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WAVENUMBER EXPLICIT CONVERGENCE ANALYSIS FOR FINITE

ELEMENT DISCRETIZATIONS OF GENERAL WAVE PROPAGATION

PROBLEMS

T. CHAUMONT-FRELET1 AND S. NICAISE2

Abstract. We analyze the convergence of finite element discretizations of time-harmonic wave
propagation problems. We propose a general methodology to derive stability conditions and
error estimates that are explicit with respect to the wavenumber k. This methodology is formally

based on an expansion of the solution in powers of k, which permits to split the solution into
a regular, but oscillating part, and another component that is rough, but behaves nicely when

the wavenumber increases. The method is developed in its full generality and is illustrated by
three particular cases: the elastodynamic system, the convected Helmholtz equation, and the
acoustic Helmholtz equation in homogeneous and heterogeneous media. Numerical experiments
are provided which confirm that the stability conditions and error estimates are sharp.

1. Introduction

The propagation of waves is used in a wide range of applications including resource prospec-
tion, radar, and medical imaging (see, e.g., Chavent et al., 2012; Colton & Kress, 2012). These
applications motivate the development of efficient discretization techniques to approximate the
solutions to wave propagation problems in an accurate and robust fashion.

In this work, we focus on time-harmonic wave propagation problems. A number of discretization
techniques are available to approximate their solutions, but for the sake of simplicity, we only
consider finite element methods here. Nevertheless, a great part of the material we present shall
be useful in the understanding of other approximation strategies, such as finite difference or integral
equation approaches.

The so-called “pollution effect” is a key concept to understand the performance and limita-
tions of finite element discretizations (Ihlenburg & Babuška, 1995, 1997). When the number of
wavelength inside the propagation domain is important, the numerical solution is only meaningful
under restrictive conditions on the mesh size. This effect is manifested by a gap between the error
of the best approximation the finite element scheme is capable of (e.g. the interpolant) and the
error of the numerical solution that is actually produced. This gap becomes more important as
the frequency increases, unless additional discretization points per wavelength are employed. As
a result, finite element methods require a large number of degrees of freedom to produce accurate
solutions to high-frequency problems, in which the number of wavelength inside the domain is
important.

As the pollution effect is characterized by a gap between the best approximation error, and
the finite element one, it is related to a lack of stability of the finite element scheme. This lack
of stability is typical of wave problems, since the sesquilinear forms that naturally appear by
integration by parts are not coercive. Because of this lack of coercivity, the quasi-optimality of
the finite element solution in the energy norm is not guaranteed for arbitrary meshes. Actually, it
is shown in the literature that quasi-optimality of the scheme is achieved only in an “asymptotic
range” (i.e. for small enough mesh sizes) that depends on the frequency and the discretization
order.

The behaviour of the asymptotic range with respect to the frequency, the mesh size, and the
discretization order is the key to understand the efficiency of a finite element method. For the
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acoustic Helmholtz equation in smooth domains, the asymptotic range for hp-finite element meth-
ods has been characterized in a sequence of papers by J.M. Melenk and collaborators (Esterhazy
& Melenk, 2012; Melenk & Sauter, 2010, 2011). The main result states that if

(1)
kh

p
≤ C1, k

(

kh

p

)p

≤ C2,

then the finite element solution is quasi-optimal. In (1), k is the wavenumber, h is the mesh size,
p is the discretization order and C1 and C2 are two constants independent of these parameters.

When considering a fixed p, we deduce from (1) that the condition kp+1hp ≤ C must be
fulfilled to preserve quasi-optimality. In other words, the asymptotic range in which the finite
element solution is quasi-optimal is characterized by

(2) h ≤ h⋆(k) = Ck−1−1/p.

We also see that the number of element per wavelength (kh)−1 must be increased for increasing
frequencies since (1) implies that

(3) (kh)−1 ≥ Ck1/p.

In addition, since the constant C1 and C2 are independent of p, stability conditions for varying
p are also possible. Namely, stability is ensured if

(4)
kh

p
= C3, p ≥ C4 log k,

which means that the number of discretization points per wavelength p/(kh) is kept constant while
the discretization order increases logarithmically with the wavenumber.

The main ingredient to obtain (1) is a splitting of the solution to the Helmholtz equation into
a regular but oscillating part, and a rough component that behaves “nicely” for large frequencies.
This splitting is based on a filtering of the datum in the Fourier domain, and treating the low and
high frequency contents with distinct tools.

While this analysis is sharp and valid for arbitrary order p, it is currently limited to homogeneous
media. In particular, results are available for the acoustic Helmholtz equation posed in either

• a bounded analytic domain with impedance boundary conditions (Melenk & Sauter, 2011,
Case I), or

• a 2D polygonal domain with impedance boundary conditions (Melenk & Sauter, 2011,
Case II) and (Esterhazy & Melenk, 2012, Equation 9), or

• the exterior of an analytic domain with Dirichlet boundary conditions on the scatterer
and the Sommerfeld radiation condition at infinity (Melenk & Sauter, 2011, Case III).

We also mention similar results for the Maxwell system set in a ball with transparent boundary
conditions, see Melenk & Sauter (2018).

Our main contribution is to propose another splitting approach to provide (1). Such a splitting
is defined using a sequence of solutions to elliptic boundary value problems. This sequence is
defined recursively, and the iterates exhibit increasing regularity. The main advantage of this
splitting is that it requires less restrictive assumptions on the domain and the wave operator.
Indeed, the only important assumption we make is that the elliptic part of the wave operator
satisfy a regularity shift (see Definition 1). As a result, as shown in Section 2, our result applies
to a variety of wave propagation problems. We illustrate this in Sections 3, 4, 5 and 6 by applying
our result to the particular cases of the elastodynamic system, the convected Helmholtz equation
and the acoustic Helmholtz equation in homogeneous or heterogeneous media.

While our analysis applies to a wider range of problems, it is currently limited in the sense that
the constants C1 and C2 we obtain in (1) depends on p. As a result, we recover the same result
for a fixed p: in particular (2) and (3). However, our analysis does not cover varying p, and thus,
a result like (4) is out of the scope of the present article.

Our work is organized as follows. The splitting of the solution and the derivation of stability
result (1) are presented for a general wave operator in Section 2. This analysis is illustrated
in Sections 3, 4, 5 and 6 by considering the elastodynamic system, the convected Helmholtz
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equation and the acoustic Helmholtz equation in homogeneous or heterogeneous media. In all
cases, except for the acoustic Helmholtz equation in homogeneous media, numerical experiments
are presented, that confirm that the theoretical results are sharp. In the conclusion, we state the
main consequences of our results as well as possible extensions.

We finish this section with some notations used in the remainder of the paper. The set of
non negative integers will be denoted by N, i. e., N = {0, 1, 2, · · · }. For a bounded domain D,
the usual norm and semi-norm of Hs(D) (s ≥ 0) are denoted by ‖ · ‖s,D and | · |s,D, respectively.
Furthermore, the notation A . B (resp. A & B) means the existence of a positive constant C1

(resp. C2), which is independent of k, h, A and B such that A ≤ C1B (resp. A ≥ C2B). The
notation A ∼ B means that A . B and A & B hold simultaneously.

2. General settings

2.1. Splitting of the solution. In the following, we consider a bounded domain Ω ⊂ R
N (N = 2

or 3) and a general linear elliptic system L2 of order 2 and size S ≥ 1 that acts on either scalar
(if S = 1) or vectorial functions (if S ≥ 2) of Ω. Since we want to allow operators with piecewise
smooth coefficients, we suppose given a finite “partition” Ωq, q ∈ Q of Ω that satisfies the following
properties: Q is a finite set, each Ωq is a bounded open domain with a Cγ+1,1 boundary, with
γ ∈ N, except eventually at a finite number of points called corners of Ωq, they are pairwise disjoint
and

Ω̄ = ∪q∈QΩq.

The set of corners of all Ωq forms the set of corners of Ω and is denoted by C. The case Q equals
to a singleton and C = ∅ corresponds to the situation of a single domain with a Cγ+1,1 boundary
and is not excluded. Similarly, the case of several subdomains Ωq with Cγ+1,1 boundaries (hence
C = ∅) is also covered. We further suppose fixed two open disjoint parts ΓA and ΓD of the
boundary ∂Ω of Ω such that

∂Ω = Γ̄A ∪ Γ̄D.

We also suppose fixed two boundary operators BD and BA defined respectively on ΓD and ΓA.
BD is supposed to be the natural Dirichlet operator so that it can be identified with the trace
operator (with constant coefficients), while BA is supposed to be an operator of order 1 (typically
the Neumann boundary operator associated with L2 plus possibly a zero order term).

We now introduce appropriate Sobolev spaces related to the partition of Ω, namely for all l ∈ N,
we set

PH l(Ω) = {f ∈ L2(Ω) : fq := f|Ωq
∈ H l(Ωq), ∀q ∈ Q},

PH l+1/2(ΓA) = {g ∈ L2(ΓA) : g|ΓA∩∂Ωq
∈ H l+1/2(ΓA ∩ ∂Ωq), ∀q ∈ Q},

that are Hilbert spaces for their natural norms ‖ · ‖Q,l+2,Ω and ‖ · ‖Q,l+1/2,ΓA
.

We are first concerned with regularity (shift) results for the boundary value problem

(5)







L2ũ = f̃ in Ω,
BAũ = g̃ on ΓA,
BDũ = 0 on ΓD,

with f̃ ∈ PH l(Ω) and g̃ ∈ PH l+1/2(ΓA). Note that, in case of discontinuous coefficients, the

differential equation L2ũ = f̃ has to be interpretated in the sense that it holds on each subdomain
Ωp added with some transmission conditions that are the “continuity” (in the sense of trace) of

ũ across the interface Ωq ∩ Ωq′ and the continuity of the flux (in the sense of trace) across the
interface, see for instance Nicaise & Sändig (1994a).

When each subdomain Ωq has a smooth boundary of class Cγ+1,1 (thus C = ∅), we can expect

that the solution ũ to (5) belongs to PH l+2(Ω) if f̃ ∈ PH l(Ω) and g̃ ∈ PH l+1/2(ΓA) for all l ≤ γ.
Here, we consider the more complicated situation where the boundary of each Ωq is allowed to
exhibit corners. In the two dimensional case, we can consider general polygonal partitions for
instance. In the three dimensional case, we allow corners, but for simplicity, edges are excluded.

