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Abstract

Recent experiments for swarming of the bacteria Bacillus subtilis on

nutrient rich media show that these cells are able to proliferate and spread

out in colonies exhibiting complex patterns as dendritic ramifications. Is

it possible to explain this process with a model that does not use local

nutrient depletion?

We present a new class of models which is compatible with the exper-

imental observations and which predict branching instabilities and does

not use nutrient limitation. These conclusions are based on numerical

simulations. The most complex of these models is also the biologically

most accurate but the essential effects can also be obtained in simpli-

fied versions which are amenable to analysis. An example of instability

mechanism is the transition from a shock wave to a rarefaction wave in a

reduced two by two hyperbolic system.
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1 Introduction

The motivation of this work comes from recent experiments and measurements
on swarming of the bacteria Bacillus subtilis reported in [10, 15, 16]. It is ob-
served that, when inoculated on nutrient rich media, these cells are able to
proliferate and spread out in colonies exhibiting complex patterns as dendritic
ramifications. This occurs under the effect of cellular communication through
excretion of signalling molecules. Collective behaviours like this are, however,
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poorly understood and this has initiated the research field of ’cell communi-
ties self-organization’ (sometimes also called socio-microbiology), a vast subject
which can also be related to fluid flows [27].

In the first phase of a typical experiment, an inoculum of cells proliferates
and grows into a so called mother colony. After a sudden bursting phenomenon,
a number of (primary) dendrites grows from the mother colony. Dendrites typ-
ically contain two different types of cells: highly motile swarmers in the tip and
supporters with significantly smaller motility in the stem. The supporters are
maintained at a constant density. Subsequent branching events create compli-
cated patterns. Other observations are the creation of surfactin at least by the
mother colony, which is essential for the process, the preference of the dendrites
for the radial direction, and the tendency of dendrites to avoid each other. Fi-
nally, the experiments have been carried out on nutrient rich substrates and
seem to indicate that the whole process is not nutrition limited.

This final observation leads to the essential contribution of this work. As
observed in [21], all past attempts to model branching patterns for B. subtilis
are based on the assumption of a nutrition limited process (see [19, 23, 17,
8] and the survey in [24]). Most of them are related to dynamical pattern
formations à la Gray-Scott [9]. Continuing the arguments in [21], a new class
of models will be presented, which is compatible with the experimental results,
which predicts branching, and which assumes abundance of nutrient. The most
complex of these models (which we call the ’full model’) is also the biologically
most accurate. It will be shown, however, that the essential effects can also be
observed in simplified versions which are amenable to analysis.

The most important part of the full model is the description of the swarmer
dynamics. On the one hand it is assumed that surfactin acts on them like
a chemorepellent, on the other hand cell-cell signaling by a chemoattractant is
assumed, which has the effect to keep the group of swarmers together as observed
in experiments. To prevent overcrowding, a density dependent chemotactic
sensitivity is used turning off the chemotactic effect when a critical density is
reached.

Neglecting the effect of surfactin, the model for swarmers is reminiscent of
the usual Keller-Segel model (see [13, 14, 12, 23, 25] and the references therein)
for cell aggregation, however without diffusion effects and with prevention of
overcrowding. Indeed, in the absence of surfactin, this system has been studied,
both theoretically and numerically by several authors [7, 3, 4, 6]. In any di-
mension, solutions exist that stay bounded. They exhibit a coarsening process
reminescent of phase change models, where plateau-like peaks of the cell density
form after a short transient period leading to sharp fronts (shock waves). With
a small diffusion of the cells, these ’plateaus’ (along with the terminology of [11])
merge with an exponentially slow dynamics. In the present paper, the question
is to understand the dynamics of the plateaus resulting from the repellent forces.

Swarmer cells are assumed to multiply, but we assume that after division,
one of the two daughter cells becomes a supporter. This assumption is based
on the experimental observation that the number of swarmers seems to remain
constant during dendrite elongation. Two possible mechanisms for maintaining
the observed constant supporter density are considered: either diffusion with
a diffusivity proportional to the density of a trace substance produced by the
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swarmers (which we consider the biologically more sound alternative), or a lo-
gistic birth-death process. The mother colony is formed of cells packed in a
multilayer. They are supposed immotile and do not multiply. Thus, they are
represented as a group of ’frozen’ cells.

