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ABSTRACT

Models of the tropical atmosphere with crude vertical resolution are important as intermediate models for
understanding convectively coupled wave hierarchies and also as simplified models for studying various strategies
for parameterizing convection and convectively coupled waves. Simplified models are utilized in a detailed
analytical study of the waves and instabilities for model convective parameterizations. Three convection schemes
are analyzed: a strict quasi-equilibrium (QE) scheme and two schemes that attempt to model the departures from
quasi equilibrium by including the shorter timescale effects of penetrative convection, the Lagrangian parcel
adjustment (LPA) scheme and a new instantaneous convective available potential energy (CAPE) adjustment
(ICAPE) scheme. Unlike the QE parameterization scheme, both the LPA and ICAPE schemes have scale-selective
finite bands of unstable wavelengths centered around typical cluster and supercluster scales with virtually identical
growth rates and wave structure. However, the LPA scheme has, in addition, two nonphysical superfast parasitic
waves that are artifacts of this parameterization while such waves are completely absent in the new ICAPE
parameterization.

Another topic studied here is the fashion in which an imposed barotropic mean wind triggers a transition to
instability in the Tropics through suitable convectively coupled waves; this is the simplest analytical problem
for studying the influence of midlatitudes on convectively coupled waves. For an easterly barotropic mean flow
with the effect of rotation included, both supercluster-scale moist Kelvin waves and cluster-scale moist mixed
Rossby–gravity waves participate in the transition to instability. The wave and stability properties of the ICAPE
parameterization with rotation are studied through a novel procedure involving complete zonal resolution but
low-order meridional truncation. Besides moist Kelvin, mixed Rossby–gravity, and equatorial Rossby waves,
this approximation retains other slowly propagating moist gravity waves in a consistent fashion.

1. Introduction

Important observational features of tropical meteo-
rology, which exhibit a hierarchy of scales as well as
waves coupled to moist convection, include faster prop-
agating cloud clusters and superclusters (Nakazawa
1988, and references therein) on scales of order 2000–
3000 km within larger-scale slower propagating Mad-
den–Julian waves (Madden and Julian 1972, 1994). The
capability of current convective parameterization
schemes in general circulation models to represent sig-
nificant features of this convectively coupled wave hi-
erarchy is an important practical topic (Chao and Lin
1994; Chao and Deng 1998, and references therein).

Theoretical efforts in understanding convectively
coupled tropical waves have focused on models with
crude vertical resolution involving a dominant baro-
clinic heating mode coupled to convection (Emanuel
1987; Neelin et al. 1987; Goswami and Goswami 1991;
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Yano and Emanuel 1991; Neelin and Yu 1994). Such
models of the tropical atmosphere with crude vertical
resolution are important as simplified intermediate cli-
mate models (Neelin and Zeng 1999, manuscript sub-
mitted to J. Atmos. Sci.; Zeng and Neelin 1999; Lin et
al. 2000) as well as for providing simplified models to
study the convectively coupled wave hierarchy through
numerical experiments (Yano et al. 1995, hereafter re-
ferred to as YM2E). These models also provide a sim-
plified analytical context to study various strategies for
parameterizing convection (Yano et al. 1998, hereafter
referred to as YM2).

In this paper, such simplified models with crude ver-
tical resolution are utilized in a detailed analytical study
of the waves and instabilities for model convective pa-
rameterizations. The convection schemes that are ana-
lyzed here attempt to incorporate departures from strict
quasi equilibrium (QE) (Arakawa and Schubert 1974;
Emanuel 1994) by including the shorter-timescale ef-
fects of the mass flux by deep penetrative convection
over small areas on the convectively coupled dynamics.
The most complicated scheme of this type that is con-
sidered here is the Lagrangian parcel adjustment (LPA)
scheme introduced in YM2E and YM2 where in a La-
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grangian formulation, vertical motion is generated by
convective available potential energy (CAPE). A second
new parameterization, which involves instantaneous re-
lease of CAPE (the ICAPE scheme), is also introduced.
The simplified model with crude vertical resolution and
these two convective parameterizations together with a
strict QE scheme are developed in section 2. A novel
feature is the use of a turbulent boundary layer drag
parameterization that allows for the effects of turbulent
fluctuations even when the mean flow vanishes (Neelin
and Zeng 1999, manuscript submitted to J. Atmos. Sci.).
This feature allows for a meaningful stable radiative–
convective equilibrium without a horizontal mean flow
and is important for the studies of transition to instability
in subsequent sections of the paper. There is no doubt
that convectively coupled tropical waves exhibit both
linear and highly nonlinear features. There is some ev-
idence that the strongest nonlinearities are most impor-
tant at the smallest scales such as from the remarkable
recent observations of Wheeler and Kiladis (1999) for
convectively coupled waves. Thus, the convective cou-
pling with large-scale tropical waves might be in a
weakly nonlinear regime; under such circumstances, lin-
earized stability analysis is a natural way to begin such
studies to gain analytic insight. This is the approach
adopted in the present paper.

The detailed linearized wave and stability properties
of the LPA, ICAPE, and QE convective parameteriza-
tion schemes are compared in section 3. Unlike the QE
parameterization scheme, both the LPA and ICAPE
schemes have scale-selective finite bands of unstable
wavelengths centered around typical cluster and super-
cluster scales with virtually identical growth rates, phase
velocities, and wave structure for the unstable moist
gravity waves. However, the LPA scheme has, in ad-
dition, two nonphysical superfast ‘‘parasitic’’ waves that
are artifacts of the parameterization. The new ICAPE
parameterization has the additional attractive feature
that such parasitic waves are absent and are replaced by
a strongly damped mode representing finite adjustment
of CAPE perturbations.

Finally, the wave and stability properties of the ICA-
PE parameterization with rotation are studied in section
4 through a novel procedure involving complete zonal
resolution but low-order meridional truncation (see sec-
tion 4a below). Besides moist Kelvin, mixed Rossby–
gravity (MRG), and equatorial Rossby waves, this ap-
proximation retains other slowly propagating moist
gravity waves in a consistent fashion; this may prove
useful for comparison of theory with observational stud-
ies (Wheeler and Kiladis 1999). The procedure is in-
termediate in complexity between the equatorial long-
wave approximation (Heckley and Gill 1984; Neelin and
Yu 1994) and complete meridional resolution on the
equatorial b plane.

Another important topic studied here is the fashion
in which an imposed constant barotropic mean wind, u ,
triggers a transition to instability through suitable con-

vectively coupled waves; in other words, for a fixed
turbulent drag parameterization and easterly barotropic
flow u , there is a critical easterly flow u cr with stability
for |u | , |u cr | and instability for |u | . |u cr | and |u | 2
|u cr | K 1. This is the paradigm for studying the influence
of midlatitudes on generating convectively coupled
tropical waves. For an easterly barotropic flow with ro-
tation, both supercluster-scale moist Kelvin waves and
cluster-scale moist MRG waves participate in the tran-
sition to instability.

2. The model convective parameterizations

In this section several models for convectively cou-
pled dynamics in the Tropics are presented. These mod-
els utilize equivalent descriptions of large-scale dynam-
ics and thermodynamics, but differ in the description of
the effects of moist convection and its feedbacks into
the large-scale dynamics. The atmosphere is represented
by two horizontal layers, each with a homogeneous ver-
tical structure (Yano and Emanuel 1991): 1) a dynam-
ically active troposphere and 2) a dynamically passive
thin boundary layer coupled to the ocean surface. The
stationary spatial fluctuations in the sea surface tem-
perature (SST) drive exchanges of moist potential en-
ergy between the two layers via convective updrafts and
precipitation downdrafts that are explicitly coupled to
the large-scale dynamics. To model convective pro-
cesses, various convective parameterizations are used
that relate the dynamics of convection explicitly through
other variables in the system.

This paper discusses three convective parameteriza-
tion models, which are presented below. Since equations
for the large-scale dynamics and dry thermodynamics,
as well as some other features, are essentially the same
for all models, the common pieces will be described
only for the first scheme, with the focus on the differ-
ences that arise due to convective parameterizations
alone in the subsequent discussions.

The large-scale dynamics in the middle troposphere
for all of these schemes is based on a 1½-layer model
that, following YM2E, involves a baroclinic heating
mode of the primitive equations on the equatorial b
plane:

Dv C 1H D ⊥5 a =u 2 D (|v |)v 2 v 2 byv . (2.1)H H H HDt h tD

Here, vH(x, y, t) is the horizontal large-scale wind with
components (u, y) that depend on the zonal and merid-
ional spatial variables x and y, and time t. The wind
above is driven by the following forces, listed as they
appear in the equation: the perturbations of the geo-
potential, expressed via fluctuations of the dry potential
temperature, u; the turbulent drag from the fluctuations
in the boundary layer; the Rayleigh relaxation wind
forcing; and the Coriolis effect due to rotation. The
symbol D/Dt denotes the substantial derivative includ-
ing the mean flow, u . The symbol represents the⊥vH
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TABLE 1. Model parameters.

