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Abstract

In the present paper, we employ a wavelets optimization method is employed for the

elucidations of fractional partial differential equations of pricing European option

accompanied by a Lévy model. We apply the Legendre wavelets optimization

method (LWOM) to optimize the governing problem. The novelty of the proposed

method is the inclusion of differential evolution algorithm (DE) in the Legendre

wavelets method for the optimized approximations of the unknown terms of the

Legendre wavelets. Sequentially, the functions and components of the pricing

models are discretized by utilizing the operational matrix of fractional integration of

Legendre wavelets. Illustratively, the implementation of the LWOM is exemplified on a

pricing European option Lévy model and successfully depicted the stock paths.

Moreover, comparison analysis of the Black-Scholes model with a class of Lévy model

and LWOM with q-homotopy analysis transform method (q-HATM) is also deliberated

out. Accordingly, the technique is found to be appropriate for financial models that

can be expressed as partial differential equations of integer and fractional orders,

subjected to initial or boundary conditions.

Keywords: pricing models; Lévy processes; wavelets approximation; optimization

1 Introduction

The study of financial theory is a versatile field that connects the assumptions of finance

and techniques of mathematics. With the expeditious expansion of financial derivatives

like options and futures, it has incited the attention of researchers particularly toward the

area of pricing models. In 1973, Black, Scholes, and Merton made an innovative assump-

tion that the stock price and other observable quantities that depend on the volatility of

the option price are explicitly related to hedging approaches. The considerable inspira-

tion of the Black-Scholes-Merton (BS) model defines that by keeping a certain quantity of

stock the risk-free rate of the option price, known as delta, is a dynamically hedged option

situation. On this key innovation, Scholes and Merton were awarded the Nobel prize in

1997. After the development of the BSmodel, many endeavors have been organized to sort

out the rigorous notions of pricing models. Merton [1] proposed aMerton jump diffusion
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model (MJD) by considering a symmetric α-stable Lévy process in place of an exponential

Brownianmotion.Many advancements have been contrived on theMJDmodel by consid-

ering the Lévy models with jumps. Bates [2] discovered that the stochastic volatility and

elucidated the ‘volatility smile.’ Under the systematic jumps and volatility risk, the Hes-

ton model [3] merged a stochastic volatility and a jump-diffusion process (SVJD). Some

stochastic models with infinite activity pure jump processes, such as FMLS (finite mo-

ment log stable), CGMY (Carr-Madan-Geman-Yor) and KoBol (Koponen-Boyarchenko-

Levendorskii) can be found in [4–12]. The characteristics of these price models are more

flexible and present realistic descriptions of the price process at various time scales.

Fractional derivatives offer a more delicate mechanism for many fields, in comparison

with the integer-order derivatives, to confine the characteristics of processes, materials,

etc. This special branch has analyzed various problems of different aspects by many re-

searchers and scientists. Numerous papers have been published in this regard to explore

and enhance the definitions and properties in order to overcome the inadequacies of pre-

vious definitions of fractional calculus, such as conformable derivatives [13], fractional

derivatives with smooth [14], nonlocal and nonsingular kernel [15], etc. [16, 17]. Many re-

searchers have proposed different techniques to solve fractional partial differential equa-

tions numerically and analytically. A general finite difference scheme is applied on three

FPDEs under some infinite activity Lévy models (FMLS, KoBol, and CGMY) using the

Grunwald-Letnikov definition [18]. The approach in [19] is based on a combination of the

Laplace transformation and homotopymethods for the approximate analytical solution of

FPDEs in the Liouville-Caputo andCaputo-Fabrizio sense. In [20] a newAdomian decom-

position method based on conformable derivatives is utilized to solve FPDEs. The local

fractional derivative with homotopy perturbation Sumudu transform technique is studied

to solve FDEs in [21]. Hence, by means of different theories of fractional derivatives, the

behaviors of many FPDEs have been studied, and various techniques have been developed

[22, 23].

Motivated by the worth-mentioning research works found in the literature, in this en-

deavor, exploring the applications of FPDEs in financial mathematics, we consider the BS

model and a class of Lévy models (FMLS), which is used to model stock price [5, 18].

The proposed method, the Legendre wavelets optimization method (LWOM), is success-

fully implemented on BS and FMLS. The technique is an amalgamation of the Legen-

dre wavelets approximation and differential evolution algorithm. The Legendre wavelets

method has been extensively used to approximate the unknown functions of integer- and

fractional-order differential equations [24, 25]. Besides, the differential evolution (DE) al-

gorithm, the famousmeta-heuristic scheme, has nowadays gained popularity for its global

optimization attribute [26, 27]. Here, after discretizing the functions using the Legendre

wavelets, the equations are optimized using the DE scheme to find the unknown parame-

ters. The transparent numerical comparison of the BS and FMLSmodelswith q-homotopy

analysis transform method (q-HATM) [18] also expounded.

