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I. INTRODUCTION 

T 
HE PROPAGATION of waves in periodically stratified 

media was discussed as early as 1887 by Lord Rayleigh 

[ l], who recognized that this problem was character

ized by the Hill and Mathieu differential equations. Even 

earlier in the 19th century a number of scientists have investi

gated wave propagation in lattices. Cauchy, Baden-Powell, 

and Kelvin [ 2] discussed lattices that consist of identical 

particles. Kelvin then proceeded to devise a theory of disper

sion for a 2-particle lattice and a mechanical model of it was 

built by Vincent [ 3] . At the end of the Nineteenth century 

and early Twentieth century a number of scientists (Vaschy, 

Pupin, Campbell) used periodic networks to develop electric 

filters. 

In 1928, Strutt and Van der Pol [4], [5], analyzed the 

problem of an atomic grating subject to a periodic sinusoidal 

potential, and the behavior of particles in force fields that are 

characterized by sinusoidal and rectangular periodic variations. 

In the same year, Bloch [ 6] generalized the results of Floquet 

[7] to the use of partial differential equations with periodic 

coefficients. The solutions, called the Bloch waves, formed 

the basis of the theory of electrons in crystals, i.e., of the 

theory of solids and energy bands [ 8] -[ 12] . 
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Fig. 1. Periodic structure configurations reviewed in this paper. (a) Waves and particles in an unbounded periodic medium. 

(b), (c) Wave scattering from a periodic half-cpace. (d) Wave scattering from a periodic boundary. (e) Wave scattering by 
a thick grating. (f), (I), (h) Waves in periodic guides and particles moving near a periodic structure. (I) Waveguiding and 
radiation on a surface with periodic impedance. (j) Guide with periodic loading. (k) Corrugated fiber. (l) Two
dimensional periodic mechanical mesh. (m) Flexural waves in periodically supported burns. (n) Acoustic waves and flow 
in a periodic duct. (o) Water waves on a periodic bottom. (p), (q), (r) Waves and particles in simple crystals, cholesteric 
liquid crystals, and zeolite crystals, respectively. 

Interest was also very strong in the field of optical multi

layers [ 13] -[ 15] , which have many applications: filters, anti

reflection films, beam splitters, and polarizers. The theory of 

stratified optical thin films was elegantly and considerably 

investigated by Abeles [ 16]. A detailed and comprehensive 

review of the work on waves in periodic structures as of the 

late 40's can be found in Brillouin's book Wave Propagation 

in Periodic Structures [ 17]. 

In the l 950's the interest in periodic structures came mainly 

from the fields of slow wave structures and antennas. The 

study of slow wave structures was mainly stimulated by the 
development of microwave tubes where a periodic structure 

is used to slow the wave, which could then couple to the 

relatively slow electron beam [ 18]-[22]. The structure most 
often used was the helix in the different forms: Sheath helix 

(22], tape helix [23], (24], and multifilar helix [24], [25]. 

Other structures which were also studied in detail for slow 

wave guiding and filtering were the tape ladder line [ 24 ]-[ 26] 

and ridge waveguide (24], (27], [28]. 

The investigations of the properties of traveling wave peri

odically loaded antennas was stimulated by the successful 

experimental design of the cigar antenna [29], [30] which 

utilizes a modulated disk on rod structures. The theory of 

guiding structures with periodic modulation of the surface 

reactance was then developed [ 31]-[ 33] . Periodic loading of 

a basically slow-wave structure produces a complex wave 
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which continuously radiates power, but with the bulk of the 

energy being bound. This permits the realization of a large 
effective aperture [32]-(33]. An excellent review, with 

references, of the work on traveling-wave antenna is given 

by Hessel [ 33] . 

In the l 960's, the main emphasis in the field of periodic 

structures was toward: 1) exact solution of the electromag
netic wave equation in sinusoidally periodic and laminar 

media [34]-[38]; 2) wave propagation in time and space-time 

periodic media (39}-[45]; and 3) localized source radiation 
(dipoles, linear sources and moving charges) [46]-[52). Also 

of importance was the use of interdigital transducers in the 
field of integrated acoustics ( 53]. 

In the early l 970's, new technological advances in the 
development of passive and active thin-film optical waveguides 
and the fabrication of solid state, optical, and acoustical 
gratings had generated a new interest in, and gave a strong 
impetus to, the field of waves . in periodic structures. The 

interest was mainly stimulated by th~ fact that new exotic 
materials, with a wide range of properties (nonlinear, piezo
electric, anisotropic, pyroelectric magnetoelastic, magneto
optic, electrooptic, etc.) can now be used in different forms 

(bulk, thin films, fibers, etc.) and with very fine periodicities 
to support electro-magnetic, acoustic or electron waves. 

Active materials were used to develop distributed feedback 
lasers [ 54 ]-(98]. Periodic nonlinear materials were proposed 

and used for parametric interaction [99)-[ 103), and high

mobility semiconductors were suggested to develop surface 

or bulk sources far optical, IR, magnetic, and acoustic waves 
[ 104J-[107]. Work on the properties of periodic structures 

was also active in the fields of structural engineering, classical 

acoustic, liquid crystals, and insect vision. In Fig. l , we show 

a variety of periodic structures that have been studied by 
numerous authors and that will be reviewed in this paper. 

Periodic structures are widely encountered in nature in the 

form of crystals. They can also be simply generated by a 

standing wave, i.e., an acoustic wave in a fluid or solid, or an 

electromagnetic wave in a nonlinear or active medium. Finally, 

large periodic structures can be developed by just simply 

repeating a basic unit. These were factors in generating the 

interest of scientists to study their characteristics. However, 
two special properties made these structures so unique and 
important: 1) their eigenmodes consist of an infinite number 
of space-harmonics with phase velocities varying from zero to 
infinity; and 2) they can support propagating waves only in 
well-specified propagation bands. 

The uniqueness of the first property is that it allows the 
periodic structure to support waves that have a very low phase 
velocity and therefore can be efficiently coupled to relatively 
slowly moving charges or sources. It also allows the coupling 
of different types of waves, or similar waves in different 
modes, without requiring them to have inherently identical 
wave vectors (in the absence of the periodicity). In other 
words, the periodic structure has an inherent wave vector 
(K = 21'f/A, where A is the period of the structure) that is 
adjustable by the designer and can be used to conserve the 
momentum (or the wave vector) in the coupling between any 

two waves. 
The second property is commonly known as the distributed 

feedback (Bragg reflection), which is a result of the cumulative 
reflection from each unit cell in the structure. As we shall 
see later, in certain frequency bands the propagation· wave 
vector can only be complex. This implies that a wave propa
gating in the structure with a frequency in the stopband will 
~ncounter successive reflection, i.e., "distributed feedback," 
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and thus cannot extend far away from its source. This 
is the reason for the presence of forbidden bands in crystals. 