23C 5 1.2 3 10 , surface-flux rate by windu

23C 5 10 , surface heating coefficientD

22 2N 5 10 s , Brunt–Väisälä buoyancy frequency

e 5 (u 2 u)/(u ) ; 0.1, strength of temperature fluctuations in0 0

the troposphere

u 5 300 K; temperature at the top of the boundary layer0

u* 5 10 K; size of fluctuations in the boundary layer moisteb

potential temperature

e 5 0.9, precipitation efficiency coefficientp

23 21G 5 6 3 10 K m , moist lapse ratem

g 5 1.7, ratio of moist and dry lapse rates

3 21 21c 5 10 J K kg , specific heat at constant pressurep

21Q 5 21 K day , mean radiative cooling rateR0

t 5 50 days, longwave radiation relaxation timeR

t 5 75 days, Rayleigh forcing timescaleD

H 5 8 km, depth of the troposphere

H 5 5 km, depth of the middle-level troposphere (a level ofm

minimum moist potential temperature)

h 5 500 m, thickness of subcloud boundary layer

orthogonal vector with components, (2y , u). To shorten
the notation, the coefficient a 5 gecp has been intro-
duced. All other constants are described in Table 1. In
addition to various forcings, dynamics is also included
through the barotropic mean wind, u , which is assumed
to be prescribed externally. The representation of all
forcing terms except the turbulent drag is conventional;
the modeling of turbulent drag will be addressed later.

The total vertical velocity is decomposed into a large-
scale environmental circulation, which occurs through-
out almost the entire troposphere, and the convective
updrafts, which represent the deep penetrative activity
in a large number of narrow convective towers. All of
these towers are assumed to be identical, with the up-
draft mean velocity, wc(x, y, t), and overall area that
represents a fraction sc of the horizontal area of the
entire troposphere. Quantitatively, the vertical velocity
can be expressed via the speed of compensating envi-
ronmental descent, we, and convective updrafts, wc:

w 5 (1 2 sc)we 1 scwc.

Then, conservation of mass assumes the following form:

w we cdiv v 1 (1 2 s ) 5 2s , (2.2)H H c cH Hm m

with Hm the height of the middle troposphere.
Next, it is assumed that fluctuations in the dry po-

tential temperature are driven by warming caused by

the environmental descent, we, which brings down po-
tentially warmer air from the upper layers of the at-
mosphere to the boundary layer, and also by radiative
losses from the top of the troposphere; that is,

2Du N
5 2 u w 1 Q . (2.3)0 e RDt g

Here, radiative losses are represented by the Newtonian
cooling rate, QR 5 QR0 2 u/tR, with a constant equi-
librium cooling rate, QR0 5 21 K day21, and radiative
damping, with relaxation time, tR. Combining conser-
vation of mass in (2.2) and the equation in (2.3), we is
eliminated to obtain the prognostic equation for the dry
potential temperature, u:

Du a
(1 2 s ) 2 a div v 5 s w 1 Q . (2.4)c H H c c RDt Hm

Here, the following coefficient,
2H N um 0a 5 , (2.5)

g

has been utilized for simplicity in notation. Following
YM2E, the moist thermodynamic exchanges between
the lower troposphere (also referred to as the subcloud
boundary layer) and middle troposphere satisfy the
equations

Du Dueb emh 5 2D 1 E, H 5 D 1 HQ ,d d RDt Dt

u
Q 5 Q 2 . (2.6)R R0 tR

In these equations, the term E represents forcing pro-
vided by the latent heat flux from the boundary layer.
The losses are represented by radiative cooling of the
top of the troposphere, and the two layers communicate
through downdrafts Dd. Following YM2E and YM2,

E 5 C D (|v |)(u* 2 u ),u H eb eb

↓D 5 2[(1 2 s )w 2 s w ](u 2 u ). (2.7)d c e c d eb em

Here, ueb and are the equivalent moist potential tem-u*eb

perature and saturated moist potential temperature above
the ocean surface; uem is the equivalent moist potential
temperature in the middle troposphere; 5 weH(2we),↓we

where H is the Heaviside function; and CuD(|vH |) is the
turbulent heat-flux rate. The precipitation effects are
represented implicitly by convective downdrafts, wd,
which in this simple model are proportional to convec-
tive updrafts:

1 2 ep
w 5 w , (2.8)d cep

with the precipitation efficiency, ep.
In the analysis below, the equation that describes the

dynamics of uem in (2.6) is replaced by an equivalent
equation for the potential temperature vertically aver-
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aged over the two layers, ^ue&z ø h/Hueb 1 uem, with
the following prognostic equation:

D^u & 1e z 5 E 1 Q . (2.9)RDt H

The use of ^ue&z rather than uem is motivated by the fact
that without forcing, the vertically integrated moist po-
tential temperature is essentially conserved (Emanuel
1994).

Modeling of the boundary layer turbulent drag. Fric-
tion exerted by turbulent fluctuations in the boundary
layer on the free troposphere is typically modeled with
a turbulent drag term. A number of authors (YM2E;
YM2) use the magnitude of horizontal wind,

D(|vH |) 5 |vH |, (2.10)

to model the drag. However, boundary layer turbulence
that drives the friction mechanism occurs even in the
absence of large-scale wind. Instead of (2.10), the au-
thors use a more general representation,

D(|vH |) 5 ( 1 |vH | 2)1/2, ± 0,2 2u u0 0 (2.11)

also utilized by Neelin and Zeng (1999, manuscript sub-
mitted to J. Atmos. Sci.). The constant u0 above rep-
resents the typical size of turbulent velocity fluctuations.
Neelin and Zeng (1999, manuscript submitted to J. At-
mos. Sci.) use values for u0 as large as 5 m s21. It is
easy to see that the representation in (2.10) can be re-
covered from (2.11) by setting u0 5 0. The presence of
nonzero turbulent fluctuations in (2.11) is useful for the
following reasons. First, it permits the system that de-
scribes convectively coupled dynamics to have reason-
able values at radiative–convective equilibrium without
having to impose a large-scale mean flow. Also, by al-
lowing the parameter u0 to vary, one can study how
properties of the system depend on the intensity of tur-
bulent drag. Finally, with the drag in (2.11), the changes
in stability properties can be recast very naturally as
response of the system to changing barotropic mean
wind; all of these points will be addressed later in sec-
tion 3.

a. The Lagrangian parcel adjustment scheme

In order to obtain a closed system for convectively
driven large-scale dynamics, it is necessary to use a
convective parameterization that defines feedbacks from
convective activity to the large-scale dynamics and ther-
modynamics. The specific form of this relationship de-
termines the models discussed in this paper.

In the LPA scheme, the convective updrafts adjust
dynamically to positive feedbacks from the fluctuations
of the CAPE and to negative feedbacks from the kinetic
energy of convective updrafts. The prognostic equation
associated with the LPA scheme, formulated in YM2E
and YM2, has the form

2c GDw wp mc c5 B 2 H (w ). (2.12)c1 2Dt u 2H0

In this expression, B 5 ueb 2 is the convectiveu*em

buoyancy, where saturated moist potential temperature,
, is related to the dry potential temperature byu*em

5 gu.u*em

The term (cpGmB)/(u0) in (2.12) expresses buoyancy
force due to the fluctuations in CAPE, and ( )/(2H)2wc

stands for kinetic energy of updrafts. The Heaviside
factor is utilized here to emphasize that convection can
occur only in the positive vertical direction, with warm
and moist air evaporating from the ocean surface and
rising through the boundary layer.

In the LPA parametrization, the prognostic variables
involve the large-scale wind, vH; the dry potential tem-
perature, u; the vertical velocity of convective updrafts,
wc; the moist equivalent potential temperature in the
boundary layer, ueb; and the averaged moist potential
temperature, ^ue&z, or equivalently, uem. Downdrafts,
both environmental and convective, are determined di-
agnostically, using conservation of mass in (2.2) and
the relation in (2.8).

b. Instantaneous adjustment to CAPE fluctuations

The LPA equation in (2.12) expresses dynamic ad-
justment of convective updrafts to the variations in
CAPE. When CAPE fluctuations are entirely balanced
by the kinetic energy of updrafts, the left-hand side of
(2.12) vanishes and no dynamics for the small-scale
vertical velocity occurs. Thus, in the ICAPE scheme the
equation in (2.12) is replaced by the diagnostic relation

2 c Gw p mc 5 (u 2 gu)H (u 2 gu). (2.13)eb eb2H u0

Here, the Heaviside factor is utilized because only pos-
itive CAPE fluctuations can drive convective updrafts.
Otherwise, all other equations in the ICAPE model are
exactly equivalent to their analogs in the LPA scheme.