The outline of the paper is as follows. In Section 2, the fractional definition and proper-

ties are outlined. In Section 3, financial and mathematical backgrounds of pricing options

models are acquainted. Key features of LWOM are explained in Section 4, whereas the

implementation of the method on European call option model and discussion of results is

given in Section 5. Section 6 contains the conclusive annotations observed from the facts

and figures of the whole study.
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2 Fractional prerequisites

In this section, we give a few basic results and definitions from fractional calculus, which

are helpful for the advance evolution.

Definition 2.1 Let ν > 0,m = ⌈ν⌉, and φ(z, τ ) ∈ Cm(ℜ × ℜ+). Then the Caputo fractional

derivative of φ(z, τ ) with respect to τ is defined as Dν
τφ(z, τ ) = Im–ν

τ
∂m

∂τm
φ(z, τ ), where Im–ν

τ

is the Riemann–Liouville fractional integral given as

Im–ν
τ φ(z, τ ) =

1

Ŵ(ν)

∫ τ

0

(τ – s)ν–1φ(z, s)ds. (1)

Some essential properties of fractional differential and integral operators are are the fol-

lowing:

(i) Iντ I
μ
τ φ(z, τ ) = Iν+μ

τ φ(z, τ ) = Iμτ I
ν
τφ(z, τ ).

(ii) Dν
τ I

μ
τ φ(z, τ ) = Iμ–ν

τ φ(z, τ ).

(iii) Iντ D
μφ(z, τ ) = φ(z, τ ) –

∑n–1
k=0

τk

k!
∂kφ(z,τ )|τ=0

∂τk
.

(iv) The Caputo fractional derivative of order ν > 0 for q(τ ) = τ α is

Dν
τq(τ ) =

{

Ŵ(α+1)
Ŵ(α–ν+1)

τ α–α ifm > ν ≥ m – 1,

0 if ν ∈ {0, 1, 2, . . . ,m – 1}.

For more details, see [28].

Lemma 2.2 Let m – 1 < ν ≤ m and φ(·, τ ) ∈ Cm([0,T]). Then Iντ Dμ
τ φ(z, τ ) = φ(z, τ ) –

∑m–1
i=0 ηi(z)τ

i, where ηi(z) =
1
i!

∂ iφ(z,τ )

∂τ i
.

Definition 2.3 The two-parameter Mittag-Leffler function Eν,μ(τ ) is defined as

Eν,μ(τ ) =

∞
∑

κ=0

τ κ

Ŵ(νκ +μ)
, τ ∈ ℜ,ν,μ > 0.

Definition 2.4 The left-handed and the right-handed Riemann-Liouville fractional

derivatives [28] of order ν are defined as

(

Dν
L+φ

)

(τ ) =
dνφ(τ )

d+τ ν
=

1

Ŵ(m – ν)

dm

d+τm

∫ τ

L

φ(η)

(τ – η)
dη, (2)

(

Dν
R–φ

)

(τ ) =
dνφ(τ )

d–τ ν
=

1

Ŵ(m – ν)

dm

d–τm

∫ R

τ

φ(η)

(η – τ )
dη, (3)

where m is an integer such that m – 1 < ν ≤ m. Equations (2) and (3) satisfy the standard

integer derivatives if ν =m, that is,

(

Dm
L+φ

)

(τ ) =
dmφ(τ )

dτm
(4)

and

(

Dm
R–φ

)

(τ ) = (–1)m
dmφ(τ )

dτm
=
dmφ(τ )

d(–τ )m
. (5)
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3 Background of option pricingmodel

The mathematical and financial background of pricing options is described here in order

to identify the problem. The Brownian motion is a famous stochastic process and is a part

of the Black-Scholes model. It is profoundly recognized as a Wiener process, named after

Norbert Wiener, who was the first to explain the process mathematically [29].

The model proposed by Black and Scholes is an approximation of the underlying asset

as a geometric Brownian motion (GBM) [6]. In a market, the BS model has two different

assets, a risk-free asset B and a risky asset S, mathematically defined by

dBt = rBt dt, (6)

dSt = rSt dt + σSt dWt , (7)

where r is the interest rate, σ is the volatility, and W is the Wiener process.

The BS PDE for a European option can be modeled as [18]

∂v(S, t)

∂t
+
1

2
σ 2S2

∂2v(S, t)

∂S2
+ rS

∂v(S, t)

∂S
– r(S, t) = 0, (8)

v(S,T) = φ(S).

