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Abstract. It has long been suggested on theoretical grounds that MHD waves must occur in the solar
corona, and have important implications for coronal physics. An unequivocal identification of such
waves has however proved elusive, though a number of events were consistent with an interpretation
in terms of MHD waves. Recent detailed observations of waves in events observed by SOHO and
TRACE removes that uncertainty, and raises the importance of MHD waves in the corona to a higher
level. Here we review theoretical aspects of how MHD waves and oscillations may occur in a coronal
medium. Detailed observations of waves and oscillations in coronal loops, plumes and prominences
make feasible the development ofcoronal seismology, whereby parameters of the coronal plasma
(notably the Alfvén speed and through this the magnetic field strength) may be determined from
properties of the oscillations. MHD fast waves are refracted by regions of low Alfvén speed and slow
waves are closely field-guided, making regions of dense coronal plasma (such as coronal loops and
plumes) natural wave guides for MHD waves. There are analogies with sound waves in ocean layers
and with elastic waves in the Earth’s crust. Recent observations also indicate that coronal oscillations
are damped. We consider the various ways this may be brought about, and its implications for coronal
heating.

1. Introduction

The recent discovery by the Transition Region and Coronal Explorer (TRACE)
spacecraft of oscillations in coronal loops (Aschwandenet al., 1999; Nakariakov
et al., 1999) raises the twin prospects of a greater insight into the process of
coronal heating and the use of such oscillations as a diagnostic tool for coronal
seismology. The theoretical basis for coronal seismology has been known for some
time, with the demonstration that magnetohydrodynamic (MHD) waves in coronal
structures may be refracted by regions of low Alfvén speed (Uchida, 1968, 1970;
Habbal, Leer, and Holzer, 1979) and thus wave guided by such regions and so
able to form distinctive wave packets (Edwin and Roberts, 1983; Roberts, Edwin,
and Benz, 1983, 1984). In fact the evidence for MHD waves in the corona has
increased dramatically over the last few decades. Their existence in coronal loops
had been inferred from modulated radio emission (see Roberts, Edwin, and Benz
(1984) and the review by Aschwanden (1987)). Oscillations have been detected in
prominences (e.g., Tsubaki, 1988) and given a theoretical description in terms of
MHD waves (Joarder and Roberts, 1992, 1993; Oliveret al., 1993; Roberts and
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Joarder, 1994; Joarder, Nakariakov, and Roberts, 1997). Sunspots support a variety
of wave phenomena that may be interpreted in terms of MHD waves (see Thomas
and Weiss, 1992, and articles therein). Recently, coronal plumes have been shown
to harbour waves, and these may be interpreted as slow MHD waves (DeForest
et al., 1997; DeForest and Gurman, 1998; Ofman, Nakariakov, and DeForest, 1999;
Ofman, Nakariakov, and Sehgal, 1999). Finally, there are global disturbances in
the form of EIT waves (Thompsonet al., 1999, 2000) and quakes (Kosovichev and
Zharkova, 1999).

The fact that the corona is highly inhomogeneous complicates the theoretical
description of MHD waves, giving rise to a variety of phenomena including phase
mixing, resonant absorption and dispersive ducting. But the ability to measure
oscillations in closed structures (prominences, coronal loops) and waves in open
structures (plumes) establishes the basis for coronal seismology, suggested earlier
on theoretical grounds (Uchida, 1970; Roberts, Edwin, and Benz, 1984; Roberts,
1986). Of course, waves are interesting in their own right, simply because they are
there, but their use in coronal seismology, in accelerating the solar wind, and in
coronal heating adds greatly to that interest.

Any description of MHD waves in coronal structures modelled as magnetic flux
tubes leads to the occurrence of two particular speeds, in addition to the familiar
sound speedcs and Alfvén speedcA. The slow magnetoacoustic speedct and the
kink speedck are defined by
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whereρ0 andcA are the plasma density and Alfvén speed inside the tube, andρe
andcAe are their values in the tube’s environment. The speedct is sub-sonic and
sub-Alfvénic; the speedck is the mean Alfvén speed of the medium, intermediate
between the Alfvén speed inside the tube and the Alfvén speed in the environment.
In the lowβ coronal plasma, where sound speeds are much smaller than Alfvén
speeds, the slow speedct is close to the sound speed inside the flux tube. If the
magnetic field strengthB0 inside a coronal flux tube (loop) is comparable to the
field strengthBe in the environment, soB0 ≈ Be, but the plasma densities are very
different, so that the inside of the tube is much denser than its surroundings (i.e.,
ρ0 � ρe), thenck ≈

√
2cA. Thus the kink speed may be some 41% larger than

the Alfvén speed inside the tube. The speedsct andck are important also in studies
of isolated photospheric flux tubes (e.g., Roberts, 1985, 1990a, b, 1992; Hollweg,
1990a; Ryutova, 1990).

