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WAVELETS IN WANDERING SUBSPACES

T. N. T. GOODMAN, S. L. LEE, AND W. S. TANG

Abstract. Mallat's construction, via a multiresolution approximation, of or-
thonormal wavelets generated by a single function is extended to wavelets gen-
erated by a finite set of functions. The connection between multiresolution
approximation and the concept of wandering subspaces of unitary operators in
Hubert space is exploited in the general setting. An example of multiresolution
approximation generated by cardinal Hermite ß-splines is constructed.

1. Introduction

Wavelets are functions generated by translating and dilating a function or
a finite set of functions. They are useful in many areas of mathematics and
theoretical physics [1,2] and also in practical applications such as image and
signal processing [13, 14]. Orthonormal bases of wavelets generated by one
function have been constructed for various function spaces [11, 15, 16]. Re-
cently, Mallat [12] has unified the construction of these bases for L2(R) via
the multiresolution approximation which is defined to be a sequence of closed
subspaces (Vm)meZ of L2(R) satisfying the following properties:

(1.1) VmcVm+x,        m£Z,

(1.2) (J Vm is dense in L2(R)   and     f| Vm = {0},
mez mez

(1.3) f£Vm^D2f£Vm+x,        m£Z,
where Daf(x) := f(ax), x £ R, for any positive number a ,

(1.4) / £ Vm & T2-mJ £ Vm,        (m,n)£Z2,

where Tx(x) := f(x - x), x £ R, for any ieR,

/j 5i there exists an isomorphism J^: Vq —► /2(Z) which commutes
with the action of Z.

For a multiresolution approximation (Vm)m&z, Mallat [12] has shown the
existence of <j> £ Vq such that (T„<p)„^z is an orthonormal basis of Vq . Fur-
thermore, if

<hm,n(x):=V2^(t>(2mx-n),        (m,«)eZ2,
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then for each m £ Z, (4>m,n)nez is an orthonormal basis of Vm . Let Wm
be the orthogonal complement of Vm in Vm+X. Mallat has also shown the
existence of \p e W0 such that (Tny/)n€Z is an orthonormal basis of W0 , and
if

y/m,n(x):=V2^y/(2mx-n),        (m,n)£Z2,
then (y/m,n)nez is a complete orthonormal set in Wm .

Properties (1.1) and (1.2) of the multiresolution approximation imply that

WjLWk, jik,
and

L2(R)=Y,®Wm.
mez

Since (Wm,n)nez is an orthonormal basis of Wm , it follows that (y/m,n)(m,n)ez2
is an orthonormal basis of L2(R).

Our object is to extend Mallat's results to wavelets generated by a finite
number of functions. In this connection we observe the relationship between
wavelets and the concept of wandering subspaces in operator theory (see Hal-
mos [6, Problem 155], and Robertson [17]). This provides a general setting
to wavelets in Hubert space where the translation and dilation operators are
replaced by unitary operators. We prove the existence of orthonormal wavelet
bases for Vm generated by a finite number of vectors, and using a result of
Robertson [17], we also prove the existence of bases of orthonormal wavelets
for Wm and derive other results which are reminiscent of multiresolution ap-
proximation. This is done in §2. A more detailed analysis of the corresponding
results in L2(R) is given in §3. An example of multiresolution approxima-
tion generated by cardinal Hermite ß-splines (see Schoenberg [18, Chapter 5])
is constructed in §4. In §5 we construct compactly supported Hermite spline
wavelets which extends the results of Chui and Wang [4].

2. Existence of orthonormal wavelets and wandering subspaces
Let T be a unitary operator on a complex Hubert space %?. A subspace

S" of MT is called a wandering subspace for T if Tm(^) 1 Tn(S") for all
m ¿ n (see [6, 17]). Further, if V = ¿~2„ez ®Tn(S?), then we say that & is a
complete wandering subspace of V fox T. We shall denote by E the forward
shift operator on /2(Z).

We begin by stating the Fuglede-Putnam Theorem in the form which will be
needed later.

Lemma 2.1. Let %*, i = 1, 2, be complex Hubert spaces, and A¡: M¡ —► %\,
i = 1,2, be normal operators. If B: ß% —* J%i, is a bounded operator such that
AiB — BA2, then A\B — BA2 . If in addition B is invertible, then there exists
a unitary operator U : H2 —> Hi such that Ax U — UA2.

When %\ = %f2, a proof of Fuglede-Putnam Theorem can be found in [6,
Solution 192]. The proof with obvious modifications works for the general case.