All types of waves exhibit the above properties when they 
propagate in a periodic structure. The wave could be an 
acoustic, electromagnetic, magnetoelastic, plasma, electron, 
flexural, or water wave. The structure could have a periodic 
boundary, a periodic support, or a periodic bulk parameter 
(i.e., index of refraction, plasma density, electric potential, 
nonlinearity constant, gain, density, etc.) The only require

ment is that the propagation properties of the wave are some
how related to the perturbed parameter. 

In this review paper we will discuss analytically and physi

cally the unique properties, review the theoretical and experi

mental work in the last 15 years, and speculate on some 
future developments in the field of waves in periodic media. 

In Section II, we will use, with no loss of generality, the 
propagation of an electromagnetic wave in an unbound peri

odically modulated medium as an example to derive and 

explain the unique properties of periodic structures. 

The exact Floquet approach and also the approximate but 
simple coupled modes approach are analyzed. In Section III, 

we include the effect of boundaries. In Section IV, we analyze 

the case of periodic boundaries. The cases of sources and 

transients are discussed in Sections V and VI. 

Active periodic media and their applications in a wide range 

of fields are studied in detail in Section VII. Section VIII 

addresses the recent applications of passive periodic struc

tures. The wide field of electrons in crystals is briefly re
viewed in Section IX. The fabrication techniques are pre
sented in Section X and speculations for future development 
are in Section XI. This paper does not address the work on 
waves in space-time and temporal periodic structures which 
require in itself a special review paper. 

Throughout this paper, an exp (-iwt) time dependence is 
assumed. 

II. WAVES IN AN UNBOUND PERIODIC MEDIUM 

The wave equation in a symmetrically periodic medium can 
be reduced to a differential equation of the form (Appen

dix A) 

(1) 

( 
211') 

00 

f(z) = f z + - = L On cos (nKz) 
K n-o 

(2) 

where on are related to the Fourier coefficients of the peri
odicity function and to the wavenumber k = 211'/).., A is the 
wavelength of the propagating wave and A= 21f/K is the period 
of the medium. o0 is also related to the transverse wave vector 
whenever it exists. The solutions of ( l) are the Hill functions 
of which Mathieu's functions are a special case (when On= 0 
for n -:/= 0, 1). The Hill equation also applies for f<.z) odd. The 
general solution can be written in a Floquet form 

I/;= exp (iKz)A(z) (3) 

where A (z) is a periodic function, and K is termed the charac
teristic exponent and is a single valued function of the an's. 
The periodic function A(z) may next be expanded in a Fourier 
series. The solution can then be written as 

n•+co 
I/I= L An exp (i(K + nK)z]. (4) -
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The different components of iJ; are called the space harmonics 

of the propagating wave, in analogy to the familiar time 

harmonic expansion for an arbitrary function in time. The 

values of Kn = K + nK represent physically the propagation 

wave numbers of these space harmonic contributions to the 

total field. The space harmonics do not exist independently. 

They are portions of a total solution. 

Introducing (4) into the wave equation, one obtains 

~[- (K + nK)
2 An+!~ am(An-m + An+m)] 

· exp [i(K + nK)z) = 0. 

(5) 

Since the above relation must hold for any value of z, then 

( S) reduces to an infinite set of homogeneous equations 

-2(K +nK)
2 

An +Lam(An-m +An+m) 
m 

= 0, n = 0, ± 1, ... 

(6) 

which can be written in a matrix form 

llMll · IAl=O. (7) 

The solution will be nontrivial if 

det I IMI I= o. (8) 

This is the dispersion relation which gives the value of K as a 

function of the an 's. The solution of (7) would then give the 

relative values of the space harmonics, i.e., An/A 0 • The value 

of Ao itself is determined from the boundary or source condi

tions. An analytical solution for (8) was given by Hill, which 

relates the free space wave number k to the characteristic 

exponent K [35]. 

In the simple case where an = 0 for n =I= 0, 1, (6) reduces to 

where 

a0 - (K + nK)2 

Dn = 2--'"----
a1 

(9) 

(10) 

Applying an iterative process on (9) one obtains the continued 

fractions [34] 

~--_lj _ ___U _ _J_J_,,, (11) 

An-l - Dn ~ 1Dn+2 

An ~ 1 1 
-A--= - Dn - rn:=-: -

n+l 

which when combined yield 

_LJ_,., rn,;:;· 

D = _u - ___J__J - ___U _ ... + -1..J - __u 
n Dn+l IDn:;.2 ~ Dn-1 ~ 

(12) 

(13) 

This expression is another form of the dispersion relation. 

The above continued fractions can be shown [ 7] to converge 

if IDn I;;;;.: 2 for n ;;;;.: N where N is a finite integer. An inspec

tion of Dn shows that this condition is usually satisfied. 

The relation between K, k, and the parameters of the pertur

bation can be illustrated in the form of a stability diagram, 

which is customary in the study of Mathieu's equation. Fig. 

2 shows the stability diagram for the case where an = 0 for 

n =I= 0, 1. The unshaded areas are the so-called "stable regions" 
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10 

Fig. 2. Stability diagram for the case of Mathieu's equation. The 
continuous lines correspond to the boundaries separating the regions 
of complex and real solution. The dashed lines correspond to a fixed 
solution for K. Line 1 corresponds to the case of f"lxed K and a1 

(i.e., perturbation magnitude and signal frequency) while a0 varies; 
i.e., transverse wave vector. Line 2 corresponds to the case of a wave 
incident on a periodic half space where the perturbation and the 
incidence angle are nxed. A change in these two parameters would 
lead to a change in the slope of the line. Line 3 corresponds to the 
case of a wave in a modulated guide, where the transverse wave vec
tor is fixed and the perturbation is fixed [ 34). 
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Fig. 3. Stability diagram for the case of TM waves in a sinusoidally 
periodic dielectric with a relative perturbation 11 = 0.4 of the di
electric constant. Shaded regions correspond to the regions where 
the solution for K is complex [ 35 I. 

wherein the solution for K is pure real. The term "stable" 

refers to the fact that the corresponding solutions are bounded 

for any value of z. Outside the stable regions, K is complex 

and its value is 

± K = mK/2 + ia, m = 0, 1, 2, ... (14) 

where (mK/2) is the absolute value of K at the boundaries of 

the appropriate regions and a is strictly real. These regions 

are referred to as "unstable regions" because one of the values 

of K yields a solution which is not bounded at infinity. How

ever, in actual physical situations, this solution is eliminated 

by the radiation condition. 

