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Wavepath eikonal traveltime inversion: Theory

Gerard T. Schuster* and Aksel Quintus-Bosz*

ABSTRACT

We present a general formula for the back projection
of traveltime residuals in traveltime tomography. For
special choices of an arbitrary weighting factor this
formula reduces to the asymptotic back-projection
term in ray-tracing tomography (RT), the Woodward-
Rocca method, wavepath eikonal traveltime inversion
(WET), and wave-equation traveltime inversion (WT).
This unification provides for an understanding of the
differences and similarities among these traveltime
tomography methods.

The special case of the WET formula leads to a
computationally efficient inversion scheme in the
space-time domain that is, in principle, almost as
effective as WT inversion yet is an order of magnitude
faster. It also leads to an analytic formula for the fast
computation of wavepaths. Unlike ray-tracing tomog-
raphy, WET partially accounts for band-limited source
and shadow effects in the data. Several numerical tests
of the WET method are used to illustrate its proper-
ties.

INTRODUCTION

Woodward and Rocca (1988) used the imaginary part of
the Rytov inversion formula (Keller, 1969) to invert for the
velocity field from traveltime data. Velocities are recon-
structed by back-projecting phase residuals along wavepaths
associated with source-receiver pairs. Woodward (1989)
showed that a wavepath, similar to a “fat” ray, defines the
propagation path of band-limited seismic energy from the
source point to the receiver point. Its chief merit is that it
accounts for some phenomena not modeled by simple ray
tracing, e.g., shadow zone and multipathing effects. The
penalty, however, is that it is computationally costly com-
pared to ray tracing, requiring a finite-difference solution to
the Helmholtz equation at each frequency for every source
position and every receiver position. For example, if there

are S sources, R receivers, and  frequencies, then the
Helmholtz equation must be solved  +  number of
times at each iteration (Pratt and Worthington, 1990). For
the significant scattering case, the Woodward and Rocca
method (WR) inverts the phase of the entire seismogram.
Woodward (1992) states“Because it is monochromatic,
modeled events cannot be simply windowed from unmod-
eled events in time: all of the signal and noise must be dealt
with simultaneously.”

Harlan (1990) used the wavepath concept of Woodward
and Rocca (1988) and developed a traveltime tomography
method by constructing wavepaths from eikonal equation
traveltimes. The traveltime residuals are back projected
along these wavepaths to update the slowness field.

Luo and Schuster (1990, 1991a, and 1991b) developed a
wave-equation traveltime inversion (WT) method in the
space-time domain. Because of its space-time formulation,
the first arrivals can be isolated and inverted independent of
later arrivals; this gives rise to a robust inversion for
complicated velocity models. Velocities are reconstructed
by reverse time migration of the weighted observed seismo-
grams, where the seismogram weight is the traveltime resid-
ual (i.e., difference between the computed and observed first
arrival traveltimes) associated with that seismogram. The
calculated transmission traveltimes are those from the syn-
thetic seismograms computed by a finite-difference solution
to the wave equation. Luo (1991) recently showed that the
WT method can be interpreted as back-projecting traveltime
residuals along wavepaths, similar to the Woodward and
Rocca (1988) method. The problem with the WT method is
similar to that of the Woodward and Rocca method, i.e., it
can require more than an order of magnitude more CPU time
than that of simple ray-tracing tomography (RT). For exam-
ple, if there are S sources and  receivers, then S reverse-
time common-shot point gather (CSP) migrations must be
carried out for each iteration, where a CSP gather contains 
observed seismograms.

To overcome the CPU expense of both the WR and WT
methods, this paper presents a traveltime inversion method
that accounts for some wavepath effects, yet its computa-
tional costs are comparable to that of ray-tracing tomogra-
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phy. We call this method wavepath eikonal traveltime
(WET) inversion because it computes wavepaths by using
finite-difference solutions to the eikonal equation (Schuster,
1991). Unlike the WT or Woodward-Rocca methods, it is
considered a high-frequency method because it uses solu-
tions to the eikonal equation. Unlike ray-tracing tomogra-
phy, however, WET partially accounts for the band-limited
effects of the source wavelet and diffraction effects. Figure 1
roughly illustrates the CPU costs versus frequency for the
WT, WET and RT methods.