The more standard type of stochastic process is a Lévy process in which the Brownian

motion is an example. It consists of three terms, drift, diffusion, and a jump, which play a

crucial role in constructing different market models.

In financial mathematics, pricing derivatives are studied by means of FPDEs. Here, we

investigate the following Lévy model in the form of fractional diffusion equations, named

as finite moment log stable model (FMLS)

∂v(x, t)

∂t
+A

∂v(x, t)

∂x
+ B(x)

∂γ (f (x)v(x, t))

∂+xγ
+Cv(x, t) = 0 (9)

subject to the conditions

v(x,T) = s(x), v(L, t) = 0, v(R, t) = b(R, t) (10)

for 1 ≤ γ ≤ 2, L ≤ x ≤ R, and 0 ≤ t ≤ T . The right-handed Riemann-Liouville frac-

tional derivative, defined in Eq. (2), is used to approximate the spatial γ th-order fractional

derivative.

The structure of FMLS model under the European call option is given by Eq. (9) with

A =

(

r +
1

2
σ γ

sec

(

γπ

2

))

, B(x) =

(

–
1

2
σ γ

sec

(

γπ

2

))

, f (x) = 1,C = r,

and the conditions

v(x,T) = max

(

ex –K , 0
)

, v(L, t) = 0, and v(R, t) = max

(

eR –Ke–r(T–t), 0
)

. (11)

The approximations of the BS and FMLS models are carried out by using the LWOM,

described in the next section.
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4 Features of Legendre wavelets optimizationmethod

4.1 The Legendre wavelets approximation

On continuous variation of dilation parameter α and translation parameter β , the family

of continuous wavelets is retrieved, that is,

ηα,β (ξ ) = |α|–kη
(

ξ – β

α

)

, α,β ∈ R,α 	= 0. (12)

If parameters α and β are restricted to α = 2–k and β = n̂2–k , where n̂ = 2n – 1, with n =

1, 2, . . . , 2k–1 and k is any positive integer, then the following family of orthogonal Legendre

wavelets is attained:

ηnm(ξ ) =

{
√

m + 1
2
2

k
2 Lm(2

kξ – n̂) for n̂–1
2k

≤ ξ ≤ n̂+1
2k

,

0 otherwise.
(13)

Form = 0, 1, . . . ,M–1, whereM is a positive integer, ηnm(ξ ) forms a basis of L2([0, 1)), and

the coefficient
√
m + 1/2 is for orthonormality. Here, Lm(2

kξ – n̂) are the shifted Legendre

polynomials of order m, which are attained by dilating and translating the well-known

Legendre polynomials. These polynomials are constructed with the following recurrence

formulae [24, 25]:

Lm(τ ) =

m
∑

k=0

(–1)m+k (m + k)!

(m – k)!(k!)2
τ . (14)

A function v(τ ) ∈ L
2([0, 1)) can be expanded by infinite series of Legendre wavelets as

v(τ ) =

+∞
∑

n=1

+∞
∑

m=0

enmηnm(τ ), (15)

where enm = 〈v(τ ),ηnm(τ )〉, and 〈·, ·〉 denotes the inner product. If Eq. (15) is truncated,

then it can be written as

v(τ ) =

2k–1
∑

n=1

M–1
∑

m=0

vnmηnm(τ ) = VT�(τ ), (16)

where VT and �(τ ) are 2k–1M × 1 matrices defined as

V = [v10, v11, . . . , v1M–1, v20, . . . , v2M–1, . . . , v2k–10, . . . , v2k–1M–1]
T (17)

and

�(τ ) =
[

η10(τ ),η11(τ ), . . . ,η1M–1(τ ),

η20(τ ), . . . ,η2M–1(τ ), . . . ,η2k–10(τ ), . . . ,η2k–1M–1(τ )
]T
. (18)
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Analogously, any arbitrary two-dimensional function v(x, t) on [0, 1) × [0, 1) may be ex-

panded by the truncated series of Legendre wavelets as

v(x, t) =

m̂
∑

i=1

m̂
∑

j=1

vijφi(x)φj(t) = �T (x)V�(t), (19)

where V = [vij] and vij = 〈φi(x), 〈v(x, t),φj(t)〉〉. The operational matrix of fractional integra-

tion of Legendre wavelets is defined as

Pν ∼= �m̂×m̂F
ν
B�

–1
m̂×m̂, (20)

where �m̂×m̂ is the matrix of Legendre wavelets, and Pν is defined as

Fν
B =

1

m̂ν

1

Ŵ(ν + 2)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 δ1 δ2 · · · δm̂–1

0 1 δ1 · · · δm̂–2

0 0 1 · · · δm̂–3

...
... 0

. . .
...