2. Wave Equations

The observed complexity of the coronal plasma places severe demands on any
theory to model its MHD behaviour. In wave studies it is common to consider a
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magnetically structured atmosphere in which the effects of gravity and flow are
ignored (e.g., Roberts, 1981). A flux tube geometry is of particular interest. Ignor-
ing the effect of twisted magnetic fields (both twisted fields and steady flows can
in principle also be included, with interesting and important results; see Bennett,
Roberts and Narain (1999) for a recent discussion of twisted tubes), we consider the
equations of linear MHD describing a small amplitude perturbative flowv about an
equilibrium magnetic fieldB0. The equilibrium field is taken to be unidirectional
and aligned with thez-axis of a cylindrical coordinate system(r, θ, z), though it
may vary in strength across the field; specificallyB0 = B0(r)ẑ (for unit vectorẑ
aligned with thez-axis).

This model aims to describe waves in a magnetically structured coronal at-
mosphere but it should be noticed that it ignores the effects of field-line curvature
– coronal flux tubes are curved loops – and gravitational stratification. Curvature
is likely to be of some importance in describing waves in loops; similarly, stratifi-
cation may be of some significance, especially in any description of the coupling
of a coronal loop to the dense photosphere–chromosphere. Ultimately, both these
effects need to be incorporated into a description of the MHD modes, though they
are not likely to be first-order effects.

The equilibrium plasma pressurep0(r) and densityρ0(r) of a radially structured
magnetic atmosphere are such as to maintain total pressure balance: the sum of the
plasma pressurep0 and the magnetic pressureB2

0/2µ is a constant,

d

dr

(
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2
0(r)

2µ

)
= 0 . (2)

Where the field is strong, the plasma pressure is correspondingly reduced.
Small amplitude motionsv = (vr , vθ , vz) about the equilibrium (2) satisfy the

coupled wave equations (e.g., Roberts, 1981, 1991b)
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The evolution of the total perturbed pressurepT (r, θ, z)(= p + B0Bz/µ, for per-
turbed plasma pressurep and magnetic field componentBz in the direction of the
applied field) is described by
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Equation (6) results from a combination of the isentropic equation and the induc-
tion equation of ideal MHD. Equations (3)–(5) come from the components of the
momentum equation in which the magnetic force has been expressed in terms of
pT .

One solution of the above system of equations ispT = 0 with vr = vz = 0 and
∂/∂θ = 0; this describes a torsional Alfvén wavev = (0, vθ ,0) which satisfies the
wave equation with Alfvén speedcA(r). The torsional Alfvén wave exhibits phase
mixing (Heyvaerts and Priest, 1983). We return to this topic later.

More generally, whenpT 6= 0, it is usual to describe pressure variations (and
the associated motions) in terms of a Fourier representation, writing

pT (r, θ, z, t) = pT (r)expi(ωt + nθ − kzz) (7)

for frequencyω, azimuthal numbern = 0,1,2, . . . , and longitudinal wavenum-
ber kz. The resulting equations may then be manipulated to yield the ordinary
differential equation (e.g., Edwin and Roberts, 1983)
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Equation (8) possesses singularities atω2 = k2
z c

2
A andω2 = k2
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t ; these sin-

gularities generate the Alfvén and slow continua, respectively. The presence of
these singularities is an indication of a number of interesting effects connected with
the phenomenon of resonant absorption (Goedbloed, 1971, 1983; Goossens, 1991;
Goossens and Ruderman, 1995; Tirry and Goossens, 1996), of particular interest
in the question of coronal heating.

We consider the specific case of a flux tube of radiusa, field strengthB0 and
plasma densityρ0 embedded in a magnetic environment with field strengthBe and
plasma densityρe:

B0(r) =
{
B0, r < a,

Be, r > a,
ρ0(r) =

{
ρ0, r < a,

ρe, r > a.
(9)

The Alfvén, sound and tube speeds within the tube arecA, cs and ct , and their
values in the external medium arecAe, cse andcte.