The first section in this paper presents the derivation of a
general formula for the back projection of phase or travel-
time residuals. The second section plugs the asymptotic
Green’s function into the general back projection formula to
yield traveltime back-projection operators that link the RT,
WR, WT, and WET methods to each other. The third section
illustrates the WET algorithm by numerical examples and
the last section presents the conclusions.

GENERAL ASYMPTOTIC BACK-PROJECTION FORMULA

We will now derive a general formula for back projecting
traveltime residuals, which can be used to invert for the
slowness field s(x) in an acoustic medium. It will be assumed
that the seismic data are recorded in a seismic cross-well
experiment with vertical source and receiver wells. The data
are collected in the space-time domain and the first arrivals in
the space-time seismograms are windowed and Fourier trans-
formed in time to obtain the pressure field   0)
measured at  where the angular frequency is denoted by 
The energy originates from a point source at  and the first
arrival traveltimes are assumed to be picked from the peak
amplitude of a shifted zero-phase vibroseis wavelet.

The following steps lead to the general formula for the
back projection of traveltime or phase residuals.

 

CPU

W 
l R.T

FIG. 1. CPU costs versus frequency for WET, WT, and RT
methods. The RT method is valid at very high frequencies
because it assumes that the path of energy propagation is
along an infinitesimally thin ray tube. The WET method
accounts for a greater range of high frequencies because it
models wave propagation along wavepaths; i.e., when the
source bandwidth has finite width. However, it is invalid
when scattering effects are dominant or when the character-
istic scale of the medium is about the same as or smaller than
the dominant source wavelength. The WT method is valid
over all frequencies.

1) Form a phase misfit function 

       (1)
 r 

where the summations are over the receiver  and
source  indices and over the discrete source frequen-
cies                 

 is the phase residual, or difference between the
calculated   ,  and observed  ,  ,

 phases of the first arrivals at a single frequency.
The associated observed   ,  0) and calcu-
lated   , 0) pressure fields satisfy the Helm-
holtz equation. An arbitrary weighting factor is denoted
as  and if it is set equal to the magnitude
spectrum of the source wavelet then it accounts for the
reliability (akin to a probability function) of the phase
measurements as a function of frequency. Its chief
effect will be to smooth the gradient (or reconstructed
slowness field) in a way that is consistent with the
source spectrum and the path of propagation. This is
more physically appealing than ad hoc smoothing meth-
ods (e.g., Gersztenkorn and Scales, 1988).

2) Find the gradient y(x) of the phase misfit function with
respect to the slowness parameters

   (2)

so that the slowness can be reconstructed by a, say
steepest descent, update formula

  =   (3)

where the  index denotes the kth iteration and  is
the step length.

3)        by using the definition
         and

taking the derivative of    ,  with respect to
s(x) to get

  
= Im

  1

I     0) 

I I

    
   (4)

Here, the calculated phase is denoted by   
   and  =   x,  is defined to

be the phase of    It can be
shown (Tarantola, 1987) that the Frechet derivative of
the pressure field is given as

    

as(x) 
   

(5)

where  0) is the three-dimensional (3-D
inhomogeneous Helmholtz Green’s function for 
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4)

impulse source at x and an observer at x,. Substituting
equation (5) into (4), and substituting the resulting
expression for    into equation (2)
yields

 =       
  

     
X

I      

   (6)

where =   +  and the phase of the Green’s
function and the phase of the calculated pressure are
given by, respectively,  =    and  =

  
The asymptotic gradient for a single source at  and
receiver at  can be found by linearizing phase with
respect to the first-arrival traveltime (i.e., set 

 =    =  and substituting the
 optics Green’s function (Miller et al., 1987)

.

(7)

into equation (6) to get

 =
 A,, 

 

.    

Substituting    =  +    into the
argument of the sine we have

 A,, 
 =

l I
  

  +    do. (8)

Here, is defined to be the first-arrival traveltime
solution to the eikonal equation for a source at  and
receiver at x in a slowness distribution s(x); and  is
the associated geometrical spreading term of the first
arrival whose reciprocal satisfies the transport equa-
tion. The linearization of phase with respect to fre-
quency means that we ignore scattering effects in the
data.

