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Abstract Wavepackets in quantum mechanics spread and the Universe in cosmology

expands. We discuss a formalism where the two effects can be unified. The basic assumption

is that the Universe is determined by a unitarily evolving wavepacket defined on space-

time. Space-time is static but the Universe is dynamic. Spreading analogous to expansion

known from observational cosmology is obtained if one regards time evolution as a dynam-

ical process determined by a variational principle employing Kolmogorov-Nagumo-Rényi

averages. The formalism automatically leads to two types of “time” parameters: τ , with

dimension of x0, and dimensionless ε = ln ǫτ , related to the form of diffeomorphism that

defines the dynamics. There is no preferred time foliation, but effectively the dynamics

leads to asymptotic concentration of the Universe on spacelike surfaces which propagate in

space-time. The analysis is performed explicitly in 1 + 1 dimensions, but the unitary evolu-

tion operator is brought to a form that makes generalizations to other dimensions and other

fields quite natural.
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1 Introduction

Normalizable wavepackets determine regions of space where quantum particles can be

found. Such wavepackets spread due to their Schrödinger dynamics, so the regions expand

with time. In cosmology, an analogous role is played by the size of the Universe—its

growth with time is described by Hubble’s law. The two effects are universal, but apparently

unrelated.

The goal of this paper is to consider a simple model of a Schrödinger dynamics that, in

principle, might lead to a unifying framework for both phenomena. The case we discuss

has been simplified to its extremes. We begin with 1 + 1 dimensional empty Universe.

However, we believe that what we do is not entirely trivial and paves a way to rather obvious

generalizations.

To begin with, we do not identify the dynamical Universe with dynamical space-time.

Space-time is static, but the Universe is dynamic. This is possible, since what we regard as

the Universe is, roughly speaking, a region of space-time associated with the support of the

wavepacket. There is no Universe in those regions of space-time where the wavefunction is

exactly zero. Moreover, in wavepackets such as Gaussians in space-time, the support of the

wavepacket might include the whole of space-time, but nevertheless the “effective size” of

the Universe should not be infinite. What we expect is a measure of size analogous to a half-

width of the wavepacket. The measure we take as the most natural one is the average value

of an operator representing squared geodesic distance computed along spacelike directions.

Our Universe diffuses in space-time.

Secondly, the evolution we propose leads to a dynamical “localization of space-time”

in neighborhoods of spacelike hypersurfaces. What it means is that our “space” is not just

a foliation of space-time into spacelike hypersurfaces (i.e. lines in 1 + 1) parametrized by

“time”. The “space” has some thickness in timelike directions, but the dynamics shrinks

this timelike thickness towards zero. The effect is compensated by spreading of the “size of

space” in spacelike directions. The two effects match each other in a way which guarantees

conservation of norm of our wavefunction. This is how we represent the Hubble law. So,

the Universe expands because the “moment of now” becomes more and more concrete, and

less and less fuzzy.

Now, what kind of space-time is the arena for our Universe? We decided to take a part

of the Minkowski space that can be uniquely foliated by hyperbolas, so the support of the

Universe is contained in one of the timelike cones. The choice of a future-pointing or a past-

pointing cone is a matter of convention. We take the future cone xax
a = x2 = s2 > 0,

x0 > 0, in order to avoid awkward-looking minuses in formulas, but the price we pay is that

the Universe seems to evolve “backward” in x0 but forward in proper time τ . In effect, the

support of our Universe gets approximately localised on hyperbolas which asymptotically

approach the light cone s = 0. One can say that the proper time indeed flows in our model.

This should be contrasted with the usual dynamics in space, which is equivalent to statics in

space-time. In our model a distant past as well as a distant future with respect to “now” lit-

erally do not exist in the deepest ontological sense. Interestingly, the evolution operator can

be written as e−iε�̂, where �̂ is time-independent but ε is a dimensionless parameter that for

large τ becomes proportional to τ , while in a distant past differs from τ in an essential way,

a subtlety influencing possible interpretations of the origin of the model Universe. In addi-

tion to unitarity we thus also have conservation of energy, with τ -independent Hamiltonian

�̂.

As usual in quantum mechanics, one can switch between Schrödinger and Heisenberg

pictures. The Hubble law may be then represented in a form of a time-evolving operator
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of geodesic distance. This Heisenberg-Hubble equation is a departure point for less trivial

generalizations, where the Hubble “constant” evolves in proper time. The issue reduces

to finding an appropriate one-parameter group of diffeomorphisms whose pull-back to the

level of the wave function implies a Heisenberg picture dynamics of the geodesic position

operator qualitatively agreeing with observational cosmology [1].

One such model naturally appears if one relates time evolution with an extremal entropy

principle of the type discussed in the 1930s by Volterra [2]. For Shannon’s entropy one gets

an exponential expansion. Starting with Rényi q-entropies one finds a one-parameter family

of possible expansions. The model that predicts a τ 1/2 expansion of an early Universe,

accompanied by a crossover to exponential expansion for later τ s, occurs in the q = 2 case.

Since Rényi entropy of order q = 2 is directly related to the correlation dimension, the

extremal entropy principle is then interpretable as an “extremal correlation dimension of

time” principle, an issue intriguing in itself and worthy of further studies in the context of

fractal structures of the Universe [3–10].

In final sections the unitary evolution operator is brought to a form which does not explic-

itly depend on dimensionality of the problem and emptiness of the Universe, and thus opens

a way to higher dimensional generalizations.