To illustrate, let us consider the case of an electromagnetic 

wave in an unbounded sinusoidally periodic medium where 

the modulation coefficient is f'/ and the average dielectric 

constant is e0 e,. This specifies a line across the diagram (line 

2, Fig. 2) which is the locus of the solution K as a function 

of the frequency w/2rr or the unperturbed wavenumber k. 

We observe that at low frequencies the solution for K is 

real. As k increases, a certain value is reached where K is equal 



1670 PROCEEDINGS OF THE IEEE, DECEMBER 1976 

(a) 2W/A = L 10 (b) 2W/ A = 1 2 "I 2W/A = 9 10 

81 

Fig. 4. Regions of real (unshaded) and complex (shaded) solution for the case of a rectangular periodicity for 
different values of 2w/A (9). 

to K/2. After that, real (") stays constant while a increases 

from 0 to amax then decreases to 0. This corresponds to the 

first stopband region. For higher frequencies, the solution 

crosses the next propagating region until " = K, where 1t crosses 

into the second stopband, and so on. We remark that the 

width of the stopband and the value of amax increase with 17. 

For 17 small, the stopbands are centered at k Ve,. = mK/2 

which correspond to the well-known Bragg condition. 

The above stability diagram corresponds to the most simple 

case. When an -:I= 0 for all values of n, the diagram can exhibit 

some interesting behavior. Yeh et al. (35) studied the case of 

TM electromagnetic waves (see Appendix A) where the wave 

equation reduces to (l) with all an -:I= 0. The resulting stability 

diagram is shown in Fig. 3. It is interesting to remark the 

crossing of region boundaries which lead to special points 

where the stopband vanishes for nonzero perturbation. This 

means that if the medium parameters and the transverse wave 
vectors are adequately chosen, the wave would have a real 

wavevector (i.e., no stopband) even if the Bragg condition 

is satisfied. To illustrate, for the case shown in Fig. 3, if -yK/2 

is equal to 0.3 where -y2 = p 2 + q 2
, then the solution would 

cross from the first passband to the second passband with no 

stopband in between. 

Another type of periodicity which has been studied ex

tensively is the rectangular periodicity (9), [ 10), [ 17), (36), 
[ 109) 

{

o, 
S(z) = 1, 

0, 

S(z +A) = S(z). 

for 0 <z <w 
forw <z<A- w 
for A- w<z<A 

(15) 

Kronig and Penney [ 10] considered the case of a delta 

function potential. Strutt [ 109] considered the case where 

the width of the hill and the well are equal, i.e., w = A/4. 

Brillouin [ 17] and Allen [9] considered the general case 

where w -:I= A/4. The above work was mainly related to the 
study of the motion of an electron in a crystal with a periodic 

potential. However, the results are directly applicable to the 

general case of waves propagating in infinite periodic medium 

in the direction of the periodicity. Lewis and Hessel [ 36] 

extended the previous work to the case in which electromag

netic wave propagation also occurs in a direction transverse 

to the periodicity. In the case of electronic waves, the dis

persion relation (8) reduces to 

[
w

2
u

2 + (w - A/2)
2 

v
2

] 
cos (2u) cos (2v)- A sin (2u) sin (2v) 

( - 2w) wuv 

where 

u = (A/2- wXB1 - B2 )
112 

v= wBY2. 

=cos (27r"/K) 
(16) 

In Fig. 4 we show a typical stability diagram for the case of 

a square potential. A unique feature is the presence of cross

ing points similar to what happens in the case of the TM 

waves in a sinusoidal periodicity (crossing points do not exist 

in the case of Kronig-Penney delta potential model nor in 

the case of TE waves in a sinusoidal potential). Allen [9] did 

derive the location of the crossing points to be 

B1 = (nA/4w)2 

B 2 =(nA/4w) 2 -[mA/4(~-w)]2 (17) 

where n and m are integers with n -:I= 0 and B 2 -:I= 0. Aside from 

its general mathematical interest, the distribution of these 

crossing points is connected to the problem of surface states 

in the study of crystals, as pointed out by Shockley [ 110]. 

Another area of investigation was the propagation of electro

magnetic waves in a periodic plasma which was studied by 

Casey et al. [38]. In the case of a TE wave in a sinusoidally 

periodic plasma, the expression of Dn (9) becomes 

D = ~ rl - k2 - (K + nK)2] 
n 11~ k; (18) 

where kp = Wp/c is the plasma wavenumber, and Wp is the 
plasma angular frequency, c is the speed of light in vacuum, 

and 17 is the modulation coefficient. The corresponding sta

bility diagram which is shown in Fig. 2 is still valid except the 

axes now are 

y = 211(;)2 
x = 4(k2 

- k~)/K 2 (19) 
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so that the stopband and passband characteristics still apply. 

However, an interesting feature exists in the case of a periodic 

plasma. We remark that for a fixed value of 71, kp and K we 

still can have a real solution for K even if x < 0 (i.e., k < kp). 
This implies that propagation does occur below the plasma 
frequency, which is not possible in the homogeneous case. 

Similar effects occur in the case of TM waves in a periodic 
plasma; however, Casey et al. [38] did show that the Hill's 
formulation breaks down at the frequency close to the plasma 
frequency, because the Fourier series for the function flz) (see 
Appendix A) does not converge absolutely. 

Another diagram which is commonly used in the study of 
periodic structures is the Brillouin diagram, which is a graphic 
representation of the dispersion relation. This diagram allows 
us to derive, in a relatively simple fashion, most of the proper
ties of closed and open periodic structure. To illustrate, let 
us consider the case of a wave propagating in a simple homo

geneous linear medium. The dispersion relation is 

or K = ±ak (20) 

where a is a constant which depends on the medium. The 
corresponding Brillouin diagram is shown in Fig. S(a). If an 

infinitesimal periodic perturbation of the propagation medium 
is introduced, the space harmonics appear. Each one of them 

will possess a dispersion curve of its own similar to the one in 

Fig. S(a), except they will be displaced by nK from each other, 

as shown in Fig. S(b). In the infinitesimally perturbed state 

these space harmonics do not interact with each other. 
If the perturbation is increased, strong coupling occurs at 

the phase-matched points, i.e., intersection points where two 

space harmonics have the same wave vector or phase velocity. 