UNIFICATION OF TOMOGRAPHY ALGORITHMS

Examining special cases of the weighting factor  (w) in
equation (8) illuminates the physical meaning of the asymp-
totic gradient. These special cases also lead to the asymp-
totic back-projection formulas for ray-tracing tomography,
the Woodward and Rocca (1988) method, wave-equation
traveltime inversion (Luo and Schuster, 1991a), and wave-
path eikonal traveltime inversion (Schuster,1991;
Quintus-Bosz, 1992). The weighting factors are summarized
in Table 1.

Case 1: Inhomogeneous medium and impulse source

Assuming an impulsive point source [i.e.,  (w) =
 and an inhomogeneous slowness distribution s(x)

between source and receiver wells, equation (8) becomes

 =
 A,, l 

 +   (9)
 xs

Here, triple prime indicates triple differentiation with respect
to the argument. Equation (9) says that the support of y(x) is
along the first-arrival raypath in the medium, and therefore
the model velocities are adjusted only along that Fermat
raypath.

Case 2: Inhomogeneous medium+ wideband
source+ weighting = ray tomography

Since velocities primarily influence the phase delays, it
might seem reasonable to eliminate the amplitude factors
and retain just the phase factors in equation (8). This can be
done by setting

 =     H , (10a)

in equation (8), where H =  is the convolutional
Hilbert transform operator in  and  is the wavelet
magnitude spectrum. Substituting equation (10a) into equa-
tion (8) yields

where W(t) is the inverse Fourier transform of 
Dividing out the geometric spreading terms is equivalent to
the preconditioning step in Beydoun and Mendes (1989),
dividing by the cube of the angular frequency is similar to
applying a low-pass filter (Gersztenkorn and Scales, 1988),
and the application of the Hilbert transform is somewhat

Table 1. Tomography algorithms and weighting factor  in Equation (8).
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related to a frequencydomain quelling operation
(Meyerholtz et al., 1989) that transforms the sine in equa-
tion (8) into a cosine.

For  =  and a slowness parameterization into
cells of constant slowness, W(t) becomes

 =  +   (10c)

residuals along “wavepaths” introduced by Waodward and
Rocca (1988) and later developed by Luo (1991).

If  in equation (8) is replaced by the magnitude
spectrum of say, a Ricker wavelet, then the triple derivative

 function in equation (1 lb) is replaced by the time-
domain Ricker wavelet  +    i.e.,

so that the gradient in equation (10b) is proportional to that
of ray-tracing tomography, namely the raypath length in a
cell multiplied by the traveltime residual. If W(t) is a
Gaussian function then the infinitesimally thin ray widens
into a “fat” ray (Harlan, 1990). The concept of a fat ray was
recently described as Fresnel volume ray tracing by Cerveny
and Soares (1992), although equation (10b) takes into ac-
count both the correct Fresnel zone and the wavelet shape.
Tracing rays by setting the argument of W in equation (10b)
to zero was also used by Matsuoka and Ezaka (1992).

Case 3: Inhomogeneous medium and narrow-band
source = WET

This is the same as Case 1 except for a flat narrow-band
source with a center frequency of  and a bandwidth of

 Setting R,,(o) =l/2 in equation (8) and replacing the
integration by

 + 
 +

 
do

we get

 =
 A,, AT

xr
. 

xs

(11a)
where  =  +    Note that the central
frequency  determines the zero crossings of the cosine
function, and the bandwidth frequency  determines the
zero crossings of the modulating  function. The formula
verifies Woodward’s (1992) conclusion that the wavepath’s
zero crossings are governed by the central source frequency.

I f o ,  0 then the gradient becomes

 =
 A,, AT

 +    (11c)
xs

which is the asymptotic gradient for the wavepath eikonal
traveltime inversion or WET method (Schuster, 1991;
Quintus-Bosz, 1992). Unlike the  function in equation
(1 lb), the wavepath associated with equation (1 lc) is shaped
by the magnitude spectrum of the source wavelet. This is
physically consistent with the actual path of wave propaga-
tion for a shifted zero phase wavelet.

