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cCentre Technique des Industries Mécaniques (CETIM), 52 avenue Felix-Louat BP 80067, 60300 Senlis, France

Abstract: The technique of processing data in the wavenumber domain based on the Spatial Fourier Transform (SFT), is a

powerful tool to compute higher-order partial derivatives occurred in the expressions of the structural intensity and its divergence.

However, performing directly the SFT usually results in great distortions if a discontinuity occurs in spatial periodicity (leakage

effect). The worst thing is that the divergence of a free plate cannot correctly be estimated by existing wavenumber processing

such as the STF and zero padding method. In this paper, a new algorithm – mirror processing, is developed. By the use of

vibrating velocity measured from the technique of laser scanning vibrometry, the structural intensity, its divergence and the force

distribution are evaluated by different techniques of wavenumber processing. It is shown that the distortions caused by leakage

effects can be removed by using advanced algorithms.

1. Introduction

The structural intensity has been used to describe the

power transferred by elastic waves through mechanical

structures. It is different from the modal analysis in

the fact that the modal analysis is a representation of

the stationary waves of a vibrating system whereas the

structural intensity describes energy flow and transfer

paths. It has been shown that the information from

the analysis of the structural intensity is very impor-

tant in noise control engineering [1]. The divergence

of the structural intensity has been used to identify
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the power injected and dissipated by external elements
such as mechanical excitation, dampers and radiation
regions [2].

Based on the theoretical expressions of the structural
intensity for a planar plate, which are associated with
the calculation of the normal velocity and the spatial
derivatives of normal vibrating velocity when only the
flexural waves are considered [3,4], two methods were
used for determining experimentally the structural in-
tensity, finite difference approximation and the use of
Spatial Fourier Transform (SFT). The finite difference
approximation was first used in 1969 [3]. A com-
plete formulation for the structural intensity in plate
and beam was derived using the finite difference ap-
proximation [4]. However a set of sensors are needed.
It was shown that thirteen accelerometers were used
and thirty-four cross-spectrum measurements [17] or
nine accelerometers and twenty cross-spectra [5] were
required to determine the complex structural intensity.
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The accelerometers were mounted on the structure in

order to obtain experimentally the complex structural

intensity, resulting in errors because of extra loading

imposed on the structure. Besides, distortions can be

produced by the far-field approximations related to the

four sensor techniques [5,6,17]. The divergence of the

structural intensity in a planar plate, which can well

be used to locate mechanical excitations [2,8], is ex-

pressed in terms of higher order partial derivatives [2].

Thirteen points are required to determine the partial

derivatives by the use of the standard finite difference

approximation. This solution is not usable for experi-

mental procedures.

The limitations caused by finite difference approx-

imation for determination of the structural intensity

and divergence can be overcomed by the use of the

wavenumber processing technique. The key to this

technique is to calculate the spatial derivatives by the

Spatial Fourier Transform (SFT). This approach was

already associated with the techniques of near-field

acoustic holography [2,7] and laser vibrometry mea-

surements [8,9]. Holographic interferometry which

makes it possible to obtain the data at high density of

points, is necessary for processing in the wavenumber

domain [10–12].

However, it is well known that the use of the SFT

is often accompanied by large distortions if the signal

has discontinuities in the space periodicity (leakage ef-

fect). If the SFT is directly used, the results are very

sensitive to the boundary conditions. One cannot ob-

tain a good estimation of the spectrum in wavenum-

ber domain. It then results errors in the calculations

of the structural intensity and divergence. A method

called Regressive Fourier Transform has been proposed

to solve this problem [13]. The inverse method can

be used to minimize the leakage problem by a better

estimation of the wavenumber spectrum, which results

in good estimation in partial derivatives. However the

algorithm is sometimes hard to be automatically used

because of trial-and-error parameters.

The present work focuses on developing new algo-

rithms for processing in wavenumber domain without

leakage effects when SFT is performed for calculation

of the structural intensity and divergence in a planar

plate. In the second section, the formulations of the

structural intensity and its divergence are written in

terms of the normal velocity in a plate. Meanwhile

expression for calculating force distributions is given.