As the two coupled harmonics are contradirectional (group 
velocities have opposite signs} then a stopband appears. In 

the passbands, the longitudinal propagation constant K is real 

when the medium is passive. In the stopbands it is complex 
as shown in Fig. S(b). The Brillouin diagram is directly con
nected to the stability diagram. As a matter of fact, it basically 
represents the values of K as the solution point moves along 
the line traced on Fig. 2. 

In the above simple example, the Brillouin diagram was used 
only to derive the nature and location of the coupling. In 
more complicated cases, such as open radiating structure, the 
use of the Brillouin diagram is far more rewarding. It allows 
us to derive the condition for radiation, and the number and 

direction of radiating beams. This will be discussed in more 
detail in Section III. 

A third diagram which is commonly used, especially in 

studying source radiation in periodic media is the wave vector 

diagram. In this case we fix the parameters of the medium and 
the wave frequency, and plot the transverse wave vector as a 
function of the longitudinal wave vector (Fig. 6). 

The Floquet formulation may be represented by an equiva
lent electric network. This approach has been used by many 
authors and is very useful for people who are familiar with 

the study of electric networks. The coupling between two 
space harmonics or between a space harmonic and an exciting 
wave is represented by an ideal transformer with tum ratios 

equal to the Floquet coefficients. These transformers are con
nected to transmission lines that are described by the propaga
tion factors 1< 71 and characteristic impedances z,, [ 128]. 

The space harmonics play a central role in the study of 
periodic structures and a brief discussion of their properties 
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Fig. 5. Brillouin diagram: (a) corresponds to the case of a homogeneous 
unbounded medium; (b) case of a periodically perturbed unbounded 
medium. The light lines correspond to the case of infinitely small 
perturbation. They are obtained from the diagram in (a) by repeating 
it along the 1<./K axis. The heavy lines correspond to finite perturba
tion. Note that at the intersection points, i.e., Bragg regions, where 
phase matching occurs, there are gaps where the solution is complex 
with a fixed real value and a varying imaginary value as shown in the 
insert in the upper right comer. 

8 K 
-2 

" K 

Fig. 6. Wave vector diagram. Ii is the transverse wave vector. The light 
lines correspond to the case of infinitely small perturbation,_ They 
consist of circles centered at 1<./K =,, and radius equal to ve k/K. 
The heavy lines correspond to the case of f'mite perturbation. 

is in order. As we mentioned previously, the space harmonics 
do not exist independently. They are portions of a total solu
tion. Each space harmonic has a different wave vector 

1<,, = " + nK and a different phase velocity v,, = w/1<,,. How
ever, all of them have the same group velocity vg = ow/oK.,, 
= ow/01<. We also remark that the space harmonics that have 
a large wave vector (i.e., small wavelength) will have propor
tionally small phase velocity and vice versa such that an ob

server looking at a specific point in space cannot tell the long 

fast harmonics from the short slow ones. 
The Floquet formulation is relatively simple; however, the 

numerical calculations are involved. In a large number of 
cases, the periodic perturbation is relatively small and only few 
space harmonics have to be taken into account in the neigh· 
borhood of a stopband [34]. This approach, called the 
coupled mode approach, is simple and widely uses (56}, [98], 

( 111 l , [ 112] . Let us study the case where the wave fre

quency is very close to the first Bragg frequency; then the 

propagation wave vector K can be written as 

K=±(K/2+.6.K) (19
1

) 

and only the first-order harmonics are nonneglible. Then 
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the wave solution can be written as 

1/1 = A6 exp i((K/2) + &)z + A~ 1 exp [i((K/2) + & - K)z] 

+Ao exp i(- (K/2)- &)z 

+A;1 exp [i(- (K/2)- & +K)z] 

=[A~ exp i&z + A~ 1 exp -i&z] exp [i(K/2)z] 

+[Ao exp-i&z + A.:'.:1 exp i&z] exp [-i(K/2)z] 

which can be rewritten as 
(21) 

1/1 = F(z) exp i(K/2)z + B(z) exp [-i(K/2)z]. (22) 

This is the form used in the coupled modes approach, i.e., 

the waves of identical phase velocity are grouped together. 

Putting the above expression of 1/;(z) into the wave equation 

(1 ), neglecting the a2 F/az 2 and a2 B/az 2 terms, and con

sidering the case of sinusoidal periodicity, it is straightforward 

to find that 

( iK dF - K
2 

F +a0 F + ~ B) exp [i(K/2)z] 
dz 4 2 

+(- iKdB - K
2 

B+a0 B+ !!.l_F)exp [-i(K/2)z] 
dz 4· 2 

+( a
2

1 
F exp i(~)Kz +a~ B exp [-i(~)Kz]) = 0. (23) 

The last term corresponds to the coupling to second-order 

harmonics (n = ±2) and, therefore, is usually neglected. The 

above relation has to be satisfied for all values of z, thus each 

term must be equal to zero 

dF +i (!- ao]F=i~B 
dz 4 K K 

dB - i [!- ao]B=- i~F. (24) 
dz 4 K K 

These are the well-known coupled waves equations, which 

are usually written in the form 

dF 
- - i/lPF=ixB 
dz 

dB 
- + i/lPB =-ixF 
dz 

where X =a 1 /K is called the coupling coefficient, and 

ilP = a0 - K
2 
/4 

K 

(25) 

is the wave vector mismatch and is equal to ../E,. Ak where 

Ak = ko - K/2. 

The coupled mode approach starts from (21). The solution 

of (25) is straightforward and is equal to 

F(z) = F 1 exp (i&z) + F2 exp (-i&z) 

&-flP &+/lP 
B(z) = F 1 exp (i&z) - F2 exp (- i&z) 

x x 
(26) 

where 

& =../A{P - X2
• 

The values of F 1 and F 2 are determined from the boundary 

conditions. We note that for IA~I < lxl the solution for & is 
intaginary and corresponds to the intaginary part a of the 
J;'lnn1u•t llnnrru1r.h !Ullutinn. 
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0.5 1.0 I. 5 2.0 

+-
Fig. 7. Brillouin diagram of the first three Bragg interactions for the 

extreme case of 11 = 1. The dotted Jines are the imaginary part of 
P/K. Note the pluise speeding for larger values of k. 