2 Universe Associated with 1 + 1 Dimensional Space-Time

We first have to define what we mean by the Universe and its wave function. Let us begin

with the Minkowski space of one time and one space dimensions. The future light-cone V+
of some event xa = 0, i.e. V+ = {xa ∈ R

2; xax
a = x2

0 − x2
1 = s2 > 0; x0 > 0} will

play a role of a background space-time of the Universe. Now consider a square-integrable

function ψ(x0, x1), with the norm defined by

〈ψ |ψ〉 =
∫

V+
dx0dx1 |ψ(x0, x1)|2 =

∫ ∞

0

ds

∫ ∞

−∞

dx
√

1+x2
1/s2

∣

∣

∣

∣

ψ

(

√

s2+x2
1 , x1

)∣

∣

∣

∣

2

. (1)

Let us note that the integration is over the 1+1 dimensional volume. However, the intuition

behind the construction is that the size of the Universe is related to the size of the wave-

packet ψ(

√

s2 + x2
1 , x1) measured with respect to the geodesic distance on the hyperbola

x2
0 − x2

1 = s2. An appropriate unitary dynamics should spread the wave-packet on the

hyperbola, simultaneously maintaining the overall 1+1 dimensional norm. Yet another way

of phrasing the basic intuition is that at certain stage of the dynamics of the Universe the

wave-function should be well localized in s around a given hyperbola, simultaneously being

spread over the hyperbola in such a way that its average one-dimensional geodesic width

should be comparable to the present-day size of our Universe. The fuzzyness of s means that

the notion of “now” is smeared out as well, but in a present-day Universe this uncertainty

of “now” should be small, say of the Planck time scale.

Let us take an arbitrary fiducial point Xa on the s hyperbola, say with coordinates

X0 = s cosh �, (2)

X1 = s sinh �, (3)

and an arbitrary point xa with coordinates

x0 = s cosh(� + ξ), (4)

x1 = s sinh(� + ξ), (5)



2004 Int J Theor Phys (2016) 55:2001–2019

where s|ξ | is the geodesic distance between xa and Xa evaluated along the hyperbola (yet

another covariant definition is Xax
a/s2 = cosh ξ ). The two points satisfy the constraint

x2 = xax
a = X2 = XaX

a = s2. (6)

Changing xa we have to make sure that Xa changes as well in a way which preserves the

constraint (6). It is therefore perhaps better to speak of the fiducial field Xa(x) =
√

x2va ,

where

v0 = cosh �, (7)

v1 = sinh �, (8)

is the fiducial 4-velocity. The Minkowski metric satisfies

(dx0)2 − (dx1)2 = (ds)2 − s2(dξ)2 (9)

and thus a(s) = s is the Robertson-Walker scale factor while s is the usual “time” employed

in cosmology [1]. Denote η = s2/2 and

ψ (s cosh(� + ξ), s sinh(� + ξ)) = fv(η, ξ). (10)

A change of the fiducial velocity � → �′ is equivalent to a Lorentz transformation va →
v′
a = 
a

bvb. The norm expressed in terms of ξ and η becomes

〈ψ |ψ〉 =
∫ ∞

0

dη

∫ ∞

−∞
dξ |fv(η, ξ)|2 . (11)

In order to introduce a unitary dynamics ψ 	→ Uτψ we consider a one-parameter family of

diffeomorphisms (η, ξ) 	→ φτ (η, ξ) = (ητ , ξτ ) ∈ R+ × R that will serve as a change of

variables in the above integral. We restrict φτ to transformations do not changing ranges of

integration, i.e. 0 < ητ < ∞, −∞ < ξτ < ∞. Then

〈ψ |ψ〉 =
∫ ∞

0

dητ

∫ ∞

−∞
dξτ |fv(ητ , ξτ )|2

=
∫ ∞

0

dη

∫ ∞

−∞
dξ |Jτ | |fv (φτ (η, ξ))|2

where Jτ is the Jacobian. In this way we have arrived at the unitary representation

Uτfv(η, ξ) =
√

|Jτ |fv (φτ (η, ξ)) (12)

of the one-parameter group in question. Returning to the original variables xa we obtain a

representation Uτψ . Our construction bears a similarity to some ideas known from unitary

representations of groups defined in terms of quasi-invariant measures [11], the Koopman-

von Neumann representation of classical mechanics [12–14], or the Dashen-Sharp-Goldin

formulation of unitary representations of local currents [15, 16]. On the other hand, however,

we do not see any obvious links to wavefunctions defined on the superspace of different

geometries, such as the classic formalisms of Wheeler-DeWitt [17–19] or Hartle-Hawking

[20].

3 Dynamics (First Attempt)

We do not know why time flows, but the process seems to be related to changes in entropy.

Apparently, the first variational principle linking dynamics with entropy was proposed by

Volterra in 1930s [2], although the term “entropy” was not explicitly used in this context.
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Volterra’s principle involved abundances of species, but from a dynamical point of view it

was applicable to any system of equations involving non-negative variables (such as our s

and η). A distinctive feature of Volterra Lagrangians is the presence of “entropic” terms of

the form q̇j ln q̇j , where qj are configuration-space generalized coordinates. Let us consider

a simple Volterra Lagrangian,

L(q, q̇, τ ) = −
∑

j

q̇j ln q̇j +
∑

j

q̇jaj , (13)

where aj are τ -dependent coefficients, supplemented by the constraint q̇0+q̇1 = C = const,

reducing the number of degrees of freedom to one. Integrated Euler-Lagrange equation

reads

∂L

∂q̇0
= − ln q̇0 + ln q̇1 + a0 − a1 = C1, (14)

where C1 is a constant of motion and we have employed ∂q̇1/∂q̇0 = −1. In conclusion,

q̇1(τ ) = eC1+a1−a0 q̇0(τ ). Note that q̇j (τ ) are nonnegative by assumption, similarly to what

one expects from ητ , so qj (τ ) are monotonic.