For the dynamics of surfactin, production by the mother colony and by the
supporters is assumed, as well as decay and diffusion. Production by the mother
colony followed by diffusion should induce the preferred radial direction of the
dendrites. Production by the supporters is motivated by the experimental obser-
vation that long enough dendrites, which are separated from the mother colony,
keep extending and splitting. The chemoattractant is (obviously) produced by
the swarmers, and diffuses fast enough for its density to maintain a quasi-steady
state, balancing production, diffusion, and decay.

Several of our modeling assumptions are questionable and certainly not suf-
ficiently supported by experimental evidence. On the other hand, we are not
aware of any contradictions to experimental observations. Our purpose is to un-
derstand, if these ingredients are enough to predict the growth and branching
of dendrites. Our analysis has to be understood as purely qualitative. We shall
work with a nondimensionalized model, where no effort has been undertaken to
identify realistic parameter values.

In Section 2, we formulate the full model and present several numerical
simulations, showing that dendrite growth and branching can be predicted. One
aspect, namely dendrite growth, can be explained analytically for a strongly
simplified model. This is done in Section 3 in the form of a traveling wave
analysis. The simplified model is one-dimensional, neglects supporters and the
mother colony, and assumes that surfactin is produced by the swarmers. Growth
of a dendrite is then represented by a moving plateau solution, which can be
given analytically in the limit of vanishing surfactin diffusivity. It turns out that
such a solution is only stable for strong enough chemoattraction. This analysis
will be continued in a more mathematical paper [26]. Finally, in Section 4,
three different simplified models are solved numerically showing that splitting
of plateaus, i.e. branching of dendrites, seems to be a rather generic consequence
of the competition between cell aggregation and the dispersive effect of surfactin.

2 The full model: mother colony, supporters,

swarmers

According to the assumptions formulated in the previous section, the full model
has the form

∂tn + ∇ ·
[

n(1 − n)∇c − n∇S
]

= 0,

−Dc∆c + τcc = αcn,

∂tS − Ds∆S + τsS = αsmcol + αff,

∂tDm = dmn,

∂tf −∇ · (Dm∇f) = Bff(1 − f) + Bnn,



































(1)

where all quantities are dimensionless. We have denoted the unknowns by
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• n(x, t) the density of swarmers, for which we consider a conservation equa-
tion (explained by the assumption that cell division always produces one
swarmer and one supporter cell). The swarmers move under the effect of
surfactin (with density S) acting as a chemorepellent, and of a chemoat-
tractant (with density c), which has the effects of holding together the
swarmer cells forming the tips of dendrites and of cooperating with S in
the splitting mechanism.

• c(x, t) the chemical concentration of the chemoattractant, which is pro-
duced by the swarmers with a rate αc. It diffuses with diffusivity Dc and
is degraded with rate τc. This reaction-diffusion process is assumed to
be fast compared to the other effects and therefore modeled to be in a
quasi-steady state.

• S(x, t) the surfactin density that is released by both supporters and by
the mother colony with rates αf and, respectively, αs. It diffuses with
diffusivity Ds, and it is degraded with a rate τs. The cell density mcol(x)
of the mother colony is assumed as fixed and given.

• Dm(x, t) the density of a trace substance left by the swarmers. It is
released with a rate dm.

• f(x, t) the density of supporters, which are produced by cell division of
swarmers with rate Bn, diffuse with diffusivity Dm, and reproduce with
the logistic rate Bf (1−f). The last two effects, both providing a tendency
to make the supporter density constant, will be considered alternatively.

Auxiliary conditions and parameter values: For numerical purposes, the
system is considered in a bounded domain Ω = [0, L]2 ⊂ R

2 subject to homo-
geneous Neumann boundary conditions for c, S, and f , implying also zero flux
through the boundary (and therefore no necessity for boundary conditions) for
the swarmer density n.

