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Abstract 

Arrays of relaxation oscillators behave differently in the presence of a non-uniformity of natural frequencies and/or 
coupling inputs than do arrays of phase oscillators coupled through phase differences. Phase oscillators compensate for 
non-uniformities by creating phase differences among the oscillators; relaxation oscillators coupled via "fast threshold 

modulation" ( F r M )  can respond by changing wave forms while leaving the fast jumps synchronous. For arrays of 
relaxation oscillators including chains, this allows synchrony to be a solution, even though the oscillators have different 
amounts of inputs from other oscillators; for phase-difference coupled oscillators in a chain, the generic solution is a 
travelling wave. Relaxation oscillators coupled through FTM also allow the encoding of patterns of oscillators into domains 
in which oscillators are in synchrony, with different domains in antiphase. 

1. Introduct ion  

This paper  is concerned with some contrasting 

behavior  of  interacting relaxation oscillators versus 

non-relaxation oscillators.  In a previous paper [ 1 ] we 

showed that a r ing of  identical relaxation oscillators, 

coupled locally in a manner that mimics fast exci- 

tatory synapses, can lead to synchronization within 

a couple of  cycles, while non-relaxation oscillators, 

with the same coupling, synchronized much more 
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slowly. Here we analyze how relaxation and non- 

relaxation oscillators compensate for differences in 

natural frequency between the interacting oscil lators 

and /o r  for differences in amounts of  coupling input. 

We also show that the distinction between the com- 

pensatory mechanism used by interacting relaxation 

oscillators and that used by interacting phase oscil la- 

tors has implications for the behavior of  networks of  

oscillators with uniform natural frequency as well as 

for the behavior of  networks with varying frequency. 

We start in Section 2 by considering pairs of  os- 

cillators. It is easy to show that phase oscil lators that 

interact via the differences in their phases can phase- 

lock i f  the differences in their natural frequencies are 

not too large. The phase difference in a stable locked 
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solution increases with the difference in the natural 

frequency [2,3]. This is also true of any more gen- 

eral oscillators and interactions that can be shown to 

behave like such phase oscillators, e.g., when the cou- 

pling is weak [ 4]. We consider the contrasting case of 

a pair of relaxation oscillators. Following the analysis 

of [ 1 ], we utilize a relaxation oscillator coupling form 

that we named "fast threshold modulation" or FTM. 

Generalizing a result of [ 1] for identical oscillators, 

we prove that for relaxation oscillators having close 

enough frequencies and waveforms, a pair of oscilla- 

tors compensates for differences between the oscilla- 

tors by changing the waveform of the locked output, 

while keeping the fast jumps synchronous. Computer 

simulations demonstrate this synchronous behavior for 

oscillators whose natural frequencies differ by as much 

as 50%. 

For relaxation oscillators, but not phase oscillators, 

the argument generalizes to arrays of many oscillators. 

A key idea in the analysis is to consider as the central 

objects not the isolated oscillators, but the trajectories 

the oscillators would follow if all jumps in the network 

were synchronous. We use this in Section 2 to prove 

that if oscillators in the network are similar to one 

another, and they have a similar amount of coupling 

input, then (under a technical condition which holds 

for large classes of relaxation oscillators), the network 

has a stable solution, which in the relaxation limit, has 

synchronous jumps. 

The distinction between the compensatory mecha- 

nisms (creating a phase difference in one case, and 

altering waveform in the other) creates contrasting 

behavior of chains of phase oscillators versus relax- 

ation oscillators, even if the oscillators in the chain are 

identical. As shown in [ 5 ], chains of phase oscillators 

that phase-lock generically produce travelling waves. 

The waves were shown in [5] to be a consequence 

of boundary effects: the oscillators at the ends receive 

different input than those in the middle, and compen- 

sate for the difference by setting up phase differences 

all along the chain. These phase differences are inde- 

pendent of the coupling strength. 

In Section 3 we show that chains of equal relax- 

ation oscillators, coupled via FTM, can compensate 

for differences of inputs at the boundaries by changes 
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of waveform that remain localized in oscillators near 

the boundaries. Hence, in the relaxation limit, the fast 

jumps are synchronous across the chain. Because the 

end oscillators have half the input of the middle ones, 

this does not follow directly from the work of Sec- 

tion 2. However, we can give conditions under which 

synchrony is the e ~ 0 limit for the solutions. (The 

work in [ 1 ] also produced synchrony for an array of 

relaxation oscillators. However, in [ 1 ] the array was a 

ring, so there were no boundary conditions to produce 

phase differences. In that paper, the emphasis was not 

on the phase relationships (since synchrony was ex- 

pected), but on the speed of locking.) 

If  the oscillators are not at the relaxation limit, or the 

coupling is weak, the oscillators are not synchronous. 

In Section 3 we also discuss transitions in chains be- 

tween phase-oscillator like behavior and relaxation- 

oscillator like behavior. In particular, we present sim- 

ulations to demonstrate how stimuli that change the 

effective strength of coupling can switch the system 

from wave behavior to near synchrony. 

Section 4 is devoted to chains in which the oscilla- 

tors are not all identical. Section 4.1 deals with chains 

whose end oscillators have different properties from 

the interior ones, and shows that synchrony can be 

maintained within a chain of relaxation oscillators if 

the end oscillators are not too different. Section 4.2 

discusses the more general case of unequal oscillators, 

including a gradient of frequency along a chain. As in 

Section 3, we present simulations to show that relax- 

ation oscillators behave differently from phase oscil- 

lators, and we explain why. 