The simplest nontrivial case of (14) is C1 = 0 and aj (τ ) = λτj , j = 0, 1, where

λ is a constant. Then, a very similar derivation can be performed in a maximal-entropy

thermodynamic formalism. The Lagrangian now plays a role of the Massieu function [21]

(a kind of free energy), and instead of solving Euler-Lagrange equations we look for its

conditional extremum under the constraint that probabilities sum to 1. The Massieu function

involves a single Lagrange multiplier α,

ES =
1

∑

j=0

pj ln(1/pj ) + α

1
∑

j=0

pj + τ

1
∑

j=0

λjpj , (15)

∂ES

∂p0

= − ln p0 − 1 + α = 0, (16)

∂ES

∂p1
= − ln p1 − 1 + α + λτ = 0. (17)

Subtracting both equations we obtain

∂ES

∂p0
− ∂ES

∂p1
= − ln p0 + ln p1 − λτ = 0 (18)

which is the same as (14) with C1 = 0, and thus p1 = p0e
λτ . The standard thermodynamic

variational principle turns out to be a special case of the dynamical one. The final solution is

p0(τ ) = 1

eλτ + 1
= q̇0(τ ), (19)

p1(τ ) = eλτ

eλτ + 1
= q̇1(τ ), (20)

q0(τ ) =
λτ − ln

(

1 + eλτ
)

+ ln 2

λ
+ q0(0). (21)

q0(τ ) is strictly monotonic and thus invertible for all τ . For λ > 0 the probabilities following

from the Volterra variational principle satisfy the asymptotics p0(−∞) = 1, p1(−∞) = 0,

p0(+∞) = 0, p1(+∞) = 1. For λ < 0 the roles of p0 and p1 are interchanged. Effec-

tively, it is the product λτ which determines the “arrow of time”, with the two probabilities

representing initial and final populations of the system in question.
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The effective evolution parameter associated with the Volterra process satisfies

λτ = ln (p1(τ )/p0(τ )) (22)

and thus one can define the evolution parameter in terms of the two populations as λτ =
ln(p1/p0).

Having in mind future generalization in terms of Rényi entropies, let us experiment with

a simple exponential map associated with the Volterra process, ητ = eλτη = (p1/p0)η,

ξτ = e−λτ ξ , Jτ = 1. It leads to the unitary transformation

Uτfv(η, ξ) = fv(e
λτη, e−λτ ξ)

= ψ
(

eλτ/2
√

2η cosh(� + e−λτ ξ), eλτ/2
√

2η sinh(� + e−λτ ξ)
)

= Uτψ(x0, x1). (23)

Let us make a remark that ητ corresponds to the scale factor

aτ = sτ =
√

2ητ = eλτ/2
√

2η = eλτ/2a0 (24)

which resembles the inflation-phase dependence of scale on time.

Spreading of this wave packet can be illustrated in several ways. First of all, we introduce

the operator of geodesic position

r̂vfv(η, ξ) =
√

2ηξ fv(η, ξ), (25)

or equivalently

r̂vψ(x0, x1) =
√

x2

(

arsinh
x1

√
x2

− arsinh v1

)

ψ(x0, x1). (26)

The size of the wavepacket is thus given by R =
√

〈ψ |r̂2
vψ〉, so we can compute

R2
τ = 〈Uτψ |r̂2

vUτψ〉 =
∫ ∞

0

dη

∫ ∞

−∞
dξ 2ηξ2 |Uτfv(s, ξ)|2

=
∫ ∞

0

dη

∫ ∞

−∞
dξ 2ηξ2

∣

∣fv(e
λτη, e−λτ ξ)

∣

∣

2 =
∫ ∞

0

dη′
∫ ∞

−∞
dξ ′ eλτ 2η′ξ ′2 ∣

∣fv(s
′, ξ ′)

∣

∣

2

= eλτ 〈ψ |r̂2
vψ〉. (27)

Spreading is here exponential, Rτ = eλτ/2R0, which is the same rule as for the scale factor,

so we get the usual formula

1

aτ

daτ

dτ
= 1

Rτ

dRτ

dτ
(28)

relating distance and scale. However, it must be stressed that in cosmology the derivative is

over “time” that would be typically identified with s, and not with our τ .

An interesting alternative interpretation is possible if one interprets (27) in terms of the

Heisenberg picture. Indeed, what we have obtained is equivalent to

U†
τ r̂2

vUτ = eλτ r̂2
v (29)

or

U†
τ r̂vUτ = eλτ/2r̂v. (30)
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A similar result is obtained for the “proper time” operator

ŝfv(η, ξ) =
√

2η fv(η, ξ), (31)

ŝψ(x0, x1) =
√

x2ψ(x0, x1), (32)

U†
τ ŝ Uτ = e−λτ/2ŝ. (33)

The Hubble constant is in this simple example indeed a constant

d

dτ
U†

τ r̂vUτ = λ

2
U†

τ r̂vUτ = H0U
†
τ r̂vUτ = −i[U†

τ r̂vUτ , ω̂] (34)

where ω̂ is the generator of Uτ . Defining ω̂τ = iU†
τ dUτ /dτ , we can write a general

Heisenberg-Hubble equation

HτU
†
τ r̂vUτ = −i[U†

τ r̂vUτ , ω̂τ ] (35)

where Hτaτ = daτ /dτ . This is the simplest equation linking metric tensor with the unitary

dynamics.