We have performed simulations with Ω = [0, 4]2. We chose the parameter
values Dc = 0.001, τc = 1, αc = 1, Ds = 0.5, τs = 10, αs = 2, αf = 30, dm = 50,
Bf = 0, Bn = 1. The small value of Dc (together with the moderate value of
τc) has the consequence that the chemoattraction between swarmer cells is a
short range effect. The mother colony is located around the lower left corner
with a density given by mcol(x) = 31I|x|≤0.4. The initial data can be seen as
a caricature of the situation immediately after bursting with a small swarmer
region next to the mother colony: n(x, 0) = 1I0.4≤|x|≤0.5, Dm(x, 0) = f(x, 0) = 0,
and S(x, 0) = S0(x), solving the problem

−Ds∆S0 + τsS0 = αsmcol ,

subject to homogeneous Neumann boundary conditions. This assumes that,
previous to bursting, the time of production of surfactin by the mother colony
was sufficiently long to produce an equilibrium.

Numerical scheme: The numerical simulation of system (1) faces a major
difficulty which is the diversity of mathematical structures with hyperbolic and
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parabolic or elliptic equations. For this reason we have used two different ap-
proaches; the finite volume method on a rectangular grid is more acurate for
the hyperbolic equations while a finite element method is better fit to diffusion
equations. We use compatible grids to combine both.

We first discretize the square domain [0, L]×[0, L] with structured rectangles
by introducing the nodes (xi, yj) = (i∆x, j∆y)(i,j)∈N2 . Each rectangle can be
split into two rectangular triangles which will be referred to as the triangular
mesh. A decoupled time-stepping approach is applied, where the equations in
(1) are solved consecutively. Assume that c, S and f are known on the nodes of
the mesh. We compute the gradients ∇c and ∇S thanks to the approximation
∂xc(xi, yj) = (c(xi+1, yj) − c(xi−1, yj))/(2∆x) + O(∆x2). Then the hyperbolic
conservation law for n is discretized by a first order finite volume Engquist-
Osher-type scheme [2] on the rectangular grid. For stability, we impose the CFL
(Courant-Friedrichs-Levy) condition ∆t < ∆x/(max |∇S| + max |∇c|). Then it
is possible to compute the trace Dm directly and we use implicit in time Euler
scheme.

For the discretization of the parabolic/elliptic equations for c, S and f , we
make use of the general Finite Element package FreeFem++ (see [1]) on the
triangular grids. Since n and Dm are known on the nodes of the mesh, an
implicit Euler discretization in time is used for the equation for S and f ; then
a P 1 finite element discretization is performed to find an approximation of c, S
and f . All this is built in FreeFEM++.

Finally the algorithm is the following. Assume all quantities are known at
time tk. We first compute the cell density n at time tk+1. Then, an implicit in
time Euler scheme gives Dm at time tk+1. We are yet able to solve the equation
for c, S and f and go to the next step.

Results: The results are shown in Figure 1, where we depict five snap shots of
the simulation. With our choice of parameters, the swarmer cells form a plateau
traveling outwards (in accordance with the travelling wave analysis in Section 3).
Additionally, one can observe successive branching, which is compatible with the
experimental observations. The main branching mechanism seems to be stable
and is kept with Bf 6= 0. This mechanism, since it does not use local nutrient
depletion, is very different from that observed for reaction-diffusion systems (see
[19, 23, 17, 8] and the references therein). The system (1) can generate several
types of instabilities and we study some of them below for simplified equations.

3 Traveling plateaus in one dimension for small

surfactin diffusivity

In order to explain the branching instabilities that occur in (1) as shown in
Figure 1, a simplification of the full model is introduced. The supporters and
the mother colony are not represented, and we assume that the surfactin is
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Figure 1: Time dynamic of swarmers and supporters density (left) and of the
surfactin concentration S (right) computed with the model (1).
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solely produced by the swarmers. The resulting model has the form

∂tn + ∇ ·
(

n(1 − n)∇c − n∇S
)

= 0 ,

−Dc∆c + τcc = n ,

∂tS − DS∆S = αn .















(2)

Thus, we just analyze the effect of repellent forces when added to the hyperbolic
Keller-Segel model proposed in [7], see also similar models with diffusion in
[12] and the references therein. This system is interesting in itself and shares
similarities with models for crowds derived by various authors [5, 22], although
key ingredients are different.

We shall study planar traveling waves. More precisely, we are interested in
understanding the capability of the system to produce plateau waves, and in the
stability and instability mechanisms involved in the multidimensional dynamics
of these waves.