For the equilibrium (9) the differential equation (8) may be solved forpT in
terms of Bessel functionsJn(n0r) in r < a andKn(mer) in r > a, with the
result (see McKenzie, 1970; Wentzel, 1979; Wilson, 1980; Spruit, 1982; Edwin
and Roberts, 1983; Cally, 1986; Evans and Roberts, 1990)
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Equation (10) is the dispersion relation describing waves in a magnetic flux tube
that is embedded in a magnetic environment; it applies whenme > 0, corre-
sponding to waves that are confined to the tube. The integern that arises in the
description of tube waves defines the geometry of the vibrating tube. The case
n = 0 corresponds to the sausage wave (a symmetric pulsation of the tube, with
the central axis of the tube remaining undisturbed). The casen = 1 describes
the kink mode (involving lateral displacements of the tube, maintaining a circular
cross-section, with the axis of the tube resembling a wriggling snake). Finally, there
are fluting modes (n ≥ 2), which ripple the boundary of the tube. Only the kink
mode displaces the central axis of the vibrating tube.

The restrictionme > 0 imposed on the flux tube dispersion relation means
that the amplitude of a wave declines exponentially with radiusr(> a), so that
far from the tube there is no appreciable disturbance. Inside the tube (forr < a)
the disturbance is oscillatory ifn2

0 > 0 or non-oscillatory (evanescent) ifn2
0 < 0.

Modes that inside the tube are oscillatory inr are called body waves. In the strongly
magnetized coronal plasma, the modes are body waves. The waves are dispersive,
the phase speedc(= ω/kz) of a tube wave depending upon its wavelength, 2π/kz,
through the combinationkza.

The dispersion relation (10) possesses two sets of modes, namely fast and slow
body waves. (There are no surface (n2

0 < 0) waves.) The fast waves are strongly
dispersive, and arise only ifcAe > cA; if cAe < cA, then the fast waves are leaky
and propagate energy away from the region of high Alfvén speed. Fast body waves,
then, are trapped in regions oflow Alfvén speed, typically corresponding to regions
of high plasma density. Regions of low Alfvén speed in a strongly magnetized
plasma provide wave guides for fast magneto-acoustic waves (Uchida, 1974; Hab-
bal, Leer, and Holzer, 1979; Edwin and Roberts, 1983; Roberts, Edwin, and Benz,
1984).

There are close analogies between the behaviour of fast magnetoacoustic body
modes in a strongly magnetized plasma and Love waves in the Earth’s crust and
Pekeris sound waves in an internal ocean layer; the fast sausage waves are some-
times referred to as magnetic Pekeris waves and the fast kink waves as magnetic
Love waves (Edwin and Roberts, 1983; Roberts, Edwin, and Benz, 1984).

The slow waves (with phase speed between the slow speedct and the tube’s
sound speed) are only weakly dispersive. In a strongly magnetized plasma, their
speed is close to the sound speed in the tube. The coronal loop provides an almost
rigid tube for the one dimensional ducting of sound waves.

Following the treatment in Roberts, Edwin, and Benz (1984), we may discuss
both standing and propagating modes. Standing waves occur in closed structures
such as loops, provided the wave has had time to travel the entire length of the
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loop and back again; for shorter times, the wave has not reached the ends of the
loop, where line-tying in the dense lower atmosphere causes reflection, and so the
wave propagates freely as if the structure were open. Settingkz = Nπ/L in a tube
(coronal loop) of lengthL gives the allowed wavelengths 2L/N (= 2π/kz) that fit
along the closed tube. The integer(N − 1) describes the number of nodes of the
vibration along the axis of the tube, withN = 1 being the principal mode (and
having no nodes within the tube). The periodτ (= 2π/ω) of a slowwave (c ≈ ct )
standing in a loop is

τ = 2L

Nct
≈ 2L

Ncs
. (11)

This generally produces long periods and requires quite some time to set up. For
example, in a loop of lengthL = 100 Mm (= 105 km) with Alfvén speedcA =
103 km s−1 and sound speedcs = 200 km s−1 it requires some 103 s for a slow
wave to traverse the extent of the loop and so set up a standing wave with this
period (for the principal modeN = 1). This is so long that it may be difficult to
observe in general, except perhaps in short loops where the period can be reduced
to the order of 100 s.