In order to show the dynamics of probability density |Uτψ(x0, x1)|2 we have to reex-

press the formulas directly at the level of x0 and x1. This is simplest in the rest frame of
the fiducial point, i.e. with � = 0, but even then the formula is rather cumbersome and
counterintuitive,

Uτ ψ(x0, x1) = ψ
(

eλτ/2s cosh(e−λτ ξ), eλτ/2s sinh(e−λτ ξ)
)

= ψ

(

eλτ/2(x+x−)(1−e−λτ )/2 xe−λτ

+ + xe−λτ

−
2

, eλτ/2(x+x−)(1−e−λτ )/2 xe−λτ

+ − xe−λτ

−
2

)

where x± = x0 ± x1. The next four figures show the dynamics of |Uτψ(x0, x1)|2 for a

wavepacket which is initially well localized in space and time. So, in this picture, at τ = 0

the Universe is in superposition of various positions x1 and times x0, but one should bear in

mind that x0 is not the evolution parameter. The evolution parameter is τ , and although we

defined the initial state at τ = 0, one could monitor the evolution in τ backwards towards

−∞. The wave packet would then shrink in space but expand in time. Thus, a long time

before τ = 0 the Universe was localized in a tiny region of space but its timelike extension

was enormous (Figs. 1, 2, 3 and 4).

The next four figures show the dynamics of a wavepacket that is initially two-peaked.

The two peaks do not overlap and thus are mutually orthogonal. The dynamics we consider

does not have matrix elements between the two orthogonal states, so the state (of our single

Universe) remains in a superposition of two non-overlapping parallel universes occupying

non-overlapping regions of space-time (Figs. 5, 6, 7 and 8).

4 Rényi Generalization

Distribution of galaxies is known to possess certain multi-fractal properties. Some authors

suggest [22] that maximizing Shannon’s entropy on a multi-fractal is equivalent to maxi-

mizing directly the Rényi entropy

1

1 − q
ln

⎛

⎝

∑

j

p
q
j

⎞

⎠ (36)
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Fig. 1 The initial wavepacket at τ = 0. Its support defines the region in space-time occupied by the Universe.

At this stage there is no preferred foliation of space-time into spacelike hypersurfaces

without invoking the multi-fractal structure explicitly. Therefore, a kind of fractal general-

ization of the exponential case can be obtained if one replaces Shannon’s entropy by Rényi’s

entropy of order q. The question is if the remaining averages occurring in the Massieu func-

tion should be kept in the same form as in the Shannon case, or maybe one should modify

them as well? The answer was proposed by Naudts and one of the present authors in [21,

23]. The key element was to realize that Rényi’s entropy was originally derived by Rényi

in [24] by considering the same random variable ln(1/pj ) as in the Shannon definition,

but what had to be changed was the averaging procedure. More concretely, Rényi derived

his entropy by replacing linear averaging by an appropriate Kolmogorov-Nagumo average.

Fig. 2 Now e−λτ = 0.3. The universe starts to evolve in space-time and shifts towards the light cone, which

forms the boundary of available background space-time. Note that from the point of view of x0 the evolution

seems to occur backwards in time. The choice of future and past is a matter of convention, since x0 is not the

evolution parameter but a component of space-time position operator
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Fig. 3 Here e−λτ = 0.09. Concentration on proper-time hyperbola is now evident. This type of effective

“foliation” is implied by the assumed form of the diffeomorphism. The support of the wavepacket moves

towards the light cone. The fine peaks on the plot are an artifact of Wolfram Mathematica algorithm

Keeping this in mind, the authors of [23] defined the Rényi Massieu function as an analo-

gous Kolmogorov-Nagumo average of all the random variables, constraints included. When

applied to processes such as Zipf-Mandelbrot law in linguistics [25], or protein folding

dynamics [26], the approach from [23] directly gave a formula consistent with experimen-

tal data. This should be contrasted with the approach based on Tsallis thermodynamics [26]

which required ad hoc modifications in order to reconstruct experimental data beyond a

crude linear fit. Let us adapt the procedure from [23] to the present context.

The appropriate Massieu function reads

Fig. 4 The state of the Universe for e−λτ = 0.04. As τ increases towards +∞, the wavepacket approaches

the boundary xax
a = 0
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Fig. 5 “Parallel Universes”: The two-peaked initial wavepacket at τ = 0

EKN = ϕ−1

⎛

⎝

1
∑

j=0

pjϕ[ln(1/pj )]

⎞

⎠ + αϕ−1

⎛

⎝

1
∑

j=0

pjϕ(1)

⎞

⎠ + βϕ−1

⎛

⎝

1
∑

j=0

pjϕ[λjτ ]

⎞

⎠ , (37)

where ϕ is a strictly monotonic function which defines a Kolmogorov-Nagumo average. The Rényi
entropy corresponds to ϕ(x) = e(1−q)x , ϕ−1(x) = (1 − q)−1 ln x. The Rényi form of ϕ is uniquely
determined by the requirement that

ϕ−1

⎛

⎝

∑

j

pjϕ(xj + C)

⎞

⎠ = C + ϕ−1

⎛

⎝

∑

j

pjϕ(xj )

⎞

⎠ (38)

Fig. 6 Now e−λτ = 0.3. The two peaks remain orthogonal
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Fig. 7 Here e−λτ = 0.1. Concentration on proper-time hyperbolas is clearly evident

for a constant C (the proof can be found in [22]). This includes the linear case ϕ(x) ∼ x,

reconstructed in the limit q → 1.