The hyperbolic Keller-Segel system generates plateaus as we explained ear-
lier. The main property of system (2) is to create traveling plateaus and, in
one space dimension when the repellent signal S does not diffuse, we can give
an explicit analytical form of these plateaus. More interesting is their stability,
whose analysis is facilitated by a change of unknowns, where (2) (with DS = 0)
is transformed into an hyperbolic system (with nonlocal coupling), as it was
done in [20] for the Keller-Segel system with a nutrient. With x ∈ R and with
the new variable v = −∂xS, the system (2) becomes

∂tn + ∂x

(

(n(1 − n)∂xc + nv
)

= 0 ,

∂tv + ∂x(αn) = DS∂2
xv ,

−Dc∂
2
xc + τcc = n .















(3)

Traveling plateaus for vanishing surfactin diffusivity

We set DS = 0 and look for traveling waves with speed σ, which are solutions
of the form n(x − σt), v(x − σt), c(x − σt) and, thus, have to satisfy

−σn′ +
(

n(1 − n)c′ + nv
)′

= 0 ,

−σv′ + αn′ = 0 ,

−Dcc
′′ + τcc = n ,

(4)

where the prime denotes differentiation with respect to y = x − σt. The first
two equations of (3) with DS = 0 and with c considered as given are a nonlinear
system of hyperbolic conservation laws. For the computation of weak solutions
of the traveling wave system (4), smooth parts of solutions can be connected by
jump discontinuities of n and v, satisfying the Rankine-Hugoniot conditions

σ[n] = [n(1 − n)∂yc + nv] , σ[v] = [αn] , (5)

where the bracket denotes the jump across a discontinuity. A traveling plateau
solution that vanishes outside of a bounded interval, then has to satisfy

n
(

−σ + (1 − n)c′ + v
)

= 0 , −σv + αn = 0 . (6)
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Therefore, the nontrivial constant solution (n, v) = (1, σ) exists, if its speed
satisfies σ2 = α, and it can be connected to the state (n, v) = (0, 0). In the
following, without loss of generality, positive wave speeds will be considered.
The above states are not influenced by the chemoattractant density, which can
be computed separately. Thus, we conclude:

Theorem 3.1 (Existence of traveling plateau solutions). For every L > 0, the
traveling plateau with speed σ =

√
α and width L,

n(y) =

{

1 for 0 ≤ y ≤ L ,
0 otherwise,

v(y) =

{ √
α for 0 ≤ y ≤ L ,

0 otherwise,

with the chemoattractant concentration given by

c(y) =







eµy(1 − e−µL)/(2τc) for y < 0 ,

(1 − eµ(y−L)/2 − e−µy/2)/τc for 0 ≤ y ≤ L ,
e−µy(eµL − 1)/(2τc) for y > L ,

µ =
√

τc/Dc ,

is a weak solution of (4).

The parameter L can be interpreted as the total number of cells since L =
∫

n(y)dy. This is, together with the usual translational invariance, the only free
parameter for the traveling wave. The surfactin concentration can be computed
by integration:

S(y) =







√
αL for y < 0 ,√
α(L − y) for 0 ≤ y ≤ L ,

0 for y > L .

Surfactin is produced inside the plateau, and a trace of surfactin is left behind.

Each plateau wave contains two shock waves. These are only practically
relevant, if they are stable, i.e. they have to satisfy an entropy condition. For
the purpose of checking this, we need the spectral properties of the Jacobian

Dn,vf =

(

(1 − 2n)c′ + v n

α 0

)

, (7)

of the flux vector f = (n(1 − n)c′ + nv, αn). In these computations, c′ can
be considered as a given constant, since it is continuous across shocks. The
eigenvalues are given by

λ±(n, v) =
1

2

(

(1 − 2n)c′ + v ±
√

(

(1 − 2n)c′ + v
)2

+ 4αn

)

, (8)

implying that the flux is strictly hyperbolic as long as (n, v) 6= (0,−c′), which
holds along the plateau waves, since c′ 6= 0 for y < 0 and for y > L. We have
λ+ ≥ 0, λ− ≤ 0. An eigenvector corresponding to eigenvalue λ is given by
r = (λ, α).