Theorem 2.1. Let Vq be a closed subspace of a complex Hubert space %*, and
T a unitary operator on %? such that

(2.1) TVo = Vo.
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WAVELETS IN WANDERING SUBSPACES 641

Suppose that there exists a bounded invertible operator J: V0 —> /2(Z) such that
(2.2) JT = ErJ

for some r £ Z\{0}, and a unitary operator D on %? such that

(2.3) VoCDVo,
and
(2.4) TD = DTk,

for some k £ Z, \k\ > 1. Let
(2.5) Vm:=DmV0,        meZ.

Then the following results hold:
(1) For every m £ Z, Vm c Vm+i.
(2) There exist 4>j £%?, 1 < j < \r\, such that

{Tncj>j:n£Z,   l<j<\r\)

is an orthonormal basis of V0.
(3) The set

{TnDTl(j)j: « e Z, 0 < / < \k\ - 1,   1 < 7 < |r|}

is an orthonormal basis of Vx.
(4) There exist y/j, 1 < j < \r\(\k\ - 1), such that

{T'ytj-.neZ,  l<j<\r\(\k\-l)}
is an orthonormal basis of the orthogonal complement W0 of V0 in Vx.

(5) The collection
{DmT"y/j: (m,n)£Z2,   1 < ; < |r|(|fc| - 1)}

is an orthonormal basis of \Jmez Vm e f]m€Z vm ■

Remark 1. The result (2) of Theorem 2.1 is equivalent to the existence of a
complete |r|-dimensional wandering subspace of Vq for T. Similarly, (4) is
equivalent to the existence of a complete \r\(\k\ - 1)-dimensional wandering
subspace of W0 for T.
Remark 2. For a nonzero integer r, condition (2.2) is equivalent to the exis-
tence of a bounded invertible operator J: Vo —> /2(Z)lrl such that JT = EJ,
where E(sx, ... , slr{) = (Eesx, ... , Ees\r\), (sx, ... , s[r¡) £ l2(Z)W , e := r/|r|.

Remark 3. If X = L2(R), and T = Tx and D = D2 axe the translation
and dilation operators respectively on L2(R), then T and D satisfy condition
(2.4) with k = 2. In this case Theorem 2.1, with r = 1, reduces to the
results of Mallat [12] on the existence of orthonormal wavelet bases for Vm
and its orthogonal complement Wm in Vm+X corresponding to a multiresolution
approximation (Vm)meZ of L2(R).

Proof of Theorem 2.1. It is clear from the definition that Vm C Vm+X , m £ Z.
Let e¡ £ l2(Z) such that e,(«) = ôjn, j, n £ Z. Then, {(Er)nej: « e Z,

1 < 7 < \r\} is an orthonormal basis of /2(Z). Since T and Er axe normal
(indeed unitary) operators on Vq and /2(Z) respectively, and they are similar by
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(2.2), it follows from Fuglede-Putnam Theorem (Lemma 2.1), that there exists
a unitary operator U: V0 -» /2(Z) such that UT = ErU. If <j>¡ := U~xej,
1 < 7 < M > then {T"<f>j: « e Z, 1 < j < \r\} is an orthonormal basis of V0.
Hence É? := span{0;: 1 < j < \r\} is an \r\-dimensional complete wandering
subspace of V0 for T. This proves (2).

Since D is a unitary operator on X*, and Vm := DmV0 , {DmTn<pj: n £ Z,
1 < 7 < k|} is an orthonormal basis of Vm . In particular, since T"D = DTnk ,
« £ Z, the result (3) follows.

Let y := span{DTl(f)j: 0 < / < \k\ - 1, l<j< \r\}. Then by (3), y is an
|r/c ¡-dimensional complete wandering subspace of Vx for T. By (2.3),

5>:r(jr) c£e:r"(jo.
nez nez

By a theorem of Robertson [17, Theorem 2, p. 235], there exist vectors y/j,
I < j < \r\(\k\ - 1), such that {Vy/f. « G Z, 1 < j < \r\(\k\ - 1)} is an
orthonormal basis of the orthogonal complement Wo of V0 in Vx .