The explicit Massieu function now reads

ER = 1

1 − q
ln

⎛

⎝

1
∑

j=0

p
q
j

⎞

⎠

= +α + α
1

1 − q
ln

⎛

⎝

1
∑

j=0

pj

⎞

⎠ + β
1

1 − q
ln

⎛

⎝

1
∑

j=0

pj e
(1−q)λjτ

⎞

⎠ . (39)

Fig. 8 The state of the Universe for e−λτ = 0.07
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We have to extremize it under the constraint p0 + p1 = 1. Denote

λτ = 1

1 − q
ln

⎛

⎝

1
∑

j=0

pj e
(1−q)λjτ

⎞

⎠ . (40)

Computing

∂ER

∂p0
= 1

1 − q

(

qp
q−1
0

∑1
j=0 p

q
j

+ α
1

∑1
j=0 pj

+ β
1

∑1
j=0 pj e(1−q)λjτ

)

= 0, (41)

∂ER

∂p1

= 1

1 − q

(

qp
q−1
1

∑1
j=0 p

q
j

+ α
1

∑1
j=0 pj

+ β
e(1−q)λτ

∑1
j=0 pj e(1−q)λjτ

)

= 0, (42)

we obtain two equations with consistency condition

q + α + β = 0. (43)

Denoting γ = −β/q, 1 − γ = −α/q, and incorporating the constraint, one finds

p
q−1
0

∑1
j=0 p

q
j

= 1 − γ + γ e(q−1)λτ , (44)

p
q−1
1

∑1
j=0 p

q
j

= 1 − γ + γ e(q−1)(λτ−λτ), (45)

which leads to the final form

p1/p0 =
[

1 − γ + γ e(q−1)(λτ−λτ)

1 − γ + γ e(q−1)λτ

]1/(q−1)

. (46)

Note that λτ in principle depends on τ , so p1/p0 is defined as an implicit function.

Nevertheless, in the limit q → 1 we reconstruct the exponential case

p1/p0 → eβλτ (47)

as expected on the basis of the Shannon limit of Rényi entropies. The parameter γ = −β/q

should not in itself be regarded as a probability (in principle, γ can be negative or greater

than 1; in the Shannon case we took β = 1).

Defining, as before, the evolution parameter by ln(p1/p0) one arrives at a Rényi

generalization of the diffeomorphism from the previous section,

ητ =
[

1 − γ + γ e(q−1)(λτ−λτ)

1 − γ + γ e(q−1)λτ

]1/(q−1)

η. (48)

Similarly to the usual exponent, the above generalization can be directly obtained from

a differential equation. Indeed, in the previous section we have started with ητ = eλτη,

ξτ = e−λτ ξ , that is with

d(ητ /η0)

dτ
= λητ /η0, (49)

ητ ξτ = η0ξ0. (50)

Let us generalize (49) to

d(ητ /η0)

dτ
= λr (ητ /η0)

r + (λp − λr )(ητ /η0)
p, (51)
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but keep (50) unchanged. Equation (51) was introduced by Tsallis, Bemski and Mendes [26]

as a model of protein re-association dynamics, and later employed by Montemurro [25] in

quantitative linguistics. Comparison with both protein and linguistic data showed that a very

good fitting could be obtained for r = 1 and an appropriate p �= 1. A yet better fitting was

found if both r and p where different from 1. An analogous two-parameter generalization

was derived in [23] directly from Kolmogorov-Nagumo averages. For r = 1 one gets a

special case of the Bernoulli equation,

d(ητ /η0)

dτ
= λ1ητ /η0 + (λp − λ1)(ητ /η0)

p, (52)

which can be solved with arbitrary initial condition at τ0. The result is

ητ =

⎡

⎣

1 − λp

λ1
+ λp

λ1
e(1−p)λ1τ

1 − λp

λ1
+ λp

λ1
e(1−p)λ1τ0

⎤

⎦

1/(1−p)

ητ0
(53)

= ǫτ,τ0
ητ0

, (54)

and has the form we have derived from the Massieu function ER if 1 − p = q − 1,

The two-time function ǫτ,τ0
= ǫτ /ǫτ0

, ǫτ = ǫτ,0, satisfies the groupoid composition

property

ǫτ1,τ2
ǫτ2,τ3

= ǫτ1,τ3
. (55)

Asymptotically, for large τ , one finds ητ ≈ (λp/λ1)
1

1−p eλ1τη0, and for small τ

ητ ≈ η0

[

1 + λp(1 − p)τ
]

1
1−p . (56)

The dynamical system (51) has a nontrivial covariance property under changes of scale,

ǫτ → a ǫτ , a ∈ R+, da/dτ = 0,

d(aǫτ )

dτ
= λra

1−r (aǫτ )
r + (λp − λr )a

1−p(aǫτ )
p

= λ′
r (aǫτ )

r + (λ′
p − λ′

r )(aǫτ )
p. (57)

Solving λ′
r = λra

1−r , λ′
p − λ′

r = (λp − λr )a
1−p, we obtain a matrix representation

(

λ′
p

λ′
r

)

=
(

a1−p , a1−r − a1−p

0 , a1−r

) (

λp

λr

)

= Tp,r (a)

(

λp

λr

)

, (58)

Tp,r (a)Tp,r (b) = Tp,r (ab), of the multiplicative group R+. The exponential case corre-

sponds to the trivial representation with p = r = 1.