If the partition Q exhibits corners, a framework that is more general than the broken Sobolev
spaces PH l(Ω) is required. According to Kondratiev’s theory, Kondrat’ev (1967) (see also Dauge
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(1988); Grisvard (1985); Nicaise (1993); Nicaise & Sändig (1994a)), the solution of (5) may exhibit
singularities near these corners. For the sake of simplicity we assume that each Ωp is straight near
each corner c, in the sense that Ωp coincides with an infinite cone

Kq,c = {rcϑc; rc > 0 and ϑc ∈ Gq,c},
where (rc, ϑc) are the spherical coordinates centred at c and Gq,c is a subset of the unit sphere
with a C1,1 boundary. We then set

Gc =
⋃

q∈Q,c∈Ωq

Gq,c, Kc =
⋃

q∈Q,c∈Ωq

Kq,c,

and, as before, denote by PH2(Gc) the space of functions in L2(Gc) that are in H2 on each
subdomain Gp,c.

Now for each corner c, we introduce the space Sλ
c (Ω) of quasi-homogeneous functions of exponent

λ ∈ C defined as follows

Sλ
c := {u ∈ L2(Ω);u = ηcr

λ
c

q
∑

j=0

(log r)jϕj(ϑc), ϕj ∈ H1(Gc)
S ∩ PH2(Gc)

S , q ∈ N},

where ηc is a cut-off function equal to 1 in a ball B(c, ε) and equal to 0 outside B(c, 2ε) with
ε > 0 small enough (so that it is zero near the other corners of Ω). We furthermore introduce
the set of singular exponents Λc as the set of complex numbers λ such that there exists a solution
ϕ ∈ H1(Gc)

S ∩ PH2(Gc)
S of

(6)







L2(c)(r
λ
cϕ) = 0 in Kc,

BA(c)(r
λ
cϕ) = 0 on ΓA ∩Kc,

BD(rλcϕ) = 0 on ΓD ∩Kc,

where L2(c) (resp. BA(c)) is the principal part of L2 frozen (piecewisely) at c. According to the
previous references, Λc is a discrete set made of isolated points. Let us now introduce the set of
singular functions associated with (5). For all j ∈ N, each corner c, and any λ ∈ Λc such that
Reλ ∈ (1− N

2 , j+2− N
2 ), we define j(λ) as the largest integer such that j(λ) < j+2− N

2 −Reλ,
we denote by

Sλ
c,j = {Sλ ∈ span

j(λ)
ℓ=0S

λ+ℓ
c \ PHj+2(Ω); satisfying (7) below },

(7)







L2S
λ ∈ PHj(Ω),

BAS
λ ∈ PHj+ 1

2 (ΓA),
BDS

λ = 0 on ΓD.

We finally denote by {Sλ
c,j,q}

Nλ
c,j

q=1 a basis of Sλ
c,j .

Definition 1. We will say that the triplet (L2,BD,BA) satisfies the shift property at the order

γ + 2 for a natural number γ when, for any natural number l such that 0 ≤ l ≤ γ, if (f̃ , g̃) ∈
PH l(Ω)S × PH l+1/2(ΓA)

S, then there exists a unique solution ũ ∈ H1(Ω)S of (5) such that ũ
admits the splitting

ũ = ũreg +
∑

c∈C

∑

λ∈Λc:Reλ∈(1−N
2
,l+2−N

2
)

Nλ
c,l

∑

q=1

cλc,qS
λ
c,l,q,

with ũreg ∈ PH l+2(Ω)S and cλc,q ∈ C such that

(8) ‖ũ‖Q,l+2,Ω +
∑

c∈C

∑

λ∈Λc:Reλ∈(1−N
2
,l+2−N

2
)

Nλ
c,l

∑

q=1

|cλc,q| . ‖f̃‖Q,l,Ω + ‖g̃‖Q,l+1/2,ΓA
.
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Remark 1. If we consider subdomains with smooth boundaries of class Cγ+1,1, we can simply
replace the statement of Definition 1 by ũ ∈ PH l+2(Ω)S and

‖ũ‖Q,l+2,Ω . ‖f̃‖Q,l,Ω + ‖g̃‖Q,l+1/2,ΓA
.

We now consider a time-harmonic wave propagation problem associated with the operator L2.
We assume a complex wave number κ = k − iδ where δ is a fixed read number, and k ≥ 1 can be
arbitrary large. We look for u ∈ H1(Ω)S solution to

(9)







−κ2L0u− iκL1u+ L2u = f in Ω,
BAu = iκAu on ΓA,
BDu = 0 on ΓD,

where f ∈ L2(Ω)S is a given source term and A is a matrix-valued function (or simply a scalar
function) with the regularity A ∈ PCγ,1(ΓA,M(RS)) (PC meaning that its restriction to ΓA∩∂Ωq

is in Cγ,1 for each q ∈ Q) and that is independent of k. In addition, L0 and L1 are linear operators
satisfying

(10) ‖L0v‖Q,l,Ω . ‖v‖Q,l,Ω, ‖L1v‖Q,l−1,Ω . ‖v‖Q,l,Ω,

for l ∈ {0, . . . , γ + 1} and v ∈ PH l(Ω)S .
We point out that all operators involved in the definition of system (9) are independent of κ.

It means that system (9) only depends on the wavenumber through explicit mentions of κ.
The operators L0 and L1 are introduced for the sake of generality, as they permit to recover

a number of particular problems. For instance, taking L0u = c−2u, L1u = 0, L2u = −∆u and
δ = 0, we recover the standard Helmholtz equation in an heterogeneous medium with a piecewise
smoothly varying sound speed c ∈ PCγ(Ω) (PC meaning that its restriction to ∂Ωq is in Cγ,1).
Other examples are considered and analyzed in the forthcoming sections.

In most applications, system (9) is derived from a time-dependent wave equation by means of
Fourier transform. In this case, κ = k is real and δ = 0. Though some applications employ a
complex wave number (obtained from a Laplace transform), we mostly introduce the case where
δ > 0 as a technicality to analyze problems in which ΓD is empty, as depicted in Section 4.

For further purposes, we need to introduce a new familly of singularities that is related to the
splitting of the solution of (9) into a series of power of k, that we employ in Theorem 1. For all
λ ∈ Λc, we first set T λ

c,−1 = {0} and T λ
c,0 = Sλ

c,0, if Reλ ∈ (1− N
2 , 2− N

2 ). Then for all j ∈ N
∗ and

all λ ∈ Λc such that Reλ ∈ (1− N
2 , j + 2− N

2 ), we denote by

T λ
c,j = {Sλ ∈ span

j(λ)
ℓ=0S

λ+ℓ
c ; satisfying (7)

or (11) below if Reλ < j − N

2
or (12) below if Reλ < j + 1− N

2
},

(11)







L2S
λ − L0T

λ ∈ PHj(Ω),

BAS
λ ∈ PHj+ 1

2 (ΓA),
BDS

λ = 0 on ΓD,

for some Tλ ∈ T λ
c,j−2,

(12)







L2S
λ − iL1T

λ ∈ PHj(Ω),

BAS
λ − iATλ ∈ PHj+ 1

2 (ΓA),
BDS

λ = 0 on ΓD,

for some Tλ ∈ T λ
c,j−1. Before going on, let us point out that

Sλ
c,j ⊂ T λ

c,j .

The existence of a solution to (11) or (12) is here supposed. In practical examples, it is garanteed
by an asymptotic development of L2, L1, L0 and BA at a corner c, see Dauge (1988); Dauge et al.
(1990) and a logarithmo-polynomial resolution Dauge (1988); Dauge et al. (1990); Nicaise (1993).
We refer to Sections 4 and 6 for concrete examples.
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Let us now denote by {Tλ
c,j,q}

Mλ
c,j

q=1 a basis of T λ
c,j . With the help of these spaces, for any

l ∈ N \ {0, 1}, we introduce the augmented Sobolev space:

Al(Ω) = PH l(Ω)S ⊕ span c∈C span λ∈Λc;Reλ∈(1−N
2
,l−N

2
)T λ

c,l−2,

which is a Hilbert space with the norm

‖u‖2A,l,Ω = ‖ureg‖2Q,l,Ω +
∑

c∈C

∑

λ∈Λc;Reλ∈(1−N
2
,l−N

2
)

Mλ
c,l−2
∑

q=1

|cλc,q|2,

when u admits the splitting

u = ureg +
∑

c∈C

∑

λ∈Λc;Reλ∈(1−N
2
,l−N

2
)

Mλ
c,l−2
∑

q=1

cλc,qT
λ
c,l−2,q,

where ureg ∈ PH l(Ω) and cλc,q ∈ C. For shortness we set A0(Ω) = L2(Ω) and A1(Ω) = H1(Ω).

Definition 2. We will say that system (9) satisfies the k-stability property if it is well-posed in
A2(Ω) for all k ≥ 1 and if there exists a constant α ≥ 0 (independent of k) such that for all
f ∈ L2(Ω)S the solution u satisfies

(13) k‖u‖0,Ω + |u|1,Ω + k−1‖u‖A,2,Ω . kα‖f‖0,Ω,
for all k ≥ 1.

Remark 2. In the previous definition, the assumption that the stability constant grows alge-
braically in k is only made for the sake of simplicity. All the results stated below remain valid if
a more general stability constant Cstab(k) is employed (assuming that it is bounded for all k but
might have a faster growth behavior), by simply replacing kα by Cstab(k).

Before proving our main result, we record a proposition that is very simple, but useful in many
places.

Proposition 1. Assume that L2 satisfies the shift property introduced in Definition 1 and that
ũ ∈ H1(Ω)S solves







L2ũ = L0f̃ + iL1g̃ in Ω,
BAũ = iAg̃ on ΓA,
BDũ = 0 on ΓD,

for some f̃ ∈ Al(Ω) and g̃ ∈ Al+1(Ω) with l ≤ γ. Then ũ ∈ Al+2(Ω) and

(14) ‖ũ‖A,l+2,Ω . ‖f̃‖A,l,Ω + ‖g̃‖A,l+1,Ω,

where the implicit constant depends on ‖A‖Q,γ+1,∞,ΓA
.

Proof. The proof simply relies on shift property (8) and the construction of the spaces T λ
c,j . Indeed,

we first write

f̃ = f̃reg +
∑

c∈C

∑

λ∈Λc;Reλ∈(1−N
2
,l−N

2
)

Mλ
c,l−2
∑

q=1

cλc,qT
λ
c,l−2,q,

g̃ = g̃reg +
∑

c∈C

∑

µ∈Λc;Reµ∈(1−N
2
,l+1−N

2
)

Mµ
c,l−1
∑

q′=1

dµc,qT
µ
c,l−1,q′ ,

when f̃reg ∈ PH l(Ω), g̃reg ∈ PH l+1(Ω), and cλc,q, d
µ
c,q ∈ C. Then by the definition of T λ

c,l and T µ
c,l,

for all λ ∈ Λc; Reλ ∈ (1 − N
2 , l − N

2 ), q = 1, · · · ,Mλ
c,l−2 and µ ∈ Λc; Reµ ∈ (1 − N

2 , l + 1 − N
2 ),
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q′ = 1, · · · ,Mµ
c,l−1, there exist Sλ

c,q,1 ∈ T λ
c,l and S

µ
c,q′,0 ∈ T µ

c,l solution of (compare with (11) and

(12))






L2S
λ
c,q,0 − L0T

λ
c,q ∈ PH l(Ω),

BAS
λ
c,q,0 ∈ PH l+ 1

2 (ΓA),
BDS

λ
c,q,0 = 0 on ΓD,

and






L2S
µ
c,q′,1 − iL1T

µ
c,q′ ∈ PH l(Ω),

BAS
µ
c,q′,1 − iATµ

c,q′ ∈ PH l+ 1
2 (ΓA),

BDS
µ
c,q′,1 = 0 on ΓD.