The Hugoniot locus of the origin (n, v) = (0, 0) (i.e. the set of all states
reachable by a shock) is determined by elimination of the shock speed σ from
(6). It consists of the v-axis with constant shock speed σ = 0, implying that
the corresponding field is linearly degenerate, and of the curve determined by

αn − v(1 − n)c′ − v2 = 0 . (9)
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A tangent vector at the origin is given by (c′, α), which has to be collinear to
one of the eigenvectors. Since

λ+(0, 0) = max{0, c′} , λ−(0, 0) = min{0, c′} ,

curve (9) belongs to the (+)-field for c′ > 0 and to the (−)-field for c′ < 0. Since

c′(0) =
1 − exp

(

−L
√

τc/Dc

)

2
√

τcDc

> 0 ,

the shock at y = 0 belongs to the (+)-field, and the Lax entropy condition
λ+(1,

√
α) < σ < λ+(0, 0) is satisfied iff ∂yc >

√
α.

For the shock at y = L the Hugoniot locus of the state (n, v) = (1,
√

α) has
to be examined using c′(L) < 0. This shock also belongs to the (+)-field, and
the entropy condition now takes the form λ+(0, 0) = 0 < σ < λ+(1,

√
α), which

is satisfied unconditionally.

We collect our results:

Theorem 3.2 (Stability of traveling plateau solutions). For dynamic stability
of the traveling plateau solutions of Theorem 3.1 (as solutions of (3)),

c′(0) =
1 − exp

(

−L
√

τc/Dc

)

2
√

τcDc

>
√

α (10)

is a necessary condition.

We are not aware of a rigorous result concerning sufficient conditions for
stability, even without production of surfactin (see, however, [7] for a formal
stability analysis in this case).

The stability condition (10) shows that plateaus can be destabilized by a too
strong production of surfactin, by a too large diffusivity of the chemoattractant,
or if they are too short.

Shock profiles for small surfactin diffusivity

We examine the effect of a small surfactin diffusivity 0 < Ds ≪ 1 on the shape
of traveling waves. Traveling wave solutions of (3) satisfy

−σn′ +
(

(n(1 − n)c′ + nv
)′

= 0 ,

−σv′ + αn′ = DSv′′ ,

−Dcc
′′ + τcc = n .















(11)

Integration of the first two equations and the far field conditions n(±∞) =
v(±∞) = 0 give

n (−σ + (1 − n)c′ + v) = 0 ,

−σv + αn = DSv′ ,

−Dcc
′′ + τcc = n .















(12)
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Now c, c′, and v can be expected to be continuous, whereas n may still have
jumps. The first two equations imply that these jumps have to be between
regions, where

n = 0 , DSv′ = −σv , (13)

and regions, where

n = 1 +
v − σ

c′
, DSv′ =

(α

c′
− σ

)

v + α
(

1 − σ

c′

)

. (14)

Shock profile at the left jump: We shall construct shock profiles close to
the jump points y = 0 and y = L of the traveling wave of Theorem 3.1 and start
with the left end of the wave at y = 0. By the smallness of DS , the profile can
be described asymptotically in terms of the boundary layer variable ξ = y/DS.
In the language of singular perturbation theory, v can be expected to be a fast
variable, approximated as v = v(ξ), whereas (for moderate values of Dc) c′ is
a slow variable, which can be approximated by the constant value c′(0) (see
(10)). The density n may have jumps between n = 0 and regions where, by
(14), n is approximated by n = 1 + (v(ξ) − √

α)/c′(0), since the wave speed is
approximated by σ =

√
α as given in Theorem 3.1. We choose ξ = 0 as location

of a jump from (13) to (14). For ξ < 0 we then have dv/dξ = −σv subject to
the matching condition v(−∞) = 0, which has the unique solution v(ξ) ≡ 0.
For ξ > 0, (14) implies

dv

dξ
= µ0(

√
α − v) , with µ0 =

√
α

(

1 −
√

α

c′(0)

)

,

subject to v(0) = 0 and to the matching condition v(∞) =
√

α. At this point we
recover the stability condition c′(0) >

√
α of Theorem 3.2, which is necessary

for solvability. If it is satisfied, we finally obtain the shock profile

n(ξ) =

{

0 for ξ < 0 ,

1 −
√

α

c′(0)e
−µ0ξ for ξ > 0 ,

v(ξ) =

{

0 for ξ < 0 ,√
α
(

1 − e−µ0ξ
)

for ξ > 0 .

We reiterate that it contains a jump of n at ξ = 0.