Finally, letting Wm be the orthogonal complement of Vm in Vm+X , a stan-
dard argument shows that Wm = Dm(Wo), meZ, and

IJ Vme f] vm=J2®wm.
mez mez mez

Hence, for each m , {DmTny/j : « e Z, 1 < j < \r\(\k\ - 1)} is an orthonormal
basis of Wm and the collection {DmTnipj: (m, n) £ Z2, 1 < j < \r\(\k\ - 1)}
is an orthonormal basis of \JmeZ Vm G f]mez ^m •   D

Remark 4. In Theorem 2.1, it was assumed that (2.4) holds with \k\ / 1 .
Suppose that it holds with \k\ = 1 , and all the other hypotheses of the theorem
are satisfied. Then as in the proof of the theorem, Sf and y are both |r|-
dimensional wandering subspaces for T, and

V0 = Y1 ®Tn(3f) c Y, ®Tn(y) = Vx.
nez nez

By Theorem 1 of [17], this implies that VQ — Vx . Hence W0 = {0}, and
Vm = Vo for all meZ.

3. Wavelets generated by a finite set of functions in L2(R)

Let r be a positive integer and

l2(Z)r:={(sx,...,sr):Sj£l2(Z), j=l,...,r}.

For s - (sx, ... , sr) £ l2(Z)r, its norm is given by

Pl|:=(í>l|2)       •

The space of 27r-periodic square integrable functions and the space of 27r-
periodic continuous functions will be denoted by Z2(0, 2n) and C(0, 2n) re-
spectively. The Fourier transform of f £ L2(R) will be denoted by /.
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WAVELETS IN WANDERING SUBSPACES 643

Let gj £ L2(R), j = 1, ..., r, such that \Z„ezsin)Tngj e L2(R), for all
5 = (s(n))n€Z £ l2(Z). Then £„ez \gj(u + 2nn)\2 is integrable, and for almost
all u £ R, (gj(u + 2nn))neZ £ l2(Z). Let

(3.1) gij(u):=Ysi(u + 2nn)gj(u + 2nn),        i, j = 1, ... , r,
nez

and

(3.2) G(u) := (gu(u)YlJ=x.

Then G is Hermitian, and therefore there is a unitary matrix U such that

(3.3) G=U*DU,
where U* denotes the conjugate transpose of U,

D(u) := diag(Aj(u), ... , kr(u)),

and Xj are the eigenvalues of G.

Theorem 3.1. Let K: l2(Z)r -♦ L2(R) be defined by
r

(3.4) K(s) := ¿2z2sjWT"8J>       s:=(sx,...,sr)£ l2(Z)r.
j=\ nez

Then K is an isomorphism onto a subspace of L2(R) if and only if there exist
positive constants A and B such that
(3.5) A < Àj(u) < B,        j = I, ... , r, almost everywhere.

Furthermore, { Tng¡■.: n £ Z, j = 1, ... , r} is an orthonormal subset of L2(R)
if and only if K is an isometry, and these hold if and only if the matrix G(u) is
the identity for almost all u.
Proof. Fox s = (si,..., sr) £ l2(Z)r,

r

K(s)(u) = Y,hj(u)gj(u)
y"=l

where
(3.6) hj £ L2(0, 2n)   with ||«7|| = ||s,-||.
Therefore,

/oo     r      r _ _££>(«)Aj(ti)fc(ii)$,(iOrf*.
■°° ;=i j=\

Decomposing the integral over the intervals [27r«, 27r(« + 1)),  « £ Z, and
using (3.1) leads to

Jo   ,=i j=\
The integrand of the last integral is a quadratic form. Using the Parseval identity
and letting H(u) := (hi(u), ... , hr(u))*, it can be written as

(3.7) \\K(s)\\2 = ^- j2* H*GH(u)du.
¿n Jo
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644 T. N. T. GOODMAN, S. L. LEE, AND W. S. TANG

By (3.3), H*GH = Q*DQ, where
Q = (qx,...,qrY:=UH,

with

(3.8) ¿ltoll2 = ¿l|A/lr\
7=1 7 = 1

since U is unitary. Therefore (3.7) becomes

\\K(s)\\2 = ¿ J n Q*DQ(u) du = ̂ JKJ2 l9/(«)l2A/(«) du.

Now, K is an isomorphism if and only if there exist positive constants A
and B such that

v4||s||2< ||/¡:(s)||2</3||;í||2,        s£l2(Z)r.

By (3.6) and (3.8), this is equivalent to
r      r2n r      r2n

J=x JO J = x JO
¿¿Z I"\Qj(u)\2du<Y /"\qj(u)\2Xj(u)du

:,   JO jTlJ°

BJrfn\qjiu)\2du
~1 Joj=i

for all qj £ L2(0, 2n), j = I, ... , r, which in turn is equivalent to (3.5).
The last assertion of the theorem is an easy consequence of the above rela-

tions.   D

A function / £ L2(R) is said to be regular if / is continuous and satisfies
f(u) = 0(u~l) as \u\ -> oo .