The small-τ regime then corresponds to the case eλ1(1−p)τ ≈ 1 + λ1(1 − p)τ which

coincides with the well known Tsallis result relating his entropy with measures of Lyapunov

instability [27]. From the Kolmogorov-Nagumo-Rényi perspective the maximal entropy

results of Tsallis may be regarded as linear approximations to the more exact models based

on Rényi entropies and nonlinear averaging.

Now let us check the evolution of Rτ implied by (54):

R2
τ = 〈Uτψ |r̂2

vUτψ〉 =
∫ ∞

0

dη

∫ ∞

−∞
dξ 2ηξ2 |Uτfv(s, ξ)|2

=
∫ ∞

0

dη

∫ ∞

−∞
dξ 2ηξ2 |fv(ǫτη, ξ/ǫτ )|2 = ǫτ

∫ ∞

0

dη′
∫ ∞

−∞
dξ ′ 2η′ξ ′2 ∣

∣fv(s
′, ξ ′)

∣

∣

2

= ǫτR
2. (59)
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Accordingly, a multi-crossover generalization of the Hubble law is then given by Rτ =√
ǫτR0.

In the next section we discuss the structure of the generator of evolution corresponding

to a general ǫτ .

5 Schrödinger Equation

The wave function

Uτfv(η, ξ) = fv(ηǫτ , ξ/ǫτ ) (60)

satisfies

d

dτ
Uτfv(η, ξ) = dητ

dτ

∂fv(ητ , ξτ )

∂ητ

+ dξτ

dτ

∂fv(ητ , ξτ )

∂ξτ

= d ln ǫτ

dτ

(

η
∂

∂η
− ξ

∂

∂ξ

)

Uτfv(η, ξ) = −iω̂τ Uτfv(η, ξ). (61)

The generator of evolution

ω̂τ = d ln ǫτ

dτ

(

η i
∂

∂η
− ξ i

∂

∂ξ

)

(62)

= 1

2

d ln ǫτ

dτ

(

η pη + pηη − ξ pξ − pξ ξ
)

(63)

with

pη = i
∂

∂η
, (64)

pξ = i
∂

∂ξ
, (65)

is in general τ -dependent. Still, since [ω̂τ , ω̂τ ′ ] = 0, we can integrate the dynamics and

arrive at

Uτ = exp

(

−i

∫ τ

0

dτ ′ ω̂τ ′

)

= e

(

η ∂
∂η

−ξ ∂
∂ξ

)

ln ǫτ = ǫ
η ∂

∂η
−ξ ∂

∂ξ
τ . (66)

In effect, we have obtained a standard-looking unitary dynamics Uτ = e−iε�̂ with time-

independent generator

�̂ = 1

2

(

η pη + pηη − ξ pξ − pξ ξ
)

(67)

if we reinterpret ε = ln ǫτ as a new dimensionless evolution parameter (a similar dimen-

sionless evolution parameter occurs in scale relativity [28]). In consequence, in addition to

unitarity we obtain a conserved “average energy”

� = 〈ψ |U†
τ �̂Uτ |ψ〉. (68)

Note that ǫτ = ητ /η0 = ητ /η is independent of η and ξ , so the operator in the exponent

commutes with ητ /η. Therefore,

Uτ2,τ1
=

(

ητ2

ητ1

)η ∂
∂η

−ξ ∂
∂ξ

=
(

ξτ1

ξτ2

)η ∂
∂η

−ξ ∂
∂ξ

=
(

ητ2

ητ1

)η ∂
∂η

(

ξτ1

ξτ2

)−ξ ∂
∂ξ

, (69)
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with Uτ = Uτ,0. The relation (69) between the diffeomorphism (η, ξ) → (ητ , ξτ ) and the

unitary transformation Uτ is very simple. The composition law

Uτ3,τ2
Uτ2,τ1

= Uτ3,τ1
(70)

follows immediately from (69).

Let us check the action of Uτ2,τ1
on monomials,

Uτ2,τ1
ηn

τ =
ηn

τ2
ηn

τ

ηn
τ1

,

Uτ2,τ1
ξn
τ =

ξn
τ2

ξn
τ

ξn
τ1

. (71)

So,

Uτ2,τ1
ηn

τ1
= ηn

τ2
, (72)

Uτ2,τ1
ξn
τ1

= ξn
τ2

, (73)

and for any f (ητ1
, ξτ1

) which can be expanded in a power series one finds

Uτ2,τ1
f (ητ1

, ξτ1
) = f (ητ2

, ξτ2
) (74)

as required.

