly
consistent with the results from the previous studies, where
band-6 was found to be the most accurate (100 percent) from
using 65 � 65 samples, and PCA1 and band-12 produced the
highest accuracy (93 percent) when 33 � 33 samples were
used. Therefore, it may be difficult to make a general conclu-
sion on which band performed most effectively among band-6,
band-12, and PCA1. The 65 � 65 samples gave the highest ac-
curacy among the three window sizes, implying that a win-
dow size of 162.5 m by 162.5 m may be appropriate for urban
land cover classification. This study confirms that classifica-
tion accuracy decreases with increasing level of decomposi-
tion, but the combination of more levels effectively increases
the accuracy. Furthermore, a multi-band approach also drasti-
cally increases the overall accuracy.

In this research, the samples were selected randomly from
the homogeneous texture regions. It is obvious that they are
truly representative samples of the selected classes. Hence, it
is recommended that, in addition to the number of training
samples, more detailed evaluations should be carried out so
that an optimal window size can be determined for different
land cover types in different remote sensing imagery. Future
research should be done to develop operational algorithms to
perform wavelet analysis using different local moving window
sizes. Moreover, other types of wavelet transforms will need to
be tested. There are a number of other wavelet transforms that
may perform differently than the Haar transform used in this
study. Examination of these new transforms and how they per-
form with different window sizes and land cover types will be
important areas of research for further increasing the perfor-
mance of wavelet transform based texture analysis and classi-
fication. Furthermore, the potential of the wavelet analysis
proposed in this study should also be examined in other envi-
ronment and application areas.
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