Corollary 3.1. Suppose that gj, j = 1 , ... , r, are regular. Then K is an
isomorphism onto a subspace of L2(R) if and only if G(u) is positive definite
for all u.
Proof. The assumption that g¡■■, j: = 1, ... , r, are regular implies that g¡j,
i,j = 1, ... , r, axe continuous. If G(u) is positive definite for all u, its
eigenvalues kj(u) are positive for all u and j = I, ... , r. Since A, are 27c-
periodic and continuous, there exist positive constants A and B such that (3.5)
hold for all u. The converse is immediate.   D

Theorem 3.2. Suppose that g¡, j = I, ... , r, are regular. Then K is an iso-
morphism onto a subspace of L2(R) if and only if for each u, the infinite matrix

(3-9) M(u):=(gi(u + 2nj))U,jez
has rank r.
Proof. By (3.2) and (3.9), G = MM*. For any // = («,,..., hr)* £ C ,

|2
H*GH = (H*M)(H*M)* = Y

jez
YniSi(u + 2nj\
i=\
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WAVELETS IN WANDERING SUBSPACES 645

Therefore, for any H ¿ 0, H*GH > 0 if and only if £J=1 «,g,(w + 2nj) for
some j , if and only if rank(M) = r.   □

In the next theorem, the notation C, means the jtn column of the matrix
C.

Theorem 3.3. Suppose that K is an isomorphism. Let

Dx'2(u):=diag(Xx(u)l/2,...,Xr(u)x'2),

and

(3.10) (Mu),..., 4>r(u))T := ((U*Dl'2)-lM)o.

Then {T„<j)j¡: « £ Z, j = I, ... , r) is an orthonormal set.
Proof. Since U* and Dxl2 are 27r-periodic, by (3.10)

(h(u + 2nj))U,jez = iV*D'l2)-xM.

Let

(3.11) <t>ij(u) '•= X]^'(M + 2nn)^)j(u + 2nn),
nez

and <b:=(4>uyij=x. Then

Ô) = (U*Dxl2)-xMM*(Dxl2Uyx.

Since MM* = G = (U*DXI2)(DXI2U), it follows that <P(w) equals the identity
matrix for almost all u . By Theorem 3.1, the map Kx : l2(Z)r —» L2(R) defined
by

r

(3.12) Kx(s):=YzZsjin)T"^'        s£l2(Z)r,
7=1 nez

is an isometry onto a subspace of L2(R). Therefore {T„<f>j: n £ Z, j =
I, ... , r} ,is an orthonormal set.   G

Remark 5. Suppose that K is an isomorphism onto a subspace V0 of tL2(R) .
Since TxVo = V0 and TXK = KEr, Theorem 2.1 also yields the existence of
4>j, j = l, ... , r, such that {Tn(f>j: n £ Z, j = 1, ... , r} is an orthonormal
basis of Vo.

Equation (3.10) is more of theoretical interest since the eigenvalues and eigen-
vectors of G axe, in general, difficult to compute. We shall now give an induc-
tive construction of the orthonormal wavelets which could be more useful in
practice. Suppose that {(f>j: I < j < r - 1}, is a set of regular functions in
L2(R) such that {Tn<j>¡ : « £ Z, 1 < j < r - 1} is an orthonormal set. Then by
Theorem 3.1 the mapping Kx : l2(Z)r~x - L2(R) defined by (3.12) with r - 1
instead of r, is an isometry onto a subspace of L2(R), and 4> := ((¡>ij)r~Ji=x,
where 4>¡¡ are defined in (3.11), is the identity matrix.
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Theorem 3.4. Suppose g £ L2(R) is regular. Then the map K: l2(Z)r —> L2(R),
such that

r-\

(3.13) Kis):=Y,¿ZsJÍn)T"<l>J + zZs'in)T»8,
7=1 nez nez

is an isomorphism onto a subspace V0 of L2(R) if and only if for all u £ R,
r-l

(3.14) \(g,g)(u)\>Y\iê,hm\2,
7=1

where
(g, g)(u) :=Y\giu + 2nn)\2,

nez

and _
(g, <j>j)(u) := Y £(" + 2nn)(j)j(u + 2nn).

nez

Further, if (3.14) holds and

x(u):=((g,g)(u)-Y\igJjm\2rl/2,
7=1

tj(u) := -x(u)(g, 4>j)(u),        j = 1, ... , r - 1,

and
r-\

(3.15) 0r:=$>¿; + T£,
7=1

then {T„<f>j : « £ Z, j = I, ... , r) is an orthonormal basis of V0 .