The Section 3 shows the application of the optical mea-

surements – holographic interferometry and/or laser vi-

brometry – in the determination of the normal com-

plex vibrating velocity on the plate. Experimental de-

scriptions for these techniques are made briefly. In
the fourth section the new algorithm – mirror process-
ing in wavenumber domain – is described. The use
of the new technique for calculation of the derivatives
in wavenumber domain is demonstrated. Comparisons
are made among the methods such as direct Fourier
transform, zero padding and the mirror processing.

Section 5 shows the structural intensity, the diver-

gence and force distributions determined by processing
the measured normal velocity in plate in wavenumber
domain. It is noted that the mirror algorithm can re-
move the leakage effects caused by discontinuities in
the space periodicity of signals. The new algorithms
allow excitation points to be located precisely, whereas
the direct use of Fourier transform fails.

2. Formulations of structural intensity and

divergence in a plate

The expressions for the structural intensity, its di-

vergence and the exciting force distributions have been
given in [1–4,14]. For the sake of completeness, they
are recalled in this section. The expressions for calcu-
lations by SFT are also written.

2.1. Structural intensity, divergence and force

distributions

2.1.1. Flexural waves in plates

Structural intensity in a plate means the energy flow
per unit length in a given direction. By expressing the
shear forces and bending and twisting moments [1–4],
the x- and y-components of the structural intensity are
written by (time dependent factor ejωt is used),

Ix =
B

2ω
Im

{

∂

∂x
(∇2v)v∗

−

(

∂2v

∂x2
+ υ

∂2v

∂y2

)

∂v∗
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2ω
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with v the normal velocity,v∗ the complex conjugate of

the normal velocity,B = Eh3/12(1−υ2) the bending

stiffness. E is Young’s modulus, h is the thickness

of the plate and υ is Poisson’s ratio. The first term

in Eqs (1a) and (1b) is the product of the shear force

per unit length by velocity v. The second term is the

product of the bending moment per unit length by the

angular velocity caused by the bending movement. The

third term is the product of the twisting moment per

unit length by the angular velocity caused by the twist

movement. It is demonstrated [2] that Eqs (1a) and

(1b) can be written into a more concise form using the

3D operator nabla where ∂/∂z ≡ 0

I =
B

2ω
Im

{

∇(∇2v)v∗ −∇2v∇v∗

(2)

−
1 − υ

2
∇×∇× (v∇v∗)

}

.

The above expressions are results of the Kir-

choff plate theory. For one-dimensional intensity,

Sander [15] compared the formula using the Euler

Bernoulli model with that using the Timoshenko beam

model including shear deformation and rotational iner-

tia. Comparisons between power flow from Kirchoff

and Mindlin theory are made in [14]. The two ex-

pressions are equivalent at low frequencies. The usual

condition λ = 6h (h is the thickness of the beam) can

be used to define the upper limit of validity of these

derivations [16].

2.1.2. Injected power

The energy conservation equation for a plate with the

damping neglected is written in the form:
∮

l
I · n̂dl =

∫∫

S
∇ · IdS = 0, where S is the area of the portion of

the plate limited by the closed contour l, through which

is determined the flux of vector I (with n̂ the normal

unit vector at contour l). This equation is not equal to

zero if an energy flow w(x, y) crosses the surface of

the plate. This flow may be produced by mechanical

excitation (sources) and local or distributed damping

on the structure (sinks : added dissipating elements,

or, if applicable, acoustic radiation). The integrated

intensity flux on closed contour l corresponds to the

power injected (positive) or dissipated (negative) by the

external elements
∮

l

I(x, y) · n̂dl =

∫ ∫

S

∇ · I(x, y)dS

=

∫ ∫

S

w(x, y)dS (3)

=W.

Equation (3) shows that the divergence of active in-

tensity of the flexural waves in the plate is equal to the

surface density of injected (or dissipated) power,

∇ · I(x, y) = w(x, y). (4)

Substituting expression Eq. (2) into Eq. (4) yields [2]

∇ · I =
B

2ω
Im

{

(∇4v)v∗
}

. (5)

The divergence of the structural intensity can be thus

determined from the normal vibrating velocity in a

plate.