Consequently the function

U = ũ−
∑

c∈C

∑

λ∈Λc;Reλ∈(1−N
2
,l−N

2
)

Mλ
c,l−2
∑

q=1

cλc,qS
λ
c,q,0

−
∑

c∈C

∑

µ∈Λc;Reµ∈(1−N
2
,l+1−N

2
)

Mµ
c,l−1
∑

q′=1

dµc,qS
µ
c,q′,1,

is solution of






L2U = F in Ω,
BAU = iAG on ΓA,
BDU = 0 on ΓD,

with F ∈ PH l(Ω) and G ∈ PH l+1/2(ΓA) such that (using a trace theorem and the fact that A
does not depend on k)

‖F‖Q,l,Ω + ‖G‖Q,l+1/2,ΓA
. ‖f̃‖A,l,Ω + ‖g̃‖A,l+1,Ω.

Hence using the shift property (1), we deduce that U ∈ Al+2(Ω) with

‖U‖A,l+2,Ω . ‖F‖Q,l,Ω + ‖G‖Q,l+1/2,ΓA
.

The last two estimates and the definition of U allows to conclude. �

We are now ready to establish the main result of this section.

Theorem 1. Assume that the assumptions of Definitions 1 and 2 are fulfilled. For f ∈ L2(Ω)S,
define the sequence uj by

(15)







L2u0 = f in Ω,
BAu0 = 0 on ΓA,
BDu0 = 0 on ΓD,

(16)







L2u1 = iL1u0 in Ω,
BAu1 = iAu0 on ΓA,
BDu1 = 0 on ΓD,

and

(17)







L2uj = L0uj−2 + iL1uj−1 in Ω,
BAuj = iAuj−1 on ΓA,
BDuj = 0 on ΓD,

for j ≥ 2.
Then, we have uj ∈ Aj+2(Ω) with

(18) ‖uj‖A,j+2,Ω . ‖f‖0,Ω,
for 0 ≤ j ≤ γ. Furthermore, for any l ≤ γ, if we denote by

rl = u−
l−1
∑

j=0

κjuj ,
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where u is the solution to system (9) associated with f , then rl ∈ Al+2(Ω) with

(19) ‖rl‖A,l+2,Ω . kl+1+α‖f‖0,Ω.
Remark 3. The definition of the sequence uj is based on formal expansion

(20) u =

+∞
∑

j=0

κjuj ,

in powers of κ. The recursive definition of the uj in terms of uj−1 and uj−2 is obtained by injecting
formal expansion (20) into boundary value problem (9) and identifying powers of κ.

Remark 4. Theorem 1 defines the announced splitting of the solution u. Indeed, we have u =
u0 + rl with

u0 =

l−1
∑

j=0

κjuj .

We see that u0 only belongs to A2(Ω), while rl ∈ Al+2(Ω). u0 thus corresponds to a “rough”
component of the solution, whose norm is efficiently controlled in terms of k. On the other hand,
rl is “smooth” but its norm strongly increases with k.

Remark 5. If we consider subdomains with smooth boundaries of class Cγ+1,1, we can simply
replace Al(Ω) by PH l(Ω)S in the statement of Theorem 1.

Proof. The fact that each uj ∈ Aj+2(Ω) directly follows by applying shift property (14) recursively
in the definition of the sequence. It is also clear that (18) holds, since k is not involved in the
definition of the sequence.

Simple computations show that the sequence rl, for 1 ≤ l ≤ γ recursively satisfies

(21)







L2r1 = κ2L0u+ iκL1u in Ω,
BAr1 = iκAu on ΓA,
BDr1 = 0 on ΓD,

(22)







L2r2 = κ2L0u+ iκL1r1 in Ω,
BAr2 = iκAr1 on ΓA,
BDr2 = 0 on ΓD,

and

(23)







L2rl = κ2L0rl−2 + iκL1rl−1 in Ω,
BArl = iκArl−1 on ΓA,
BDrl = 0 on ΓD,

for l ≥ 3.
Hence we apply shift property (14) to system (21), so that

‖r1‖A,3,Ω . k2‖u‖1,Ω + k‖u‖A,2,Ω.

Then, as a result, we obtain

(24) ‖r1‖A,3,Ω . k2+α‖f‖0,Ω
by using (13). We thus have proved (19) for l = 1.

The case l = 2 also follows with the use of (13) and (14). Indeed, since we already proved (24),
we have

‖r2‖A,2,Ω . k2‖u‖A,2,Ω + k‖r1‖A,3,Ω . k3+α‖f‖0,Ω.
Estimate (19) being established for the case l = 1 and 2. We can obtain the general case by

induction. Thus, assume that (19) holds up to some n−1 with 3 ≤ n ≤ γ. Applying shift property
(14) to (23) and the inductive assumption, we have

‖rn‖A,n+2,Ω . k2‖rn−2‖A,n,Ω + k‖rn−1‖A,n+1,Ω . kn+1+α‖f‖0,Ω,
which is (19) for l = n. �
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2.2. Application to finite element discretizations. We take advantage of the splitting pro-
posed in Theorem 1 to derive stability conditions and error-estimates for finite element discretiza-
tions of system (9).

We recall the variational setting of problem (9). For that purpose, we introduce the space

H1
ΓD

(Ω) =
{

v ∈ H1(Ω) | BDv = 0 on ΓD

}

,

equipped with the norm of H1(Ω). As δ is fixed, for each k ≥ 1, we consider a sesquilinear form
bk : H1

ΓD
(Ω)S ×H1

ΓD
(Ω)S → C that represents a variational formulation of (9), so that its solution

is characterized as

bk(u, v) = (f, v), ∀v ∈ H1
ΓD

(Ω)S .

Let us denote by Pk and P⋆
k the linear operators from H1

ΓD
(Ω)S to (H1

ΓD
(Ω)S)′ defined by

〈Pku, v〉−1,1 = bk(u, v) = 〈u,P⋆
kv〉1,−1, ∀u, v ∈ H1

ΓD
(Ω)S ,

where the duality pairing 〈·, ·〉−1,1 (resp. 〈·, ·〉1,−1) means the one between (H1
ΓD

(Ω)S)′ and

H1
ΓD

(Ω)S (resp. H1
ΓD

(Ω)S and (H1
ΓD

(Ω)S)′).
Throughout this section, it will be convenient to consider the weighted norm

|||v|||2 = k2‖v‖20,Ω + |v|21,Ω, v ∈ H1(Ω),

that is equivalent to the natural H1(Ω) norm. In view of (13), the |||.|||-norm has the advantage
to “balance” the L2 and H1 terms of the H1(Ω) norm.

Assumption 1. We will assume that the sesquilinear form bk is continuous, in the sense that

(25) |bk(u, v)| . |||u|||.|||v|||, ∀u, v ∈ H1
ΓD

(Ω)S ,

and satisfies the G̊arding inequality

(26) Re bk(u, u) & |u|21,Ω − k2‖u‖20,Ω, ∀u ∈ H1
ΓD

(Ω)S .

We look for a finite element approximation uh,p to u. To this end, we consider a family of meshes
{Th}h of Ω, where each mesh is made of tetrahedral (or triangular) elements K. To simplify the
analysis, we assume that the boundary of Ω is exactly triangulated, and therefore, we consider
curved Lagrange finite elements as described in Bernardi (1989). Also, for each element K, we

denote by FK the mapping taking the reference element K̂ to K. We further assume that the
triangulation is conform with the partition Q, in other words, each element K ∈ Th is supposed
to be included into one and only one Ωq.

Then, for all p ≤ γ + 1, the finite element approximation space Vh,p is defined as

Vh,p =
{

vh,p ∈ H1
ΓD

(Ω)S | vh,p|K ◦ F−1
K ∈ Pp(K̂)S ∀K ∈ Th

}

,

where Pp(K̂) stands for the set of polynomials of total degree less than or equal to p. At that
point, a finite element approximation of u is obtained by looking for uh,p ∈ Vh,p such that

(27) bk(uh,p, vh,p) = (f, vh,p), ∀vh,p ∈ Vh,p.

Remark 6. In actual applications, exact triangulations are seldom used, as they are difficult
to build (see §6 of Bernardi (1989) in particular). Instead, isoparametric meshes, in which the
non-affine mappings FK are assumed to be a polynomial mapping of order p are usually preferred
as they deliver the same orders of convergence. However, the resulting finite element spaces are
non-conforming, since the boundary conditions can not be exactly embedded. For the sake of
simplicity, we shall focus on the case of exact triangulations with general element mappings, and
omit the analysis of the “variational crime” caused by isoparametric elements. The authors believe
that similar results as presented here can be obtained for isoparametric elements, at the price of
additional complexities in the proofs.

In the rest of this section, we only consider meshes that have “sufficiently many” elements per
wavelength. We thus make the assumption that

(28) kh . 1.
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This assumption is fairly general, and only rules out meshes that would produce inaccurate so-
lutions. As a result, it is usually satisfied in applications. In addition, the convergence analysis
leads to conditions on h that are actually more restrictive than (28).

We assume that the considered family of meshes is regular of order p in the sense given in
Bernardi (1989). Roughly speaking, it consists in assuming that each element K of each mesh Th
is obtained from a single reference elements through a mapping FK that is a “small perturbation”
of an affine mapping F̃K . In addition, the “perturbations” are assumed to be smooth, and satisfy
some bounds on their gradient uniformly in h. In case of singular corners, we further need to
refine the meshes near such corners, see for instance Babuška (1970); Lubuma & Nicaise (1995).
For simplicity, for each corner c ∈ C, we suppose that 1

(29)
N

2
+ Reλ 6∈ Z, ∀λ ∈ Λc.

λmin as the singular exponent from ∪c∈CΛc satisfying

Reλmin = min{Reλ;λ ∈ ∪c∈CΛc and Reλ > 1− N

2
},

and suppose in dimension 3 that 2

(30) Reλmin > 0.