Turning to fast waves, thekink mode has speedc ≈ ck and so produces a
standing wave of periodτ given by

τ = 2L

Nck
. (12)

We may view this as a global mode of oscillation of a coronal flux tube, moving the
whole tube in its vibration. The mode exists for all wavelengths and frequencies as
a trapped oscillation of the tube. In the extreme of a coronal tube with internal field
strengthB0 comparably with the field strengthBe in the environment but plasma
densityρ0 much greater than the densityρe in the environment, so thatB0 ≈ Be
andρ0 � ρe, the kink speed isck ≈

√
2cA and the period (12) of a standing kink

mode becomes

τ =
√

2L

NcA
. (13)

This is much shorter than the period of a slow wave; for the above illustration, we
obtainτ = 140 s for the principal modeN = 1, and about 100 s must elapse before
the wave has had time to become aware of the loop ends.

When the mode numberN is of low or moderate value (say,N = 1–10) and
a � L – the usual situation in a coronal loop – then the slow modes and the fast
kink mode are the only magneto-acoustic waves to be ducted within a loop. The
fast sausage modeleaksfrom the loop. This suggests that it is the kink mode that
is most likely to be seen as astandingwave in a coronal loop.

The conclusion that for standing waves it is the fast kink mode or the slow
modes that most likely arise (the sausage wave leaking for lowkza) does not
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apply when waves are impulsively excited; then all modes are equally possible.
The case of impulsively excited waves is in fact of interest. Impulsive excitation
of waves may be due to a flare or reconnection or indeed any process that imparts
a sudden motion or pressure variation into a loop. Our discussion considers the
case of an open magnetic structure, which includes the case of waves in a loop
provided the wave has not had time to reach the ends of the loop (and so feel
the effect of line-tying). Of particular interest is the fast sausage wave, since this
mode is leaky for smallkza and so unable to exist as a trapped standing wave
(unless the mode numberN is moderately large, of orderL/a). However, when
impulsively excited the wave is able to propagate freely along the tube and does so
in accordance with its strong dispersive nature. The result is that the sausage wave
produces a distinctive wave signature. The distinctive nature of this wave packet
makes it potentially useful as a means of coronal diagnostics with high temporal
resolution (to be contrasted with the use of standing waves for more moderate
temporal resolution). The impulsively generated fast wave produces a signature
which consists of three parts: a low-amplitude periodic phase, followed by a larger
amplitude quasi-periodic phase, and finally a decay phase. The longest time scales
in the motion are those in the periodic phase; the quasi-periodic phase produces
high frequency oscillations. An estimate of the time scaleτ pulse in the periodic
phase is provided by (Roberts, Edwin, and Benz, 1984)

τ pulse= 2πa

j0cA

(
1− ρe

ρ0

)1/2

, (14)

wherej0 (≈ 2.40) denotes the first zero of the Bessel functionJ0. In this estimate
we have taken the Alfvén speed to be much larger than the sound speed. For a tube
of radiusa = 103 km and Alfvén speedcA = 103 km s−1, with plasma density
much higher than that in the environment (soρ0 � ρe), this produces a time scale
of 2.6 s; such short time scales make for high temporal resolution seismology. In
addition to the time scaleτ pulse, the decay time of a propagating disturbance carries
seismic information too. The diagnostic use of the decay time of a propagating
pulse is considered in Roberts, Edwin, and Benz (1984).

We end our discussion with a specific illustration, considering the loop oscil-
lations observed by TRACE. Aschwandenet al. (1999) report the detection of
oscillations in five loops, with lengthsL extending from 90 to 160 Mm and periods
τ in the band 258–320 s; oscillation amplitudes are in the range 2.0–5.6 Mm.
The oscillations occurred following a flare that began at 14 July 1998, 12.55 UT,
their onset apparently being due to a disturbance that propagated from the central
flare site with a radial speed of about 700 km s−1. Aschwandenet al. conclude
that the loop oscillations are most likely standing kink modes. The same event is
considered by Nakariakovet al. (1999) who report the oscillations of a loop, again
interpreted as a standing kink mode, and pay particular attention to the damping
of the oscillation. The oscillation has a displacement amplitude of 2 Mm (speed
47 km s−1), with a cyclic frequencyν (= ω/2π) of 3.9 mHz, corresponding to
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a period of 256 s. The loop is 130 Mm in length. The oscillation lasts for over
20 min; Nakariakovet al. estimate the decay time scale to be about 14.5 min (i.e.,
the oscillation amplitude falls by a factor ofe in a time of about 14.5 min).