2.1.3. Force distributions

The external forces F (x, y) applied to a plate can

also be evaluated from the normal vibrating velocity

v(x, y) by the use of the inhomogeneous differential

equation of the bending waves in the Kirchoff plates

∇4(x, y) − k4
B(x, y) = jω

F (x, y)

B
, (6)

where k4
B = ω2[12(1 − υ2)ρ/Eh2] is the bending

wavenumber in a plate and B the bending stiffness. It

is shown that the force distribution is related not only to

the vibrating velocity but also to the double Laplacian

operator of it.

By Eqs (2), (5) and (6) it is shown that higher-order

partial derivatives of the vibrating velocity v(x, y) with

respect to the coordinatex and yshould firstly be known

in order to obtain the structural intensity, divergence

and force distributions. Experimentally, it is impossi-

ble to measure all the derivatives because of the limit

of the numbers of sensors [5,6,18]. The technique of

wavenumber processing can be used to calculate any

order derivatives. So it is necessary in the follow-

ing section to give expressions of the structural inten-

sity, divergence and force distributions in wavenumber

space.

2.2. Calculations of the structural intensity,

divergence and force in wavenumber space

The principle of calculation in wavenumber domain

is the application of the Spatial Fourier Transform

(SFT). As an example, when making use of the Carte-

sian coordinate system, the SFT of the derivatives
∂m+nv(x,y)

∂mx∂ny
is written by [7]

∂m+nv(x, y)

∂mx∂ny

SFT
�→ ( − jKx)m(−jKy)n

(7)

V (Kx,Ky),
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where V (Kx,Ky) is the Spatial Fourier Transform of

v(x, y). Kx and Ky are wavenumbers respectively in

k̂x and k̂y directions. The higher-order partial deriva-

tive
∂m+nv(x,y)

∂mx∂ny
can be obtained by performing simply

the inverse SFT to the right-hand side of Eq. (7). By

making use of this method, the structural intensity can

be computed by performing the SFT to Eq. (2)

I(x, y) =
B

2ω
Im

{

F−1
{

jK3V (Kx,Ky)
}

v∗

−F−1
{

K2V (Kx,Ky)
}

(8)
F−1 {jKV ∗(Kx,Ky)}

+
1 − υ

2
F−1 {K× K× F {v∇v∗}}

}

Similarly, from Eq. (5) the divergence of the struc-

tural intensity is expressed by

∇× I = −
B

2ω
Im

{

F−1
{

K4V (Kx,Ky)
}

(9)
F−1 {V ∗(Kx,Ky)}

}

,

and by Eq. (6) the force distributions can be written in

the form,

F = −j
B

ω

{

F−1
{

K4V (Kx,Ky)
}

(10)
−F−1

{

k4
BV (Kx,Ky)

}}

.

where K = Kxk̂x +Kyk̂y , F−1 represents the inverse

SFT. Equations (8)–(10) are three basic expressions

used in this paper to calculate the structural intensities,

the divergence of the structural intensity in a plate and

the force distributions from a normal component of the

vibrating velocity.

3. Determinations of complex velocity by optical

measurements

Equations (8)–(10) show that the normal component

of the complex velocity in a plate suffices for calcu-

lations of the structural intensity, the divergence and

the force distributions. The optical measurement tech-

niques such as the holographic interferometry [10–12]

and laser vibrometry [8,9] have well been applied to

measure the vibrating complex velocity (amplitudes

and phases) on the plate without contact. This section

illustrates how to determine experimentally the com-

plex vibrating velocity using the two optic techniques.

3.1. Holographic interferometry

The experimental procedure depends on the tech-

nique of double-exposure and double-reference holog-

raphy. A hologram is created at the recording time,

which can be reconstructed, after processing, to pro-

vide a global image of the instantaneous velocity field

of the vibrating structure. The production of two such

holograms during the same period allows the determi-

nation of the amplitude and phase of the vibrational

field.

Two exposures at two almost identical instants allow

the two vibrational states of the object under examina-

tion to be recorded on the same photosensitive sheet.

When these are reconstructed using the same coherent

light source (continuous laser), the interference fringes

observed show the difference in the movement in the

two exposures. If each exposure uses its own reference

beam, two independent holograms are recorded on the

same sheet (see Fig. 1). For the reconstruction, two-

reference beams are simultaneously used to produce

two holographic images, thereby providing two recon-

structed light waves, each of which corresponds to a

different state of the object, whose optical phase can

be varied using a piezo-electric mirror placed on one

of the reference beams used for the reconstruction. A

double exposure, double reference recording leads to a

time finite difference approximation of the vibrational

velocity.