Let us then define l∗ ∈ N
∗ as the unique integer such that

l∗ − N

2
< Reλmin < l∗ + 1− N

2
.

Then for all l ≥ l∗, we introduce the following mesh refinement conditions, see Babuška (1970);
Lubuma & Nicaise (1995):

hK . hl/(l−αl), if K contains a corner,(31)

hK . h inf
K
rαl/l, otherwise,(32)

where r = minc∈C rc is the distance to the corners, αl = α⋆
l + l− l∗, and α⋆

l is a fixed positive real
number satisfying

(33) l∗ + 1− N

2
− Reλmin < α⋆

l < l∗ − 1.

In the following we assume that the family of meshes is regular and that for each h > 0, conditions
(31)-(32) are satisfied by all elements K ∈ Th. 3 Under such assumptions the next interpolation
error estimates are valid.

Lemma 1. For each v ∈ Al+1(Ω) ∩H1
ΓD

(Ω)S (1 ≤ l ≤ p), if the family of meshes is regular and
satisfies (31)-(32) for l ≥ l∗, then there exists an element Ih,pv ∈ Vh,p such that

(34) |v − Ih,pv|j,Ω . hl+1−j‖v‖A,l+1,Ω, (0 ≤ j ≤ 1).

Proof. According to Babuška (1970); Lubuma & Nicaise (1995), for all 1 ≤ l ≤ p, we introduce
the space

PH l+1,αl(Ω) = {u ∈ H1(Ω); rαlDβu|Ωq
∈ L2(Ωq), ∀β ∈ N

N : 2 ≤ |β| ≤ l + 1, p ∈ Q},
that is an Hilbert space with its natural norm, where αl = 0 if l < l∗.

1without this assumption, the shift property holds with a regular part in PHl+2−ε(Ω) with ε > 0 as small as
we want, leading to a lose of a factor hε in the rate of convergence. For simplicity, this exceptional situation will
be not explicitely mentioned in our examples.

2This condition is satisfied in the case of the acoustic Helmholtz equation in homogeneous media and in the
case of the time-harmonic elastodynamic system, see Remarks 8 and 10. In addition, this assumption is not
a fundamental limitation of our analysis, but is a technicality that is required to properly define the Lagrange
interpolant later on. It is probably possible to remove such hypothesis by employing quasi-interpolation operators.

3as the singularities are local, the refinement conditions can be defined locally near each corner with different
grading conditions, we avoid this specification to lighten the presentation Let us point out that in the case of smooth
Cγ+1,1 subdomains Ωq , it is not required to perform any kind of refinement.
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Now combining the arguments from Theorem 3.3 of Lubuma & Nicaise (1995) (let us notice
that the assumption on αl yields that PH

l+1,αl(Ω) is continuously embedded into PHN/2+ε(Ω),
for some ε > 0) with the ones from Bernardi (1989), one can show that

|v − Ih,pv|j,Ω . hl+1−j‖v‖PHl+1,αl (Ω), (0 ≤ j ≤ 1),

where Ih,pv is the Lagrange interpolant of v.
As the assumption (30) and simple calculations allow to show that Al+1(Ω) is continuously

embedded into PH l+1,αl(Ω)S , the conclusion follows. �

Proposition 2. Assume that v ∈ Al+1(Ω) with 1 ≤ l ≤ p, and that the family of meshes is regular
and satisfies (31)-(32) for l ≥ l∗, then there exists an element Ih,pv ∈ Vh,p such that

(35) |||v − Ih,pv||| . hl‖v‖A,l+1,Ω.

Proof. The proof is a direct consequence of the assumption that kh . 1 and estimate (34). Indeed,
we have

|||v − Ih,pv||| . k‖v − Ih,pv‖0,Ω + |v − Ih,pv|1,Ω
. khl+1‖v‖A,l+1,Ω + hl‖v‖A,l+1,Ω

. (1 + kh)hl‖v‖A,l+1,Ω.

�

The main result of this section is an asymptotic error estimate for the finite element solution
uh,p that is explicit in terms of h, p and k. The main steps to obtain this estimate rely on
slight modifications of the so-called Schatz argument (Schatz, 1974), as presented in Melenk &
Sauter (2010) and Melenk & Sauter (2011) for the acoustic Helmholtz equation. For the sake of
completeness, we briefly reproduce this argument with slight variations for the case of our general
settings in Lemmas 2 and 3.

Lemma 2. Assume that the boundary value problem associated with the operator P⋆
k can be de-

composed into system (9) in such a way that the assumptions from Definitions 1 and 2 hold. Then,
for g ∈ L2(Ω)S, there exists a unique s⋆(g) ∈ H1

ΓD
(Ω)S such that

bk(φ, s
⋆(g)) = (φ, g), ∀φ ∈ H1

ΓD
(Ω)S .

Furthermore, if we denote by

ηh,p = sup
g∈L2(Ω)

|||s⋆(g)− Ih,ps⋆(g)|||
‖g‖0,Ω

,

and if the family of meshes is regular and satisfies (31)-(32) for p ≥ l∗, then

ηh,p . h+ kp+αhp.

Proof. Let g ∈ L2(Ω)S , the existence and uniqueness of s⋆(g) directly follows since P⋆
k satisfies the

assumptions from Definition 2. In addition, we see that s⋆(g) can be split up using the technique
introduced in the previous section. In other words, we have

s⋆(g) =

p−2
∑

j=0

κjsj + rp−1,

where sj ∈ Aj+2(Ω), rp−1 ∈ Ap+1(Ω), and

‖sj‖A,j+2,Ω . ‖g‖0,Ω, ‖rp−1‖A,p+1,Ω . kp+α‖g‖0,Ω.
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Then, using (35) and recalling the assumption that kh . 1, we have

|||s⋆(g)− Ihs⋆(g)||| .

p−2
∑

j=0

kj |||sj − Ihsj |||+ |||rp−1 − Ihrp−1|||

.

p−2
∑

j=0

hj+1kj‖sj‖A,j+2,Ω + hp‖rp−1‖A,p+1,Ω

.

p−2
∑

j=0

h(hk)j‖sj‖A,j+2,Ω + hp‖rp−1‖A,p+1,Ω

.

p−2
∑

j=0

h‖sj‖A,j+2,Ω + hp‖rp−1‖A,p+1,Ω

.
(

h+ kp+αhp
)

‖g‖0,Ω,
and the result follows. �

Lemma 3. Assume that bk satisfies Assumption 1. Then, if kηh,p is small enough, there exists a
unique finite element solution uh,p ∈ Vh,p to (27), and we have

|||u− uh,p||| . inf
φh,p∈Vh,p

|||u− φh,p|||.

Proof. Using (26), there exists a positive constant M independent of k and h such that

Re bk(u− uh,p, u− uh,p) ≥ M
(

−k2‖u− uh,p‖20,Ω + |u− uh,p|21,Ω
)

≥ M |||u− uh,p|||2 − 2Mk2‖u− uh,p‖20,Ω.
If we define ξ = 2Mk2s⋆(u− uh,p), we have

|||u− uh,p|||2 . Re bk(u− uh,p, u− uh,p + ξ).

Then, by Galerkin orthogonality, we can replace uh,p by φh,p+µh,p for arbitrary φh,p, µh,p ∈ Vh,p,
and it follows that

Re bk(u− uh,p, u− uh,p + ξ) = Re bk(u− uh,p, u− φh,p)

+ Re bk(u− uh,p, ξ − µh,p)

. |||u− uh,p||| (|||u− φh,p|||+ |||ξ − µh,p|||) ,(36)

where we have used (25). As (36) holds for arbitrary φh,p, µh,p ∈ Vh,p, we can take the infinimum
in the right hand side. In addition, by definition of ξ and ηh,p, we have that

inf
µh,p∈Vh,p

|||ξ − µh,p||| . k2ηh,p‖u− uh,p‖0,Ω . kηh,p|||u− uh,p|||.

We thus obtain that

|||u− uh,p||| ≤ ρ

(

inf
φh,p∈Vh,p

|||u− φh,p|||+ kηh,p|||u− uh,p|||
)

,

where ρ is a constant independent of h and k, which we can rewrite as

(1− kηh,pρ) |||u− uh,p||| . inf
φh,p∈Vh,p

|||u− φh,p|||.

Hence, the main result follows assuming that

kηh,p ≤ 1

2ρ
.

�

We obtain an asymptotic error estimate as a direct consequence of Lemmas 2 and 3.
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Theorem 2. Assume that P⋆
k satisfies the assumptions of Definition 1, that Pk and P⋆

k satisfy
the assumptions of Definition 2, and that bk satisfies Assumption 1. Let f ∈ L2(Ω)S, then, if kh
and kp+α+1hp are small enough with p ≤ γ+1, and if the family of meshes is regular and satisfies
(31)-(32) for p ≥ l∗, there exists a unique finite element solution uh,p ∈ Vh,p to (27), and it holds
that

(37) |||u− uh,p||| . inf
φh,p∈Vh,p

|||u− φh,p|||.

Furthermore, we have that

(38) |||u− uh,p||| . k1+αh‖f‖0,Ω.
In addition, if we assume that f ∈ PHp−1(Ω)S, then we have

(39) |||u− uh,p||| . kp+αhp‖f‖Q,p−1,Ω.

Remark 7. Stability estimate (37) is still valid if the assumption on the right-hand-side f ∈
L2(Ω)S is weaken to f ∈ (H1

ΓD
(Ω)S)′, however, error estimates (38) and (39) do not hold in this

case.

Proof. We obtain (37) as a direct consequence of Lemmas 2 and 3. Then, we deduce (38) from
(37) by combining Proposition 2 and Definition 2:

|||u− uh,p||| . |||u− Ih,pu||| . h|u|A,2,Ω . k1+αh‖f‖0,Ω.
In order to prove (39), we first establish by induction that u ∈ Al+2(Ω) with

(40) ‖u‖A,l+2,Ω . kl+1+α‖f‖Q,l,Ω,

for all 0 ≤ l ≤ γ. Because of Definition 2, (40) is valid for l = 0. Let us thus assume that (40) is
valid for some 0 ≤ l ≤ γ − 1. Since u solves (9), we have

{

L2u = f + κ2L0u+ iκL1u in Ω,
BAu = iκAu on ∂Ω.

where f ∈ PH l+1(Ω)S and u ∈ Al+2(Ω). Thus, the shift property (8) and Propositin 1 imply that
u ∈ Al+3(Ω) with

‖u‖A,l+3,Ω . ‖f‖Q,l+1,Ω + k2‖u‖A,l+1,Ω + k‖u‖A,l+2,Ω.