The effects of precipitation are modeled by the con-
vective downdraft contributions, according to (2.8). An
interesting question is how the small-scale convective
downdrafts influence stability and other properties in
the system compared with the influence of environ-
mental descent on larger scales. As a paradigm the con-
vective part of the downdraft D, defined in (2.7), is
replaced by

D* 5 2(1 2 sc) (ueb 2 uem).↓we (2.14)

Mathematically, the absence of convective downdrafts
is equivalent to setting ep 5 1 in (2.8). In section 3d
the representation above will be utilized to address the
influence of small-scale convective downdrafts for the
ICAPE system.



900 VOLUME 58J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

c. Quasi-equilibrium scheme

Following YM2E and YM2, no buoyancy fluctuations
are permitted and B 5 0, based on the original instan-
taneous statistical QE idea of Arakawa and Schubert
(1974). This restriction of zero buoyancy yields that

D(u 2 gu)eb [ 0. (2.15)
Dt

By using (2.15) and combining the equations for u and
ueb, one easily obtains a nonlinear equation for the in-
tensity of convective updrafts in terms of the large-scale
winds and remaining thermodynamic variables:

Cu D (|v |)(u* 2 gu)H (u* 2 gu)H eb ebh

s H s Hc m c m2 w 1 div v H w 1 div vc H H c H H1 2 1 2[ h h h h

1 2 e sp c1 w 3 [gu(1 1 h /H ) 2 ^u & ]c e z]e hp

gasc5 w 1 gQ 1 ga div v .c R H HHm

(2.16)

The number of prognostic variables needed to describe
the dynamics based on the QE scheme is further de-
creased, as compared with the LPA and ICAPE schemes.
Only the large-scale winds, vH; the dry potential tem-
perature, u; and the quantity ^ue&z are obtained prog-
nostically. The moist equivalent potential temperature
ueb is determined trivially from the CAPE conservation
condition, ueb 5 gu, while wc is found from (2.16).
Environmental descent and convective downdrafts are
related to the other variables through the same diag-
nostic relations as in the LPA and ICAPE schemes.

3. Waves and instabilities for LPA and ICAPE
schemes

Section 2 was devoted to the discussion of several
models for large-scale dynamics in the Tropics coupled
with convective activity based on three convective pa-
rameterizations. The parameters used are reported in
Table 1 without further explanation and are identical to
those utilized in YM2E and YM2, which the reader can
consult for detailed motivation. For example, the time-
scale of Rayleigh forcing has been set at 75 days in
YM2E to give plausible physical results in the numerical
simulations and similar values to those utilized in other
idealized studies. In the following sections the prop-
erties of the linearized equations that describe small
departures from a radiative–convective equilibrium state
based on these convective parameterizations are de-
tailed. The specific features of convective parameteri-
zations can alter significantly the behavior at small
scales and LPA specifically introduces physically irrel-
evant parasitic modes. It is demonstrated that the pa-

rameterization introduced in section 2 based on the ICA-
PE mechanism is free of many of the defects associated
with the other parameterizations.

a. Radiative–convective equilibrium and the linear
system

In radiative–convective equilibrium (RCE), forcing
generated by fluctuations in the SST is exactly balanced
by radiative cooling from the top of the troposphere
through time-independent convective updrafts and
downdrafts. Since sc is typically a small number, the
approximation (1 2 sc) ø 1 in (2.4) will be henceforth
used for simplicity. The following radiative–convective
equilibrium conditions, valid for both the LPA and ICA-
PE schemes, are

asc w 1 Q 5 0,c R0Hm

2w uc 0(u 2 gu ) 5 ,eb 2c G Hp m

C 1 s wu c c22 1/2(u 1 u ) (u* 2 u ) 50 eb eb 1 2h h ep

h
3 u 1 1 2 ^u & ,eb e z1 2[ ]H

Cu 22 1/2(u 1 u ) (u* 2 u ) 5 2Q .0 eb eb R0H
(3.1)

The relations above define equilibrium variables de-
noted by bars. The remaining variables, such as we and
wd, can be recovered by using diagnostic relations (2.2)
and (2.8). A key point is that with the turbulent drag in
(2.11), an RCE state can be defined in a meaningful
way even if the barotropic mean wind is zero.

An RCE state is listed below, where turbulent fluc-
tuations are fixed at u0 5 2 m s21, and with barotropic
mean wind, u 5 22 m s21. The particular values at the
equilibrium can vary slightly with these two parameters,
but qualitative trends remain valid for a wide range of
u0 and u . In particular, the stability and wave properties
established in the remaining parts of the paper are qual-
itatively correct for perturbations around other realistic
RCE states. The parameter choices here are selected to
coincide with the RCE state in YM2E and YM2 so that
a direct comparison can be made.

1) The velocity associated with mean cumulus updrafts,
wc 5 2(QR0Hm)/(asc), is inversely proportional to
the area fraction, sc. For sc 5 0.01 it is easy to
compute that wc ø 0.4 m s21, while for a smaller
area fraction, sc 5 0.002, the corresponding value
is, wc ø 2 m s21.

2) Mean environmental subsidence is determined from
the zero–total vertical velocity condition, w 5 0, and
is equal to
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2s wc c 21w 5 ø 20.004 m s .e 1 2 sc

It is clear that environmental subsidence is essen-
tially independent of sc, at least for small values of
sc.

3) For mean moist potential temperature fluctuations in
the middle troposphere and in the boundary layer
the following estimates are valid:

HQR0(u* 2 u ) 5 2 ø 27 K,eb eb 22 1/2C (u 1 u )u 0

e HQh p R0
u 1 1 2 ^u & 5 2 ø 21 K.eb e z1 2[ ]H s wc c

4) Mean fluctuations of ueb 2 gu, which define CAPE
at the RCE state, are equal to

2w uc 0(u 2 gu ) 5eb 2c G Hp m

0.0004 K, for s 5 0.01cø 50.01 K, for s 5 0.002.c

The comparison of (u eb 2 gu) with other equilibrium
values shows that CAPE fluctuations at equilibrium are
indeed much weaker than other potential temperature
fluctuations in the system (Emanuel et al. 1994). This
is often used to justify the use of a quasi-equilibrium
convective parameterization that prohibits any CAPE
fluctuations:

u eb 2 gu 5 0.

This relation constitutes the only (small) difference be-

tween radiative–convective equilibrium for the QE
scheme and the two other schemes.

Henceforth it will be convenient to use nondimen-
sional variables that are naturally set by the RCE state.
In particular, the following velocity scale for large-scale
dynamics is utilized, V 5 (aa )1/2 ø 50 m s21, which
coincides with the propagation speed of dry Kelvin
wave. The equatorial Rossby radius sets the length scale,
L 5 1500 km. These scales yield the timescale, T 5
L/V ø ⅓ day. Note that with this choice of scales the
equatorial parameter b has a unit nondimensional size.
A natural scale for temperature fluctuations is given by
the moist saturated equivalent potential temperature in
the boundary layer, . Finally, the value of equilibriumu*eb

convective updrafts,

Q H 1R0 mW 5 2 , (3.2)
a sc

sets the scale for fluctuations in wc.
The linearization procedure for the three parameter-

izations, LPA, ICAPE, and QE, about the RCE is
straightforward. The resulting linear systems for all
three parameterizations are reported below in the non-
dimensional units described earlier. In these equations,
advection by the barotropic mean wind has been re-
moved by using a standard Galilean shift, x9 5 x 2 ut.
Here in section 3, the effects of rotation are also ne-
glected by assuming a quasi-one-dimensional structure
in the zonal direction for all the variables, or equiva-
lently, by ignoring y variations. Under these assump-
tions the linearized equations around the RCE state be-
come

2 2]u9 C L 2u 1 u au* ]u9 T ]u9 a ]u9 T T |Q |D 0 eb R05 2 u9 1 2 u9 5 2 u9 1 w9c2 2 1/2 2]t h (u 1 u ) V ]x9 t ]t u* ]x9 t u*0 D eb R eb

]^u9& C L h u Te z u 2 2 1/25 (1 2 u ) u9 2 (u 1 u ) u9 2 u9eb 0 eb2 2 1/2[ ]]t h H (u 1 u ) t0 R

]u9 C L u TWs H ]u9 heb u c m2 2 1/25 (1 2 u ) u9 2 (u 1 u ) u9 2 w9 1 u 1 1 2 ^u &eb 0 eb c eb e z2 2 1/2 1 2 1 2[ ] [ ]]t h (u 1 u ) he h ]x9 H0 p