Two double-exposure and double-reference record-

ings during a period T = 2π/ω allow one to obtain two

values for the instantaneous velocity over the whole of

the surface illuminated. Details of the processing can

be found in [10,11]. The cineholography technique was

used for this study. Each double-exposure hologram is

sampled at 25 Hz [12]. The method of speckle inter-

ferometry was also applied in some experimental mea-

surements [19,23]. As an example, Fig. 2 illustrates

the image of the interference patterns corresponding to

one double exposure.

3.2. Laser vibrometry technique

For the acquisitions, a scanning vibrometer was used,

together with LMS software. It uses an OFV 300

optical head from Polytec, which comprises a sin-

gle point interferometer with a motor-driven control-

focusing device. Two galvo-driven mirrors direct the

laser beam horizontally and vertically. It allows one to

obtain easily the 1024 (32 × 32) measurement points

with a high resolution on a large frequency range. In
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Fig. 1. Recording of a double exposure, double reference hologram. The two reference beams form a slight angle relative to one another: at tA,

reference R1 (shutter O2 closed); at tB , reference R2 (shutter O1 closed).

Fig. 2. Image of the interference patterns corresponding to one double

exposure at tA and tB shown in Fig. 1. The vibrating velocity in the
plate at an instant is obtained by processing this image.

Fig. 3 is demonstrated the experimental set-up for mea-

suring the vibrating velocity in the plate by the use of

the technique of the scanning laser vibrometry. In this

paper the velocity data recorded from this experimental

set-up will be processed by in wavenumber domain to

obtain the structural intensity, the divergence and the

excitation force distributions.

4. Techniques of wavenumber processing

As described in the second section, though the STF

is an efficient and fast tool to compute any order partial

derivatives of the velocity, the operation of SFT ampli-

fies the components of high wavenumber, causing large

contributions of the high wavenumber components to

the results. This distortion is even large in the case of

the higher-order partial derivatives of the velocity. In

addition, when SFT applies to a truncated signal, a dis-

tortion is that no existing high frequency components

are created. Furthermore the processing of the holo-

gram field must be finite and discrete because data ac-

scal

Fig. 3. Experimental set-up for measuring the vibrating velocity in

the plate using scanning laser vibrometry technique.

quisition is done on a finite-size hologram. This finite
aperture restriction leads to an error of wraparound on

the wavenumber spectrum. This section focuses on the
techniques of wavenumber processing to reduce the dis-

tortions in using SFT directly. A new technique called
mirror method is introduced. Comparisons among di-

rect SFT, zero padding and mirror method used are
made through examples of calculating derivatives.

Zero padding method is often used to reduce the
wraparound error. In this method surrounding the plate

size (Lx × Ly), respectively length and width of the
plate) a band of zero is added, forming a 2Lx × 2Ly

aperture in which the SFT is applied [20]. This pro-
cedure gives good results when the plate is simply-

supported or clamped. In these cases “zero padding”



62 J.-C. Pascal et al. / Wavenumber processing techniques to determine structural intensity

-0.2 0 0.2 0.4 0.6
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

P
h
a

s
e

distance (m)
-0.2 0 0.2 0.4 0.6
0

2

4

6
x 10

-5

M
a

g
n
itu

d
e

distance (m)

Mirror signal + Original signal
Original signal               

 

Fig. 4. Magnitude (left) and phase (right) of the complex-displacement signal v(x) of a beam with free-free boundary excited by a harmonic point

force. The calculation frequency is 500 Hz. The continuous and periodic displacement signal (solid line) is built from the original displacement
signal (o-o-o-o) using a cosine link function.

method can be used to solve the distortion problems

encountered with the odd vibrational modes. However

this method falls for other boundary conditions where

the vibrating velocity is not zero at the edges of the

plate. A plate with free-free boundary conditions is

one of cases to be hardly treated. In order to solve

this problem, a new technique called mirror method is

developed.