Now let us return to the “fractal” evolution parameter

ε = 1

1 − p
ln

(

1 − λp

λ1

+ λp

λ1

eλ1(1−p)τ

)

(75)

= ϕ−1

(

1 − λp

λ1

+ λp

λ1

ϕ(λ1τ)

)

, (76)

where ϕ(x) = e(1−p)x , ϕ−1(x) = (1 − p)−1 ln x is again the Kolmogorov-Nagumo func-

tion employed by Rényi in his derivation of generalized entropies. For 0 ≤ λp ≤ λ1 the

parameters λp/λ1 and 1 − λp/λ1 are probabilities and the Kolmogorov-Nagumo average

is indeed an average. However, condition (38) holds even for λp/λ1 and 1 − λp/λ1 non-

interpretable as probabilities, provided (38) is defined. Actually, in the entropic derivation

of the generalized exponent we encountered γ and 1 − γ that could be negative or greater

than 1. From our perspective this means one can also consider the case λp > λ1, but then τ

cannot be arbitrary (see the next section).

6 The Case 1 − p = q − 1 = 1

The simplest and yet quite close to the expected form of the Bernoulli dynamics is the case

p = 0. It corresponds to the Rényi entropy of order q = 2. To begin with, note that the

function

ǫτ = 1 − λ0/λ1 + eλ1τλ0/λ1 (77)

leads to exponential expansion

Rτ = R0

√

1 − λ0/λ1 + eλ1τλ0/λ1

≈ R0

√

λ0/λ1e
λ1τ/2 (78)
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for large τ , and a square-root law

Rτ = R0

√

1 − λ0/λ1 + eλ1τλ0/λ1

≈ R0

√

1 + λ0τ (79)

for small τ . We assume λ0 > 0, λ1 > 0. For τ → −∞ one finds

R−∞ = R0

√

1 − λ0/λ1 (80)

which suggests λ0 < λ1. However, one expects that as long as eλ1τ can be approximated by

1 + λ1τ (hence for small values of λ1τ ), the dynamics is of a square-root type Rτ ∼ √
τ ,

a fact meaning λ0τ ≫ 1. Putting these two conditions together we conclude that in the

crossover regime one finds λ0τ ≫ 1 and λ1τ ≪ 1. We therefore have to investigate also

the case λ0 ≫ λ1. This leads us to the critical value τ0,

1 − λ0/λ1 + eλ1τ0λ0/λ1 = 0. (81)

In such a case there exists an absolute origin of the dynamics

τ0 = 1

λ1
ln

λ0 − λ1

λ0
< 0 (82)

corresponding to Rτ0
= 0 and ln ǫτ0

= −∞. Note that at τ0 the entire Universe is localized

on the line Xa = vas, 0 < s < ∞. In this way the fiducial world line is no longer arbitrary,

but is defined by the support of the initial condition Uτ0
ψ(x0, x1).

The existence of two evolution parameters, τ and ε = ln ǫτ , leads to a kind of paradox.

Namely, for λ0 > λ1 the asymptotic properties of ǫτ imply that the evolution operator e−iε�̂

involves an effective evolution parameter which is an arbitrary real number, −∞ < ε < ∞.

So, from the point of view of e−iε�̂ the dynamics looks as if the system evolved in time

from −∞ till “now”, but from the point of view of τ the evolution starts at a finite τ0. On

the other hand, for λ0 < λ1 the parameter τ takes any real value, −∞ < τ < ∞, but

ǫ−∞ > 0 and thus ε = ln ǫ−∞ is finite. The evolution then looks as if the system existed

since a finite time ε, and yet τ is unlimited from below. Of course, these remarks apply to

any q, not only to q = 2.

7 Evolution Operator in Space-Time Variables

The analysis given in the preceding sections heavily relied on covariant coordinates η and

ξ , which are not completely natural if one switches to higher dimensions. So, from the point

of view of higher-dimensional generalizations it is important to rephrase the results in terms

of space-time variables xa . In order to do so, we begin with (72)–(73), implying

Uτ

(

x0

x1

)

= √
ǫτ s

(

cosh � sinh �

sinh � cosh �

)(

cosh(ξ/ǫτ )

sinh(ξ/ǫτ )

)

=
√

ǫτ

2
s1−1/ǫτ

(

cosh � sinh �

sinh � cosh �

)(

(x0 + x1)1/ǫτ + (x0 − x1)1/ǫτ

(x0 + x1)1/ǫτ − (x0 − x1)1/ǫτ

)

.

Let us change variables from (η, ξ) to (x0, x1)

η
∂

∂η
− ξ

∂

∂ξ
= 1

2
xa∂a − ξ(x)

(

x1∂0 + x0∂1

)

.
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The second term involves a generator of a representation of a Lorentz transformation: If

ya = 
a
bxb then

ψ(y0, y1) = eζab(x
a∂b−xb∂a)/2ψ(x0, x1), (83)

where ζ01 = −ζ10 = ζ . However, in spite of this, the whole term −ξ(x1∂0 + x0∂1) does

not generate the Lorentz transformation f (x) 	→ f (X) since ξ depends on x. The problem

is similar to that with the other term, xa∂a . It involves the generator of translations ∂a , but

xa∂a generates rescalings

eλxa∂af (x) = f (eλx) (84)

and not translations,

eλya∂af (x) = f (x + λy), (85)

occurring only for ya independent of x. So, denote L = −ξ(x1∂0 + x0∂1), D = xa∂a . The

commutator [L, D] = 0 vanishes since L preserves homogeneity of functions f (x0, x1)

and D is the Euler homogeneity operator.