TWs hc2 u9 1 1 2 ^u9& , not needed for QEeb e z1 2[ ]he Hp

c G H u*p m ebw9 5 (u9 2 gu9), used in ICAPEc eb2W u0

c G T]w9 u* TWp mc eb5 (u9 2 gu9) 2 w9, used in LPAeb c]t W u H0

]u9
u9 5 gu9, w9 5 L u 2 L 2 L u9 1 L ^u9& , used in QE, (3.3)eb c 1 2 3 4 e z]x9
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FIG. 1. Phase velocity diagram for moist eastward superfast waves (thick solid line) and moist eastward
gravity waves (dash–dotted line) in the LPA system without rotation. The speed of dry gravity waves is
indicated by a thin solid line.

with the constants

C L uu 21L 5 (1 2 u ) K ,1 eb 22 1/2h (u 1 u )0

H gam 21L 5 1 K ,2 [ ]h u*eb

C Lg TWs h Tu c22 1/2 21L 5 (u 1 u ) 1 g 1 1 2 g K ,3 0 1 2[ ]h he H tp R

TWsc 21L 5 K ,4 hep

TWs h gTQc R0K 5 u 1 1 2 ^u & 1 .eb e z1 2[ ]he H u*p eb

For simplicity, the primes in linearized equations will
be discarded throughout the rest of this section. It is
easy to verify that large-scale horizontal wind and dry
temperature in the equations in (3.3) evolve according
to the linear damped shallow-water equations, coupled
with moist thermodynamic processes through the con-
vective updrafts, in the last term of the second equation
in (3.3).

In the following sections various properties of linear
eigenmodes in the form, U 5 Cei(kx2v(k)t) 1 d(k)t, will be

discussed and compared for the linearized systems that
arise for several convective parameterizations consid-
ered in this paper. In this analysis, for each wavenumber,
k (or wavelength, 40 000/k km), real and imaginary parts
of a corresponding eigenvalue are treated separately us-
ing the following terminology. The properly scaled real
part, d(k), is naturally called the growth rate, while the
imaginary part, v(k), is referred to as the phase. The
scaled ratio v(k)/k and derivative dv(k)/dk are called
the generalized phase velocity (GPhV) and generalized
group velocity (GGrV). Naturally, GPhV and GGrV co-
incide with regular phase and group velocity only if the
underlying eigenvalue is purely imaginary and has no
growth associated with it.

b. Waves in the LPA system

The system of linearized equations for LPA in (3.3)
involves five prognostic equations and, therefore, at
each wavenumber it has five complex eigenvalues. The
meaning of all five branches of eigenvalues will be il-
lustrated for the standard set of physical constants from
Table 1, along with easterly mean wind, u 5 22 m s21,
and turbulent velocity fluctuations with intensity, u0 5
2 m s21. Figure 1 presents the GPhV diagram for this
case. Since the GPhV diagram is essentially symmetric
about v(k) 5 0, it suffices to present only its upper part,
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FIG. 2. Eigenvector structure of moist eastward superfast waves, (a) and (b), and moist eastward gravity waves, (c) and (d), for
the LPA system without rotation. The wavelengths are 5000 km for (a) and (c), and 200 km for (b) and (d).

where v(k)/k . 0. Among the five branches, there are
two eastward waves, shown in Fig. 1, with v(k) . 0,
two westward waves with v(k) , 0, and one wave that
is essentially standing, with v(k) ø 0, for all wave-
numbers k.

In order to give a physical interpretation of the various
waves, it is important to analyze the eigenvector struc-
ture corresponding to each of the eigenvalues. An eco-
nomical and illustrative way of representing eigenvector
structure is given by using bar diagrams (such as de-
picted in Figs. 2 and 4). Here, each of the variables is
represented by a single bar on a diagram, weighted ac-
cording to the magnitude of the corresponding (typically
complex valued) nondimensional component of the ei-
genvector. Each magnitude is then multiplied by its ap-
propriate dimensional scale, and the overall set of bars

is normalized so that it has a total unit weight. Such a
representation allows one to compare relative intensities
of various components in an eigenmode.

For the LPA scheme, one pair of eastward and west-
ward propagating waves is significantly faster than the
second pair of propagating waves, for all wavenumbers
reported in Fig. 1. For example, the generalized phase
velocity of the slower pair of waves at a supercluster
scale, L 5 2000 km, is approximately 12 m s21, while
the faster waves with the same wavenumber propagate
with an enormous GPhV of approximately 700 m s21.
Note that the generalized phase velocity of the fast
waves is large even at the small scales, with the smallest
value of 50 m s21, which is achieved in the limit of
large k. The speed of dry gravity wave, 50 m s21, is
also shown in this figure as a benchmark.
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FIG. 3. Linear properties for unstable modes: (a) the growth rates (day21) and (b) generalized phase velocities (m s21) for dynamics
at the equator with the following convective parameterizations: ICAPE (solid line), LPA (long-dashed line), QE (dot–dashed line),
and ICAPE without convective downdrafts (dotted line).

The bar diagrams in Figs. 2a,b show that the faster
modes are essentially dominated by small-scale con-
vective gusts, expressed by the variable wc, coupled to
variations in the boundary layer equivalent potential
temperature, ueb, in a wide range of scales, illustrated
with a relatively large scale, L 5 5000 km, and a smaller
scale of L 5 200 km. On the other hand, the slower
waves, illustrated in Figs. 2c,d, carry strong fluctuations
of the large-scale wind, u, coupled with the dry potential
temperature fluctuations through a mechanism similar
to dry gravity waves. Convective coupling of these
waves, reflected by the large amplitudes of fluctuations
in wc, ueb, and ^ue&z in Figs. 2c,d, causes a significant
decrease in phase velocity from 50 m s21, the value for
dry gravity waves, to approximately 12 m s21. These
points indicate that one may identify the slower pair of
waves as the eastward and westward moist gravity
waves, while the faster pair of waves can be called the
superfast waves, motivated by their extremely large
phase velocities. The remaining standing wave corre-
sponds to the almost conservation of ^ue&z discussed at
the beginning of section 2, and is dominated by the
fluctuations of ^ue&z; this wave will be referred to as the
^ue&z mode.

It is worthwhile to analyze the full physical picture
associated with eigenvectors of (3.3) for all waves in-
volved in this system. The intensity of updraft convec-
tive activity in the ICAPE parametrization is diagnos-
tically linked to the large-scale flow (which is entirely
two-dimensional in the zonal and vertical directions)
and, therefore, must be in phase with the ascending
branch of the large-scale circulation. This effect is in-
deed observed for moist gravity waves and the ^ue&z

mode (not graphed here due to the space limitations).
For the superfast waves, though, the opposite occurs,

where convective updrafts are out of phase with the
ascending branch of the large-scale circulation. This
fact, along with the superfast phase velocities and the
eigenstructure from Figs. 2a,b dominated by vertical
gusts, demonstrates that the superfast modes are, in fact,
nonphysical parasitic waves, generated as artifacts of
the LPA convective parameterization.

Up to this point the discussion involved only the wave
properties of normal modes based on the imaginary parts
of eigenvalues. On the other side, the stability proper-
ties, associated with growth rates, select the modes that
will most probably play an important role in the fully
nonlinear regime of dynamics. For the current example
it is observed that in response to easterly mean wind,
the eastward moist gravity wave (the slower eastward
branch in Fig. 1) has instability in the wide range of
wavelengths, 150 km , L , 20 000 km. The peak of
instability is located near L 5 1000 km, with the max-
imum growth rate of approximately 1.2 day21. The
growth rate diagram is represented by a long-dashed
curve in Fig. 3a. All other modes in this example are
damped at all wavenumbers with various damping rates,
except for the ^ue&z mode, which is essentially neutral.
Clearly, due to the absence of rotation or any other
symmetry-breaking effects apart from the direction of
mean wind in (3.3), west and east are entirely equivalent
here. Therefore, the response to westerly mean wind is
exactly symmetric, with the same instability of a west-
ward moist gravity wave instead of an eastward moist
gravity wave. Following common practice, easterly
mean winds will be given a preference here since they
naturally mimic circulation associated with a Walker cell
observed in the Pacific.

Finally, it is important to point out that the superfast
waves can themselves create weak linear instabilities.
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FIG. 4. Eigenvector structure of eastward moist gravity waves for the ICAPE system without rotation at wavelengths: 5000 km
(a), and 200 km (b).

For example, in the regime involving the set of param-
eters from Table 1 completed with u0 5 0.1 m s21 and
u 5 20.1 m s21, the superfast waves are unstable at
the short wavelengths, L , 300 km. This situation can
be distinctly problematic for numerical models operat-
ing in the nonlinear regime, since the fast moving modes
without physical significance can rapidly propagate and
contaminate the solutions through nonlinear interac-
tions. Therefore, it is desirable to design convective
parameterizations that do not have superfast or other
physically meaningless and potentially harmful modes.