The contrasting behavior of chains of relaxation and 

phase oscillators has further consequences for arrays 

of oscillators, as we show in Section 5. In that sec- 

tion, we shall be concerned with the situation in which 

pairs of oscillators are capable of stable in-phase and 

antiphase locking. It is easy to construct phase oscilla- 

tors for which this is true ] 6-8 ]. Relaxation oscillators 

have also been shown to be capable of bistability [9- 

12]. In Ref. [9] we showed that, with excitatory FTM 

coupling, pairs of oscillators can have stable in-phase 

and antiphase solutions, providing that the times to 

traverse the left-hand and right-hand branches of the 

relaxation oscillators are sufficiently distinct. 
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In Section 5 we demonstrate and analyze the phe- 

nomena of  "fractured synchrony" in one-dimensional 

arrays (e.g. rings) of  relaxation oscillators pairwise 

capable of  bistability, and "fractured waves" in arrays 

of  phase oscillators pairwise capable of  bistability. By 

fractured synchrony we mean that some contiguous 

set (or domain) of  oscillators are in synchrony, but 

roughly in antiphase with neighboring domains. We 

explain why this is possible for arrays coupled by 

FTM, but not (generically) for arrays of  phase oscil- 

lators, in which the behavior on each domain is that 

of  a travelling wave. 

2. Pairs of oscillators 

A pair of  oscillators interacting through phase dif- 

ferences satisfies equations of  the form 

Otl= 091 -~  Hl(02 - -  0 1 )  , (1) 

01 = 0)2 -1- H2(01 - 02) • (2) 

Here Oi are the phases of  the oscillators, o)i are the 

frequencies of  the uncoupled oscillators, and Hi are 

smooth 2~r-periodic functions of  the phase differences. 

Let 05 -= 02 - 01. Then (1),  (2) may be reformulated 

as 

~1 = 0)2 -- (-01 "+" H2(-05)  - HI(05) 

-- a - H(05) ,  (3) 

where 6 is the difference in frequency. If  H1 = //2, 

then H equals twice the odd part of  Hi so H ( 0 )  = 0, 

and hence synchrony (05 = 0) is a solution if 8 = 0. 

We assume that H '  > 0 for 05 in a neighborhood of  

05 = 0, so the synchronous solution is stable. For 8 va 

0 but not too large, and Ha =/-/2, 8 - H(05) may be 

solved for a stable critical point of  05. The greater the 

frequency difference (within this range), the greater 

the resulting phase difference between the oscillators; 

for small 6, the relationship between 05 and 6 is close 

to linear. Similarly, differences between H1 and/-/2, if 

not too large can be compensated by a non-zero phase 

lag. 

We now contrast this with a pair of  relaxation oscil- 

lators, coupled by "fast threshold modulation". Each 
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Fig. 1. NulMines and phase plane trajectory (dashed) for a single 
relaxation oscillator (Morris-Lecar, see Appendix). When the 
relaxation parameter, e, is small the trajectory slowly traverses 
the outer branches of the cubic-shaped nullcline toward the local 
extremum of each branch. When an extremum is reached, the 
trajectory jumps rapidly to the other branch. 

of  the uncoupled oscillators is defined by a pair of  

equations of  the form 

ev~ = Fi(vi, wi) , (4) 

W~ = Gi(vi, wi).  (5) 

Here 0 < e << 1, and (4),  (5) is assumed to have 

a stable limit cycle. The nullcline F ( x , y )  = 0 is as- 

sumed to be cubic shaped, as in the van der Pol oscil- 

lator and other equations associated with descriptions 

of  neurons and collections of  neurons. (See Fig. 1). 

As in [ 1], the coupling we shall use changes (4) to 

ev~ = Fi(vi, wi, l ( v j )  ), (6) 

where vj denotes the v-variable of  the other oscillator, 

and I ( v j )  is the coupling signal. We assume that I ( v j )  

is a saturating sigmoidal, as in Fig. 2a. Furthermore, 

we assume that increasing I has the effect of  raising 

the nullcline Fi (v, w, I )  = 0, as in Fig. 2b. This in- 

crease in I corresponds to excitatory input of  the neural 

oscillators, either in single-neuron conductance-based 

.models such as Hodgkin-Huxley [13] or Morris-  

Lecar [ 14] or ensemble descriptions such as Ellias- 

Grossberg [ 15] or Wilson-Cowan [ 16]. Finally, we 

assume that for all values of  I in the range of  I ( v ) ,  

the outer branches of  the "cubic" F/(v, w, I )  = 0 lie 

in the saturated portions of  l ( v ) ,  so l ( v )  is indepen- 

dent of  v on each branch. In the relaxation limit, such 
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Fig. 2. Heaviside coupling. (a) shows a sigmoidal coupling func- 
tion, 1 (V), for which the non-constant ranges of the function lie 
in the middle branch of the cubic nullcline (shown in (b)). Since 
the phase-plane trajectory hugs the outer branches and rapidly 
jumps between these branches, the coupling function assumes one 
of two constant values, 1- or l +, determined by the branch on 
which the input oscillator lies. I -  and I + define different cubic 
nullclines with the 1 + nullcline shifted upward, possibly with a 
change of shape as shown in (b). The trajectory of a coupled pair 
of identical oscillators can be described by these two cubics and 
the rapid transitions between them. The local extrema or "knees" 
are important transition points. 

a system behaves the same as one in which I ( v )  is 

a step function, with the discontinuity in the middle 

branch of each cubic (see Fig. 2b).  

In the treatment we shall give, the primary objects 

are not the uncoupled oscillators, but the oscillators 

as changed by their inputs. We define the LCI (limit 

cycle with input) as the cycle that would be followed 

by the oscillator providing that the input jumps at the 

same time as the jumps of the oscillator (See Fig. 

3). If the oscillators are the same and the coupling 

is symmetric, the LCI reduces to what was called the 

LSS (l imit ing synchronous solution) in [1].  In the 

more general case, the two oscillators can have differ- 

ent associated LCI's.  We shall show that if the LCI's  

associated with the two oscillators are not too differ- 

ent, and an analogue of the "compression hypothesis" 

of [ 1 ] holds, then there is indeed a periodic solution 

in which the jumps of the two oscillators are simulta- 

neous. This will show that the relaxation oscillators, 

interacting through fast threshold modulation, corn- 
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Fig. 3. The limit cycle with input (LCI) for an oscillator is defined 
by pieces of the left branch of the I = 0 cubic and the fight branch 
of the / = I + cubic. The LCI represents the trajectory followed 
by an oscillator when its onsets and offsets are synchronous with 
those of the oscillators that provide its input. 

pensate for differences by changes in waveform, rather 

than by phase lags. 