Hence by the induction hypothesis, we find that

(41) ‖u‖l+3,Ω . kl+2+α‖f‖Q,l+1,Ω,

so that (40) is valid for l+1. Thus (40) is valid for 0 ≤ l ≤ γ by induction. In particular, we have

|||u− Ih,pu||| . hp|u|A,p+1,Ω . kp+αhp‖f‖Q,p−1,Ω

for all p ≤ γ + 1, and (39) follows from (37). �

3. Application to the acoustic Helmholtz equation in homogeneous media

The aim of this section is to apply our general result to the simple problem of the acoustic
Helmholtz equation in an homogeneous medium. We consider a domain Ω ⊂ R

N whose boundary
∂Ω is split into two subsets ΓD and ΓA, and consider the problem to find u : Ω → C such that

(42)







−k2u−∆u = f in Ω,
u = 0 on ΓD,

∇u · n− iku = 0 on ΓA,

where f ∈ L2(Ω) is a given load term. The variational formulation of Problem (42) reads: find
u ∈ H1

ΓD
(Ω) such that bk(u, v) = (f, v) for all v ∈ H1

ΓD
(Ω) where bk takes here the form

(43) bk(u, v) = −k2(u, v)− ik〈u, v〉ΓA
+ (∇u,∇v).

Following Hetmaniuk (2007) we assume that there exists a point x0 ∈ R
N such that (x− x0) ·

n(x) ≤ 0 for all x ∈ ΓD and (x − x0) · n(x) ≥ c > 0 for all x ∈ ΓA, where n is the unit vector
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normal to ∂Ω pointing outside Ω. We further assume that ΓA and ΓD are disjoint, and either that
they are of class Cγ+1,1 for some γ ∈ N, or that N = 2 and that they are polygonal.

We point out that this situation represents in particular the case of the exterior problem outside
a star-shaped sound-soft obstacle O with boundary ∂O = ΓD. In this context, the boundary
condition placed on ΓA is an approximation of the Sommerfeld radiation condition.

Problem (42) enters into our framework with L0 = Id, L1 = 0, L2 = −∆, BD = Id, BAu = ∇u·n
and A = 1. Furthermore as the operators have constant coefficients, Q is reduced to a singleton
and PH l(Ω) = H l(Ω). Since the triplet (L2,BD,BA) corresponds to the standard Laplace operator
with mixed boundary conditions, standard arguments based on elliptic regularity show that the
shift property of Definition 1 is satisfied up to the order γ +2 without singularities for the case of
smooth boundaries. When the boundaries are polygonal, the shift property holds for any order,
and the set of singular functions can be explicitly described (see for instance Grisvard (1985)).
We also point out that condition (30) is automatically satisfied, since the considered problem is
two-dimensional. On the other hand, Propositions 3.3 and 3.6 of Hetmaniuk (2007) show that the
stability property of Definition 2 holds with α = 0.

Simple arguments show that the sesquilinear form bk introduced at (43) satisfies all the hy-
potheses of Section 2.2. Thus, as a direct application of our general analysis, i.e., Theorem 2, we
can state the following results for the particular case of the Helmholtz equation.

Proposition 3. Assume that ΓD and ΓA are of class Cγ+1,1 and let p ≤ γ + 1. If kp+1hp is
small enough, then there exists a unique solution uh,p ∈ Vh,p of bk(uh,p, vh,p) = (f, vh,p) for all
vh,p ∈ Vh,p and we have

|||u− uh,p||| . kh‖f‖0,Ω.
In addition, if f ∈ Hp−1(Ω), then we have

|||u− uh,p||| . kphp‖f‖p−1,Ω.

On the other hand, we can state the following result for the case of polygonal boundaries.

Proposition 4. Assume that N = 2 and that ΓD and ΓA are polygonal and let p ∈ N. If the
meshes are refined near the corners of ΓD and ΓA according to (31)-(32), and if kp+1hp is small
enough, then the statements of Proposition 3 remain valid.

Remark 8. The case of a three-dimensional domain Ω when ΓD and/or ΓA have corners can
be also treated using the results from Grisvard (1985); Dauge (1988), in particular condition (30)
holds due to (Kozlov et al., 2001, §2.2 and 2.3).

Remark 9. Our analysis allows both ΓD and ΓA to exhibit corners. In contrast, previous works
take into account corners in ΓA but only when ΓD is empty (Esterhazy & Melenk, 2012; Melenk
& Sauter, 2011).

4. Application to the time-harmonic elastodynamic system

We consider time harmonic elastic wave propagation in an homogeneous (possibly) anisotropic
medium Ω ⊂ R

3. We assume that the boundary of Ω is sufficiently smooth, namely of class Cγ+1,1.
For the sake of simplicity we restrict ourselves to three-dimensional problems, but it is easy to
check that the results presented below remain valid for two-dimensional problems.

The elasticity properties of the material are represented by a constant second-order tensor
C = (cnmpq)

3
n,m,p,q=1 satisfying the following symmetry and ellipticity properties

cnmpq = cmnpq = cpqnm, 1 ≤ n,m, p, q ≤ 3,

and
3

∑

n,m,p,q=1

cnmpqεnmεpq &

3
∑

n,m=1

|εnm|2,

for all first-order symmetric tensors ε = (εnm)3n,m=1.
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For a given displacement v : Ω → C
3, the strain and stress tensors are respectively defined by

ε(u) =
1

2

(

∇u+ (∇u)⊤
)

,

and

σ(u) = Cε(u).

The unknown u : Ω → C
3 represents the displacement under the action of a load term f : Ω →

C
3. u and f are related trough the elastodynamic system

(44)







−k2u−∇ · σ(u) = f in Ω,
σ(u)n− ikAu = 0 on ΓA,

u = 0 on ΓD,

where k is the (real) wavenumber, A : ΓA → M(R3) is a matrix-valued functions of class Cγ,1

that is supposed to be symmetric and uniformly positive definite, i.e.

Y ⊤A(x)Y & |Y |2, ∀Y ∈ R
3, ∀x ∈ ΓA,

where the hidden constant does not depend on x.
Though our stability results and error estimates hold for arbitrary matrix-valued functions A

satisfying the previous assumptions, it is clear that the efficiency of the absorbing boundary con-
dition heavely depends on A. As a result, the matrix A must be carefully designed in applications.
For the special case of tilted transverse isotropic media, we refer the reader to Barucq et al. (2014)
and Boillot et al. (2015). For the simplest case of an isotropic medium, a possible definition of A
is given in Clayton & Engquist (1977), Darbas et al. (2017) and Lysmer & Kuhlemeyer (1969),
corresponding to the so-called Lysmer-Kuhlemeyer absorbing boundary condition. But in both
cases, the symmetry and uniform positive definiteveness of A are respected. In addition, since in
the above examples, A is expressed in terms of normal and tangential vectors to the boundary, it
is reasonable to assume that A has the regularity Cγ,1, since the boundary is Cγ+1,1.

4.1. Well-posedness results. We introduce the variational formulation of problem (44). It
reads: find u ∈ H1

ΓD
(Ω)3 such that

(45) bk(u, v) = (f, v), ∀v ∈ H1
ΓD

(Ω)3.

where f ∈ L2(Ω)3 and

bk(u, v) = −k2(u, v)− ik〈Au, v〉ΓA
+ (Cε(u), ε(v)).

We easily see that bk satisfies Assumption 1. Indeed, continuity (25) follows from a trace
theorem, and G̊arding inequality (26) is a consequence of Korn’s inequality.

We now check whether the shift property from Definition 1 is valid for the corresponding system
(5), that here takes the form

(46)







−∇ · σ(ũ) = f̃ in Ω,
σ(ũ)n = g̃ on ΓA,

ũ = 0 on ΓD.

Since this system corresponds to (44) with k = 0, its variational formulation is clearly (45) with
k = 0 and the right-hand-side

〈ψ, v〉−1,1 = (f̃ , v) + (g̃, v)ΓA
, ∀v ∈ H1

ΓD
(Ω)3.

As we have just checked that b0 satisfies G̊arding inequality (26), it will be coercive on H1
ΓD

(Ω)3

if ΓD is non-empty since Poincaré’s inequality guarantees that

|w|21,Ω & ‖w‖21,Ω, ∀w ∈ H1
ΓD

(Ω).

In this case, problem (46) is well-posed in H1
ΓD

(Ω)3.
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The situation is more delicate if ΓD is empty, because the well-posedness of (46) is subject

to some orthogonality conditions on f̃ , g̃. Hence in this case, we perform a change of parameter,
namely we set κ = k − i. Then we transform problem (44) into

(47)

{

−(κ2 + 2iκ− 1)u−∇ · σ(u) = f in Ω,
σ(u)n− i(κ+ i)Au = 0 on ∂Ω,

that enters into our abstract setting with δ = 1,

L2u = u−∇ · σ(u),L1u = 2u,L0 = u,

and

BA = σ(u)n+Au.

In that situation, the corresponding system (5) is

(48)

{

ũ−∇ · σ(ũ) = f̃ in Ω,
σ(ũ)n+Aũ = g̃ on ∂Ω,

whose variational formulation is given by

b0(ũ, v) = (f̃ , v) + (g̃, v)ΓA
, ∀v ∈ H1(Ω)3,

with

b0(u, v) = (u, v) + 〈Au, v〉∂Ω + (Cε(u), ε(v)).

Since

b0(u, u) = ‖u‖20,Ω + (Cε(u), ε(u)) + 〈Au, u〉∂Ω
by our assumption on A, we clearly have

b0(u, u) ≥ ‖u‖20,Ω + (Cε(u), ε(u))

and by Korn’s inequality we conclude that b0 is coercive on H1(Ω)3. Consequently, problem (48)
is well-posed in H1(Ω)3.

Once the well-posedness in H1(Ω)3 is established, the shift property for both problems (46)
and (48) holds owing to standard theory of elliptic systems (the reader will find more details in
classical text book such as Lions & Magenes (1968) and Nečas (1967), as well as §4.4 of Costabel
et al. (2010)) if the boundary of Ω is of class Cγ+1,1 and if Γ̄A∩ Γ̄D = ∅. The shift property is also
valid for less regular boundaries or if Γ̄A ∩ Γ̄D is non-empty, see for instance Maz’ya & Rossmann
(2010).

Remark 10. If the elastic tensor corresponds to the Lamé operator, then the case when ΓD

and/or ΓA have corners can be also treated using the results from Grisvard (1986); Dauge (1988),
in particular condition (30) holds due to (Kozlov et al., 2001, §3.4 and 4.3).

4.2. Stability property. The elasticity system also satisfies the k-stability property of Definition
2, as we show in the next proposition. Our proof is a simple consequence of a result obtained in
Lagnese (1983) for the time-dependent elastodynamic system combined with the next result of
functional analysis (see Huang, 1985; Prüss, 1984).