The idea of the mirror method is to build a continuous

and periodic signal (the resulting signal) from the signal

to be processed by SFT (the original signal). In this

method, the original image is mirrored with respect

to its ends, (for a plate, they correspond to the edges

of the plate) using a “link function”. The resulting

signal that is continuous and periodic is the addition of

the original image to the mirrored image so that it has

approximately double size of the original signal. As

the SFT is applied to the resulting signal, the leakage

effects are removed. Good estimations for the higher-

order partial derivatives of the signal can be obtained

as it can be shown in the following examples.

Let S be an original signal with a dimension [M ×
N ]. R is the image signal of S and is of a dimension

[M − 2, N − 2]. The resulting signal Sm is built by

connecting the two equal parts of the image signal R
respectively with the left and right ends of the original

signal S. So the dimension of Sm is of [2M −2, 2N −
2]. The difficulty to build Sm is to solve the step

phenomenon at the two connection ends. Therefore

choosing a “link function” is a key to the mirror method.

A good “link function” should guarantee the periodic-

continuity condition for the resulting signal. As an

example, we work on one-dimensional vector of M
elements [1,M ] to show how the “link functions” work

to make the image signal smoothly connecting with the
left and right ends of the original signal.

– Linear link function: It is a simplest form for re-
building the image signal. The image signal is the
linear reflection of the original signal.

R(r)

= R(r) − 2[S(M) − S(1)]
r

M − 1
, (11)

r = 1, 2, 3, . . . , (M − 2).

The disadvantage of this form, however, is that it
does not ensure the continuity of the derivatives
of the signal at its two ends. To overcome this
difficulty, the following methods are provided.

– Cosine link function: The image signal is multi-
plied by a cosine function before connecting the
original signal S,

R(r) = R(r) − [S(M) − S(1)]
[

1 − cos

(

rπ

M − 1

)]

, (12)

r = 1, 2, 3, . . . , (M − 2).

As an example, consider a free-free steel beam of a
length of 400 mm, width 10 mm and thickness 3 mm.
The beam is excited by a harmonic point force at
x0 = 320 mm with unit amplitude. The calculation
frequency is 500 Hz. The response of the beam to
the point force v(x) is calculated by the modal syn-
thesis formulation [21]. Figure 4 shows the resulting
signal (mirrored + original signals) using cosine link
function. The original signal is also shown in Fig. 4.
It is demonstrated that unlike the original signal, the
resulting signal is periodic and continuous.
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Fig. 5. Magnitude (left) and phase (right) of the derivative of the displacement dv/dx of a beam with free-free boundary conditions excited by a

point force at f = 500 Hz obtained by processing in wavenumber domain: use of direct SFT (top), use of zero-padding (middle), use of mirror

method (bottom). The exact values of dv/dx are represented by the solid line.

To evaluate the performance of the mirror technique,

the derivative of the displacement with respect to x is

calculated using wavenumber processing. Three meth-

ods of calculations are employed to obtain the displace-

ment spectra V (Kx,Ky), which then used to calculate

the spectra of the derivative of the displacement using

Eq. (7)

a) Perform directly the SFT to the original dis-

placement signal (here the sampling numbers are

M = 32),

b) Use firstly the zero padding technique (2M ele-
ments), then perform the SFT

c) Build a new signal using mirror technique (2M-2
elements), then the SFT is performed to the new
signal.

The spatial derivative dv/dx (it could be real or com-
plex) is obtained by performing the inverse Fourier
transform to the spectrum of derivative. Figure 5 shows
the results of the three methods. The exact values are
also shown in Fig. 5 for comparisons. It is noted that
the results of the calculations of dv/dx using the direct
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Fig. 7. Force distributions in the plate evaluated by processing vi-

brating velocity in wavenumber domain with mirror method being

used. The square of force amplitudes is represented by gray scales.

SFT and zero-padding method are different from those

of the exact results especially at the ends of the beam.

Good agreements are found between the derivative ob-

tained by using the mirror technique with cosine link

function and the exact values of the derivative dv/dx.

5. Use of mirror techniques in experimental data

processing

The objective of this section is to show the use of the

techniques of wavenumber processing developed in the

previous sections. The complex velocity v(x, y) of a

brass plate with free-free boundary was measured on a

mesh grid of 32 by 32 using the technique of scanning

laser vibrometry shown in Fig. 3. The dimension of

the brass plate is 350 mm × 200 mm × 3 mm. The

excitation frequency is 1160 Hz. The processing algo-

rithm employed in wavenumber domain to calculate the

structural intensity and its divergence from the knowl-

edge of the vibrating velocity on the plate v(x, y) is

implemented as follows:

1) Input the vibrating velocity data v(x, y) and plate

geometry and mechanics parameters.