0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (21)

where δi = (i + 1)ν+1 – 2iν+1 + (i – 1)ν+1 [7].

Theorem 4.1 Let ∂3v(x,t)

∂t ∂x2
be a continuous and bounded function for (x, t) ∈ (0, 1) × (0, 1),

that is, there is M > 0 such that | ∂3v(x,t)

∂t ∂x2
| ≤ M. Then v(x, t) can be expanded as an infinite

series of Legendre wavelets, that is,

v(x, t) =

∞
∑

i=1

∞
∑

j=1

cijφi(x)φj(t),

where cij = 〈v(x, t),φi(x)φj(t)〉, and 〈·, ·〉 is the inner product of v(x, t) and φi(x)φj(t), and this

series vm(x, t) converges uniformly to the function v(x, t).

4.2 The differential evolution

For the optimization purpose, the differential evolution (DE) algorithm is utilized in this

endeavor. This effective heuristic optimizing technique was proposed by Storn and Price

[26]. Among many other global optimizers, DE is considered to be more significant for its

simplicity and strong population-based stochastic search technique over a continuous do-

main. The key features of DE are three control parameters, that is, the population sizeNP,

crossover constant CR, and scaling factor Sf . These parameters may extensively affect the

optimization performance of the DE; therefore, in [26, 27] some simple rules are defined

for the selection of these parameters. Thus, in the DE algorithm, the solutions are easily

obtained by just specifying the population set, an approximate solution, and the objective

function.
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5 Implementation of LWOM

In this section, we implement the LWOM on the FPDE stated in Eq. (9). Using all the

expansions as defined in Section 4, the components of Eq. (9) are discretized as

∂γ++1v(x, t)

∂t ∂+xγ
= �T (x)V�(t), (22)

where V and �(·) are defined in Eqs. (17) and (18), respectively. Integrating Eq. (22) with

respect to t, we get

∂γ+v(x, t)

∂+xγ
= �T (x)VP1

t �(t) +
∂γ+s(x)

∂+xγ
. (23)

Now, by fractional integration of order γ of Eq. (23) with respect to x from L to x we get

v(x, t) =
(

Pγ
x �(x)

)T
VP1

t �(t) + Iγ+
(

s(x)
)

– (x – L)s(L) + (x – L)
∂γ+

∂+xγ

(

v(x, t)
)

∣

∣

∣

∣

x=L

, (24)

where I
γ
+ (s(x)) is the right Riemann-Liouville fractional integral of s(x). Let x = R. Then

∂γ+

∂+xγ

(

v(x, t)
)

∣

∣

∣

∣

x=L

=
1

(R – L)

(

b(R, t) –
(

Pγ
x �(R)

)T
VP1

t �(t) – Iγ+
(

s(R)
)

+ (R–L)s(L)
)

. (25)

Substituting Eq. (25) into Eq. (24) and Eq. (24) into Eq. (23), we get the approximation for

v(x, t):

v(x, t) = –
(

Pγ
x �(x)

)T
VP1

t �(t) + Iγ– s(x) – (R – x)s(L)

–

(

R –

(

xγ+1

Ŵ(γ + 2)
–

Lγ+1

Ŵ(γ + 2)

))

∂γ+s(L)

∂+xγ

+

(

R –

(

xγ+1

Ŵ(γ + 2)
–

Lγ+1

Ŵ(γ + 2)

))

H(R,L, t), (26)

where

H(R,L, t) =
1

(R – L)

(

(

Pγ
x �(L)

)T
VP1

t �(t) – Iγ–
(

sγ+ (L)
)

+ (R – L)
∂γ+s(R)

∂+xγ

)

.

Differentiating Eq. (26) with respect to t, we get

∂v(x, t)

∂t
= –

(

P
γ

2 �(x)
)T
V�(t) + Iγ– s(x) – (R – x)s(L)

–

(

R –

(

xγ+1

Ŵ(γ + 2)
–

Lγ+1

Ŵ(γ + 2)

))

∂γ+s(L)

∂+xγ

+

(

R –

(

xγ+1

Ŵ(γ + 2)
–

Lγ+1

Ŵ(γ + 2)

))

∂H(R,L, t)

∂t
. (27)

Now, substituting Eqs. (23) and (26)-(27) into Eq. (9), we achieve the residual function

(fitness function) as

R(vij) =
1

m̂2

m̂
∑

i=1

m̂
∑

j=1

(

xi, tj,P
γ
x ,P

1
t ,�(xi),�(tj)

)2
. (28)
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(a) K = 0.3

(b) K = 70

Figure 1 Price values of underlying asset.