Shock profile at the right jump: The construction of a shock profile at
y = L is similar. Now the boundary layer variable is given by η = (y − L)/DS,
and we search for a solution, where (14) holds for η < 0 and (13) for η > 0.
Since c′(L) < 0, both differential equations for v have decaying solutions, again
meaning that the only bounded solution for η < 0 is constant. This finally leads
to the shock profile

n(η) =

{

1 for η < 0 ,
0 for η > 0 ,

v(η) =

{ √
α for η < 0 ,√
α e−

√
α η for η > 0 .

Note that now there is no profile in the swarmer density. An illustration of our
qualitative results is given in Figure 2.

The theoretical predictions concerning the stability of the traveling waves
have been examined by numerical simulations, which have been performed with
x ∈ [0, 7] and two sets of coefficients. Results are shown in Figure 3, where we
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Figure 2: Qualitative representation of traveling plateau solutions of (3). Left:
the swarmer density n, where h = 1− σ

c′(0) is the height of the jump on the left

side of the front. Right: the gradient v of the surfactin concentration.

can see (Figure 3a) the formation of the boundary layers as predicted above,
when the stability condition is satisfied. Figure 3b shows the results of numerical
simulations, when the stability condition is violated. We observe that the jump
on the left side of the profile is replaced by a rarefaction wave.

4 Plateau splitting in reduced models

As we have seen, reduced models such as (2) can produce stable traveling
plateaus for swarmers taht are compatible with the elongation of dendrites.
In this section we show, based on numerical solutions, that reduced models are
also able to produce instabilities and branching patterns. It turns out that the
source term for S is crucial and we explore several possible forms. We will
come back on mathematical questions of existence (in smallness regimes) in a
forthcoming work [26].

4.1 Reduced 1D model without supporters

In the numerical results shown in Section 2, branching of dendrites is induced
by the splitting of groups of swarmers transversal to the direction of movement.
This section shows that splitting in the longitudinal direction is also possible.
We consider an extension of the one-dimensional version of (2), where we in-
corporate the mother colony as an additional driving force and degradation of
surfactin. This yields

∂tn + ∂x

(

n(1 − n)∂xc − n∂xS
)

= 0 ,

−Dc∂
2
xc + τcc = n ,

∂tS − DS∂2
xS + τSS = αSmcol + αn .















(15)

Numerical simulations have been carried out with 0 ≤ x ≤ 9 and with the
mother colony mcol = 3χ[0,1] (three times higher than the swarmer population
density in accordance with the biophysical situation described in the introduc-
tion). The initial data for the swarmer density and for the surfactin concentra-
tion are given by n0 = χ[1.5,2] and, respectively, by the stationary solution of
the surfactin equation with n replaced by n0. Other model parameters are given
in the figure caption. Results are depicted in Fig. 4. We observe a splitting of
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Figure 3: Numerical simulations of (3) with two sets of coefficients and the
plateau wave of Theorem 3.1 as initial datum. The left column depicts the
initial data for n and for the chemoattractant c by solid and dash dotted lines,
respectively, (top) and for the gradient v of the surfactin concentration (bottom).
The right column is a snapshot at a later time. a) DS = 0.01, α = 0.05, τc = 1,
and Dc = 0.01. In this case, the stability condition c′(0) >

√
α is satisfied. The

results verify the qualitative picture in Figure 2. b) DS = 0.01, α = 20, τc = 1,
and Dc = 0.01. Now the stability condition is violated, the shock at the left is
unstable and is replaced by a rarefaction wave.
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Figure 4: Numerical solution of (15) with DS = 7, αS = 6, α = 3, τS = τc =
1, αc = 1 and Dc = 0.002. The left column shows n+mcol and the right column
S: a) initial data, b) intermediate state, c) split state.
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the swarmer colony occurring due to the combined effect of a drop of n in the
plateau (due to the effect of the production of surfactin by the swarmers) and
of the capability of the system to recreate plateaus that are separated by the
external signal from the mother colony. In simulations with α = 0, i.e. without
production of surfactin by the swarmers (results not shown), splitting does not
occur. The surfactin gradient just transports a plateau of swarmer cells.

4.2 Reduced 2D model without supporters

In this section we present numerical results for the two-dimensional version of
(15) with α = 0, i.e.,

∂tn + div(n(1 − n)∇c − n∇S) = 0 ,

−Dcc + τcc = αcn ,

∂tS − DS∇2S + τSS = αSmcol .