Case 4: Asymptotic Woodward-Rocca gradient method

If  is set equal to   and the frequency summa-
tion replaced by an integration over finite limits, then equa-
tion (8) reduces to the asymptotic Woodward-Rocca back-
projection formula (see the Appendix), i.e.,

 =
 A,, AT

 
 +   (12)

Some salient differences between this gradient and the WET
gradient in equation (1 lc) are that equation (12) contains no
information about the source wavelet signature W(t) and
that it is a single derivative rather than a triple derivative of
the  function. Thus, equation (12) is a low-pass filtered
version of a special case of WET in equation (1 lb). Another
difference is that the linearized WR gradient is computed by
first calculating the wavepaths at each frequency (by solving
the Helmholtz equation), and then numerically summing
each wavepath to get the multifrequency wavepath gradient.
WET, on the other hand, avoids this costly wavepath
computation at each frequency and simply evaluates the
formula in equation (1 lc).

Case 5: Asymptotic wave equation traveltime inversion

If  (03) in equation (8) is set equal to the weighted
spectrum of the first arrival (see the Appendix), i.e.,

  A,, AT
 =

Xi- * A,,

   +    l (11b)

Equation (11b) is similar to equation (9) except that the delta
function is replaced by a weighted  function. It associ-
ates the band-limited gradient function with a  function
that carries phase information modulated by the geometrical
spreading terms. The contours of the  function define
surfaces which are coincident with the aplanatic surfaces of
equal transmission traveltime. Equation (1 lb) says that the
traveltime residuals are back-projected into the medium
along “sincpaths” (rather than raypaths) and weighted along
these surfacesof constant phase or traveltime. This is
consistent with theconcept of back propagating traveltime

obs

 
    

    
(13)

then this reduces to the asymptotic gradient for the WT
method [see equation (A-8)] of Luo and Schuster (1991a).
Here, a double dot indicates double time differentiation and

  0) is the space-time pressure seismogram for a
source at  and receiver at  Note that the WT gradient
uses the actual first arrival windowed from the observed
seismogram, not just the source wavelet. Unlike the WET or
RT methods, this partially takes into account the effects of
scattering and source radiation pattern in the data.

NUMERICAL WET ALGORITHM

Equation (1 lc) suggests a computational1y fast methodol-
ogy for inverting s(x) from traveltimescomputed by a
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finite-difference solution to the eikonal equation (Qin et al.,
1992); it also suggests a fast means for the calculation of
wavepaths associated with the eikonal traveltimes. The
algorithm for wavepath eikonal traveltime inversion (WET)
is:

1) Pick the first-arrival traveltimes  from the seismo-
grams.

2) An initial slowness model is proposed and the eikonal
equation is efficiently solved by a finite-difference
method (Qin et al., 1992) to get  and  . The
traveltime residual  =    is computed by
subtracting the observed first-arrival traveltimes from
the finite-difference traveltimes.

3) The source weighting function in equation (1 lc) is
evaluated at all points within the medium to give y(x).
In practice, we also include summations over source
and receiver positions to account for the multiple
sources and receivers in the experiment. The geomet-
rical spreading terms can be computed by a finite-
difference computation (Pusey and Vidale, 1991) or by
a simple inverse distance approximation. In practice,
we find that they can be ignored.

4) The slowness model is updated and these steps are
iteratively repeated until convergence. Quintus-Bosz
(1992) and Quintus-Bosz and Schuster (paper in prep-
aration) have successfully tested the effectiveness of
this scheme.

Numerical examples

We will now present some numerical examples that illus-
trate how the WET method accounts for source bandwidth
and shadow zone effects in the data. Figure 2 depicts a
cylinder velocity model with a velocity contrast of 2:1, and
Figures 3a and 3b depict the traveltime contours for a line
source at  and respectively. These traveltimes were
computed by a finite-difference solution to the eikonal equa-
tion (Qin et al., 1992). In this case,  and  represent
common source point (CSP) gathers of traveltimes. In the
following examples, the 2-D equivalent of equation (1 lc) was
used to compute wavepaths (Quintus-Bosz, 1992; Quintus-
Bosz and Schuster, paper in preparation); i.e., the 2-D rather
than the 3-D asymptotic Green’s function was used in
equation (8) to derive the asymptotic gradient term.