Proof. Let g¡■ :— <j>¡■■, j = 1, ... , r - 1, and gr := g. Then G is a matrix of
order r whose last row is (grX, ... , grr) and last column is (grX, ... , grr)*,
and the remaining submatrix is the identity. Clearly, G is positive definite if
and only if \G\ > 0 which is equivalent to (3.14).

If (3.14) holds then

vo = | f-f = \ZzZsiin)Tn<t>j + YJsr(n)Tng I .
y y=inez nez J

Now / £ Vo if and only if there are unique hj £ L2(0, 2n), j = I, ... , r,
with

r-l

f=zZ hJ<t>J + h'8 ■
7=1

Therefore, we want to find x, tx, ... , tr-X in Z2(0, 2n) such that, with
r-l

(3.16) &:= £«>& + **>
7 = 1
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WAVELETS IN WANDERING SUBSPACES 647

{Tn<f>j■■: « £ Z, j = 1, ... , r} is an orthonormal set. This is equivalent to

(3.17) ($r,4>j) = Sr,j, j=l,...,r.
Since (4>,, <j>j) = ôij, i, j = 1, ... , r - 1, it follows from (3.16) that (3.17) is
equivalent to

(3.18) tj + x(g,4>j) = 0,        j = l,...,r-l,
and

r-l r-l r-l

(3.19)        Y\tJ\2 + \z\2(ê'8) + rYtj(h>è) + xzZ1j(êJj) = i-
7=1 7=1 7=1

Substituting for tx, ... , tr-\ from (3.18) into (3.19) leads to
r-l

7=1

By (3.14), the function

(3.20) x(u) := ((g, mu) -¿2\iê, hm\2r{/2
7=1

is 27T-periodic and continuous, and therefore belongs to ¿2(0, 2n). We then
define
(3.21) tj(u) := -x(u)(g, (¡>j)(u),       j =1,... ,r-l,

which belong to Z2(0, 2n) and satisfy (3.18) and (3.19). So with c/>r defined
by (3.16), (3.20) and (3.21), {T„(f)j: « e Z, j = 1, ... , r) is an orthonormal
set in Vq .

We denote the Fourier transform operator by !F and define U : ÏF Vo —> & V0
such that

r-l r-l

Uf := Y h)h = hr4>r , f=zZ hJ<t>J + h'g £  V° '
7=1 7=1

where hj £ L2(0, 2n), j = 1, ... , r. By (3.16) we see that U is an isomor-
phism of SfVo onto itself. Since \Tn<pj\ n € Z, j = 1, ... , r) is orthonormal,
it follows that the map K: l2(Z)r -> V0 such that

r

K(s) :=¿2¿Z sAn)Tn<t>j,        s = (sx,...,sr)£ l2(Z)r,
7=1 nez

is an isometry. But then K = 9r~xU9rK, so that K maps l2(Z)r onto V0.
Thus {Tnc¡>j: « £ Z, j = 1, ... , r} is complete in V0 .   D

Now suppose that <f>j £ L2(R), j = 1, ... , r, such that {T„<f>j: « e Z,
j = 1, ... , r} is an orthonormal set, and let V0 be its closed linear span in
L2(R). Then

Vo = l f£ L2(R): /= ¿0A , hj £ L2(0, 2n) 1 .
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Let VX:=D2V0. Then

Vx = i / £ L2(R): /(2m) =.¿ 4>j(u)hj(u), h} £ L2(0, 2n) \ .

Clearly, TnVx = Vx, « e Z, and the following results are easy consequences.

Proposition 3.1. The following conditions are equivalent:
(1) KoCKi,
(2) ^.WCr-i,
(3) There exist a,j £ L2(0, 2n), i, j — 1,..., r, such that

r

(3.22) (¡>j(2u) = y2<i)j(u)aij(u)>        i=l,...,r.
7 = 1

We shall henceforth assume that the conditions in Proposition 3.1 hold.