Lemma 4. A C0 semigroup (etL)t≥0 of contractions on a Hilbert space H is exponentially stable,
i.e., satisfies

‖etLU0‖ ≤ C e−ωt‖U0‖H , ∀U0 ∈ H, ∀t ≥ 0,

for some positive constants C and ω if and only if

(49) ρ(L) ⊃
{

iβ
∣

∣ β ∈ R
}

≡ iR,

and

(50) sup
β∈R

‖(iβI− L)−1‖ <∞,

where ρ(L) denotes the resolvent set of the operator L.
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Proposition 5. Assume that there exists x0 ∈ R
3 such that

(x− x0) · n(x) ≤ 0, ∀x ∈ ΓD,(51)

(x− x0) · n(x) > 0, ∀x ∈ Γ̄A.(52)

Let u ∈ H1(Ω)3 be a solution of (44) with a right-hand-side f ∈ L2(Ω)3. Then u ∈ H2(Ω)3

and

(53) k‖u‖0,Ω + |u|1,Ω + k−1|u|2,Ω . ‖f‖0,Ω,
where the hidden constant depends on the domain Ω, the elastic tensor C and the impedance matrix
A, but is independent of k.

Remark 11. Assumption (51) states that ΓD is the boundary of a Dirichlet obstacle that is star-
shaped with respect to x0. Similarly, Assumption (52) states that the domain enclosed by ΓA is
star-shaped with respect to x0. Since in applications, ΓA is usually designed as a sphere or a brick
centered around the obstacle, in practice Assumption (52) is always satisfied. We can thus think of
the problem considered in Proposition 5 as the general case of scattering by a star-shaped Dirichlet
obstacle.

Remark 12. Other recent works focus on frequency-explicit stability bounds for Problem (44).
Specifically, we can mention Theorem 2.3 of Brown & Gallistl (2016), where the authors derive a
bound for general Lipschitz domains. Though this bound applies to a wider class of problems, it is
less sharp when restricted to the assumptions of Proposition 5. We can also mention Cummings
& Feng (2006), where the authors makes the same hypothesis than here, but obtain a bound that
is less sharp.

Proof. Under our assumptions, the combination of Theorem 1.1 of Lagnese (1983) (valid for a
diagonal matrix A) with Theorem 5.3 of Nicaise (2003) (that allows to pass from the case A = Id
to the general case of a uniformly positive definite matrix A, see Nicaise (2003, §6.5) for more
explanations) (see also Theorem 1.3 of Alabau & Komornik (1998) and section 6.3 of Nicaise
(2003)) implies that the time-dependent elastodynamic system















utt −∇ · σ(u) = 0 in Ω× (0,∞),
σ(u)n−Aut = 0 on ΓA × (0,∞),

u = 0 on ΓD × (0,∞),
u(·, t = 0) = u0, ut(·, t = 0) = u1,

is exponential stable, in other words, its energy

1

2
(

∫

Ω

(|ut(·, t)|2 + σ(u(·, t)) : ε(u(·, t))) dx)

decays exponentially (as t→ ∞). In order to make use of Lemma 4, we use the standard reduction
of order. Setting U = (u, ut)

⊤, this system is equivalent to the first order one

Ut = AU in H, t > 0, U(t = 0) = (u0, u1)
⊤,

where the Hilbert space H and the operator A are defined as follows. Let us set

H = H1
ΓD

(Ω)3 × L2(Ω)3.

If ΓD is non-empty, H is equipped with the norm

‖(u, v)⊤‖2H :=

∫

Ω

(|v|2 + σ(u) : ε(ū)) dx, ∀(u, v)⊤ ∈ H.

On the contrary H is equipped with the norm

‖(u, v)⊤‖2 := ‖(u, v)⊤‖2H +

∫

∂Ω

Au · ū dσ(x), ∀(u, v)⊤ ∈ H,

when ΓD is empty.
In both cases, the norm property is based on Korn’s inequality (see Theorem 3.3 of Duvaut &

Lions (1972) or Theorem 2.1 of Ciarlet (2010)). Now we define

D(A) = {(u, v)⊤ ∈ H : v ∈ H1
ΓD

(Ω)3, u ∈ H2(Ω)3 satisfying σ(u)n+Av = 0 on ΓA},
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and set

A(u, v)⊤ = (v,∇ · σ(u)), ∀(u, v)⊤ ∈ D(A).

It is well know that A generates a C0 semigroup (etA)t≥0 of contractions on H, see for instance p.
972 of Lagnese (1983) (as conditions (51)-(52) imply that Γ̄A∩ Γ̄D = ∅). Hence by the exponential
decay of the energy and Lemma 4, when ΓD is non empty we deduce that the resolvent of A is
uniformly bounded in the imaginary axis. In other words for all (g1, f1)

⊤ ∈ H and all ξ ∈ R, there
exists a unique solution (u, v)⊤ ∈ D(A) of

(54) (iξI−A)(u, v)⊤ = (g1, f1)
⊤,

with

(55) ‖(u, v)⊤‖H . ‖(g1, f1)⊤‖H.
This equivalently means that (u, v)⊤ ∈ D(A) satisfies

iξu− v = g1 in Ω,

iξv −∇ · σ(u) = f1 in Ω.

The first identity means that

(56) v = iξu− g1 in Ω,

and eliminating v in the second equation we find that u is solution to

(57) −ξ2u−∇ · σ(u) = f1 + iξg1 in Ω.

Reminding the boundary conditions satisfied by (u, v)⊤ ∈ D(A), namely u = 0 on ΓD and

(58) σ(u)n+Av = 0 on ΓA,

and using (56) we find that

(59) σ(u)n+ iξAu = Ag1 on ΓA.

Taking g1 = 0 and f1 = f , we see that u is solution of (44) if we chose ξ = −k. Coming back to
(55), using Korn’s inequality and again using (56) with g1 = 0, one deduces the estimate

(60) ‖u‖1,Ω + k‖u‖0,Ω . ‖f‖0,Ω.
As u can be seen as the solution of







−∇ · σ(u) = f + k2u in Ω,
σ(u)n = ikAu on ΓA,

u = 0 on ΓD,

by elliptic regularity we find that

‖u‖2,Ω . ‖f‖0,Ω + k2‖u‖0,Ω + k‖u‖1/2,ΓA
.

By a trace theorem and estimate (60), we conclude that

‖u‖2,Ω . k‖f‖0,Ω.
This estimate and (60) lead to (53).

The situation is more delicate in the case ΓD = ∅. Indeed, the quantity ‖·‖H is no more a norm
in H (hence the exponential decay of ‖(u(·, t), v(·, t)‖H does not allow to apply directly Lemma
4). Indeed in such a case

‖(u, v)⊤‖H = 0

if and only if v = 0 and u ∈ R, where R is the set of rigid displacement given by

R = {a× x+ b : a,b ∈ C
3},

and is of dimension 6.
Hence we introduce the subspace

H0 =

{

(u, v)⊤ ∈ H;

∫

Ω

v · r̄ dx+

∫

Γ

Au · r̄ dσ(x) = 0, ∀r ∈ R
}

.
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The introduction of this subspace has two main features. First

(R× {0}) ∩H0 = {0},
and hence the semi-norm ‖ · ‖H is a norm on H0. Indeed if (u, v)⊤ ∈ (R× {0}) ∩H0, then v = 0
and u ∈ H1(Ω)3 ∩R satisfies

∫

Γ

Au · r̄ dσ(x) = 0, ∀r ∈ R.

In particular, it yields
∫

Γ

Au · ū dσ(x) = 0,

and consequently u = 0, since the quantity
(
∫

Γ

Au · ū dσ(x)
)1/2

is a norm on R. Second, we see that

(61) A(u, v)⊤ ∈ H0, ∀(u, v)⊤ ∈ D(A).

Indeed for (u, v)⊤ ∈ D(A), we have A(u, v)⊤ = (v,∇ · σ(u)), hence (61) holds if and only if

(62)

∫

Ω

∇ · σ(u) · r̄ dx+

∫

Γ

Av · r̄ dσ(x) = 0.

But according to Green’s formula, we have
∫

Ω

∇ · σ(u) · r̄ dx =

∫

Γ

σ(u)n · r̄ dσ(x)

and using the boundary condition (58), we find that
∫

Ω

∇ · σ(u) · r̄ dx = −
∫

Γ

Av · r̄ dσ(x),

which proves (62).
This justifies the introduction of the operator A0 that is the restriction of A to H0. Trivially

this restriction generates a C0 semigroup of contractions on H0. Hence by the exponential decay
of the energy and Lemma 4 (applied to A0 in H0), we deduce that the resolvent of A0 is uniformly
bounded on the imaginary axis, in other words, for any (g1, f1)

⊤ ∈ H0 and all ξ ∈ R, there exists
a unique solution (u, v)⊤ ∈ D(A0) of (54) with the estimate (55). As before, we deduce that v is
given by (56) and that u is solution of (57) and (59). The problem is that the pair (g1, f1) fulfils
the condition

(63)

∫

Ω

f1 · r̄ dx+

∫

Γ

Ag1 · r̄ dσ(x) = 0, ∀r ∈ R,

and that we can no more choose g1 = 0, since we want to take arbitrary right-hand side f in (44).
The solution is to take

(64) g1 = ϕ

6
∑

j=1

αjrj , f1 = f − iξg1,

with αj ∈ C determined below and a fixed function ϕ ∈ D(Ω) such that ϕ = 1 in an open non
empty subset O of Ω and {rj}6j=1 is a basis of R such that

(65)

∫

Ω

ϕrj · r̄k dx = δj,k, ∀j, k = 1, · · · , 6.

This is possible because
∫

Ω

ϕr · s̄ dx

is an inner product on R.
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With these choices, if ξ 6= 0, we see that condition (63) holds if and only if (since g1 = 0 on Γ)
∫

Ω

(f − iξg1)r̄j dx = 0, ∀j = 1, · · · , 6,

or equivalently using (65),

(66) αj = − 1

iξ

∫

Ω

f r̄j dx, ∀j = 1, · · · , 6.

By choosing ξ = −k, we then deduce that u is solution of (44). It then remains to prove (60).
But reminding the estimate (55) and the choice (64), we have

‖(u, v)⊤‖H . (1 + k)

6
∑

j=1

|αj |+ ‖f‖0,Ω.

But (66) and Cauchy-Schwarz’s inequality yield

(67) |αj | .
1

k
‖f‖0,Ω, ∀j = 1, · · · , 6,

and therefore the previous estimate becomes

‖(u, v)⊤‖H . ‖f‖0,Ω.