As mentioned above, the coupled wave approach is valid 

for small 1'1· However, numerical calculations do show that 

this approach gives surprisingly good results even for Tl up to 

1, which is its maxintum value. To illustrate, in Fig. 7 we show 

the exact dispersion relation using a 19 X 19 Floquet matrix 

for the first, second, and third Bragg regions in the extreme 

case of Tl = 1. The stopband region is very sintilar for all 

three of them except for the shift above the dispersion line 

of the unperturbed case. This phase speeding effect can be 

sintply interpreted by computing the average phase velocity 

across a unit of periodicity. In Fig. 8(a) is presented both 

the Floquet solution and coupled waves solution. Even for 

Tl = 1, the coupled waves theory closely predicts the correct 

value for the intaginary part of the wave vector; however, 

it does not predict well the position of the stopband. The 

coupled wave curve can be used for Tl smaller than 1 by 

multiplying each scale by 1'1· 
In Fig. 8(b) we show the Floquet solution for Tl= 1, 0.1, 

and 0.01. We observe that as Tl decreases, the coupled wave 

solution becomes a better approxintation. 

Another point of interest is the number of harmonics needed 

in the Floquet calculation, i.e .• size of the matrix. Fig. 9 does 

show the results for 3 X 3, 5 X 5 and 19 X 19 matrices. It is 

clear that a 5 X 5 matrix (up to the third harmonic) is satis

factory with an accuracy better than 1 percent. 

The above discussion was mainly concerned with the first

order Bragg coupling. However, Chu and Tamir [ 113] derived 

coupled modes equations, sintilar to (24 ), which are valid at 

higher order Bragg coupling, i.e., when 

../E,. k !::::!. mK/2 (27) 

where m is any positive integer. The main change is in the 

coupling coefficient x. For the first-order Bragg, x is propor

tional to the perturbation 1'1· For the mth order Bragg, Chu 

and Tamir derived the expression of X and showed that it is 

proportional to 

(28) 

Su and Gaylord [ 114] extended the work of Chu and Tamir, 

and examined higher order diffraction efficiency of thick 

arbitrary shape diffraction gratings (sinusoidal, square, tri

angular, and sawtooth shapes). 
Recently, Jaggard and Elachi [ 115) investigated numerically 

the rettion of validity of the coupled mode approach for hiaher 
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Fig. 8. (a) Brillouin diagram of first Bragg interaction with fl = 1. This 
compares Floquet theory (upper dashed curve) with coupled mode 
theory (lower dotted curve). Dotted and heavily dashed lines are 
imaginary parts of {J/K. (b) Brillouin diagram of first Bragg inter
action for fl= 1 (top curve), fl= 0.1 (middle curve) and fl= 0.01 
(bottom curve). Note difference in scales for each case. Imaginary 
(J/K are elliptical regions with separate scale. 

order interaction. They specifically studied the case of the 

second-order and third-order Bragg, and computed the disper

sion curves using both the exact Floquet formulation and the 

coupled modes formulation. They showed that the coupled 

waves equations for the Nth order Bragg are 

dB 
-+ iA/JNB = -iXNF 
dz 

where the A/JN and x N are functions which depend on N. 

(29) 
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Fig. 9. Brillouin diagram of f'irst Bragg interaction for fl = 1 for 3 X 3 
(upper dashed line) and 5 X 5 (lower dotted line) matrix. 

A different type of higher order interaction occurs in gener

ally periodic structures. A periodic small perturbation ~e(z) 

can be written in a Fourier series 

~e(z) = L Tln cos (nKz). 

n 

(30) 

Thus Bragg coupling could occur with a higher order Fourier 

component. For instance, if (27) is satisfied, then there is 

first-order Bragg coupling with the mth Fourier component. 

In the case of small perturbations, the results for first-order 

Bragg coupling are still valid, except that 71 should be replaced 

by Tlm· 
In the case of general periodicity, different order Bragg inter

actions from different Fourier components can add destruc

tively, leading to disappearance of the stop band even if the 

Bragg condition is satisfied. This effect was analyzed using the 

Floquet and coupled waves approach [ 115] . 

An important aspect of the above formulations (Floquet 

and coupled wave) is that there was no requirement on the na

ture of E or 71. Thus they are valid for active and passive media, 

and for perturbation of the real or imaginary part of the di

electric constant. In the case of an active medium of gain co

efficient g, the coupled waves equations become 

dF 
- - (g + iA/J)F = iXB 
dz 

dB 
- + (g + iA/J)B = - iXF. 
dz 

(31) 

In the case of gain coupling (i.e., gain periodicity) X = iX and 

AK= .../A/32 + lx12. Thus there is no stopband. However, dis

tributed feedback still occurs because of the change in the 

propagation wave vector. 

The behavior of the effective gain or loss near the Bragg re

gion is shown in Fig. 10 for the case of an active, passive or 

lossy periodic medium. In the case of a passive medium, a 

stop band exists. If the medium is lossy, the loss coefficient in

creases in the Bragg region. A detailed numerical calculation 

of this effect was conducted by Minakovic and Gokgor [ 116] 

who showed that the attenuation in a periodically loaded cir

cular waveguide can be considerably higher than when the 

guide is completely filled. If the medium is slightly active then 

the pin is drastically increased in the B~ reJtion as a result 
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Fig. 10. Effective gain or loss near the Bragg region in the case of an 
active, passive or lossy periodic medium. 

of a periodic change in the real index of refraction. The in· 

crease in the effective gain or loss can somehow be explained 

by the fact that the periodicity bounces the wave back and 

forth, and therefore increases lts effective line path per unit 

length of the medium. If the periodicity is in the gain coeffi

cient, the effective gain is smaller than the average gain [77]. 