Consider, then, the application of the period formula (12) to the TRACE oscilla-
tions, interpreted as standing kink waves. The shortest loop observed by Aschwan-
denet al. is of lengthL = 90 Mm and has a period of 258 s; for the principal
mode, Equation (12) produces a kink speed of almost 700 km s−1. On the other
hand, the longest loop observed is of length 160 Mm and has a period of 278 s,
producing a kink speed of close to 1000 km s−1. This difference in the kink speed
may perhaps be understood as a consequence of differing density contrasts be-
tween a loop and its environment. For the loop oscillation observed by Nakariakov
et al., an interpretation in terms of a standing kink mode in its principal oscillation
(N = 1) produces a kink speed ofck = 1014 km s−1. Assuming thatρ0 = 10ρe
(the actual density ratio is not known) then produces a coronal loop Alfvén speed
of cA = 752 km s−1.

3. Damping

The observed extraordinary damping reported in the coronal loop oscillations de-
tected by TRACE raises a major puzzle. Why do the oscillations decay so rapidly,
in only a relatively few periods? To answer our question is not easy because as
yet there is no theory of coronal oscillations that takes full account of the many
complexities of the corona. For example, the theory described above makes no
allowance for loop curvature, for stratification or for continuous (as opposed to
discrete) field or plasma inhomogeneity, nor is there any realistic modelling of the
coupling of the coronal plasma to the denser chromospheric–photospheric plasma.
Moreover, the medium has been treated as ideal. So a number of effects crowd
in and complicate our picture with some of these effects leading to damping. By
damping we mean that the oscillation decays in time; this may indicate a local
physical damping with heating resulting or it may indicate a transfer of energy
from the visible oscillations to some other agency (with no heating resulting). Both
effects are quite possibly occurring. Here we consider briefly some of the effects
that require evaluation if we are to explain the observed damping. A fuller dis-
cussion of this problem will ultimately require a detailed and probably numerical
treatment of a realistic coronal loop. In the meantime, it behoves us to enquire as
to what effects are most likely, and where possible to estimate the time scales they
produce.

Non-ideal effects, such as viscous and ohmic damping, optically thin radiation,
and thermal conduction, act to damp wave motion. Damping due to optically thin
(or thick) radiation and thermal conduction have been assessed for an unbounded
uniform medium (e.g., Bogdan and Knölker, 1989; Ibañez and Escalona, 1993) or
for a slab geometry (Van der Linden and Goossens, 1991; Laing and Edwin, 1994),
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who generally find that fast waves are not readily damped, requiring at least 20 (and
maybe several hundred) damping periods before suffering any appreciable decay.
This effect therefore is too slow to explain the observed decay.

An effect that leads to the appearance of damping, but is in fact operating in
an ideal medium, is wave leakage. Wave leakage is likely to occur when loop
curvature is taken into account in any description of the oscillations or when there
is leakage from the ends of the loop (as energy is ducted from the coronal part
of the loop into the dense footpoints of the loop). Leakage of fast waves from
loop footpoints has been considered by Berghmans and De Bruyne (1995), who
conclude that only a very small amount of wave energy is transmitted through to
the lower and denser medium from the corona, leading to a decay of order 100
times the transit time of a wave along the loop. This would amount to some 104 s,
too long to explain the observed decay.

Consider then another contribution to wave leakage: loop curvature. In a coronal
loop modelled as a straight magnetic flux tube, we have described a division of
modes into sausage and kink oscillations and the global kink mode is trapped
within the flux tube for all frequencies. In contrast, the fast sausage modes are
trapped at high frequencies but leak at low frequencies. The trapping of the kink
mode in a straight flux tube led Nakariakovet al. to presume that wave leakage
does not occur. But in acurved loop, it seems likely that the precise distinction
between kink and sausage modes in a straight flux tube is lost, since now a kink-
like oscillation will tend to compress the plasma – as the oscillating loop tries
to fit into the curved geometry – and so couple with a sausage-like mode. If this
is indeed the case (a detailed calculation of the effect is not available), then the
fact that the sausage mode leaks at low frequencies suggests that there would be a
corresponding leakage in the kink mode, as energy in the kink oscillation is partly
transferred into sausage-like oscillations which then leak away by radiating a wave
out to infinity. In the absence of a detailed study it is difficult to assess the efficiency
of this process, but it would seem that whatever the leakage in the kink mode,
due to curvature coupling with the sausage mode, it would not be larger than the
leakage experienced by the sausage mode in a straight tube. The leakage of the
sausage mode in a straight tube may be estimated as follows (see Spruit, 1982;
Cally, 1986). Taking (for simplicity) the plasmaβ to be zero (corresponding to
zero sound speed), leakage of the sausage mode leads to a decay timeτd which is of
order(L/a)2 times the period of the wave. Fora/L = 0.01, this produces a decay
time that is about 104 wave periods, and so much longer than the observed decay.
This suggests that such leakage is probably not important, but until a proper study
of curvature effects becomes available (so far only Cartesian arcade geometries
have been examined; see Smith, Roberts, and Oliver, 1997; Terradas, Oliver, and
Ballester, 1999) this conclusion must remain tentative.