To state and prove the result, we need some further 

definitions. We define the size of an interval J on one 

of the cubic-like nullclines to be the time necessary 

to traverse this interval, and denote it by }Y I. For each 

oscillator, i, we denote the lower and upper knees (ex- 

trema) of their LCI's  as ki and k +, respectively. Let 

j (ki) and j (k +) represent the points on the opposite 

branches reached on a jump from the respective knees. 

We define Li as the part of the left branch of the LCI 

between j ( k  +) and ki and similarly define R//on the 

right branch between j (k i )  and k+: (See Fig. 4.) Let 

Li denote the part of the left-hand branch of the lower 

nullcline of oscillator i that is below the lower knee of 

the upper nullcline. Define Ri in a similar manner, as 

in Fig. 4. Note that for a fixed ! the Li and Ri are de- 

fined uniquely. For J, any subinterval of hi or Ri, let 

j (Y )  denote the image after a rightward or leftward 

jump. We shall require 

Hypothesis C. For any interval Y as above, Id(Y) l < 
Igl. 

This hypothesis was called the "compression hy- 

pothesis" in [ 1 ]. Hypothesis C is closely related to the 

central condition needed for stability of the in-phase 
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Fig. 4. The knees of the I -  and I + cubics define intervals relevant 
to synchronous jump behavior. L i and Li are defined as the pieces 
of the left branch of the I -  cubic which lie below the upper and 
lower knees, respectively, of the I + cubic. All jumps from the right 
branches map into Ti. Li is the subset of ~i in which a trailing 
oscillator will jump synchronously with a leading oscillator to the 
right branch, j (L i )  describes the interval into which trajectories 
in Li will jump. The intervals Ri, Ri, and j (Ri )  are defined 
analogously. 

W 

Fig. 5. Slow variable time course for the Morris-Lecar oscillator. 
The time required to traverse a w interval increases as threshold (a 
"knee") is approached. This "scalloped" shape of the time course 
(w t . w tl < 0) satisfies Hypothesis C. 

solution. It holds whenever the time course of  w ( t )  

in the synchronized solution has a shape as in Fig. 5. 

(This shape was referred to as "scal loped" in [ 1,9] .) 

The ratio of  the slopes of  w jus t  before to just  after a 

local max imum or min imum is a measure of  the com- 

pression. (See Ref. [ 1] for more details.) 

We shall also require that the LCI ' s  be sufficiently 

close to each other. We can compare the equations on 

the two LCI ' s  by normalizing each slow branch to take 

unit t ime to traverse. By "close" we shall mean that the 

normalizing constants are close, and that the resulting 

normalized vector fields are C 1 close on each branch. 

We will  prove 

Theorem  2.1. Suppose Hypothesis  C holds and the 

LCI ' s  o f  the two oscil lators are sufficiently close. Then 

there is a periodic solution for the coupled system 

such that the r ightward (respectively, leftward) jumps  

of  each oscil lator s y n c h r o n & e  with the r ightward (re- 

spectively, leftward) jumps  of  the other. This solution 

is stable and locally unique. 

This generalizes a result we proved for i den t i ca l  os- 

cillators [ 1 ]. For the rest of  this paper we need a still 

more general result, valid for networks, which we now 

formulate. Consider  a network of  relaxation oscil la- 

tors with any "non-disjoint"  set of  interconnections, 

coupled via FTM. (By "non-disjoint" we simply mean 

that every oscil lator is connected at least indirectly to 

every other oscillator.) As for a pair  of  oscillators, 

we define the LCI for each oscil lator  o f  the network 

to be the trajectory that would be followed (in the 

e --* 0 l imit)  provided that all oscil lators in the net- 

work jump in a given direction at the same time. ( I f  

the network is synchronized, this is the orbit  that must 

be followed.)  As for the pair, we assume that the in- 

put from any oscil lator (in the e --+ 0 l imit)  depends 

only on whether that oscil lator is "on" or "off." Then 

the following generalizes Theorem 2.1 : 

Theorem 2.2. Suppose Hypothesis  C holds for each 

LCI in the network. Then if  the LCI ' s  are sufficiently 

close, there is a periodic solution for the coupled sys- 

tem such that the jumps  in either direction synchro- 

nize with the jumps  in that direction for all oscillators 

in the network. 

Remark .  For a network of  identical oscillators, each 

with an identical number and strength of  inputs (not  

necessarily small)  from the other network elements, 

the LCI ' s  are identical. The closeness hypothesis  on 

the LCI ' s  continues to hold under O(1 )  perturba- 

tions of  the oscillators and the coupling. Thus syn- 

chrony is possible even if  the number of  connections 

or the strengths of  connections to each element vary 

across the population. This contrasts with the behav- 

ior of  other networks of  oscillators, in which connec- 

tion weights between oscillators must be normalized 

to achieve synchrony [ 17]. 



174 D. Somers, N. Kopell / Physica D 89 (1995) 169-183 

i N 
i x 

W I° 

Position 
of osc 2 

V 

Fig. 6. Defining the domain of the Poincar6 map in higher dimen- 
sional networks. Relaxation oscillators that receive multiple inputs 
have trajectories that are defined by several cubic nullclines, each 
determined by the number and size of synaptic inputs received. 
The change of a single input may still cause an early jump. The 
knees of the uppermost cubic (I N) and lower two cubics (I 0 
and I l ) define the intervals Li and T// as in Fig. 4. The set of 
n-dimensional points for which each oscillator lies in its Li and 
at least one oscillator lies at its lower knee, defines the domain 
of the map 79L. 