(16)

We emphasize the choice α = 0, avoiding plateau splitting in the longitudinal
direction, according to the results of the previous section. In two dimensions,
however, transversal splitting may occur, which is the basis for dendrite branch-
ing. This is shown in Figure 5. The term −∇S acts so as to stretch the initial
plateau-like state transversally, as depicted in Fig. 5a). Once the stripe is too
thin, the conservation of mass and the action of ∇c give rise to the splitting.

Here we have used x ∈ [0, 2]2, α = 0, DS = 1, τS = 10, τc = 1, αc =
1 and Dc = 0.005. The mother colony occupies the left bottom corner of
the computational domain and we have chosen mcol = 3χ|x|≤0.2. The initial
swarmer density is n(0, x) = χB with B = {x = (x1, x2) : (x1 − 0.5)2 + (x2 −
0.5)2 < 0.32, 0.4 < |x| < 0.6}, as displayed in Figure 5a).

4.3 Reduced 2D model with supporters

The system considered now,

∂tn + ∇(n(1 − n)∇c − n∇S) = 0 ,

−Dcc + τcc = n ,

−DS∆S + S = αSmcol + αff ,

∂tf = Bff(β − f) + Bnn ,



























(17)

is almost the full system (1), however without the effect of supporter diffu-
sion caused by a trace substance and with a quasistationary equation for the
surfactin concentration. On the other hand, a logistic growth term for the
supporters should have a similar effect of making the supporter concentration
approximately constant. This is a mathematical simplification, which preserves
this feature as can be seen in Fig. 6, but ignores the observed motility of sup-
porter cells.

Moreover, taking the time derivative for the equation for S, one gets

∂tS = DS∂t∆S + αf∂tf = DS∂t∆S + αfBff(β − f) + αfBnn ,
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Figure 5: Numerical simulations of (16) with x ∈ [0, 2]2, α = 0, DS = 1,
τS = 10, τc = 1, αc = 1, Dc = 0.005. The swarmer density is shown at different
points in time: a) initial data, b) intermediate state, c) split state.
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a) b)

c) d)

Figure 6: Time dynamic of swarmers plus supporters density computed with
the 2d model (17) with supporter cells.

so that when αf is small and DS = 0, (17) is a perturbation of the reduced
traveling wave model (2). By the results of Section 3, this makes the existence
of traveling wave solutions rather likely.

For a numerical solution, the parameters have been chosen as L = 2, DS =
0.05, Dc = 0.0005, αc = 2, αm = 1, αf = 2, Bf = 12, Bn = 4, β = 1/3.
The mother colony is still chosen as mcol = 3χ|x|<0.2. The initial conditions
are f(t = 0) = 0, n(t = 0) = χB with B = {x = (x1, x2) : 0.2 < |x| <
0.3, (x1 − 0.2)2 + (x2 − 0.2)2 < 0.12}.

The results are shown in Fig. 6. This simplified model reproduces branching
patterns similar to that of the full model (1), with a constant density of swarmers
and supporters respectively in the tip and along the dendrite.

5 Conclusion

Dentritic patterns are commonly observed during the swarming of bacterial cells
colonies such as B. subtilis. Established models to reproduce these patterns are
usually based on parabolic equations, and the instability is driven by the local
depletion of nutrient.

Here we have considered an hyperbolic model for the swarmer cells, which
provides the leading mechanisms of the system, completed by various, possibly
degenerate, parabolic equations for the other cells (in particular supporters) and
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for the chemicals excreted by these cells. But, motivated by experiments on rich
media, no nutrient limitation is used.

New branching instabilities have been observed in the complete model in-
cluding a mother colony, supporter cells and swarmers which has been devised
based on former hyperbolic Keller-Segel with logistic sensitivity models proposed
in [4, 7]. Reduced models, more amenable to analysis, explain several numerical
observations: traveling plateaus for the swarmers exist generically and are sta-
ble under size conditions in one space dimension. The instability mechanisms,
responsible for branching, are numerous and depend on the dimension, where
the computations are performed.

From the modeling side, improvement of the description of short range ef-
fects of surfactin is necessary, and we can expect different branching instabilities
in more realistic systems. From the theoretical point of view, understanding two
dimensional effects and further instability effects is certainly the most challeng-
ing problem.
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