Calculations of the gradient function

Some wavepath functions are now calculated for a low-
velocity cylinder model. The argument of the source func-
tion in equation (1 lc) is calculated by subtracting  (for a
fixed  and s) from the Figure (3a) and Figure (3b) summed
traveltime values to yield the traveltime contours in
Figure (3c). Note that the two zero traveltime contours
correspond to the two raypaths associated with the first
arrival so that some multipathing effects are partially taken
into account. This compares favorably to ray-tracing meth-
ods that usually compute only a single raypath per source-
receiver pair. Other contours correspond to the aplanatic
surfaces of nonzero positive traveltimes.

The traveltimes contoured in Figure 3c are used in the
argument of the weighting function in equation (1 lc) to give

a plot of the gradient function in Figure 3d. The weighting
function is taken to be a Ricker wavelet where the peak
frequency is 100 Hz; in addition, the geometrical spreading
terms are neglected. This figure shows that the slowness
model is mostly updated along and near the two wavepaths
that are tangent to the top and bottom of the cylinder. Unlike
the corresponding raypath, the wavepath penetrates into the
low-velocity interior of the cylinder.

Band-limited source effects

The wavepath width decreases as the peak Ricker source
frequency increases [i.e., as  increases in equation (1 lc)].
This is illustrated in Figure 3e where the peak frequency of
the source spectrum is four times that in Figure 3d. Equiv-
alently, as the period of the source wavelet increases, a
larger region of the model can contribute scattered energy to
the observed first-arrival wavelet. This larger region is
encompassed by the support of the enlarged wavepath.

Shadow effects

Unlike shooting ray-tracing algorithms, finite-difference
solutions to the eikonal equation can compute first-arrival
times associated with some diffraction first arrivals (Vidale,
1988). In addition, the geometrical spreading terms in equa-
tion (11) are used to weight the traveltime residuals. Trav-
eltime residuals associated with weak amplitude arrivals
have less weight than those associated with large amplitude
arrivals. This is an automatic means for discriminating
against arrivals with questionable signal to noise ratios.

Reconstruction of a cylinder model by WET

Inversion with band-limited fat rays or wavepaths pro-
duces smooth tomograms because the traveltime residuals

FIG. 2. Low-velocity cylindermodel, with the interior
terior) velocity equalto 1 km/s (2km/s).

(ex-



FIG. 3. (a) First-arrival traveltime contours for a source located at the star position on the left side of Figure 2. (b) First-arrival
traveltime contours for a source located at the receiver position on right side of Figure 2. (c) Traveltime contours computed by
adding the traveltimes in Figures 3a and 3b and subtracting The dark solid line indicates the zero time contour, which is
coincident with the first-arrival  (d) Gradient function in equation (1 lc) computed from the traveltimes in Figure 
with a   function having a 100 Hz peak frequency; also the amplitude terms have been neglected. (e) Same as
Figure 3d except the peak frequency has been quadrupled from 100 Hz to 400 Hz.
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are back projected over a wide swath of pixels in the
slowness model. That is, the WET method updates the
slowness field as a continuous function of the spatial coor-
dinates. This compares favorably to undamped RT methods
that update the slowness model unevenly because of the thin
nature of the rays. For example, slowness pixels sampled by
many rays can experience a large update due to the effect of
each ray’s additive contribution. The slowness of these
pixels may be changed significantly, while that of unvisited
pixels is not updated at all. Therefore, RT methods require
smoothing to damp the resulting artifacts in the tomograms.