Following the differential evolution algorithm, we obtain the optimized values of the un-

known parameters vij for i, j = 1, 2, . . . , m̂. Replacing these values in Eq. (26), the approxi-

mate solution of v(x, t) is acquired. All the numerical manipulations of DE are carried out

using Mathematica 10. Consequently, the graphical solutions of v(x, t) for different val-

ues of stock market parameters, such as interest rate, maturity, time, etc., are plotted in

Figures 1, 2, 3, 4.
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(a) γ = 2 and σ = 0.1

(b) γ = 1.2 and σ = 0.01

Figure 2 Comparison of BS versus FMLS solutions at t = 1.

The investigations analyze the behavior of the fractional diffusion equation in the field

of finance, exclusively in pricing the derivatives. Productively, graphical results at various

values of parameters and with different orders of derivatives are depicted. Figures 1(a)-(b)

show the asset prices of the model in the specified domain. The high convergence of the

proposed method from the FMLS to BS models for special values of γ and σ is presented

in Figures 2(a)-(b). In addition, simulated stock paths of the BS and FMLS models can be

seen in Figure 3. The European call options of both themodels converge as γ → 2, which is
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Figure 3 Simulated stock paths of BS and FMLS models at γ = 2, t = 0.

exhibited in Figures 4(a)-(b). Theminimumvalues of the residual functionR(vij) ≤ 10–k for

positive integers k = 1, 2, . . . , 15 can be seen in Table 1. The comparison between LWOM

and q-HATM [22] is presented in Tables 2 and 3. Generally, LWOM solutions match with

the q-HATM up to two to three decimal places.

6 Conclusions

This paper embodied the exploration of some applications of fractional partial differential

equations in financial mathematics. Since the solutions of financial models are advanta-

geous to illustrate multiple behaviors of the stockmarket prices, we undertook some well-

known financial models, namely, the Black-Scholes (BS)model and a class of Lévymodels,

finite moment log stable model (FMLS). A new amalgamation of two eminent techniques,

Legendre wavelets and differential evolution, was introduced for numerical demonstra-

tion of stock market parameters of these models. Thus, from the facts and figures it is

possible to conclude that:

• The Legendre wavelets optimization method is successfully implemented in the

fractional partial differential models that occur in financial modeling.

• Legendre wavelets produce a good approximation of arbitrary functions.

• LWOM enables to interpret the effects of the parameters smoothly.

• The numerical solutions of the model enable us to locate the pricing variations and

the parameters affecting the stock market.

• From the simulated stock paths of the BS and FMLS models it can be easily depicted

that the European call options of both the models converge as γ → 2.

• Since Lévy models consider the jumps of the market, FMLS being a class of Lévy

models shows an incremental path of the stock prices at t = 0, which differs from the

path of the BS model.

• By comparison of the tables the solutions obtained from LWOM are found to be in a

good agreement with q-HATM at particular �.
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(a)

(b)

Figure 4 European call options of BS and FMLS models at γ = 2, t = 1.

• Since efficiency of LWOM does not depend on any auxiliary parameter as that of

q-HATM, it converges toward an accurate approximation more competently with less

time consumption.
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Table 1 Global optimum residual errors R(vij) for NP = 20

γ BS FMLS

σ = 0.01 σ = 0.1 σ = 0.01 σ = 0.1

2.0 9.4463× 10–8 7.3315× 10–15 2.0887× 10–15 7.3314× 10–15

1.2 8.7099× 10–15 7.3312× 10–15 6.9499× 10–15 4.2934× 10–15

Table 2 Comparison of LWOMwith q-HATM [22] at σ = 0.1, x = 1, and n = 3

t α = 2

q-HATM

� = 0.00085

LWOM

0.2 0.383141 0.361403

0.4 0.759879 0.771825

0.6 1.223750 1.242120

0.8 1.796510 1.785540

1.0 2.475530 2.418280

Table 3 Comparison of LWOMwith q-HATM [22] at σ = 0.1, t = 1, and n = 3

x α = 2

q-HATM

� = –0.00083

LWOM

0.2 2.432330 2.432340

0.4 2.428880 2.428890

0.6 2.425380 2.425400

0.8 2.421850 2.421860

1.0 2.418270 2.418280

• The proposed technique is appropriate for different financial models that can be

expressed as partial or ordinary differential equations of integer and fractional orders,

subjected to initial/boundary conditions.

Thus, this paper contributes a new method of finding solutions of FPDEs and presents

wide applications of FPDEs in management sciences.
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