Proposition 3.2. Suppose that fi £ Vx, i= 1, ... , r, and
r

fi(2u) = Yhiu)huiu).        n'J e ¿2(°. 2n),  i, j =1, ■■■ ,r.
7 = 1

Let H := (h¡j)r j=x. Then {T„f: n £ Z, i — 1, ... , r) is orthonormal if and
only if

H(u)H(u)* + H(u + n)H(u + n)* = Ir,
where Ir denotes the identity matrix of order r.
Proof. For i, j =1, ... ,r,

Y fi(u + 2nn)fj(u + 2nn)
nez

k=\ 1=1 neZ

+ ¿Zz2h* {2+n)hJ'{^ + 7l)zZ^ (^ + ̂  + 2nnj 4>i(J^ + n + 2nn)
k=\ 1=1 neZ

= ¿ h,k (J) h]k (|) + ¿ h,k (| + tt) hjk (\ + n),
k=\ k=\

by Theorem 3.1 since {77„07: n £ Z, j = 1, ..., r} in an orthonormal set.
Therefore, {T„f : « £ Z, i = 1,..., r} is orthonormal if and only if

Y M" + 2n)fj(u + 2n) = ôij,        i,j=l,...,r,
neZ

if and only if

¿Z ** (f ) hJk (I) + 12 hik (f + n) hjk (% + *)= 3>J '
k=l k=\

i, j = 1 , ... , r, U £ R.     D
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WAVELETS IN WANDERING SUBSPACES 649

Let a¡j be defined as in (3.22), and A := (aij)r -=1 . By Proposition 3.2,

(3.23) A(u)A(u)* + A(u + n)A(u + n)* = Ir.
Let W0 be the orthogonal complement of V0 in Vx, and let yi, £ Vx , i =

I, ... , r, such that
r

(3.24) y/,(2u) = Yhiu)buiu)
7 = 1

where è,; e Z2(0,2tt),   i,j = l,...,r.   Let B := (b¡j)r j=x.   A similar
argument as in the proof of Proposition 3.2 gives

Proposition 3.3. The functions y/¡, i = 1, ... , r, are in W0 if and only if

(3.25) A(u)B(u)* + A(u + n)B(u + n)* = 0.
Furthermore, {T„y/,■: « e Z, i = I, ... , r} is an orthonormal set if and only if

(3.26) B(u)B(u)* + B(u + n)B(u + n)* = Ir.
Given A = (ay)/ j=i satisfying (3.23), the functions y/¡, i = 1, ... , r,

can be obtained by constructing B = (&/_/)/ j=i so tnat (3.25) and (3.26) are
satisfied. Indeed (3.23) is equivalent to the orthonormality of the vectors

(an(u), ... ,air(u), an(u + n), ... , air(u + n)),        i= 1, ... , r,

for u £ [0, n). By Gram-Schmidt process they can be extended to an orthonor-
mal basis of C2r. Let the new vectors in the basis be denoted by

(6/1 (m), ... , biriu), bn(u + n), ... , bir(u + n)),        i = 1,..., r,
and extend by,  i,j= 1, ... ,r, periodically with period 2n.   Then B :=
(bij)rij=i satisfies (3.25) and (3.26). Let y/¡ be defined as in (3.24).

Thoerem 3.5. The set { T„ y/,■-: n £ Z, 1 < /' < r) is an orthonormal basis of Wo.
Furthermore,

(3.27) Wo = I f £ L2(R): / = ¿ fyhj, hj £ Z2(0, 2n) \ .

Proof. By Proposition 3.3, {Tny/i: n £ Z, 1 < / < r} is an orthonormal subset
of Wq . We have only to show that it is complete.

Take y/ £ Wo and orthogonal to {Tny/¿: « e Z, 1 < i < r}. Then there
exist gi,..., gr, in Z2(0, 2n) such that

r

¥i2u) = Y4>j(u)gj(u),
7 = 1

and by a similar argument as in the proof of Proposition 3.2,
r

$^(a/jt(K)at(tO + a,k(u + n)gk(u + n)) = 0
k=\

and
r

$^(6i*(")at(") + bik(u + n)gk(u + n)) = 0
k=\
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for i = l, ... , r. This means that the vector

(gi(u), ... , gr(u), g\(u + n), ... , gr(u + n))

is orthogonal to the orthonormal basis of C2r. Therefore, all gj , j = 1,..., r,
and hence y/ are zero. This implies that {Tny/,: n £ Z, 1 < / < r} is an
orthonormal basis of W0 .