Two examples are used to show the smoothing effects of
wavepaths: one with a dense data set, and another with a
sparse data set. The model is a cylindrical high-velocity
(3 km/s) zone six wavelengths in diameter, embedded in a
homogeneous background (2.5 km/s) ten wavelengths wide.
The eikonal equation solver of Qin et al. (1992) provided
5041 “observed” traveltimes (71 sources and 71 receivers)
for the dense data set, and 121 traveltimes (11 sources and 11
receivers) for the sparse data set. There are 71  141 =
10 011 slowness pixels in this model.

Dense data case.-Figure 4 shows the WET (4a), WT (4b),
and smoothed RT (4c) velocity tomograms associated with the
dense data set. The RT method implements smoothing by a
constraint that minimizes the roughness of the slowness update
every iteration (Sun and Schuster, 1992). The three tomograms

FIG. 4. Dense data set for a cylindrical model. (a) WET
tomogram (400 Hz Ricker source wavelet); (b) WT tomo-
gram (200 Hz Ricker source wavelet); (c) Smoothed-RT
tomogram.

in Figure 4 are qualitatively successful in imaging the high-
velocity zone. For a dense data set the RT and WET methods
perform equally well. Note that the WT tomogram underesti-
mates the high velocity zone. This results from the lower
resolution of a low-frequency (200 Hz peak frequency) source
wavelet used for the WT inversion. Higher frequency wavelets
required excessive computational effort, and were not used.

Sparse data case.-Figure 5 shows the WET (5a), WT (5b),
and unsmoothed RT (5c) velocity tomograms associated
with the sparse data set. The WET and WT tomograms are
much smoother and retain the essential features of the actual
model. In contrast, the unsmoothed RT tomogram in
Figure 5c is very noisy and conveys little information.
Unconstrained RT leads to tomograms with high-wavenum-
ber variations in slowness. Without adequate smoothing,
“spikes” can pollute the final RT tomogram as shown in
Figure 5d. The WET method, however, fits the data using
slowness models with a spatial frequency content that is
consistent with the source wavelet’s finite bandwidth. In
other words, the wavepaths act as physically consistent low
pass or anti-alias filters to the reconstructed slowness model.

FIG. 5. Sparse data set for a cylindrical model. (a) WET
tomogram (400 Hz Ricker source wavelet); (b) WT tomo-
gram (200 Hz Ricker source wavelet); (c) RT tomogram; (d)
Smoothed-RT tomogram.
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SUMMARY

A traveltime back-projection formula in equation (8) is
given which reduces, as special cases of the weighting factor

 to the asymptotic back-projection formula for the
thin ray RT, fat ray RT, WET, WR, and WT methods. The
chief effect of this weighting factor is to smooth the gradient
(or reconstructed slowness field) in a way that is physically
consistent with the source spectrum and the path of propaga-
tion. This is more physically appealing than ad hoc smoothing
methods. Table 1 summarizes these weighting factors and
shows that:

1) Traveltime residuals are back projected along wave-
paths defined by the source wavelet (fat ray RT), the
weighted first derivative of the  function (WR), the
weighted third derivative of the source wavelet (WET),
and the weighted third derivative of the actual first
arrival waveform (WT).

2) The preconditioning term of Beydoun and Mendes
(1989) suggests that the geometrical spreading factors
may not be important for the asymptotic WET, WT, or
WR inversion methods.

3) The different order of derivatives suggests that the as-
ymptotic WR and fat RT methods provide low-pass
tomograms relative to the WET and asymptotic WT
tomograms.

4) The asymptotic WT method uses the observed first-
arrival waveform to define the back-projection opera-
tor. This is a compeling feature since it partially takes
into account the scattering effects in the data.

The WET algorithm is, in principle, almost as effective as
WT inversion yet is an order of magnitude faster; only
solutions to the transport and eikonal equation are involved.
Unlike some ray-tracing tomography algorithms (1) WET
partially accounts for source bandwidth and shadow effects
in the data, and (2) its inherent smoothing acts as a physi-
cally consistent low-pass or anti-aliasing filter to the recon-
structed model. The penalty, however, is that WET ignores
scattering effects by linearizing phase with respect to fre-
quency. The effectiveness of a multigrid WET method
applied to real and synthetic cross-well data is shown.