The dynamics is given by

Uτ2,τ1
ψτ1

(x) = ψτ2
(x) (86)

where

Uτ2,τ1
=

(

x2
τ2

x2
τ1

)D/2+L

= e(ε2−ε1)D/2e(ε2−ε1)L. (87)

The “fractal” parameters are defined by

εj = ln(x2
τj

) = ln
[

φτj
(x)2

]

, j = 1, 2. (88)

Since x2
τ2

/x2
τ1

= ǫτ2
/ǫτ1

is, by construction, independent of xa it thus commutes with D and

L.

One can weaken the latter condition. Indeed, x2
τ2

/x2
τ1

= φτ2
(x)2/φτ1

(x)2 commutes with

D and L if φτ is 1-homogeneous, φτ (λx) = λφτ (x). In order to generalize the form of

Uτ2,τ1
to 1 + 3 dimensions consider a Lorentz transformation 
(x) which maps xa into

some fiducial point Xa . There exist parameters ξab(x) and generators Sab of SO(1,3) such

that 
(x) = exp(ξab(x)Sab/2). Now consider two points xa and ya related by a general

Lorentz transformation 
 = exp(ζabS
ab/2), ya = 
a

bxb, and let Lab = xa∂b − xb∂a be

the generator of f (y) = eζabL
ab/2f (x). Then the 1 + 3 dimensional analog of the 1 + 1

dimensional eL is eξab(x)Lab/2. Let us note that the operator eξab(x)Lab/2 is not uniquely

defined by Xa and xa since the Lorentz transformation xa 	→ Xa is defined up to little

groups of Xa and xa . Our choice of the background space-time V+ implies that Xa and xa

are time-like for a finite τ . The little group is thus O(3) or SU(2).

8 Homogeneity and Isotropy: Space-Time vs. Universe

Our model space-time is homogeneous and isotropic, but the Universe is neither homoge-

neous nor isotropic, at least not exactly. The point is that the “shape” of the Universe is

defined by the wave packet ψ(x0, x1). Such a wave packet can be as close as possible to
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a uniform distribution, but cannot be everywhere constant, of course. This is a general fea-

ture of our formalism and cannot be eliminated. Fortunately, various inhomogeneities and

anisotropies are in fact observed in the Universe we live in, so the property seems physically

acceptable. The more subtle point is that we rescale the variable ξ with respect to a fixed

fiducial reference frame defined by va . The presence of va apparently breaks uniformity of

proper-time s-hyperbolas. One can think of this symmetry breaking in two ways. First of all,

we have shown that in models that in a finite time approach a zero-volume state character-

ized by Rτ0
= 0 the support of the wave function coincides with the world line xa(s) = vas.

So this “preferred” world line is encoded in the initial choice of the wave function of the

Universe, and we are back to the problem of non-uniformity of ψ(x0, x1). Secondly, the

status of va is similar to that of the point xa = 0 in Minkowski space. Indeed, in standard

Poincaré group we have two subgroups: 4-translations and Lorentz transformations. The

Lorentz transformations are equivalent to hyperbolic and ordinary rotations around a pre-

ferred but arbitrary xa = 0. This arbitrariness of xa = 0 is controlled by the 4-translation

subgroup. So the Poincaré group controls two kinds of arbitrariness: The one of location of

the “origin”, and the one of the frame attached to this “origin”.

In our case we encounter a similar logical structure. The “origin” is controlled by Lorentz

transformations va → v′
a = 
a

bva , so the Lorentz group plays here a role analogous

to the 4-translations subgroup of the Poincaré group. In fact, Lorentz transformations act

in the ξ -space as translations. But the analogue of the Lorentz subgroup of the Poincaré

group is, in our formalism, the rescaling ξ → ξ/ǫ. Thus, the dynamical group behind our

dynamics is the semidirect product of SO(1,3) and changes of scale on its homogeneous

space.

9 Conclusions

The problem of combining groups of diffeomorphisms originating from some classical geo-

metric theory with unitary dynamics of the Universe can be formulated in a way which

resembles Hilbert-space approaches of Koopman [12] and von Neumann [13, 14], proposed

in 1930s in the context of classical mechanics. The resulting dynamics of the “wave function

of the Universe” possesses features analogous to expansion known from realistic models

of cosmology, including crossovers from a “radiation dominated”
√

τ phase, to the “dark

energy” accelerating expansion for large τ . This type of dynamics follows from the assump-

tion that the flow of time follows from an extremal entropy principle for Rényi entropies.

The model does not employ a preferred time-foliation but nevertheless a kind of effective

foliation occurs in a dynamical way as a consequence of the form of the diffeomorphism

that defines the dynamics. In the explicit examples discussed in the paper the effective folia-

tion converges towards spacelike hyperbolas which subsequently asymptotically evolve into

a light-cone.

The resulting picture of an evolving Universe is different from the usual one where it

is space-time itself which expands. In our approach space-time is an arena for evolution

of the Universe, the latter being identified with the region of space-time occupied by the

wavepacket. So we have a dynamical Universe evolving in a static space-time. In all the

examples we have concentrated on a 1 + 1 dimensional space-time since all homogeneous

isotropic space-times are effectively mathematically 1 + 1 dimensional. Nevertheless, the

full theory must be formulated in at least 1 + 3 dimensions, and only at such a stage one

can think of comparison with exact observational cosmology. This final step has not been
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performed in the paper, but the unitary dynamics was brought to a form that does not cru-

cially depend on 1 + 1 dimensionality of the formalism, and is easy to generalize to higher

dimensions and more general fields.
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