Proof  o f  Theorem 2.2. We shall construct a Poincar6 

map whose fixed points will correspond to the required 

orbit. The domain of the map is the points at which at 

least one oscillator is at its lower knee. More specif- 

ically, let Li be defined as before for two oscillators, 

with the upper cubic given by the natural dynamics 

plus all the inputs. Li C Z i  is the portion of Li below 

the cubic corresponding to one input. See Fig. 6. Let 

L = 0 L1 x L2 x . . .  x {k j }  × . . .  × Ln,  

.j=l 

n 

= U L 1  x x . . .  x x . . .  x 

j= l  

L represents these n-tuples of points for which all os- 

cillators will make simultaneous right jumps in the 

next instant ( in the limit e ---+ 0).  L are those points 

for which at least one oscillator will jump immedi- 

ately. R and R are defined analogously, using {k  +} 

instead of {k  j} .  L, -L, R or R may be visualized as the 

neighborhood of a corner of an n-dimensional cube. 

For n = 2, see Fig. 7. 

In the e H 0 limit, the synchronous jumps and sub- 

sequent flows along a branch provide natural maps 

+ 
k 2 R t~ 

R 2  i PL(Y, k2 ) 

. . - - I " -  ~ "  0 " I 
,¢ | g(Y), J(he) ) ] 

t" I 
/ | ~ k + . . . . . . .  1 jump / 

t R1 

-ff i 

1 

kl 

Position 
of osc 1 

Fig. 7. One half of the Poincar6 map for a pair of coupled 
oscillators. L and R (solid line corners) represent the sets of points 
for which both oscillators make simultaneous jumps in the next 
instant. L and R (dashed line corners) define the supersets of L 
and R for which at least one oscillator is at the jump threshold. 
After a synchronous jump from L (or R), oscillators then flow 
until they lie in R (or L). A synchronous jump and the subsequent 
flow therefore describe a map from L to R (or from R to L.) The 
intervals R i and Li are as in Fig. 2. 

79R: R ~ L and 79L: L ---+ R. To define T'R on R, we 

consider separately each "face" R1 × R2 x . . .  × (k  + } × 

. . .  × R,. For each point in that face, the image af- 

ter the jump is a point on the product of the left-hand 

branches of the LCI's. (This requires that the inter- 

connections be "non-disjoint", so that all sufficiently 

close oscillators jump at the same time.) The flows on 

the left-hand branches then take that point to a point 

of L, the first point at which one of the n components 

is at the lower knee of the lower branch. We define the 

latter point to be the image under 79R. The map 79R is 

defined analogously for the other faces, and similarly 

for 79L. 

We wish to consider 79L o 79R, to look for a fixed 

point. To do this, we must have the image of 79R in 

the domain of T~L. Thus, we restrict the domain of 79R 

to/~ = ~ - I ( L )  fqR. 

We first assume that all LCI are identical. Then 

{k + } x . . .  × {k +} is a fixed point of 79L o 79R. Note that 

each face of /~ is mapped onto itself under T'L o 79R. 

(This is true because edges of a face correspond to 
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Fig. 8. Two uncoupled relaxation oscillators, with natural frequen- 
cies that differ by 50% (E = 0.01,e = 0.015), synchronize their 
onset and offset times once coupling is activated between the os- 
cillators (or = 0.2; triangle marks coupling onset). The frequency 
differences are compensated for by modifications of the oscilla- 
tors' waveforms. Note the change in amplitude and pulse duration 
with coupling onset. 

points for which two oscillators are at their upper knee 

k +, and this is preserved under 79L o 7~R if all LCI 

are identical.) Using as coordinates for the face the 

Cartesian product of  the coordinates for each LCI, it 

follows from Hypothesis C that 79L oT)R is a contraction 

map on each face, and hence on/) .  The conclusion of  

the theorem now follows by noting that a perturbation 

of  a contraction map is also a contraction map, and 

therefore has a unique fixed point in th e domain of  the 

map. [] 

Remark.  A related theorem was proved by Pinsky [ 18 ] 

using different methods. The result in [ 18] provides 

approximate (and, possibly exact) synchronous solu- 

tions for a network of  somewhat different relaxation 

oscillators. 

The ability of  FTM-coupled relaxation oscillators to 

compensate for differences in their natural frequency 

is demonstrated in Fig. 8. The onset of  FTM coupling 

rapidly synchronizes a pair o f  oscillators that have 

a 50% difference in their natural frequencies. FTM 

coupling achieves synchronization by modifying the 

oscillator waveform. 

3. Boundary effects in chains of identical 

oscillators 

3.1. Waves and synchrony 

We first review some results in [5] concerning 

chains of  phase oscillators, and then contrast those 

results with the behavior of  chains of  relaxation os- 

cillators. It was shown in [5] that the behavior of  

chains of  N phase oscillators can be analyzed using a 

"thermodynamic" limit, in which the length of  a chain 

grows without bound but the interactions between 

neighboring oscillators remains fixed. The analysis 

in [5] was done without assuming that the coupling 

in the two directions is the same. The equation for 

the j th  oscillator ( j  4= 1, N) is then 

O~ = wj  + H+(Oj+I - Oj) + H - ( O j - 1  - Oj) ,  (7) 

where H + and H -  are 2~--periodic functions repre- 

senting coupling in the two-directions. For j = 1, N, 

one of  the two coupling terms is absent. Using the lim- 

iting equations, it was shown that the generic behav- 

ior for a chain of  identical oscillators (w i = w) is a 

travelling wave in which the phase lag cbj --  Oj+j - Oi 

is essentially constant (except for a boundary layer). 

This constant phase lag is either ~bL or qSR, where q~L 

and qSR are defined by H-( - -q~L)  = 0, H+(~bR) = 0, 

with each function having a positive slope at the rel- 

evant zero. There is a formula [19] that can be used 

to determine whether the lag is ~bL or qSR. The case 

H + = H -  ~ H is non-generic; with this symmetry 

and large N, the oscillators display phase lags with 

~bj ~ (;bL for the left half of  the chain, ~bj ~-~ ~R for 

the right half of  the chain with a "boundary layer" in 

between. For smaller values of  N, the boundary layer 

comprises a larger subset of  the chain, so the lags do 

not appear so constant. 