So which asymptotic tomography method is best? In
principle, the WT method should be very desirable because
it accounts for waveform shape, scattering and real data
effects in defining the back-projection paths. WET should be
a good choice because it accounts for the source wavelet
shape and is consistent with minimization of the  norm of
the traveltime residuals. Asymptotic WR and fat ray RT
methods should be the last choice because they both provide
only low-pass versions of the WT or WET tomograms.
However, our limited experience with synthetic data sug-
gests (Quintus-Bosz and Schuster, paper in preparation) that
RT with optimal smoothing performs about as well as the
WET or WT methods. If the velocity contrasts become too
large (greater than two or three to one) then ray-traced
traveltimes should be replaced by finite-difference solutions
to the eikonal equation.
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Future research might explore the application of a WET-
like algorithm to the inversion of refraction traveltimes,
attenuation data, and anisotropic traveltimes.
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APPENDIX

SPECIAL CASES OF WET ANALOGIES TO WT AND WR GRADIENTS

This Appendix shows how special cases of the weighting
factor  in equation (8) reduce to the asymptotic WT
and Woodward and Rocca gradients.

and substituting equations (A-7) and (A-6) into equation
(A-l) yields the asymptotic form of the WT gradient

WT asymptotic gradient

For a single source location  , a single receiver location
X the WT gradient of the traveltime misfit function in
equation  of Luo and Schuster (1991a) can be rewritten
as

    (A-1)

     t) =      
(A-2)

and E is a scaling factor defined by

Here the velocity gradient in Luo and Schuster (1991a) is
converted to a slowness gradient,  is the sum of the squared
traveltime residuals, and AT is the difference between the
peak amplitude traveltimes of the observed  and calcu-
lated  first arrivals, i.e.,

=   obs
rs (A-4)

In equation (A-2), a dot indicates time differentiation, 
denotes convolution in time, and    is the
calculated space-time pressure field for the slowness distri-
bution s(x).

For high frequencies the asymptotic inhomogeneous
Green’s function is

   =   

  t’]   

where  x’) is the solution to the eikonal equation for a
source (receiver) at x’(x) and  is the corresponding
geometrical spreading term. Substituting equation (A-5) into
equation (A-3) gives

 

where the last expression follows bydefinition of
stituting equation (A-5) into equation(A-2) gives

 Sub-

    t) =
    

  

          

      
.

(A-8)

Alternatively, setting the weighting factor in the general
asymptotic gradient in equation (8) to be

obs

 
    

    
(A-9)

leads to the WT gradient in equation (A-8). This follows from
the fact that if f(t) is a real causal function then f(t) =

 do = -2   sin (wt) do. Note that the
WT gradient in equation (A-8) reduces to the WET gradient
of equation (1 lc) if   0) is set equal to the zero
phase Ricker wavelet  This varifies that the gradient
in equation  is nothing more than 

From equation (A-8) we see that the WT gradient uses the
actual first arrival windowed from the observed seismogram,
not just the source wavelet. In part, this takes into account
the effects of scattering and source radiation pattern in the
data. The above formula suggests that an efficient implemen-
tation of WT might use the synthetic traveltimes computed
by finite-difference solutions to the eikonal equation, rather
than the wave equation.

Woodward-Rocca asymptotic gradient

For a single source location  a single receiver location
X the multifrequency gradient (for inverting normalized
velocity Avlv) in equation (18) of Woodward (1992) is given

 
  

  

  

   

 
  

where  is the total phase of the concatenated 3-D
Helmholtz Green’s functions,  is the bandwidth of inte-
gration, and their notation for Green’s function is now used.
If the asymptotic Green’s function in equation (7) is substi-
tuted into equation (A-10) and the limits of integration are
taken to be from  to  then

  AT
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Dividing the above by  converts from Woodward’s
normalized velocity perturbation  parameter to the
slowness parameter As to yield

 
  +   

 

Alternatively, this gradient could have been derived by
setting R,,(O) =  The interpretation of equation
(A-l 1) is that the traveltime residuals are back-projected
along the wavepaths defined by the first derivative of the sinc
function with the same bandwidth of the source wavelet.
This takes into account source bandwidth but not the source

(A-l 1) wavelet’s shape.