Functions in Wq can be written uniquely in the form
r

f = 1zZzZ CJ»Tn Vj ' (cjn)nez £ l2(Z).
;=1neZ

Taking Fourier transform leads to (3.27).   G

4.  MULTIRESOLUTION APPROXIMATION GENERATED BY
CARDINAL HeRMITE  5-SPLINES

Let « and r be positive integers, « even, such that 2r < n, and

(4.1) 5»¿ := {/ £ C"-r-x(R): f\[v,v+l) £ n„_, ,v£Z),
where n„_i is the class of polynomials of degree < « - 1. Functions in S"¿
are called cardinal Hermite splines of degree « - 1 . For j = 0, ... , r - I ,let

(4.2) 5*nrJ:={f£<9nr:fW(v) = 0, v £Z, k = 0,..., r- 1, k¿j}.
The space <9%j has a basis consisting of integer translates of a function N„j =
Nrnj £ Jpfjj , j = 0, ... , r-l, with minimal support [-f-l+r, f + l-r],
in the sense that every / £ 5^r ■ has a unique representation of the form

(4.3) f(x) = Y,c„Nnj(x-v),       x£R
vez

(see [18, 8]). The functions Nnj axe called cardinal Hermite y5-splines.
For computational purposes, the Fourier transforms N„j of the cardinal

Hermite 5-splines are very useful. They can be expressed in closed forms with
the help of the Hankel determinant \Hr(a„)\ where Hr(a„) is the matrix of
order r whose jtn column is (a„_/+i , ... , an-j-r+2)T (see [9]). Indeed if

(4.4) ak(u):=YJ(u + 1™)~k,        k = 2,...,n,
vez

and Hrj(a„(u)) denotes the matrix obtained from Hr(an(u)) by replacing the
(j + l)th column by (un , un~x, ... , un~r+x)T, j = 0, ... , r- I, then

(4.5) NnJ(u) = (2sin |)" \HrJ(a„(u))\.

For j = 0, ... , r - 1, Nnj axe regular. Indeed, N„j axe continuous and
ÑttJ(ü) = Oiu-"+r-x) as « -» oo . Therefore the map K: l2(Z)r -» L2(R) such
that

r-l

(4.6) K(s):='£^2sJ(u)T^N^J,
7=0 vez

is well defined.
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Theorem 4.1. The map K defined by (4.6) is an isomorphism of l2(Z)r onto a
subspace of L2(R).
Proof. Let N(u) := (Nnj(u + 2nj))'i~0x j€Z . Suppose that 0 < u < 2n . By a
result of [10], \Hr(an(u))\ ^ 0. Therefore, equation (4.5) can be expressed in
the form
(Nn,i(u)yZ0l = (2sinu/2)n\Hr(an(u))\Hr(an(u))-l(u-" ,u~"+x, ... , u~n+r-x)T.

Since Hr(an(u)) is 27t-periodic, it follows that

(Ñn,,(u+2*j))r,-=o:rr=o
= (2sinu/2)n\Hr(an(u))\Hr(an(u))-x((u + 2nj)-n+i)riZo:'jZo ■

Since the last matrix on the right of (4.7) is a Vandermondian, we see that both
sides are nonsingular. In particular N(u) is of rank r, if 0 < u <2n .

For u = 0, a straightforward computation shows that

(4.8)      (Nn.^nj))^;^ = \H^i(ßn_2)\Hr_i(ßn_2)-x((2nj)-n+%zl:rjZl,

where
/V=£(27n,)-fc.

v^O

A similar argument as above shows that A(0) is of rank r. The result now
follows from Theorem 3.2.   D

Let <5^r denote the range of K. This is a closed subspace of L2(R). Fur-
thermore, 3% = S^r n L2(R). Therefore, if Df(x) := f(2x),

(J DmZ7nr D [j DmZ7x = L2(R).
mez meZ

Also Ç\m€ZDmSe?nr = {0}, since it comprises polynomials in L2(R).
Let Vm := DmS?nr, m £ Z. Then (Vm)m€Z is a multiresolution approx-

imation of L2(R) generated by the cardinal Hermite 5-splines Nnj, j =
0, ... , r- 1 . We shall call (Vm)m€Z, a Hermite spline multiresolution approx-
imation of L2(R).

5. Compactly supported Hermite spline wavelets for
the orthogonal complement

Let W0 be the orthogonal complement of Vq in Vx , so that Wm := DmWo
is the orthogonal complement of Vm in Vm+i , m £ Z. For convenience, we
shall assume that the ß-spline Nnj is supported on [0, « - 2r + 2]. This can
be easily achieved by translation.

Take j = 0, ... ,r - I, and consider functions of the form
m

fij(x) = Y,CjN2nJ(2x - v),    with fjj)(k) = 0,  k£Z,
v=0

where m is a positive integer. Then fj"' £ Vx and integrating by parts, in the

sense of distributions, shows that  n"' is orthogonal to V0 , and hence belongs
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to Wo . Such a function f with minimal support is given by
2n-2r

(5.1) /,(*)= ^2(-iyN{2JlJ(u + l)N2„j(2x-p).
v=0

For j — 0, ... , r - 1 ,let

^rn,j-={f£^2n-f{k)M=0,   V£Z,   k = 0, ... , V - 1 , k # j) .