In contrast to chains of  (generic) phase oscillators, 

chains of  equal relaxation oscillators, coupled through 

Fast Threshold Modulation, can (in the limit as e~--, 

O) synchronize  their jumps. In a prior paper [ 1 ] we 

proved that synchrony is stable for rings (no bound- 

ary) of  identical relaxation oscillators coupled through 

FTM. Here we show that the differences in input to 

the oscillators at the ends of  the chain versus the os- 
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Fig. 9. Synchronization of chains of relaxation oscillators oc- 
curs rapidly despite the lower input to the end oscillators of the 
chain. (a) A "chain" of three Morris-Lecar oscillators (E = 0.01, 

= 0.1), in which the middle oscillator receives coupling input 
from its two neighbors and the end oscillators receive only one 
coupling input. This input difference produces different LCI and 
different periods for the middle and end oscillators. This differ- 
ence is demonstrated by starting the oscillators with identical ini- 
tial conditions and switching the coupling to LCI mode (inputs 
from self, rather than neighbors). The two end oscillators have the 
same LCI and thus remain synchronized (traces overlaid), while 
the middle oscillator drifts. At the mark, LCI coupling is replaced 
by chain coupling. The relaxation oscillators compensate for dif- 
ferences in input to the end oscillators and the chain synchronizes 
within a single jump. (b) same as (a) but chain contains 40 os- 
cillators (e = 0.001 ). Time course of end oscillators (1,40) and 
three middle oscillators (2,3,20) are shown. In LCI mode the 
ends and middle drift apart, but rapidly synchronize when chain 
coupling is activated. 

cillators in the middle  need not create waves. This 

is demonstrated in Fig. 9 for Morr i s -Lecar  oscilla- 

tors [14] (see Appendix  for equations) .  The com- 

pensatory mechanism is essentially the same as for a 

pair of  oscil lators with different frequencies or differ- 

ent coupling inputs (i.e. with different LCI ' s ) .  Here 

the LCI ' s  for the middle  oscillators of  the chain are 

the l imit  cycles associated with inputs from two other 

oscil lators (See Fig. 10a) and the LCI ' s  for the end 

oscil lators are the l imit  cycles with input from one 

other osci l lator  (See  Fig. 10b). 

The result for chains does not automatically follow 

from Theorem 2.2 because the difference in inputs to 

the end oscil lator  and the middle  ones may not be "suf- 

ficiently small". However, in the case of  chains, the 

necessary condition for synchrony can be formulated 

directly by comparing the LCI  of  the end oscillators 

with those of  the interior ones. 

If  ! -  = 0, there are two cases that yield synchrony; 

the cases differ in the relative t ime the middle  and 

end oscillators require to traverse the right branches of  

their LCI 's .  Note that the left branch of  the LCI for end 

oscillators is a subset of  that for middle  oscillators, and 

so the middle oscillators must take longer to traverse 

the left branches of  their LCI 's .  Consider  the case 

in which the middle  oscillators also take longer to 

traverse the right branch of  their LCI 's .  For synchrony, 

it is sufficient that there be points qr,  qR on the LCI 

of  the middle oscillators, as in Fig. 10c, for which the 

time from j (qr) to qR and the time from j (qR) to qL 

are the same as the times along the slow pieces in the 

LCI of  Fig. 10b. The point  qL (resp. qR) should lie 

below (resp. above) the lower (resp. upper) knee of  

the middle  nullcline, as in Fig. 10c, so the change of  a 

single input causes a jump. Now consider trajectories 

in which the middle oscillators traverse from j (qL)  

to their k + in a time, ~-, less than the end oscillators 

require to traverse from j ( k )  to their k +. In this case, 

synchrony requires that there be a point ~ above the 

upper knee of  the lower nullcline (see Fig. 10d) such 

that the end oscillators traverse from j ( k )  to q-R in 

time ~-. 

These mechanisms generalize to the situation in 

which middle and end oscillators have distinct LCI left 

(as well as right) branches. Thus, the oscillators may 

exhibit chain synchronization over a wide range of  pa- 

rameters. The ability to compensate for differences in 

LCI branch times increases with coupling strength. 

3.2. Transitions 

The two behaviors described above (waves and syn- 

chrony) can occur in different parameter regimes of  

the same equations. There are two natural parameters 

that provide the transitions between these regimes. We 

first discuss those parameters and how they change 

the behavior of  the chain. We then show how changes 

in excitatory input to the oscillators can effectively 

change one of  those parameters to move the system 
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Fig. 10. Compensation mechanisms in chain synchronization. (a) Relaxation oscillators in the middle of a nearest neighbor chain receive 

2 coupling inputs and thus their LCI are determined by the nullelines (I  °, I 1, 12) with 0, 1, and 2 coupling inputs of  size 1 +. (b) The 

two end oscillators receive only one input, thus even for chains of  identical oscillators, the end oscillators have different LCI than the 

middle oscillators. (c) An oscillator with longer LCI times (shown here for the middle oscillators) can jump synchronously with the faster 

(end) neighbor provided that points qL, lying below the lower knee of the 11 cubic, and qR, lying above the upper knee of the 11 cubic 

exist such that the time from j(qL) to q~ and the time from j(qR) to qL are the same as the times along the LCI of the faster (end) 

oscillator (shown in (b ) ) .  (d) FTM Coupling can also compensate when each os,;illator has a longer LCI time only for one branch. For 

instance, if the middle oscillator is slower on left branch as in (c),  but the end oscillator is slower on the right, synchrony requires that 

there be a point ~ above the upper knee of the 1 ° cubic, such that the end oscillators traverse from j (k0)  to ~ in the time the middle 

oscillators traverse from j(qL) to k +. 

between the two regimes. 

One of the two parameters is e, the ratio of the two 

time scales. As discussed above, in the limit as • ~ 0, 

there can be a solution in which the (instantaneous) 

transitions occur synchronously along the chain, in 

spite of edge effects. For 0 << • << 1, there is an 

o(1) delay between the transition of one oscillator 

and that of the next. For • = O(1),  the oscillators 

are not in the relaxation regime, and they cease to 

interact via the FTM mechanism. The simulations of 

Fig. 11 show that for • >> 0 there are waves, and 

for • smaller, the wave speed increases. (Compare 

this to Fig. 9.) Thus neuromodulators that effectively 

increase the difference between the active time scales 

of neural relaxation oscillators (e.g. ReL [20] ) may 

decrease the delays (relative to the period) between 

successive oscillators in a ctiain. 