A somewhat different approach is commonly used to study 

optical multilayers [ 15], [ 16] and is very useful for the study 

of lumped structures. It simply consists of the derivation of a 

characteristic matrix '111 of one unit cell which correspond to 

one period. This matrix relates the two components of the 

electric (or magnetic) vectors in the input plane, to the com

ponents at the output plane of that cell. Thus if we have a 

periodically stratified medium which consists of N periods, 

the total characteristic matrix 'II T is simply equal to 

'IRT='ll·'li ... 'IR='IRN. (32) 

~ 
Ntimes 

To ev~uate the elements of the matrix 'WT, a result from the 

theory of unimodular matrices is used [ 15) . If 

Then 

'IRT=[m11UN-1(a)- UN_,(a) mnUN_1(a) J 
m,1UN-1(a) m,2UN-1(a)- UN-'J(a) 

(33) 

where a = (m 11 + m,2 )/2 and UN are the Chebyshev polyno

mials of the second kind: 

U ( )- sin ((N + I) cos-
1 

(x)] 
N X - v'f=-i1" · 
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Such an approach has the nice advantage that it can be simply 

applied to any value of N. However, it requires that the ma· 

trix M is known or can be simply derived. This is the case in 

the study of optical multilayers which consist of successions 

of homogeneous layers or in the study of periodic electric 

filters. 

A somewhat similar but more complicated and general ap

proach was given by Mead [ 117) who studied wave propaga

tion in linear periodic systems with multiple coupling. Mead's 

paper was a generalization of the previous work conducted in 

the field of structural engineering as related to the propagation 

of vibrational and flexural waves on periodic systems of beams 

and plates. Examples of such systems are: tall apartment 

blocks having a uniform structure and identical stories; aero

plane fuselage structure consisting of a uniform shell reinforced 

at regular intervals by an orthogonal set of identical stiffeners. 

The approach basically consists in deriving the characteristic 

matrix which relates the output parameters to the input param

eters of a unit element of the structure. It also adopts itself 

nicely to the study of two-dimensional lumped periodic struc

tures. To illustrate, let us consider the simple case of natural 

flexural waves propagating on an infinite periodically sup

ported beams and plates which was studied by Sen Gupta 

[ 118] . The slopes() and end-moments Mat the input and out

put of a plate are related by 

81 =o:uM; +0:12Mo 

80 = -0:12Mt - 0:11Mo. (34) 

For a flexural wave of propagation constant K we have 

Mo =M1e-11. 80 = 8,e-" (35) 

which give 

cosh K =-au /0:12 (36) 

the elements o:11 and al'J are functions of the frequency and 

can be derived by solving the free vibration equation of a plate 

ora beam. 

ill. WAVFS IN A BoUNDED PERIODIC STRUCTURE 

The presence of boundaries adds a new dimension to the 

analysis of periodic structures. In this section we will first 

consider the case of closed structures where the transverse 

boundaries are completely reflecting. Then we will briefly 

review the extensive work in the field of periodic open struc

tures where bounded and radiating modes can be present. 

Finally, we will discuss the case of waves incident on a peri

odic half-space, or slab, where the periodicity is parallel or per

pendicular to the boundaries. 

When the longitudinally periodic medium has complete re
flecting transverse boundaries, the transverse wave numbers are 

fixed exclusively by the geometry. In the case of a rectangular 

waveguide of dimensions h 1 and h2 , the transverse wavenum

bers are 

s or p::: m11'/h 1 

w or q = m/lu,, 

where m and r are integers. These expressions of p, q, s, and w 
are then used in the expressions of f(z) given in Appendix A. 

Tamir et al. [34] and Yeh et al. [35) did consider the case 

of waveguide excitation in their work on the propagation of 

TE and TM electromagnetic waves in sinusoidally periodic 

media. The longitudinal propagation wave vector can be easily 

derived from the stability diagram in Figs. 2 and 3. For a spe· 
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cific structure and a specific mode (i.e., specific transverse 

wave vector) the locus of the solution is a straight line, as 

shown in Fig. 2. This line is characterized by its slope 

slope= ai/2k2 (37) 

and its origin, which corresponds to a 1 = 0 and a0 = -(s2 + p2
). 

We observe that as k increases, the solution for K passes 

through bands of real solutions and complex solutions as in 

the case of unbounded media. One unique feature is that 

propagation occurs at some frequencies below the cutoff fre

quency of the homogeneous guide. This effect occurs for all 

the waveguide modes and is similar to what occurs in the case 

of a periodic plasma. 

If the transverse boundaries are not completely reflecting, 

things get far more complicated and more interesting. That 

results mainly from the possibility of energy leakage. Open 

periodic structures support surface waves which travel parallel 

to the structure, and leaky waves which are guided by the 

structure but radiate or leak energy continuously into the ex

terior regions. Both types of waves appear as characteristic so

lutions of the boundary-value problem prescribed by the wave

guide confJgUration. 

Open periodic structures are encountered in current engi

neering practice in a variety of applications, such as traveling

wave slot or dipole arrays, log periodic antennas, and periodi

cally modulated slow wave antennas. The theoretical analysis 

of these radiating structures was mainly based on the simple 

model of periodically modulated reactance surface. A review 

of the work in this field is given by Hessel [ 33). In this sec

tion, we will discuss only the use of the Brillouin diagram 

which gives, very simply and elegantly, most of the properties 

of open periodic structures. 

Another field of application of open periodic structures that 

has attracted considerable interest in the last few years is the 

new field of integrated optics. Thin-film periodic structures 

have been used in such applications as beam-to-surface-wave 

couplers, filters, distributed feedback amplifiers and lasers, 

nonlinear generation of second harmonics, and beam deflec

tion or steering devices of the Bragg type. The periodicity can 

be a perturbation in the dielectric constant of the guiding film 

or its substrate, or a perturbation of the boundary. The analy

sis of these structures has been considered in the context of 

several specific structures using perturbation techniques (70), 

(90], [98], [Ill) or rigorous analysis (119). 