This yields the estimates

(
∫

Ω

σ(u) : ε(u) dx

)
1
2

. ‖f‖0,Ω,(68)

‖v‖0,Ω ≤ C3‖f‖0,Ω,(69)

and to catch the L2-norm of u, we exploit the second estimate. Indeed (56) yields

‖u‖0,Ω ≤ 1

k
(‖v‖0,Ω + ‖g1‖0,Ω),

hence by (69), (64) and (67), one obtains

‖u‖0,Ω .
1

k
‖f‖0,Ω.

This estimate and (68) lead to (60). The estimate of the H2-norm of u being the same than before,
the proof is complete. �

Remark 13. If ΓD is non empty, the previous result directly furnishes the stability property for
system (44). On the contrary if ΓD is empty, it indirectly furnishes the stability property for
system (47), since this last system is equivalent to (44).

4.3. Finite element discretization. In order to use Theorem 2 for conforming finite element
discretizations of the elastodynamic system described in Subsection 2.2, it remains to check that
P⋆
k satisfies the assumptions from Definitions 1 and 2.
For that purpose, we characterize the boundary value problem associated with P⋆

k . Consider
an arbitrary v ∈ H1

ΓD
(Ω)3 and let g = Pkv ∈ (H1

ΓD
(Ω)3)′. Then, for all φ ∈ H1

ΓD
(Ω)3, we have

〈φ,P⋆
kv〉1,−1 = bk(φ, v) = bk(v, φ) = 〈Pkv, φ〉−1,1 = 〈g, φ〉−1,1 = 〈φ, g〉1,−1,

so that Pkv = g. Hence, since Pk satisfies the assumptions from Definitions 1 and 2, so does P⋆
k .

As a result, Theorem 2 holds for conforming finite element discretizations of the elastodynamic
system.
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4.4. Numerical experiments. We consider a toy experiment in the unit square Ω = (0, 1)2 to
illustrate our results. For additional experiments, we refer to Darbas et al. (2017), where the
performance of the Lysmer-Kuhlemeyer absorbing boundary condition is compared with a higher
order absorbing boundary condition (that is not covered by our framework). We consider an
isotropic elastic medium with Lamé parameters λ = µ = 1 and density ρ = 1. We set very simple
boundary conditions corresponding to the case A = Id and ΓD = ∅. We consider an analytic
solution that is the superposition of a P wave and a S wave travelling in different directions:

u(x) = (cos(θp), sin(θp))
1

k
exp

(

ik√
λ+ 2µ

(cos(θp)x1 + sin(θp)x2)

)

+ (− sin(θs), cos(θs))
1

k
exp

(

ik√
µ
(cos(θs)x1 + sin(θs)x2)

)

,

with θp = π/3 and θs = −π/3.
Since these plane waves satisfy the homogeneous equation inside Ω, we use inhomongeous

boundary condition to impose them as the solution. Hence, the problem read:

(70)

{

−k2u−∇ · σ(u) = 0 in Ω,
σ(u)n− iku = g on ∂Ω,

where
σ(u) = (∇ · u)I + ε(u).

and g = σ(u)n− iku.

Remark 14. Even if the boundary of Ω is not smooth, the shift property from Definition 1 holds
for all γ ≥ 0. Indeed in such a situation, according to Theorem 4.1.1 from Grisvard (1986), the
weak solution ũ ∈ H1(Ω)2 of

(71)

{

−∇ · σ(ũ) = f̃ in Ω,
σ(ũ)n = g̃,

with f̃ ∈ H l(Ω)2, g̃ ∈ H l+1/2(∂Ω)2 belongs to Al+2 = H l+2(Ω)2⊕ span Sλ, where Sλ are the sin-
gular functions associated with system (71) (see (6)-(7)) and λ ∈ C is a root of the transcendental
equation

sin2
(

λπ

2

)

= λ2.

Note that according to Theorems 4.2.1 and 4.2.2 of Kozlov et al. (2001), the strip Reλ ∈ [0, 2] is
free of such a root and consequently the weak solution belongs to H l+2(Ω)2 for l = 0 or 1. On the
contrary for l ≥ 2, Theorem 4.2.3 of Kozlov et al. (2001) states that the strip Reλ ∈ (0, l + 1)
contains such a root and therefore the solution of (71) does not belong to H l+2(Ω)2 in general. Let
us also remark that the construction of the singular spaces T λ

c,j directly follows from a logarithmo-
polynomial resolution, see (Nicaise, 1993, §4.3, 4.4), since the involved operators have constant
coefficients (see (11) and (12)).

We need to quantify the best approximation of the scheme. To this end, we will also solve the
auxiliary problem to find wh,p ∈ Vh,p

k2(wh,p, φh,p) + (∇wh,p,∇φh,p) = k2(u, φh,p) + (∇u,∇φh,p)
for all φh,p ∈ Vh,p. One observes that this wh,p satisfies

|||u− wh,p||| = min
φh,p∈Vh,p

|||u− φh,p|||.

The main result of our theoretical analysis states that if kp+1hp . 1 and for p ≥ 2, if the meshes
are appropriately refined near the corners, then

(72) |||u− uh,p||| . |||u− wh,p|||.
With this experiment, we illustrate that this bound is sharp. To do so, we compute uh,p and wh,p

for different k and different quasi-uniform meshes of meshsize h. More precisely, we first fix a
value of k, and then compute the finite element solution and projection for decreasing values of
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h, as depicted on Figure 1 and 2. These figures illustrate that as expected, the projection wh,p

converges as h and h4 to the solution u for P1 and P4 elements respectively. In addition, the finite
element solution uh,p is almost as accurate as the projection wh,p for small values of h. However,
a gap is present for largest values of h. One also sees that this gap increases as k increases.

We proceed as follow to determine if (72) is sharp. For each k, we denote by h⋆(k) the greatest
value h0 such that

(73) |||u− uh,p||| ≤ 2|||u− wh,p|||, ∀h ≤ h0.

The value of h⋆(k) for a given k is obtained by inspecting the corresponding convergence curve
(see Figures 1 and 2). Condition (73) states that the finite element solution must be quasi optimal
in the |||.|||-norm, uniformly in k (with the arbitrary constant 2).

The graph of h⋆(k) is represented on Figure 3 for P1 and P4 elements. We observe that in both
cases h⋆(k) ∼ k−1−1/p, which is in accordance with (72). Indeed, it means that quasi-optimality in
the sense of (73) is achieved under the condition that h ≤ h⋆(k) ∼ k−1−1/p, which is equivalent to
kp+1hp ≤ kp+1 [h⋆(k)]

p
. 1. We thus conclude that the stability condition presented in Theorem

2 is sharp even for p = 4 with quasi-uniform meshes.
Note that our experiments indicate that the first statement from Theorem 2 may remain valid

for values of p larger than the theoretical one, that is here equal to 2.
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Figure 1. Convergence curves for P1 elements
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Figure 3. Elastic wave equation: asymptotic ranges h⋆(k) for P1 (left) and P4

(right) elements

5. Application to the convected Helmholtz equation

We now consider the convected Helmholtz equation in a fluid with uniform horizontal motion
(see, e.g., Bécache et al., 2004). The equation reads:

(74)



























−k2u− 2ikM
∂u

∂x1
− (1−M2)

∂2u

∂x2
1

− ∂2u

∂x2
= f in Ω,

(1−M2)
∂u

∂x1
n1 +

∂u

∂x2
n2 − ik(1−Mn1)u = 0 on ΓA,

u = 0 on ΓD,
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where M ∈ (−1, 1) is the Mach number, Ω = (0, 1)2 is the unit square and ΓD = (0, 1) × {0}
denotes its lower edge. The absorbing boundary condition on ΓA = ∂Ω\ΓD is designed to perfectly
filter incoming “plane wave” travelling normally to the boundary.

Problem (74) fits in our general framework with S = 1,

L0u = u, L1u = 2M
∂u

∂x1
, L2u = −(1−M2)

∂2u

∂x1
− ∂2u

∂x2
,

and

BDu = u, BAu = (1−M2)
∂u

∂x1
n1 +

∂u

∂x2
n2, Au = (1−Mn1)u.

Since |M | < 1, it is clear that the triplet (L2,BA,BD) satisfies the shift property (introduced
in Definition 1) at the order 3 with Sλ

c,j = ∅. In addition, it is easily seen that L0 and L1 are
consistent with (10). Thus, we only need to verify that the assumptions from Definition 2 hold.
For that purpose, we perform a change of unknown in order to get back to a standard Helmholtz
problem.

Lemma 5. Assume that u ∈ H1(Ω) solves (74). Then the function ũ ∈ H1(Ω) defined as

ũ(x1,x2) = u(x1,
x2

β
)e−ρx1

is solution to






−k̃2ũ− ∆̃ũ = f̃ in Ω̃,

∇̃u · ñ− ik̃ũ = 0 on Γ̃A,

ũ = 0 on Γ̃D,

where

Ω̃ = (0, 1)× (0,
1

β
), Γ̃D = (0, 1)× {0}, Γ̃A = Ω̃ \ Γ̃D,

f̃(x1,x2) =
1

1−M2
f(x1,

x2

β
)e−ρx1 , k̃ =

k

1−M2

and

ρ = − ikM

1−M2
, β =

√

1−M2.

Proof. The proof relies on simple but tedious computations which simply amounts to compute
the derivatives of ũ up to order 2 and arrange the results to obtain an Helmholtz equation. These
computations are reported in Appendix A. �

Remark 15. In practice, it is more convenient to approximate directly problem (74) instead of
its equivalent Helmholtz problem (in ũ) since in this last one spurious oscillations might occur.

Proposition 6. Problem (74) admits a unique solution u ∈ H1(Ω) for all k ≥ 1. In addition, the
stability property from Definition 2 is satisfied with α = 0.

Proof. Let us define ũ ∈ H1(Ω̃) as in Lemma 5. Since ũ is defined as the solution to a standard
Helmholtz problem, it is uniquely defined (see Hetmaniuk (2007) for instance). In addition, ũ
satisfies

(75) k‖ũ‖0,Ω̃ + |ũ|1,Ω̃ + k−1|ũ|2,Ω̃ . ‖f̃‖0,Ω̃.
Then, one easily checks that

‖u‖0,Ω . ‖ũ‖0,Ω̃, ‖f̃‖0,Ω̃ . ‖f‖0,Ω . ‖f̃‖0,Ω̃,
so that

k‖u‖0,Ω . ‖f‖0,Ω.
Furthermore, we remark that

|u|1,Ω . |ũ|1,Ω + k‖ũ‖0,Ω,
hence using (75), we obtain

|u|1,Ω . ‖f‖0,Ω.
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Similarly, for the estimate of the H2(Ω) semi-norm, we notice that

|u|2,Ω . |ũ|2,Ω + k|ũ|1,Ω + k2‖ũ‖0,Ω,
and we conclude that

|u|2,Ω . k‖f‖0,Ω,
using again (75). �

5.1. Finite element discretization. The sesquilinear form associated with the convected Helmholtz
equation (74) reads:

bk(u, v) = −k2 (u, v) + (1−M2)

(

∂u

∂x1
,
∂v

∂x1

)

+

(

∂u

∂x2
,
∂v

∂x2

)

− 2ikM

(

∂u

∂x1
, v

)

− 〈ik(1−Mn1)u, v〉∂Ω

for all u, v ∈ H1(Ω).
In order to apply Theorem 2, we need to identify the adjoint operator. To do so, we consider

g ∈ L2(Ω) and assume that v ∈ H1(Ω) satisfies bk(φ, v) = (φ, g) for all φ ∈ H1(Ω). We perform
integration by parts on the left-hand side, and observe that















−k2v − 2ikM
∂v

∂x1
− (1−M2)

∂2v

∂x2
1

− ∂2v

∂x2
= g in Ω,

(1−M2)
∂v

∂x1
n1 +

∂v

∂x1
n2 + ik(1 +Mn1)v = 0 on ∂Ω.