The linearized analysis for the LPA scheme from YM2

only examined special solutions involving the linearized
moist gravity waves; the more detailed analysis of the
complete set of all normal-mode solutions developed
here reveals the existence of such nonphysical parasitic
waves for the LPA scheme. The nonlinear numerical
solutions with the LPA scheme presented in YM2E are
extremely noisy. It is interesting to speculate that one
nonphysical contribution to this noise involves the par-
asitic waves documented here. This is an interesting
topic for future investigation.

c. Waves in the ICAPE system

In the ICAPE system dynamic adjustment to CAPE
fluctuations is replaced by instantaneous adjustment.
Mathematically, the dimension of the linearized system
and the number of normal modes in (3.3) are each re-
duced by one. Among the four normal modes in the
ICAPE system, three can be identified as analogs of
waves in the LPA system. Indeed, two of the modes are
almost entirely equivalent to eastward and westward
moist gravity waves, both in stability and wave prop-
erties, as illustrated in Fig. 3 for the eastward moist
gravity waves. Figure 4 depicts the bar diagram for the

eigenvector structure of the moist gravity wave in the
ICAPE system at sample wavelengths 5000 and 200 km.
It is easy to see that the eigenvectors are virtually in-
distinguishable from those depicted for the LPA-gen-
erated moist gravity waves in Figs. 2c,d. The ICAPE-
generated ^ue&z mode, not displayed here, is also entirely
similar to its LPA-generated analog.

The remaining normal mode generated by the ICAPE
scheme, however, has no counterpart in the LPA system.
It is virtually a standing convective adjustment mode,
with enormous damping rates at all wavenumbers, d(k)
ø 21000 day21. At all wavenumbers, the eigenstructure
of this mode has essentially all of its amplitude pro-
portional to wc; thus, this mode represents rapid damp-
ing of CAPE perturbations. This single mode replaces
the two parasitic superfast waves that are observed in
the LPA scheme. The authors note that the superfast
waves arise due to the presence of a large constant,

c G H u* 10 000, for s 5 0.01p m eb c5
2 5W u 400, for s 5 0.002,0 c

in the nondimensional version of the dynamic CAPE
adjustment equation in (2.12) that sets a short timescale
for spurious waves. In the ICAPE scheme this mecha-
nism is shut off, which removes the unwanted superfast
modes and replaces them with a superdamped standing
wave, while keeping all physically relevant modes in-
tact. The superdamped mode is associated with rapid
adjustment to equilibrium of CAPE perturbations. This
indicates that the ICAPE scheme has some features sim-
ilar to CAPE adjustment schemes (Neelin and Yu 1994).

Moist gravity waves in the ICAPE system have sta-
bility properties that are almost entirely equivalent to
those of moist gravity waves of the LPA system, as
follows from the direct comparison of solid and long-
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dashed curves in Fig. 3a. In particular, the maximum
growth rate in both schemes is approximately equal to
1.2 day21. This rate corresponds to a moist gravity wave
with wavelength 1000 km. The band of unstable waves
for both schemes covers wavelengths in the range 150
km , L , 20 000 km. The maximum growth rate, the
wavelength of the most unstable mode, and the range
of instability all form useful diagnostics that will be
utilized later in section 4c to address stability properties
of the ICAPE system with rotation.

d. Waves in ICAPE scheme without convective
downdrafts and in the QE scheme

An interesting question raised earlier in section 2c
concerns the importance of small-scale convective
downdrafts for the stability properties of convectively
coupled models. This issue will be addressed within the
simple framework of the ICAPE scheme, where con-
vective downdrafts are switched off by setting ep 5 1
in the equation for ueb in (3.3). The dotted curve in Fig.
3a represents the growth rates associated with the ICA-
PE scheme without downdrafts. A comparison with the
solid curve in Fig. 3a shows that instability is much
more strongly pronounced without downdrafts, with the
growth without bound at smaller wavelengths. This con-
firms the intuition that convective downdrafts tend to
stabilize convectively coupled dynamics. In fact, the
scheme without downdrafts is dominated by the effects
of environmental convergence and, thus, effectively be-
comes a wave–conditional instability of the second kind
(CISK) parameterization (Kuo 1974; Lindzen 1974;
Emanuel 1994), where such catastrophic small-scale in-
stabilities are prominent.

The generalized phase speeds for the ICAPE moist
gravity waves without convective downdrafts are rep-
resented by the dotted curve in Fig. 3b. It is evident
from this figure that at the largest planetary scales, the
convective downdrafts have very little influence on the
generalized phase speed. For scales shorter than 5000
km this situation changes dramatically. There, the ab-
sence of convective downdrafts slows down the waves
significantly. For example, at a typical scale of 1000
km the generalized phase speeds of the ICAPE system
with and without convective downdrafts are 12 and 3
m s21, correspondingly, while at a scale, L 5 100 km,
the discrepancy is even stronger, with phase velocities
of 11.5 and 0.8 m s21.

Next, a brief discussion is given for wave and stability
properties of the scheme based on the QE assumption
in (2.15). This model involves only three prognostic
equations. A simple analysis shows that the three normal
modes include eastward and westward moist gravity
waves, extremely similar in their wave properties and
eigenvector structure to moist gravity waves in the LPA
and ICAPE systems, and the ^ue&z mode. The growth
rates for eastward moist gravity waves are represented
by the dot–dashed line in Fig. 3a. Deviations of the QE
growth rates from the ICAPE and LPA growth rates at

large scales are relatively weak, while at small scales
the picture changes qualitatively. Contrasting with the
LPA and ICAPE schemes, where growth rates decrease
with k and become negative at a finite wavelength,
growth rates in the QE model quickly saturate with k
at a positive value close to the maximum growth rate
in the ICAPE model and remain at this value for all
small scales.

A comparison of the solid and dot–dashed curves in
Fig. 3b shows that the wave properties of QE moist
gravity waves are remarkably similar to those of ICAPE
waves; this is also true for the ^ue&z mode. Eigenvector
structures of both QE-generated moist gravity waves
and the ^ue&z mode are indistinguishable from their coun-
terparts for the ICAPE-generated waves in an extremely
wide range of scales, with at least 50 km , L , 40 000
km.

e. Summary of properties for ICAPE, LPA, and QE
schemes

The results presented in the previous three sections
demonstrate that ICAPE, LPA, and QE schemes present
very similar wave and stability properties at large scales,
as concerns physically relevant moist gravity waves and
the ^ue&z mode. The behavior at small scales depends
on the details of the particular convective parameteri-
zation. Of the three schemes, the authors argue that the
ICAPE-based model, developed in section 2b, is pref-
erable for numerical simulations in the fully nonlinear
regime for the following reasons. The short-wave in-
stability for moist gravity waves is suppressed in the
ICAPE scheme, which is not true for the QE scheme,
and the ICAPE scheme does not possess the parasitic
nonphysical super-fast waves that are present in the LPA
scheme. Therefore, the subsequent discussions will be
focused on various additional properties for the model
based on the ICAPE parameterization, with only oc-
casional references to the other parameterizations.

4. The effect of rotation on convectively coupled
waves

The rotation of the earth plays an important role for
atmospheric dynamics in the Tropics. It is well known
(Gill 1982) that such widely observed phenomena as
equatorially trapped Kelvin waves and Rossby and
mixed Rossby–gravity waves owe their existence to the
change in sign of the Coriolis parameter at the equator.
However, it is a significantly more difficult task to study
dynamics with rotation since an extra spatial dimension
is required to resolve the meridional dependence. There
is a wide spectrum of approaches used to model me-
ridionally dependent equatorial dynamics, ranging from
fully meridionally resolved models to approximations
based on essentially no meridional dependence. An ex-
ample of such an approximation is the model based on
the so-called long-wave equatorial equations (Gill 1982;
Heckley and Gill 1984; Neelin and Yu 1994). There,
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for the standard dry shallow-water dynamics of the first
baroclinic mode, the full set of equatorial Rossby and
gravity waves is replaced by a reduced set of nondis-
persive modes in the limit of large zonal wavelength
with meridional geostrophic balance. In such a model,
all gravity waves and mixed Rossby–gravity waves are
filtered.