To simplify matters, planar geometry will be assumed, with 

the x = 0 plane as the interface between the guiding region and 

exterior region (x > 0). The longitudinal wave number of the 

nth space harmonic in both regions is equal to K + nK and the 

transverse wave number 8n in the exterior region is 

8~ = k2 
- (K + nK)2

. (38) 

If n is such that (K + nK)2 > k2
, as will be the case for most 

of the space harmonics at any given frequency, then 8n is 

imaginary and the space harmonic is a slow wave. If some 

space harmonics are present for which (K + nK)2 < k 2
, then 

8n values are real and these space harmonics are fast waves. If 

we consider the Brillouin diagram (Fig. 11), then we can divide 

it in slow wave or bound region and fast wave or unbound 

region. If the operating point of one harmonic is inside a tri

angle, then all other space harmonic solutions also lie within 

the sequence of triangles. Thus, all the space harmonics, and 
the total solution, are bound to the interface. However, if the 
solution is outside the triangles, then at least one of the space 
harmonics is in the radiation region of the homogeneous struc-
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Fig. 11. Brillouin diagram. (a) Showing the radiation region for a 
homogeneous structure. (b) Showing a periodic structme. The un
shaded region corresponds to where at least one space harmonic is 
radiating. The shaded triangles correspond to the region where all 
space harmonics and therefore to total solution are bounded. 
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Fig. 12. Brillouin diagram for a periodic slab showing then= O and n = 
1 harmonics. Only the two first waveguide modes are shown. At w = 
w 1 the n = 1 harmonic of the first mode crosses into the radiation 
mode leading to a backfire beam. As the frequency increases. the beam 
swings around to become an end fire beam at w 1 and then disappears. 
Meanwhile at w = w 2 the radiation beam of the second mode appears. 

ture, and the total wave is no longer completely bound. The 

radiating harmonics are leaky waves which extract energy from 

the total wave along the structure. 
Another property of open periodic structures, which can be 

easily determined from the Brillouin diagram is the number of 

radiating beams and their angle of radiation. The beam angle 

On from broadside is equal to 

sin On = (K + nK)/k. (39) 

Thus, the number of radiating beams at any frequency is equal 

to the number of space harmonic solutions lying in the radia

tion region at that value of kd (i.e., points such that 

IK + nK I< k). Basically each angle corresponds to one of the 

radiating space harmonics. 

To illustrate, let us consider the simple case of a dielectric 

slab of relative dielectric constant e1 + 17e1 cos Kz imbedded 

in vacuum (i.e., dielectric constant= 1 ). The corresponding 

Brillouin diagram is shown in Fig. 12. Only the first two wave

guide modes are sketched. We observed that as the frequency 

w is increased from zero, no radiation beams are present. For 

w = w 1 a backfire beam appears which corresponds to the first 

harmonic of the basic mode. As the frequency increases, the 

beam angle changes gradually from backfire to end fire at 

w = w 3 , then diappears. In the interim, at w = w2 the beam 

from the first harmonic of the first mode appears. Depending 

on the values of e1 and K, it is possible that the beam from the 
second or higher harmonic of the second mode appears before 

the one corresponding to the first harmonic disappears. Thus 
depending on the choice of e1 , K, and the excited modes, a 

large number of beams can be present, at different angles, for 

any operating frequency above w 1 • 
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Fig. 13. Sketches of the Brillouin diagram, i.e., wave vector solution 
near the boundaries of the radiation triangle (see [ 33 I for details). 
The light line is the boundary of the radiation triangle (see Fig. 11 ). 
The continuous line is the real part of /3. The dashed line is the imagi
nary part of /3. (a) and (b) correspond to contradirectional or co
directional crossing. 

An effect which cannot be predicted from the Brillouin dia
gram is the coupling which occurs at the crossing of the disper

sion curve with one of the sides of a triangle. This corresponds 
to the interaction between a particular space harmonic and a 
plane wave skimming along the surface. In antenna theory, if 
the dispersion curve and the triangle boundary line are codirec
tional, the intersection region is called end-fire region. If they 

are contradirectional, it is called back-fire region. Hessel and 
Oliner [120), Wang [121), Oliner [122), and Hessel [33] 

analyzed these regions in detail. They showed that the com

plex solution outside the triangles do extend slightly inside the 
triangle region where, close to the boundary, the real solution 

is double valued (Fig. 13). These regions correspond to the 
Wood anomalies regions which will be discussed later in this 

section. 
The Brillouin diagram gives insight in many properties of 

periodic structures in a very simple and elegant way. However, 

a complete quantitative evaluation of the field in these struc
tures requires the solution of the wave equation. In the case 

of periodic antennas, a simple model of a periodic surface reac

tance have been extensively and rigorously analyzed [33]. In 

the case of thin films with periodic modulation of the dielec

tric constant, most of the work used perturbation techniques 

which are valid for small modulations [70), [90), [111), 

[123]-[127]. ix z 

Let us assume a pth mode wave up(x)e P propagating in a 
homogeneous thin-film waveguide of thickness 2W and dielec
tric constant e. 

If a small perturbation flE cos (Kz) is added, then a convec

tion current·Jc is generated inside the guide 

le= ~e aE = -iwEfl cos (Kz)up(x) exp (iKpZ) 
at 

= -f we flup(x)[exp [i(Kp + K)z] +exp [i(Kp - K)z] l. 
2 

lxl<W. (40) 

This current has two components with different longitudinal 
wave vectors. If any one of the wave vectors is equal to the 
wave vector ±Kq of the qth mode, then phase-matched cou
pling and energy transfer occurs between these modes. 

The coupling could be of the codiri;ctional or contradirec-
i(" +K)z . 

tional type. The first element e P can achieve o)nl y co-
i(Kp-K z 

directional coupling. The second element e can 
achieve both couplings dependmg on the relative values of Kp 

and K. Once the longitudinal phase matching is satisfied, only 

PROCEEDINGS OF THE IEEE, DECEMBER 1976 

the part of the convection current which is also transversely 
phase matched would play a role in the coupling. The trans

verse function u P (x) h (x) where h (x) = 1 for Ix I < W and 0 
otherwise, can be expanded in terms of the unperturbed modes 
of the guide, i.e., 

where 

J~ .. up(x)h(x)u;*(x) dx 

J~ .. Uj(x)u;*(x) dx 

l+w up(x)u;*(x) dx 

-w 
:~~~~~~~-

I:"" Uj(x)u;*(x) dx 

(41) 

(42) 

Thus if the pth mode is longitudinally phase matched to the 

qth mode, the part of the convection current which achieves 

the energy coupling is equal tci 

(43) 

The term Cpq is what is known as the overlap integral. Once 
the qth mode is excited it also couples to the pth mode and 

vice versa. The behavior of the coupling coefficient for a vari
ety of structures has been analyzed by Elachi et al. in a num

ber of papers [ 70), [90), [ 123], [ 124]. 

A similar approach can be used to correlate the coupling be

tween a guided mode and a radiation mode. This work was 

conducted in detail by Marcuse [ 111] , [ 125] for the case of a 
surface corrugation or a thin layer of an inhomogeneous me

dium around the boundary of the guide. He derived the power 

loss per unit length and the pattern of the radiation beam. An 

interesting result is that the energy loss to one guided mode is 

proportional to L 2 , while the loss to the radiation modes is 
proportional to L, where Lis the interaction length. 