The other relevant parameter is the effective strength 

of coupling. For any set of limit cycle oscillators, if 

the coupling is sufficiently weak, then the interactions 

of the oscillators are, to lowest order in the coupling, 

through their phase differences [4]. This is true even 

of relaxation oscillators, with e near zero; however, the 

coupling must then be very weak, i.e. less than O(e) .  

For relaxation oscillators with coupling of the form 

described in Section 2, as the coupling increases from 

very weak to medium, the interactions change from 

phase difference interactions to FFM interactions. 

The effective strength of coupling may be changed 

without actually changing the maximal conductance 

of the synapse. Any modulation that changes the shape 

of the gating function can also change the effective 

strength 0f coupling. In particular, if the gating func- 

tion changes from being a shallow sigmoid to a much 

steeper one (e.g. Refs. [21,22]), the total synaptic 

current over a cycle can increase significantly (even if 
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Fig. 11. Asymptotic travelling wave behavior fo~" chains away 
from the relaxation limit. Chains of 40 oscillators (a  = 0.1 ) were 
started with synchronous initial conditions, but with e >> 0 the 
edge effects of coupling led to travelling waves (shown after 200 
cycles, with all 40 traces overlaid). (a) e = 0.25; (b) e = 0.02. 
As e approaches zero the wave speed (relative to the period) 
increases and the dispersion or total lag of the travelling wave 
decreases. See Fig 9b for synchrony with e = 0.001. 

the max ima l  conduc tance  does not  change) .  The  ef- 

fect  on the ne twork  is i l lustrated in Fig.  12. 

Remark. M o r e  can be  said about  the effects  o f  chang-  

ing the shape o f  the gat ing funct ion.  W h e n  e > 0, the 

s igmoida l  coupl ing  funct ion  (see  Fig.  2)  no longer  

behaves l ike  a "Heav i s ide"  step. S ince  coupl ing  input  

increases dur ing  the (non- ins tan taneous)  j u m p  o f  the 

leading oscil lator,  there is a t ransi t ion per iod  dur ing 

which  the nu l lc l ine  is shif t ing and the trai l ing oscil-  

lator  is not  y.et at threshold.  This  nul lc l ine  shift  may  

s low down  the  t rai l ing oscil lator,  as descr ibed in [9 ] ,  

and induce  a substant ial ly longer  phase  lag than that 

due  to e v a 0 alone. Increas ing the coupl ing  strength 

decreases  the t ransi t ion t ime  to threshold  and thus de- 

creases the phase  lag. Alternat ively,  rep lac ing  the sig- 

a) 

pos  

b) c) 

I ,,," . . . . . . . . . .  I :', ", '-', 

v t 

Fig. 12. Input driven modulation of slope of synaptic coupling func- 
tion can shift relaxation oscillators between FFM and non-FFM 
behavior. A chain of 20 identical relaxation oscillators (e = 0.01 ) 
coupled in one direction (left to right, ot = 0.5) with a ramp 
coupling function (shown as solid line in (b),(c); v6 = 0.10, 
v7 = 0.30) develops a leftward moving travelling wave due to 
the '"defect" in input to the left end of the chain. (Two way cou- 
pling yields two oppositely directed waves, each propagating out- 
ward from the middle.) At 1, the coupling function is modulated 
to a Heaviside step (shown as dashed line in b,c; v6 = 0.017, 
v7 = 0.05) without changing the maximal synaptic conductance. 
The network rapidly synchronizes. At 2, coupling switches back 
to the ramp function, and travelling waves slowly re-emerge. (b) 
Synaptic coupling functions. Dark bar represents voltage range of 
inputs. (c) Time course of synaptic input. 

mo id  ramp with  a Heavis ide  step wil l  e l imina te  the 

phase lags due to the shif t ing nul lc l ine  and thus can 

also m o v e  the ne twork  to synchrony,  as in Fig.  12. 

4. Chains of  oscillators having variation in 

frequency 

In the previous  section, we  discussed chains o f  iden- 

tical oscil lators,  and the contrast  in behav ior  be tween  

phase osci l lators  and re laxat ion osci l la tors  coupled  

with  FTM.  In this section we  a l low the osci l la tors  to 
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have different frequencies and again contrast the two 

cases. 

4.1. Changes in end oscillators only 

One important situation concerns chains in which 

all the oscillators are identical except for the end os- 

cillators. In both phase and relaxation oscillator cases, 

the change of the end oscillators acts like a change of 

boundary conditions. For the relaxation case, it fol- 

lows immediately from the methods of Section 3 that 

a small enough change still allows synchrony of the 

jumps in the e ~-~ 0 limit. For phase oscillators, we 

now show that a change of the end oscillators changes 

the phase relationships within the travelling wave. 

We start with the phase oscillators, as described by 

(7). To understand how changing wj at one or both 

ends of the chain affects the phase lags, ~bi, of the 

stable solution, we must go deeper into the analysis 

done in [5]. The time-independent solution for the 

~bj was shown in [5] to converge for large N, in some 

appropriate sense, to that of the continuum equation 

1 

0 = co(x) + 2f(qS)x ÷ N g ( ~ ) x x ,  (8) 

subject to the boundary conditions 

H - ( - q S )  = 0  at x = 0 ,  H + ( ~ b ) = 0  at x = l .  (9) 

These boundary conditions encode the difference be- 

tween the equations j = 1, N and the other equa- 

tions. Here 0 < x < 1, 2f(~b) -- H+(~b) + H-(~b) ,  

2g(~b) - H+(qS) - H-(qS) ,  and qb( j /N)  ~ q~j. 