Then, we take the complex conjugate to get














−k2v + 2ikM
∂v

∂x1
− (1−M2)

∂2v

∂x2
1

− ∂2v

∂x2
2

= g in Ω,

(1−M2)
∂v

∂x1
n1 +

∂v

∂x1
n2 − ik(1 +Mn1)v = 0 on ∂Ω.

Hence, v is solution to the direct problem with an opposite Mach number and g as a right-
hand-side. We thus see that both Pk and P⋆

k satisfy the assumptions from Definitions 1 and 2 and
therefore, Theorem 2 applies.

5.2. Numerical experiments. We consider problem (74) with a Mach number M = 0.4 and
f = 1(1/2−1/16,1/2+1/16)2 . The problem is solved for various wavenumbers k.

We proceed as in Section 4.4 to assess the results of our theoretical analysis. As in this ex-
ample the analytical solution to the problem is unknown, an “overkilling” finite element solution,
computed on a very fine mesh, is used as reference instead. This accurate solution is also used to
compute the best approximation whp.

The value h⋆(k) designates the beginning of the asymptotic range for a given k, and is defined
as in Section 4.4. Figure 5 shows the behaviour of h⋆(k) with respect to k for P1 and P2 elements.
In both case, we observe that h⋆(k) ∼ k−1−1/p, which is accordance with the condition provided
in Theorem 2 and confirm that this condition is sharp.

6. Application to the acoustic Helmholtz equation in heterogeneous media

Here, we consider a polygonal domain Ω = (−2, 2)2 ⊂ R
2, divided into three subdomains Ωq, q =

1, 2, 3, that represent distinct acoustic materials. Figure 6 depicts the considered geometrical
configuration. The compressibility and density of each material are respectively denoted by βq
and ρq and take here the values

β1 = 1, β2 = 10, β3 = 1000,
ρ1 = 1, ρ2 = 0.5, ρ3 = 0.1.
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Figure 4. Zero-levelset curves of the real parts of solutions to the convected
Helmholtz equation for k = 10 (Left) and 20 (Right)
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Figure 5. Convected Helmholtz equation: asymptotic ranges h⋆(k) for P1 (left)
and P2 (right) elements

Then, we consider the problem to find u : Ω → C such that

(76)















−k
2

β
u−∇ ·

(

1

ρ
∇u

)

= f in Ω,

1

ρ
∇u · n− ik√

ρβ
u = 0 on ΓA = ∂Ω,

where β|Ωq
= βq, ρ|Ωq

= ρq, and f ∈ L2(Ω) is a Gaussian load term centered at y = (0.0,−0.5).
Specifically, we chose

f(x) = exp

(

−|x− y|2
σ2

)

, with σ = 10−2.

Figure 7 represents the solution to (76) for two different frequencies.
Problem (76) enters into our framework with L0u = β−1 u, L1u = 0, L2u = −∇ · (ρ−1∇u),

BAu = ρ−1∇u · n and A = (ρβ)−1/2. Since each subdomain has corners, problem (5) (with the
previous choice of L2 and BA) may have singularities. They are described in Nicaise & Sändig
(1994a) for instance. In our configuration they appear at all interior corners. Whatever their
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Ω1

Ω2

Ω3

Figure 6. Left: Configuration of the acoustic Helmholtz problem. Right: Ex-
ample of a refined mesh.

Figure 7. Zero-levelset curves of the real parts of solutions to the heterogeneous
Helmholtz equation for k = 10π (Left) and 20π (Right)

expression, by Theorem 7.4 of Nicaise & Sändig (1994b), the shift property from Definition 1 hold.
Exactly as before, the construction of the singular spaces T λ

c,j directly follows from a logarithmo-
polynomial resolution, see (Nicaise & Sändig, 1994b, Lemma 7.1) or (Nicaise, 1993, §4.3, 4.4). On
the other hand, it is established in Graham et al. (2018) that Problem (76) satisfies the k-stability
property of Definition 2 with α = 0. Indeed, Problem (76) is a particular case of Definition 2.2 of
Graham et al. (2018) and the coefficients β and ρ satisfies Condition 5.6 of Graham et al. (2018).
As a result, Theorems 1 and 2 hold.
We employ the software triangle (Shewchuk, 1996) to generate the meshes. Specifically, for

a given mesh size h, we impose the maximal area condition |K| ≤ h2/2 by using the “-a” flag of
triangle. In addition, we add artificial points near each corner that might generate a singularity
in the input file given to triangle. More precisely, such points are placed at a distance h/1000
of each corner. We also use the flag “-q33” of triangle to impose a minimal angle condition of
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33o. Thus, we make sure that the mesh is properly graded close to each singular point. Figure 6
presents an example of such a mesh for h = 0.1.

We follow the methodology previously introduced to compute h⋆(k), using the “natural” norm

|||v|||2 = k2‖β−1/2v‖20,Ω + ‖ρ−1/2∇v‖20,Ω, v ∈ H1(Ω).

As shown in Figure 8, we numerically observe that h⋆(k) ≃ k−1−1/p for P1 and P2 finite elements.
It is in agreement with the developed theory, and shows that the main results are sharp.
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Figure 8. Heterogeneous Helmholtz equation: asymptotic ranges h⋆(k) for P1

(left) and P2 (right) elements

7. Conclusion

We have presented a general approach to split up the solution of a wave propagation problem
into a regular oscillating part and a A2 (i.e. H2 plus singularities close to corners) component
whose norm can be controlled explicitly with respect to the wavenumber. For the case of the
acoustic Helmholtz equation, this type of splitting is available in the literature (Esterhazy &
Melenk, 2012; Melenk & Sauter, 2010, 2011). However, our approach to build the splitting is
different. The main advantage of our construction is that it is valid for a large class of wave
propagation operators, including problems with space-dependent wavespeed, and non-analytic
domains. We highlight this by considering the elastodynamic system, the convected Helmholtz
equation and the heterogeneous Helmholtz equation with piecewise constant coefficients.

We have taken advantage of the splitting to derive asymptotic error estimates for finite element
discretizations. In this analysis, we consider finite element spaces of arbitray high, but fixed,
discretization order p. The main conclusion is that the finite element solution is quasi-optimal
under the condition that kh and kp+1hp are small enough, where k and h are the wavenumber
and the mesh size. Such a result was already established in Esterhazy & Melenk (2012), Melenk
& Sauter (2010) and Melenk & Sauter (2011) for the case of the acoustic Helmholtz equation
in homogeneous media, so that our result is a generalization to more complex wave propagation
problems.

We performed numerical experiments for the case of the elastodynamic system, the convected
Helmholtz equation and the heterogeneous Helmholtz equation. These examples indicate that our
theoretical analysis is sharp.

The analysis presented in this paper focuses on finite element discretization of fixed discretiza-
tions order p. In future works, we would like to explicitly track the p dependence in the constants
to consider fully hp finite element methods. On the other hand, another extension would be to
consider general three dimensional domains and partition that contains sharp edges.
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Appendix A. Proof of Lemma 5

Let v(x1,x2) = ue−ρx1 , so that u(x1,x2) = v(x1,x2)e
ρx1 . By elementary calculations, we show

that

−k2u− 2ikM
∂u

∂x1
− (1−M2)

∂2u

∂x2
1

− ∂2u

∂x2
2

= − (k2 + 2ikMρ+ (1−M2)ρ2)veρx1

− (2ikM + 2(1−M)2ρ)
∂v

∂x1
eρx1

− (1−M2)
∂2v

∂x2
1

eρx1 − ∂2v

∂x2
2

eρx1 ,

so that

−(k2 + 2ikMρ+ (1−M2)ρ2)v − 2(ikM + (1−M2)ρ)
∂v

∂x1
− (1−M2)

∂2v

∂x2
1

− ∂2v

∂x2
2

= fe−ρx1 .

We now select the value of ρ to guarantee that

ikM + (1−M2)ρ = 0,

hence we take ρ = −ikM/(1−M2). With this choice, we get

k2 + 2ikMρ+ (1−M2)ρ2 = k2 − 2
(ikM)2

1−M2
+

(−ikM)2

1−M2

= k2 +
M2k2

1−M2

=
k2

1−M2
.

As a result, v satisfies

− k2

1−M2
v − (1−M2)

∂2v

∂x2
1

− ∂2v

∂x2
2

= fe−ρx1 .

On the boundary, it holds that

0 = (1−M2)
∂u

∂x1
n1 +

∂u

∂x2
n2 − ik(1−Mn1)u

= (1−M2)
∂v

∂x1
eρx1n1 +

∂v

∂x2
eρx1n2 +

(

(1−M2)ρ− ik(1−Mn1)
)

veρx1 .

Hence

(1−M2)
∂v

∂x1
n1 +

∂v

∂x2
n2 +

(

(1−M2)n1ρ− ik(1−Mn1)
)

v = 0.

As simple calculations yield

(1−M2)ρ− ik(1−Mn1) = −ikMn1 − ik + ikMn1 = −ik,
the previous boundary condition is equivalent to

(1−M2)
∂v

∂x1
n1 +

∂v

∂x2
n2 − ikv = 0.

Now, we set v(x1,x2) = ũ(x1, βx2), so that

∂2v

∂x2
2

= β2 ∂
2ũ

∂x̃2
2

(x1, βx2)

and
∂v

∂x2
n2 = β2 ∂ũ

∂x̃2
(x1, βx2)ñ2.

Setting β =
√
1−M2 and dividing both equations by 1−M2, we obtain that

−
(

k

1−M2

)2

ũ− ∆̃ũ =
1

1−M2
fe−ρx1
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in Ω̃ and

∇̃ũ · ñ− k

1−M2
ũ = 0

on ∂Ω̃.
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pp. xx+387. Travaux et Recherches Mathématiques, No. 21.
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