2) Build mirrored velocity data file vm(x, y) using

mirror technique described in Section 4.

3) Perform the discrete Fourier transform ofvm(x, y)
and called it V (Kx,Ky).

4) Apply k-space window to the velocity spectra and

obtain the windowed spectraV (Kx,Ky)W (Kx,Ky)
to remove the noise-contaminated components at

high frequencies. There exist several K-space

windows [22], one of which is given by

W (Kx,Ky)

=























1, forKr = 0;
1 − 0.5 exp[−(Kc/Kr − 1)/s],

forKr � Kc

0.5 exp[(1 −Kr/Kc)/s],
forKr � Kc

(13)

where Kr =
√

K2
x +K2

y , Kc is the cut-off

wavenumber, s is the window shape parameter

and is taken as s = 0.1. Good results are obtained

when Kc is chosen to conserve 90% to 98% of

the vibrational kinetic energy of the measurement

data.

5) Calculate the spectra of one- to four-order deriva-

tives of the velocity with respect to the coordi-

nates (x, y) in wavenumber domain by the use of

Eq. (7). Then compute the inverse Fourier trans-

form of each of the spectra to obtain the deriva-

tives in real space.

6) Use Eqs (8), (9) and (10) to calculate respectively

the near-field structural intensities, the divergence

and the force distributions.

The divergence of the structural intensity was cal-

culated by Eq. (9) using measured vibrating velocity.
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Fig. 8. Structural intensities of a plate with free-free boundary con-

ditions obtained by processing the measured vibrating normal ve-

locity in wavenumber domain with mirror method being used. The

in-plane components (Ix, Iy) of the structural intensity are repre-

sented graphically by arrows. The amplitude of the structural inten-

sity
√

I2
x + I2

y is represented by the grey scales. The representation

dynamic is 20 dB.

Direct FFT and mirror method were respectively used.

Results are illustrated in Fig. 6. It is noted that the

excitation position on the plate cannot be located if the

Fourier transform was directly performed to the mea-

sured vibrating velocity (see Fig. 6 left). Whereas if the

velocity spectra V (Kx,Ky) is estimated by the mirror

technique, the positions of the excitation (two white

spots) and damping (black spot) areas on the plate are

clearly located as seen in Fig. 6 (right).

Excitation force distributions in the plate given by

Eq. (10) were calculated by processing in wavenum-

ber domain with mirror method being used. Square of

amplitudes of forces is shown in Fig. 7. It is demon-

strated that the three-excitation forces are well located.

In Fig. 8 is shown the structural intensities of the plate

with free-free boundary conditions at 1160 Hz. K-

space window with cut-off wavenumber 150 rad/m is

applied in all calculations. Energy flow in the plate

can be observed from the map of the structural inten-

sity. It is also noted that only two excitation forces can

be localized from this map: the first one from which

the intensity vectors are divergent and the second to

which the intensity vectors are convergent. The third

excitation force cannot be located by the intensity map

because of vortices. However the use of the divergence

map allows the third force to be located.

6. Conclusion

Optical techniques such as the holographic interfer-

ometry and laser vibrometry, can be used to obtain the

map of normal component of the complex vibrating ve-

locity on a plate. The velocity is then processed to com-

pute the structural intensity, the divergence of the struc-

tural intensity and the force distributions. The tech-

nique of processing in wavenumber domain is based

on the Spatial Fourier transform. It is a very efficient

method for evaluations of the spatial derivatives used

in calculation of the structural intensity and divergence

of intensity. However leakage effects are not avoidable

if direct use of the Fourier transform is made. A tech-

nique – mirror method – is developed and demonstrated

to overcome this problem. A noticeable improvement

on the quality of the spectrum can be obtained by the

use of the mirror method. As a result, the higher-order

partial derivatives required in the computations of the

structural intensity and the divergence in a plate are

estimated precisely. Excitation and damping areas are

located from the map of the divergence of the structural

intensity in a plate with free-free boundary conditions.
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