In this section, the authors take an intermediate po-
sition between the two extremes that avoids full reso-
lution but retains the most important structure in the me-
ridional direction sufficient to break the east–west sym-
metry at large scales and to generate the most important
effects of equatorial dynamics on the b plane. It is well
known (Gill 1982) that the linearized system of dry shal-
low-water equations on the equatorial b plane can be
represented through a sequence of decoupled wave sys-
tems by expanding the equations in the meridional di-
rection in terms of parabolic cylinder functions. This de-
composition reveals in an explicit form the Kelvin wave,
the mixed Rossby–gravity wave, as well as a sequence
of equatorial Rossby and gravity waves of various order
in the meridional direction. The presence of parameter-
ized convection and moist exchanges modifies the sys-
tem; however, it is still possible to use a meridional ex-
pansion based on parabolic cylinder functions. The trun-
cation procedure discussed in the next section reduces
the full nonlinear system through projections on the first
few meridional modes to a set of prognostic equations,
each of which has no meridional dependence. As a result,
the truncated system is significantly easier to analyze. At
the same time, it will be shown to retain the most essential
features of the rotationally driven dynamics for equato-
rially trapped modes, including slowly propagating moist
gravity waves.

In their recent analysis of observational studies,
Wheeler and Kiladis (1999) reported that gravity waves
have a prominent signature in the spectral decomposition
of propagating equatorial waves. In the dry dynamics,
equatorial gravity waves are known to move with high
phase speeds. For this reason, gravity waves are often
ignored in the dry simulations. It has been pointed out
in section 3 that convective coupling can significantly
slow down gravity waves making them potentially im-
portant in the convectively coupled dynamics.

The truncated system proposed in this section has
high zonal and crude meridional resolution. Such an
approximation is unable to represent meridional motion
at small scales, but is adequate for the description of
waves propagating in the zonal direction, including
moist gravity waves, even at the small scales. The trun-
cation strategy proposed here provides a reasonable
compromise between models that utilize numerically ex-
pensive high resolution in both zonal and meridional
directions, but are unable to resolve the details of con-
vection (e.g., Emanuel 1994) and schemes that sacrifice
the meridional dependence for the high resolution of
convective events, such as cloud-resolving models at
the equator (Grabowski 1998).

a. Meridional truncated equations and ICAPE
linearization

Here, a reduced set of equations is derived based on
truncation of the convectively coupled system in the
meridional direction, and the subsequent linearization
of these equations near the radiative–convective equi-
librium. Formally, the truncation step precedes linear-
ization and will be reported first. However, it can be
shown that truncation and linearization can be per-
formed in the reverse order, which is simpler for the
actual computations.

For shallow-water dynamics on the equatorial b plane
the following Riemann invariants (Gill 1982) are uti-
lized,

au* au*eb ebq 5 u 2 u , r 5 2 u 1 u .
2 21 2 1 2V V

With these variables, the nondimensional equations for
wind, u, and dry potential temperature, u, can be re-
written in terms of the Riemann invariants, q, r, and
meridional velocity, y , as follows:

]q ]q ]y 1 T T
5 2 2 2 yy 2 1 q1 2 1 2]t ]x ]y 2 t tD R

1 T T aT |Q |R01 2 r 2 w 1 N (U),c 121 22 t t VD R

]r ]r ]y 1 T T 1 T T
5 2 1 yy 2 1 r 1 2 q1 2 1 2 1 2]t ]x ]y 2 t t 2 t tD R D R

aT |Q |R02 w 1 N (U),c 22V

]y 1 ]q 1 ]r T
5 2 1 yq 2 2 yr 2 y 1 N (U),31 2 1 2]t 2 ]y 2 ]y tD

(4.1)

where N1(U), N2(U), and N3(U) are the nonlinear ad-
vection and drag terms; and U 5 (q, r, y , wc, ueb, ^ue&z)
is the solution vector. The remaining equations are trans-
formed in a similar way and are not reported here for
brevity.

In the dry case, the linear part of (4.1) can be de-
composed into a sequence of fully decoupled wave sys-
tems, based on expansion in terms of the parabolic cyl-
inder functions, Dn:

`

1/2U(x, y, t) 5 U (x, t)D (2 y),O n n
n50

2j
2n /2 21/2D (j) 5 2 F (2 j) exp 2 ,n n 1 24

n 2d [exp(2j )]
n 2F (j) 5 (21) exp(j ) . (4.2)n ndj
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Convective feedbacks to the linearized dry dynamics
are explicitly represented by the terms with wc in the
first two equations in (4.1). These feedbacks generate
nontrivial coupling among wave systems associated
with different meridional numbers, n.

The purpose of the meridional truncation procedure
is to retain the most observationally prominent waves
and to discard the rest of the less important meridionally
higher-order waves. For the simplest truncated system,
only a few waves are retained that correspond to the
four lowest meridional modes, with the following var-
iables: 1) q0, Kelvin wave; 2) q1, y 0, mixed Rossby–
gravity waves; 3) q2, y 1, r0, lowest-order Rossby and
gravity waves, symmetric about the equator; and 4) q3,
y 2, r1, lowest-order Rossby and gravity waves, antisym-
metric about the equator. To obtain a closed set of con-
vectively coupled equations, the lowest symmetric and
antisymmetric components in the meridional expansion
in (4.2) of the remaining variables, wc,0, wc,1, ueb,0, ueb,1,
^ue&z,0, and ^ue&z,1, are added to the set of large-scale
variables above. To complete the truncation procedure,
the moist coupling terms and nonlinear terms in each
of the equations are projected onto the meridional mode
that corresponds to a particular wave system. Since the
parabolic cylinder functions form an orthonormal basis,
the projection operator has the following simple form:

Proj ( f (x, y, t)) 5 ( f (x, y, t), D (y))D nn

`

5 f (x, y, t)D (y) dy.E n

2`

In the second step, the truncated equations are linearized
near the radiative–convective equilibrium state. Also,
the diagnostic relation in (2.13) based on the ICAPE
assumption is utilized to eliminate wc and to reduce the
set of prognostic equations. After some algebra, the fol-
lowing linear system arises:

Symmetric modes

]q ]q0 01 5 2Q q 1 Q r 2 Q u ,1 0 2 0 3 eb,0]t ]x

]r ]r0 0 1/22 1 2 y 5 2Q r 1 Q q 2 Q u ,1 1 0 2 0 3 eb,0]t ]x

]y 1 1/2 21/21 2 q 2 2 r 5 2Q y ,2 0 4 1]t

]q ]q2 2 1/21 2 2 y 5 2Q q ,1 5 2]t ]x

]u ]eb,0 5 Q q 2 Q r 1 Q (q 2 r )6 0 7 0 8 0 0]t ]x
1/22 2 Q y 2 Q u8 1 9 eb,0

1 Q ^u & ,10 e z,0

]^u &e z,0 5 Q q 2 Q r 2 Q u .11 0 12 0 13 eb,0]t

Antisymmetric modes

]q ]q1 1 1/21 2 2 y 5 2Q q 1 Q r 2 Q u ,0 1 1 2 1 3 eb,1]t ]x

]y 0 21/21 2 q 5 2Q y ,1 4 0]t

]r ]r1 1 3/22 1 2 y 5 2Q r 1 Q q 2 Q u ,2 1 1 2 1 3 eb,1]t ]x

]y 2 21/2 21/21 3(2) q 2 2 r 5 2Q y ,3 1 4 2]t

]q ]q3 3 1/21 2 2 y 5 2Q q ,2 5 3]t ]x

]^u &e z,1 5 Q q 2 Q r 2 Q u ,11 1 12 1 13 eb,1]t

]u ]eb,1 5 Q q 2 Q r 1 Q (q 2 r )6 1 7 1 8 1 1]t ]x
3/2 1/22 2 Q y 1 2 Q y8 2 8 0

2 Q u 1 Q ^u & .9 eb,1 10 e z,1 (4.3)

The constants Q1, . . . , Q13 depend on various physical
parameters and are listed in the appendix. Remarkably
enough, the variables that describe the modes symmetric
in y (symmetric variables) are found only in the first six
equations of the system in (4.3), while the antisymmetric
variables are found only in the last seven equations.
Therefore, the symmetric and antisymmetric parts of
(4.3) decouple completely in the linearized system. This
decoupling, of course, is destroyed in the fully nonlinear
truncated system so these wave fields can interact
through nonlinearity. The analysis of the linear system
above utilizes eigenmodes in the form U(x, t) 5
Cei(kx2v(k)t)1d(k)t, with the phase v(k) and normalized
growth rate, d(k), similar to section 3.

b. Classification of waves

The linear system in (4.3) describes the dynamics of
dry variables coupled with moist exchanges of energy
through convection, restricted to the first few meridional
modes. Here, a discussion of wave properties of this
system is given. The convectively coupled waves are
also compared to the waves that arise in the dry system.