Viscous and ohmic damping are generally considered to be very small in the
coronal plasma, but the presence of density inhomogeneity on a small scale is
expected to strongly enhance dissipation through the process of resonant absorp-
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tion (see, for example, reviews by Hollweg, 1990b; Goossens, 1991; see also Mok
and Einaudi, 1985; Ruderman, Tirry, and Goossens, 1995). We can most easily
illustrate the effect by examining the process ofphase mixingof an Alfvén wave
(Heyvaerts and Priest, 1983). This is not to imply that phase mixing is the actual
cause of the damping; but resonant absorption processes are operating in the sys-
tem, and do so in a manner similar to phase mixing and it is phase mixing that is
easier to describe mathematically. The Alfvén wave in an inhomogeneous plasma
with Alfvén speedcA(x) structured inx (the Cartesian coordinate perpendicular to
the applied magnetic field) propagates transverse motionsv(x, z, t)ŷ according to
the wave equation (Heyvaerts and Priest, 1983)

∂2v

∂t2
= c2

A(x)
∂2v

∂z2
+ ν

(
∂2

∂x2
+ ∂2

∂z2

)
∂v

∂t
, (15)

whereν is the coefficient of kinematic viscosity (considered dominant over ohmic
diffusivity). An approximate solution of Equation (15) is (cf., Heyvaerts and Priest,
1983; Roberts, 1988; Hood, Ireland, and Priest, 1997; Ruderman, 1999)

v = u(t) sin(kzz) cos(kzcA(x)t) , (16)

where the amplitudeu(t) is given by

u(t) = u0 exp{−[12k2
z ν(t + 1

3c
′2
A t

3)]} , (17)

the prime (′) denoting the derivative of the Alfvén speedcA(x).
In a uniform medium (for whichcA is constant) the decay in amplitudeu(t) is

exponential in timet , producing a decay timeτd given by

τd = 2

νk2
z

. (19)

For a standing wave withkz = Nπ/L this produces a decay time

τd = 2L2

νN2π2
. (20)

This time is very long; with a coronal viscosity ofν = 4× 109 m2 s−1 and a loop
of lengthL = 105 km, the principal (N = 1) mode decays by a factor ofe in
5× 105 s (some 139 hr). However, in a magnetically structured plasma the simple
exponential decay of a uniform medium persists only for a time of order

√
3/c′A

after which thet3-dependence in Equation (17) dominates, and phase mixing is
established. In the corona, the transition time is likely to be short, about one second.
So phase mixing effects are expected to dominate. Damping then proceeds on a
time scaleτd given by

τd =
[

6

νk2
z c
′2
A

]1/3

. (21)
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Write c′A ≈ cA/ l, corresponding to an Alfvén speed that varies spatially on a
scale of orderl. Then phase mixing produces damping (of theN = 1 mode) on a
scale

τd =
[

6L2l2

νπ2c2
A

]1/3

. (22)

Assuming a scalel of variation in the Alfvén speedcA that is one-tenth of the
loop length (l = L/10), then (22) produces a decay time scale in a loop of length
L = 105 km and Alfvén speedcA = 103 km s−1 of 530 s (forν = 4×109 m2 s−1),
dramatically shorter than in a uniform medium and comparable with that observed.