If  wj -- w, then the continuum limit analogue uses 

w ( x )  -- w, a constant function. I f  wj -- o) except 

for j = 1, N, the relevant continuum limit formula- 

tion uses the same w ( x ) ,  but has different boundary 

conditions. If  O) 1 - -  O.)j m_ d l  and (-O N - -  O ) j  ~ A N ,  the 

boundary conditions H - ( - ¢ )  = 0 and H + ( ¢ )  = 0 

are replaced by 

H - ( - ¢ ) - A I = 0  a t x = 0 ,  

H + ( ¢ )  - AN = 0 at x = 1. ( 1 0 )  

Provided that A 1 and AN are not too large, Eqs. (10) 

have solutions ¢L, t~g satisfying the stability condi- 

tions ( H - ) ' ( - - ¢ L )  > 0, ( H + ) ' ( ¢ R )  > 0. I f  H + ------ 

H -  and A1 = AN, the solution for large N is quali- 

tatively like that of (7) with (9) as boundary condi- 

tions, i.e. ~bj ~ ~b L for the left half of the chain, and 

~bj ~ ~R for the right half of the chain, with a bound- 

ary layer in between [ 3,23 ]. 

4.2. Gradients in frequency and random frequencies 

For phase oscillators, gradients in frequency that 

are not too large lead to waves with non-constant 

speed [ 5,24]. Though analyses with more random fre- 

quencies have not been done, pairs of oscillators hav- 

ing different frequencies cannot lock without phase 

differences [2,5,24,25]. 

By contrast, the arguments of Sections 2 and 3 show 

that for a sufficiently small gradient in times along 

the left-hand or right-hand branches, or small pairwise 

differences among successive oscillators, synchrony 

of jumps can be maintained for chains of relaxation 

oscillators. This is illustrated in Fig. 13. The figure 

shows the behavior of a chain of 20 oscillators with a 

frequency gradient of 50% over the chain. Note that 

the 50% gradient in frequency can be overcome by the 

FTM interactions. 

Remark. The FTM interactions can be provoked by a 

stimulus that sharpens the synaptic gating function as 

in Fig. 12. It is also possible for a stimulus to act on a 

chain of oscillators by directly changing the frequency 

of the uncoupled oscillators. This happens for exam- 

ple, if the stimulus is modeled (in Morris-Lecar os- 

cillators) by addition of current. With enough added 

current, the frequencies of the oscillators "saturate" 

and the gradient disappears (G.B. Ermentrout, per- 

sonal communication; Somers, unpublished observa- 

tion). See Ref. [26] for an example in which there 

is a gradient of frequencies of the uncoupled oscilla- 

tors. In the absence of a stimulus, there is a travelling 

wave of activity, which switches quickly to approxi- 

mate synchrony upon introduction of a stimulus. 
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Fig. 13.. PTM compensation for a frequency gradient. A chain of 20 relaxation oscillators with a 50% gradient in natural frequencies 
(e = 0.001 to E = 0.0015) is started with identical initial conditions and zero coupling. Travelling waves propagate across the chain with 
increasing phase lags. Onset of PTM coupling (a = 0.2) (arrow) rapidly synchronizes the chain. 

5. Fractured synchrony and fractured waves 

We now turn to another distinction between chains 

of  phase oscil lators and chains of  relaxation oscilla- 

tors. This dist inction holds in the context of  oscillators 

that are pairwise capable of  displaying stable in-phase 

and antiphase solutions. For  example, a pair  of  phase 

oscil lators satisfying (2.1) with o91 = w2 =-- w and 

Ht  = H2 = H has this property if  

H(~b) = a s i n ( ~ b ) +  B sin(2~b) + C cos(~b), (11)  

with B > A / 2  > 0. Relaxation oscillators coupled 

through F F M  can also exhibit  such bistabil i ty if  the 

times along the left  and right branches are sufficiently 

differ.ent [9] .  

Rings of  identical oscil lators have synchrony as one 

solution, and. this is stable for phase oscillators i f  

H~(0) > 0 and for relaxation oscil lators when Hy- 

pothesis  C is satisfied near one or both jumps. There 

are also other possible  stable solutions, including trav- 

elling waves [27] .  In the solutions we will now dis- 

cuss, the r ing breaks up into a number o f  domains. 

For the phase oscillators, the behavior on individual  

domains is wave-like, with a pair of  waves travelling 

toward or away from the center of  the domain.  For the 

relaxation oscillators, the oscillators within each do- 

main are approximately synchronous, with neighbor- 

ing domains approximately in antiphase. We call this 

"fractured synchrony" and the behavior for the phase 

oscillators "fractured waves." S imula t ions  demonstrat-  

ing these behaviors are displayed in Figs. 14 and 15, 

respectively; the relaxation equations are given in the 

Appendix.  

We now give a heuristic explanation why fractured 

synchrony is to be expected in the relaxation case, 

and not possible  (generical ly)  for phase oscillators. 

The central idea is that the boundary between the 

domains creates a pair of  oscillators whose antiphase 

interactions would produce a different frequency 

and /o r  waveform from the rest of  the chain in the 

absence of  the other oscillators. This "defect" acts 

l ike a "pacemaker" for the array. The essential differ- 

ence between the arrays of  relaxation oscillators and 
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t t 

(c) 
Fig. 14. Fractured Synchrony. A ring of 40 uniform relaxation 
oscillators (E = 0.0002, ce = 0.02) breaks into two locally syn- 
chronized domains of 10 and 30 oscillators each. (a) 3-D view 
shows formation of contiguous oscillator domains over time. The 
domain with 30 oscillators wraps around the end positions of the 
plot. (b) With voltage traces overlaid, tight synchrony can be seen 
within each of the two domains. Note that the domains are not 
in precise antiphase. This persisted for as long as the simulation 
was run (over 100 cycles). (c) Initial conditions corresponding 
to near antiphase on the same domains yielded trajectories which 
remain in antiphase for at least 200 cycles. This demonstrates that 
the phase relationship between domains may depend on the initial 
conditions the of array. 

the phase-d i f fe rence  coupled  osci l la tors  is then seen 

to be  in their  responses  to these defects.  In part icu- 

lar, phase-d i f fe rence  coupled  osci l la tors  t ransmit  the 

effects  o f  the  pacemaker ,  whi le  re laxat ion osci l lators  

loca l ize  the effects.  