At large scales, errors introduced by truncation and con-
vective parameterization have the least influence on the
properties of the convectively coupled system. Therefore,
a classification of moist waves will be based on the com-
parison of normal modes for (4.3) and the dry modes
obtained by the same meridional truncation at the large
scales (Gill 1982). Figure 5a presents the phases of the
normal modes for (4.3), while Fig. 5b shows the phases
of the corresponding dry waves, that is, dry Kelvin mode,
dry mixed Rossby–gravity (MRG), and the lowest-order
symmetric and antisymmetric dry Rossby and gravity
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waves. The values of physical parameters in this example
are taken from Table 1, with u0 5 2 m s21, u 5 22 m
s21, and sc 5 0.01. Remarkably enough, all dry equatorial
waves have analogs in the system described by (4.3). This
analogy is fully confirmed by the comparison of the un-
derlying wave structures and flow patterns of moist and
dry normal modes and provides quantitative support for
the idea that the equatorial waves observed by Wheeler
and Kiladis (1999) are moist convectively coupled waves.
Based on this similarity, it is natural to extend the names
of the dry modes to their moist counterparts and to intro-
duce a moist Kelvin wave, a moist MRG wave, etc. The
direct comparison of Figs. 5a and 5b shows that (gener-
alized) phase velocities of the moist modes are slower than
phase velocities of their dry counterparts. For example, at
the wavelength L 5 10 000 km, a moist Kelvin wave and
a moist MRG propagate with phase velocities that are 65%
and 55% slower than phase velocities of dry Kelvin and
dry MRG waves. A similar deceleration is observed for
symmetric and antisymmetric Rossby waves, as well as
symmetric and antisymmetric westward gravity modes.

In addition to the moist modes that are classified ac-
cording to their dry analogs, the 13 3 13 system in (4.3)
generates four more normal modes. All these extra
modes are essentially standing waves that are repre-
sented by four nearly indistinguishable curves near v(k)
5 0 on the phase diagram in Fig. 5a. A more detailed
analysis of growth rates and wave structure reveals that
these modes are the symmetric and antisymmetric an-
alogs of the ^ue&z mode and the superdamped convective
adjustment mode discussed in section 3c. A simple
check shows that the generalized phase speeds of the
moist modes are fairly independent of the strength and
direction of the mean flow, which means that the clas-
sification of moist waves given above can be extended
for any mean flow.

At scales much shorter than the equatorial Rossby
deformation radius, the effects of rotation are expected
to play no significant role in the dynamics. Therefore,
one expects that some of the normal modes with rotation
become similar to the normal modes that arise in the
absence of rotation, in the limit of large wavenumbers.
This similarity is indeed observed and illustrated in Ta-
ble 2. In the left column of this table various moist
modes are listed, according to their large-scale classi-
fication given above. Apart from the moist Kelvin and
moist MRG waves, all other modes include a symmetric
and antisymmetric variety. In the right column the an-
alogs of moist normal modes are reported based on com-
parisons at small scales. In particular, simple calcula-
tions show that the phase speed of the moist Kelvin and
the eastward branch (k . 0) of moist MRG wave de-
crease significantly with k, so that both modes become
essentially equivalent to the eastward moist gravity
wave generated by the system without rotation. Both
symmetric and antisymmetric westward gravity waves
converge at small scales to the moist westward gravity
wave of the system without rotation. Interestingly

enough, symmetric and antisymmetric moist eastward
gravity waves at small scales carry essentially no mois-
ture and convection fluctuations, and both travel at the
speed of a dry gravity wave, 50 m s21. The moist Rossby
wave and the westward branch (k , 0) of moist MRG
waves become essentially standing waves at small scales
and are dominated by meridional flow with very weak
small-scale convection. Finally, both symmetric and an-
tisymmetric ^ue&z modes and superdamped modes con-
verge to their analogs from the system without rotation.

c. Easterly mean wind and the transition to
instability

Here the discussion is concentrated on the stability
properties of normal modes for the system in (4.3) and
the structure of unstable modes. Rotation breaks the
east–west symmetry, and for simplicity only the system
driven by easterly mean wind is considered here.

For compatibility with other parts of this paper, the
standard set of parameters is adopted from Table 1, along
with u0 5 2 m s21, sc 5 0.01, and an easterly mean flow
of u 5 22 m s21. Simple stability analysis reveals that
an easterly mean wind triggers instability in the following
eastward waves: 1) the moist Kelvin wave, and 2) the
eastward branch of moist MRG wave. To estimate how
the effects of rotation modify stability properties, the
same stability diagnostics are utilized for these two modes
as in the absence of rotation at the end of section 3c.
The maximum growth rates remain almost unchanged by
rotation, with 1.2 and 1.1 day21 for the moist Kelvin and
the eastward branch of moist MRG waves, as compared
with 1.2 day21 for the eastward gravity wave without
rotation. The strongest instability tends to occur at slight-
ly shorter wavelengths—compare approximately 800 and
550 km for the moist Kelvin and moist MRG waves to
approximately 1000 km without rotation. The range of
instability for the moist Kelvin waves includes the wave-
lengths 125 km , L , 40 000 km and is almost equiv-
alent to the range of unstable modes without rotation,
while the moist MRG waves are unstable in a slightly
narrower range, 150 km , L , 10 000 km.

In Figs. 6 and 7 the actual flow patterns are presented
that are associated with moist Kelvin and moist mixed
Rossby–gravity waves, at the wavelength 700 km, near
the peak of maximum growth for both waves. At this
wavelength, moist Kelvin and moist MRG waves propa-
gate with the generalized phase speeds of 12.1 and 12.6
m s21, which are significantly slower than 50 and 50.6 m
s21, the phase speeds of dry Kelvin and dry MRG waves
at this scale. Convective coupling introduces a weak me-
ridional circulation to the flow pattern of the moist Kelvin
wave. Strong zonal equatorial convergence at the bottom
of the troposphere is augmented by weak meridional con-
vergence, and it produces the ascending branch of a Walk-
er-like circulation. The intensity of convective updrafts sets
the spatial distribution of the strength of convective heating
in this model, in accordance with the spatial structure of
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FIG. 5. Dispersion relation for equatorial Kelvin, mixed Rossby–gravity, and first two Rossby and gravity waves: (a) with
convective coupling via the ICAPE scheme; (b) dry case, without convective coupling. Since the dispersion relation is skew
symmetric, only the upper half-plane, v $ 0 is displayed.

the baroclinic heating mode. Figure 6 clearly indicates that
regions of strong convective heating, represented by lighter
shading, are positively correlated with the ascending
branch of large-scale motion.

The flow pattern for the moist MRG wave presented
in Fig. 7 is almost equivalent to its dry analog. Here,
the regions of strong zonal convergence are located
away from the equator and are accompanied by a weak
meridional cross flow. Meridional circulation in this
case is strong enough to generate a flow in the (y, z)
plane similar to the Hadley cell pattern, clearly iden-
tifiable on the diagram. Positive convective heating is
again in phase with the ascending branch of the vertical
circulation associated with this wave.

Next, the transition to instability is studied here. The
nonzero barotropic mean wind triggers the wind-in-
duced surface heat exchange (WISHE) (Emanuel 1987;
Yano and Emanuel 1991) mechanism that drives insta-
bilities of the system in (4.3) through the forcing term,

C L (1 2 u )uu eb u,2 2 1/2h (u 1 u )0

projected on the appropriate meridional components in
the equations for ueb,0 and ueb,1 in (4.3). On the other
hand, a simple check shows that in the absence of mean
wind the WISHE mechanism is suppressed, and the lin-
ear system in (4.3) is stable. The mean wind in this
model crudely represents the effects of midlatitude dy-
namics and, in general, does not have to be constant.
Therefore, sensitivity to the strength of the mean wind
can be utilized as a simplified model for studying the
dependence of stability of the tropical wave system on
the midlatitude dynamics.

The second important parameter that is intrinsically
nonconstant and that significantly affects stability prop-
erties is the intensity of turbulent drag in the boundary

layer, parameterized by u0, according to (2.11). The
combined effect of barotropic mean wind and turbulent
drag on stability is illustrated in Fig. 8. Here we show
the boundaries separating stable and unstable regimes
for moist Kelvin and moist MRG waves of the system
in (4.3), in the parameter space of |u | and u0. The two
curves are almost identical. The curve associated with
the moist Kelvin wave is located just above the curve
for the moist MRG wave, which corresponds to slightly
stronger instability for the moist Kelvin wave. Also,
transitions to instability for moist Kelvin waves (left
branch of the curve) occur at slightly smaller values of
|u |, while reverse transitions to stability occur at larger
values of |u |. However, the moist MRG waves have
nearly zero growth rates when the moist Kelvin waves
become critical; thus, any transition to instability in the
convectively coupled system involves both of these
waves with the possibility of their nonlinear interaction.
Table 3 lists various wave properties at criticality for
both the Kelvin and moist MRG wave, for the values
of u0 marked by diamonds and asterisks in Fig. 8. It is
easy to see that both the phase and group velocities are
fairly independent of the wavelength. Thus, both the
moist Kelvin and moist MRG waves tend to propagate
together in the transition to instability.