We note that the damping timeτd that operates when phase mixing is established
may be rewritten in terms of the viscous Reynolds numberR = lcA/ν, based
upon the Alfvén speed,cA, and the spatial scale of inhomogeneity,l. Writing also
τA = l/cA for the transit time across the scalel of a wave moving with speedcA,
Equation (22) becomes

τd =
(

6L2

π2l2

)1/3

R1/3τA ≈ 0.85

(
L2

l2

)1/3

R1/3τA . (23)

Thus, forl = L/10 we obtainτd ≈ 3.9R1/3τA, and forl = L/100 (comparable
with the radius of a loop) we obtainτd ≈ 18.2R1/3τA. These results of phase
mixing compare reasonably well with scalings deduced from numerical studies
of resonant absorption; for example, in a slab geometry (see Ofman, Davila, and
Steinolfson, 1994, 1995; Erdélyi and Goossens, 1995), Nakariakovet al. (1999)
quoteτd ≈ 32.6R0.22τA.

However, it is in fact more appropriate to use theshearviscosity coefficient
of a plasma than the compressional viscosity we have used, reflecting the strong
anisotropy of the coronal plasma, and this has the effect of reducing the effec-
tive viscosity coefficient by a factor(ωiτi)−2 whereωi is the ion gyro-frequency
and τi is the ion collision time (see Braginskii, 1965; Hollweg, 1985, 1987; see
also Ofman, Davila, and Steinolfson, 1994; Erdélyi and Goossens, 1995). Under
coronal conditions, this results in a severe reduction in the effective value ofν.
Consequently, the theoretically estimated damping time by this process is much
longer than the observed damping time. If we turn the result around, and setτd to
be the observed damping time, then an effective Reynolds numberR of order 105

or 106 results (Nakariakovet al., 1999), much smaller than the usual estimate of
1014 or so. Similar considerations apply if we consider ohmic damping instead.

Finally, following a suggestion by M. S. Ruderman (1999, private communica-
tion), we consider the time scale for which a global oscillation decays as a result of
the development of localized oscillations (Alfvén waves) in regions where plasma
inhomogeneity is strong. The importance of the effect (resonant absorption) in
coronal physics was pointed out by Ionson (1978), following a related development
for cold plasma oscillations by Sedlacek (1971). In anincompressiblemedium with
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plasma inhomogeneity on a spatial scalel, Lee and Roberts (1986; see also Rae
and Roberts, 1981) have shown that global disturbances of a magnetic structured
medium decay on a time scaleτd given by

τd = 16ck
πlk2

z (c
2
Ae − c2

A

. (24)

Applied to a standing wave of period 2L/ck in a loop lengthL = 130 M, the ob-
served decay time is produced by a plasma inhomogeneity of scalel ≈ 15×103 km
if we assumec2

Ae or l ≈ 6× 103 km for c2
Ae = 10c2

A. These scales are broadly
consistent with the cross-sectional size of a loop. Thus, the process seems capable
of producing an oscillation decay that is comparable with that observed by Nakari-
akov et al. The resonance decay time (24) is not an indicaton of plasma heating
but rather of a mode conversion process, as global oscillations transfer energy
into localized Alfvén waves (Lee and Roberts, 1986). Of course, heating may also
be involved, since small-scale oscillations are produced and so readily damped
by non-adiabatic processes (e.g., viscosity) operating efficiently in the resonant
absorption layers.

4. Concluding Remarks

The discovery of damped oscillations in coronal loops (Aschwandenet al., 1999;
Nakariakovet al., 1999), interpreted as the global kink mode, raises the prospect
of a proper development of coronal seismology in which both the period of the os-
cillation and its damping time provide important (and largely independent) sources
of information about the corona. This seismic information offers the means of de-
termining local conditions (e.g., magnetic field strength) within coronal structures
(loops and plumes), a task that has not hitherto proved possible. Such progress is
made possible by the use of high resolution observations combined with reasonable
time resolution. The addition of high time resolution makes possible a finer scale
of seismology, using rapid pulsations within a loop as well as its global mode
of oscillation. Such a programme of development requires detailed observational
studies combined with more sophisticated theoretical models of oscillations. Our
current theoretical understanding is limited to simple models only but there is now
a pressing need to extend our understanding to more realistic configurations with an
appropriate incorporation of certain physical effects, including field line curvature,
non-adiabaticity, plasma inhomogeneity, the presence of flows, and an appropri-
ate representation of the coupling of a coronal structure to the dense medium at
its base. Such a programme has in view the twin goals of coronal seismology
and a greater understanding of coronal heating. The prospects for such theoretical
developments, spurred by observations, are bright.
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