Lemma 5.1. Let f £ D5?2n • such that f(x) decays exponentially as \x\ -> oo
and fU)(v) = 0, ueZ. Then

(5.2) f(x) = -Yjavfj(x-v),
vez

where (av)vÇ.z decays exponentially as \v\ —> oo.

Proof. Since f £ D<9?n j ,

(5.3) fix) = Y^cvN2„ji2x-v),
vez

where (cu)veZ decays exponentially as \v\ -> oc , and the condition f^j)(u) = 0,
v £Z, leads to

(5.4) £ cuN¡¡jiZk -v) = 0,        k£Z.
vez

Let
¿>(z) := Y, N^jW ,        i(z) := J] cvz" .

vez vez
Equation (5.4) is equivalent to

p(z)q(z)+p(-z)q(-z) = 0,    for all z.
Since N2nj has compact support, p is a polynomial. If p has zeros {z,},
then it does not have zeros {—zf\, and so {—zf\ are zeros of q. We can
therefore write
(5.5) q(z)=p(-z)r(z).
Then p(z)p(-z)r(z) + p(-z)p(z)r(-z) = 0, which gives r(z) = -r(-z).
Therefore, we can write

r(z) = Y,avz2v-{,
vez

where (au)u€Z has exponential decay as \v\ —> oo , by (5.5). Also by (5.5),

(5.6) c, = 5>A<£)J(i/-2/+l)(-l)''+1.
/€Z

Substituting (5.6) into (5.3) and using (5.1) leads to (5.2).   D

Proposition 5.1. Let g £ DS?2rn such that g(x) decays exponentially as \x\ —>
oo, and g^(v) = 0, v £Z, j = 0, ... , r - 1. Then

r-l

(5.7) gix) = ^2^2ajvfj(x-i/),
7=0 vez

where (a¡v)v^z decays exponentially as |i/| —»• oo.
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Proof. Since g £ DS%,, g = g0 + gx + ■ ■ ■ + gr-i , where gj £ DS?{nj, j =
0, ... , r - 1, with gf\v) = 0, v £ Z. The result follows from the previous
lemma.   D

For j = 0, ... , r - 1, let y/j := /jn), where f is given by (5.1).  Then
y/j £ Wo and is supported on [0, 2« - 2r + 1].

Theorem 5.1. The set {Tvyij-.v£Z, j = 0, ... , r - 1} is complete in W0.
Proof. It is sufficient to show that for k = 0,..., r— 1,

r-l

(5.8) N„ik(2x) = f(x) + J21Z "jxVjix - v),
j=ovez

where f £ Vq := <¥% has exponential decay as |x| —» oo and (a;¡/)¡/ez decays
exponentially as \v\ —> oo .

Choose M £ Df7{n with

(5.9) MW(x) = Nn¡k(2x).

Since Nn>k(2x) is supported on [0, j-r+1], M may be taken as a polynomial
of degree n-1 outside [0, j-r+1]. It can therefore be written as M = F+G,
where G £ DS?2n has compact support, and F £ Sf2n equals a polynomial of
degree « - 1 outside a compact set. Now let H be the unique function in S^2rn
such that

H^(v) = Gu\v),        j = 0,...,r-l,  v£Z.
Since G has compact support, the theory of cardinal Hermite interpolation
shows that H(x) decays exponentially as \x\ —► oo . Let R := G-H. Then R e
D3{n , R(j\v) = 0, j = 0, ... ,r-l, v £ Z, and R(x) decays exponentially
as \x\ —> oo, and we can write M = F + H + R. By Proposition 5.1, R can be
expressed as

7=0 vez

where (ajV)v&z decays exponentially as \v\ —> oo. Also by (4.3)

r-l

H(x) = ZZzZb^N2n,J^-^),
i=o vez

where (bjV)vez decays exponentially as \v\ —> oo . By (5.9)

N„tk(2x) = F^(x) + //(n) (x) + Rw(x)

= fW(x) + y,y, bJ»N2?jix - ")+E E 'Mi* -v) ■
7=0 vez 7=0 vez

Since pW £ V0 has compact support, and H(n) £ Vo has exponential decay, it
follows that F^ + //(n) £ Vo has exponential decay.   D
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