5. Concluding discussion

The structure of convectively coupled waves and in-
stabilities has been analyzed in detail for three convective
parameterizations, LPA, ICAPE, and QE, within the con-
text of simplified shallow-water models. One of the novel
features in these models is a turbulent drag parameteri-
zation [see Eq. (2.11)] that incorporates the nonzero ef-
fect of turbulence on the boundary layer even when the
barotropic mean flow vanishes. This feature allows for a
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TABLE 2. Classification of moist equatorial waves at large scales
and behavior of moist equatorial waves at small scales.

Wave classification at large scales Wave analog at small scales

Moist Kelvin wave Eastward moist gravity wave
(no rotation)

Moist eastward MRG wave Eastward moist gravity wave
(no rotation)

Symmetric and antisymmetric
moist Rossby wave

Dry standing wave dominated
by meridional flow

Moist westward MRG wave Dry standing wave, meridional
flow

Symmetric and antisymmetric
eastward moist gravity wave

Dry eastward gravity wave

Symmetric and antisymmetric
westward moist gravity wave

Westward moist gravity wave
(no rotation)

Symmetric and antisymmetric su-
perdamped mode

Superdamped mode (no rota-
tion)

Symmetric and antisymmetric
^ue&z mode

^ue&z mode (no rotation)

FIG. 6. Flow pattern associated with unstable moist Kelvin wave with the wavelength, L 5 700 km. From left
to right and top to bottom: horizontal flow field at the bottom of the troposphere; flow in the zonal and vertical
directions at the equator; flow in the meridional and vertical directions in the middle of one zonal wavelength;
strength of convective heating, with light shading for positive heating, and dark shading for negative heating.

well-defined stable radiative–convective equilibrium
when the mean flow vanishes and also facilitates the
transition to instability studies reported in section 4c.

While the analysis presented here does not provide a
definitive physical explanation for the wavelength of con-
vectively coupled tropical waves, several important facts
regarding the three model convective parameterizationsare

established in section 3. This study establishes that intro-
ducing short finite-timescale processes involving the pa-
rametrization of small departures of CAPE through either
LPA or ICAPE gives robust scale-selective behavior of
moist gravity waves in contrast with strict QE. Unlike the
QE parameterization, both the LPA and ICAPE schemes
have scale-selective finite bands of unstable wavelengths
centered around typical cluster and supercluster scales with
virtually identical growth rates (see Fig. 3b) and wave
structure (see Figs. 2c,d and 4) for the unstable waves.
However, the LPA scheme also has the nonphysical su-
perfast parasitic waves (see Figs. 1, 2a,b), which are un-
desirable for both physical and numerical purposes, while
the new ICAPE parameterization removes the parasitic
waves completely and replaces them by a single mode that
strongly damps CAPE perturbations. While the LPA
scheme has an attractive physical basis in attempting to
incorporate shorter-timescale departures from strict quasi
equilibrium, detailed analysis reveals the unexpected un-
attractive feature of superfast parasitic waves. Similar cau-
tionary remarks apply in other attempts to model departure
from quasi equilibrium in numerical general circulation
models. For example, it would be interesting to see wheth-
er such superfast parasitic waves are present in other con-
vective parametrizations, such as models with convective
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FIG. 7. Flow pattern associated with unstable moist eastward mixed Rossby–gravity wave with the wave-
length L 5 700 km. From left to right and top to bottom: horizontal flow field at the bottom of the troposphere;
flow in the zonal and vertical directions at one Rossby deformation radius north of the equator; flow in the
meridional and vertical directions at 1/6 of one zonal wavelength; strength of convective heating, with light
shading for positive heating, and dark shading for negative heating.

response time lag (Emanuel 1993). In section 3d, it is also
established that if the effect of small-scale convective
downdrafts on the boundary layer is suppressed, then the
ICAPE scheme behaves like a standard wave–CISK pa-
rameterization with catastrophic instability for increasing
wavenumbers (see Fig. 3a). Similar remarks are valid for
the LPA parameterization.

An important topic studied here, in section 4c, is the
fashion in which an imposed barotropic mean wind trig-
gers a transition to instability in the Tropics through con-
vectively coupled waves. This is the simplest analytical
problem for studying the influence of midlatitudes on
convectively coupled waves. For an easterly barotropic
mean flow with the effect of rotation, both supercluster-
scale moist Kelvin waves and cluster-scale mixed Ross-
by–gravity waves effectively participate in the transition
to instability (see Fig. 8). Furthermore, both the instability
band as well as the phase speed and group velocity of
the critical waves in the transition to instability are re-
markably insensitive to the detailed turbulent drag pa-
rameterization (see Table 3 above). A detailed weakly
nonlinear theory for the transition to instability in these
problems is being developed by the authors and will be
presented elsewhere in the near future.

Finally, the results in section 4 for the ICAPE pa-

rameterization with the effects of rotation utilize a novel
truncation procedure involving complete zonal resolu-
tion but low-order meridional truncation as presented
in section 4a. As mentioned in section 4 this model is
intermediate between equatorial long-wave approxi-
mations (Heckley and Gill 1984; Neelin and Yu 1994)
and complete meridional resolution on the equatorial b
plane. Such a strategy might be very useful in extending
current equatorial cloud-resolving model simulations
(Grabowski 1998; Grabowski et al. 2000) beyond purely
two-dimensional flow in both a conceptually and com-
putationally attractive framework. The authors together
with W. Grabowski are developing this approach and
will report on this in the near future.
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FIG. 8. Regions of linear stability and instability for the meridionally truncated ICAPE system forced by
easterly barotropic mean flow. The parameter space includes the strength of barotropic mean flow, |u |, and
the strength of turbulent drag, expressed via mean velocity fluctuations, u0. The top and bottom curves
represent the critical values of mean wind required to generated instability of moist Kelvin (diamonds) and
moist mixed Rossby–gravity (asterisks) waves, for various values of u0.

TABLE 3. Transition to instability for the moist Kelvin wave and the
eastward branch of mixed Rossby–gravity waves driven by easterly
barotropic mean wind in the meridionally truncated ICAPE system.

Drag,
m s21

Critical wind,
m s21

Wavelength,
km

Phase speed,
m s21

Group speed,
m s21

Moist Kelvin wave
1
2
3
4
4.2

20.02
20.17
20.55
21.7
22.5

1600
1350
1250
1000

900

12.1
12.1
12.0
12.0
12.0

11.6
12.0
11.7
11.8
11.8

Moist mixed Rossby–gravity wave, eastward branch
1
2
3
4

20.03
20.20
20.65
22.1

1000
800
725
675

12.9
12.6
12.5
12.4

11.0
11.3
11.4
11.5

APPENDIX

Constants Used in Eq. (4.3)

The constants Q1, . . . , Q13 are computed according
to the following formulas:

1
Q 5 (M 1 M 1 M 1 gM ),1 1 2 4 52

1
Q 5 (M 1 M 2 M 2 gM ), Q 5 a9M ,2 1 2 4 5 3 52

1
Q 5 M 1 M , Q 5 (M 1 M 1 M ),4 2 3 5 1 2 42

1 gM 1 gM8 8Q 5 M 2 , Q 5 M 1 ,6 6 7 61 2 1 22 a9 2 a9

H hmQ 5 u 1 1 2 ^u & ,8 eb e z1 2[ ]2h H

TWscQ 5 M 1 M 1 M , Q 5 ,9 7 8 9 10 hep

1 M 1 M4 4Q 5 M 1 , Q 5 M 2 ,11 10 12 101 2 1 22 a9 2 a9

C Lu 2 2 1/2Q 5 (u 1 u ) ,13 0H
(A.1)

with
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2 2C L 2u 1 u TD 0M 5 , M 5 ,1 22 2 1/2h (u 1 u ) t0 D

C L TD 2 2 1/2M 5 (u 1 u ) , M 5 ,3 0 4h tR

c G HT |Q | u*p mR0 ebM 5 ,5 2u* W ueb 0

C L uuM 5 (1 2 u ) ,6 eb 2 2 1/2h (u 1 u )0

C Lu 2 2 1/2M 5 (u 1 u ) ,7 0h

c G HTWs h u*p mc ebM 5 u 1 1 2 ^u & ,8 eb e z 21 2[ ]he H W up 0

TWs hcM 5 1 1 ,9 1 2he Hp

C L u au*u ebM 5 (1 2 u ) , a9 5 .10 eb 2 2 1/2 2H (u 1 u ) V0

(A.2)
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