We start wi th  the  c i rc le  o f  re laxat ion  osci l la tors  wi th  

two  domains  o f  osci l la tors  ini t ia l ly  in antiphase.  To 

unders tand the behav ior  wi th in  a domain ,  cons ider  an 

equ iva len t  l eng th  chain o f  oscil lators,  wi th  ident ical  

osci l la tors  in the interior,  and the end osci l lators  re- 

p laced  by ones  that have  the same t imes  a long the left- 

hand branch and r igh t -hand  branch as the ant iphase 

pair. The  behav ior  o f  the chain depends  on the L C I ' s  

U~ 
m e l  

o. 

2TC 

T~ 

0 20 40 
Oscillator Position 

Fig. 15. Fractured waves. A ring of 40 uniform phase oscillators 
is started as two antiphase domains, each composed of 20 locally 
synchronous oscillators (flat dot-dash line). For equal sized do- 
mains, domain borders remain antiphase and a stable bi-directional 
travelling wave quickly forms within each domain. Successive 
curves show relative phases of oscillators after 0, 2, 10, and 100 
(solid line) cycles. Degree of bowing increases with domain size. 
Unlike the relaxation oscillators; here unequal domain sizes lead 
to changing phase relationships between domain borders (in much 
less than 100 cycles). In our simulations this led to synchrony or 
free running phase relationships. (A = 1.0, B = 0.75, C = 0.5). 

for  the inter ior  and end osci l la tors  as discussed in Sec-  

t ion 4.1. I f  the L C I  o f  the end osci l la tor  is not  so dif-  

ferent  f rom the LCI  o f  the inter ior  ones,  the resul t ing 

behavior  o f  the equivalent  chain is synchrony,  as seen 

in the domains  o f  Fig.  14. Thus,  the effect  o f  the an- 

t iphase pair  is local ized.  S imula t ions  show that this is 

true, independent  o f  the relat ive domain  sizes. 

We now turn to phase-di f ference  coupled  osci l la tors  

and again cons ider  two equal  domains  o f  osci l la tors  

ini t ia l ly  synchronous  on each domain ,  wi th  the do-  

mains  in antiphase. By  symmetry,  the lag be tween  the 

ne ighbor ing  end osci l la tors  o f  the domains  remains  at 

~- for  all t ime. Thus,  the behavior  on a doma in  is the 

same as that o f  a chain whose  end osci l la tors  have  the 

same f requency as an ant iphase pair. For  a phase  os- 

ci l lator  wi th  H given by (11 ),  an ant iphase solut ion 

for two ident ical  osci l la tors  wi th  f requency w must  

satisfy OJ = o) + H(Oj  - Oi) = o) + H ( ~ - ) .  Thus the 

solut ion has f requency co + H(~ - )  = oJ - C.  H t ( ~  -) = 

- A  ÷ 2B > 0, so this solut ion is stable. For  large N, 

the theory o f  [5] predicts  phase  lags qbj ~ ~b L for  the 

left  ha l f  o f  the chain, ~bj ~ ~b R for  the r ight  ha l f  o f  

the chain, wi th  a boundary  layer  in be tween,  where  

~b L (resp. qb R) satisfy 

H ( - - C k L ) + C = O ,  H ( q b R ) + C = 0 .  (12)  
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Since q~R = --qSr, this argument shows that i f  the 

oscillators at the domain boundaries are constrained 

to stay in antiphase, then the behavior on each domain 

is that of a pair of waves tending toward or away 

from the domain center. This is shown in Fig. 15. 

The argument rules out fractured synchrony provided 

that the conditions qSL v~ 0 va ~bR are satisfied, If 

the domains are not of equal size, the lag between 

the domains does not remain at ¢r, and the domains 

eventually dissolve. In either case fractured synchrony 

does not occur. 

Remark. It was shown by Abbott [28] that a network 

of relaxation oscillators is capable of encoding pat- 

terns of "on" and "off" that can be "learned" like static 

patterns of a Hopfield network. Attempts by Abbott 

and Kopell to numerically reproduce that effect with 

phase-difference coupled oscillators did not succeed 

(unpublished) .  The work in this paper shows why re- 

laxation oscillators can more robustly encode domains 

of synchronous/antiphase behavior. 
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Appendix 

The Morris-Lecar system [ 14] is an example of 

voltage-gated conductance equations. These equations 

are used as a simplified description of an action po- 

tential or of the envelope of a burst of action poten- 

tials [29].  The equations for a single oscillator are 

d v / d t  = - - g c a m ~ ( v ) ( v  - -  1 )  - gx w(v  -- v~) 

--gL(V -- VL) + Iext, (13) 

d w / d t  = e [woo(v) -- w]/~'w(V), (14) 

where 

mc~ (v) = 0.5[ 1 + tanh{(v - v 1 )/V2}], 

woo(v) = 0.5[ 1 + tanh{(v - p 3 ) / v 4 } ] ,  

Physica D 89 (1995) 169-183 

~'w(V) =l/cosh{(v-v3)/(v5)}. 

The nulMines  for these equations and the singular 

limit cycle, are drawn in Fig. 1. The parameter values 

used throughout the simulations were Vl = -0 .01 ,  v2 = 

0.15, v3 = 0.1, v4 = 0.145, v5 = 0.29, gCA = 1.0, gL = 

0.5, gK = 2.0, VC = --0.4, VK = --0.7, I = 0.1. The 

values of e are contained in the figure captions. The 

coupling between a pair of such oscillators is given, 

as described in Section 2, by adding the term 

--crgcanoo (0) (v -- 1 ) ,  (15) 

where 

n ~ ( v )  = 0.511 + tanh{(v - v6)/v7}] ,  

to (13).  Here b denotes the voltage of the other oscil- 

lator and a represents the coupling strength, ce ranged 

between 0.0 and 0.5 as stated in the figure captions. 

The parameter values v6 = 0.05, v7 = 0.15 were used, 

except where noted in the figure captions. For a lin- 

ear array, there were two such coupling terms, corre- 

sponding to the voltages of the two nearest neighbors. 
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