The rigorous solution for a periodically modulated slab is 
more involved. Recently, Peng et al. [ 119] formulated the 
exact solution which is valid for any volume or surface period

icity, and resolved it numerically for the cases of holographic 
layers and for rectangularly corrugated gratings. A brief review 

of their formulation follows. 
The wave equation for the field vectors of TE and TM waves 

can be reduced to the scalar equation (see Appendix A) 

'i/
2 

"' + f(z)"' = 0 

wheref(z) can be written as 

f(z) =Lan cos (nKz) 
n 

(44) 

(45) 

and the coefficient an are known for a given grating and fre
quency. The solution for I/I may be written as 

I/I= L An(x) exp i(K + nK)z. (46) 
n 

Inserting this representation in (44), we obtain 

d2<1. 
-=-Pei 
dx2 

(47) 
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where (1 is a column vector with elements An(X) and Pis a 

constant matrix (independent of x) whose elements are defined 

by 

(48) 

where ~ne is Kronecker's delta function. The solution of the 

above system of equations is of the form 

(1 = e exp (i8x) (49) 

where 8 is the transverse propagation constant and e is a con

stant vector. Substituting into (47), we obtain the system of 

linear equations: 

[P - 82 
/] e = 0. (50) 

Where I is a unit matrix of infinite order. The characteristic 

equation of the above system, i.e.: 

det [P - 82 
/] = 0 (51) 

gives the eigenvalues 8~, and the corresponding eigenvectors 

Cm (with elements Cmn> can then be obtained by solving (50). 

Thus the solution for the field can be written in the form 

I/I= L [A~ exp i8mx +A~ exp -i8mxl 
m 

· L Cmn exp i(K + nK)z. (52) 
n 

This shows that the solution is a summation over an infinite 

number of modes, each of which consists of an infinite number 

of space harmonics. For a given e(z) and wave frequency, the 

unknowns in the above expression are K and A~. The values 

of 8m and Cmn are determined from (50) and (51). The values 

of A~ and K can be determined from the boundary conditions 

and the excitation condition. Peng et al. [ 119] derived the 

dispersion equation in a matrix form, and studied the case of 

guided waves and waves excited by a beam incident from the 

outside of the slab. They also studied exactly the case of 

multilayered periodic structures. They solved numerically for 

the case of a periodic slab on a substrate and derived the prop

agation wave vector (and attenuation constant a) in the 

bounded and radiation regions for both TE and TM modes. 

They showed that a varies slowly with frequency in the leaky 

wave region (radiation region) except in the vicinity of Wood's 

anomalies, which correspond to the onset of additional leaky 

wave beams in the air or substrate regions. For the TM waves, 

additional nulls for a appear which are due to a Brewster angle 

phenomenon for higher harmonics inside the grating layer. 

It is interesting to point out that many harmonics are such 

that 

(53) 

This implies that most of the space harmonics are evanescent 

both inside and outside the guide, i.e., they exist mainly in the 

neighborhood of the boundary. However, it should be empha

sized again that individual space harmonics cannot exist on 

their own, and if only a few harmonics are leaky, then the 

whole wave loses energy because of the crosscoupling. 

Even though most of the work was directed toward the case 

of thin films, the techniques can be used to study more com

plicated structures. Marcuse considered the case of hollow 

slabs [ 62]. Elachi et al. (90], [ 124] analyzed the case of pe

riodic fiber guides and diffuse guides as associated with their 

application to DFB laser using the perturbation technique. In 
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Peng et al. [ 119] , their exact solution could be generalized to 

cover these and other geometries. 

Up to now we considered the use of open and closed guiding 

structures, where the wave in the periodic medium propagates 

along the periodicity axis. Another type of bounded structure 

that has been studied corresponds to the case of waves 

incident, from the outside, on a slab or half-space which is pe

riodically modulated parallel or perpendicular to the boundary. 

Tamir and Wang (37), and Tamir [ 128], analyzed rigorously 

and in detail the scattering of electromagnetic waves by sinu

soidally stratified half-space, where the direction of the peri

odicity is parallel to the air-dielectric interface. Of special 

interest was their analysis of the anomalies that appear in grat

ings. When the wavelength A or the incident angle 8 of the in

cident plane wave are slowly varying, it is expected that the 

amplitudes of the various modes would likewise vary slowly. 

It turns out, however, that rapid fluctuations occur in some 

of the modal amplitudes at the Rayleigh wavelengths 

A 
AR = - (1 ± sin 8) 

m 

and at the Bragg wavelengths 

2A 
AB =-sin8 

m 

where m is a positive integer. In the air region, the rapid fluc

tuations appear only at the Rayleigh wavelengths and they cor

respond to Wood anomalies [ 129] which are characteristic of 

reflection gratings. These anomalies occur whenever a reflected 

mode reaches grazing incidence (cutofO or a mode in the mod

ulated dielectric region reaches grazing incidence. The wave

length which corresponds to the last case cannot be expressed 

in simple terms except when the periodic modulation is small, 

in that case 

2A 
AR'= -(e:l2 ±sin 8) 

m 

where e, is the relative average permittivity of the dielectric. 

These Wood anomalies basically correspond to the coupling 

between an oblique wave and a wave propagating along the 

surface. An intensive analysis and review of the work on 

Wood's anomalies is given by Hessel and Oliner [ 129]. 

In the modulated medium itself, the fluctuations due to the 

Wood anomalies are usually obscured by the strong interfer

ence effect which peaks at the Bragg wavelengths, and is due 

to the periodicity of t'ie medium. This resonance behavior re

sults in a standing wave pattern produced by two modes pos

sessing nearly equal amplitudes but different wave numbers. 

In that respect, the resonance process is closely analogous to 

the Borrman effect [ 130] , [ 131 ] which occurs as an anoma

lous transmission of X-rays through thick perfect crystals, 

when the incidence is at the Bragg angles. However, even 

though the periodicity is in one dimension only, the resonant 

effect in the modulated half-space results in a standing-wave 

pattern with respect to both the z and x directions with wave

lengths of 2A and 2A;,, , respectively, where A;,, is strongly de

pendent on the modulation of the medium such that A;,, >>A 
if the modulation is small. Thus, this resonant behavior pro

duces a repetitive pattern of oblong rectangular cells and is de
noted by the term "cell resonance." The periodicity in the 
field along the x direction can be explained by simple physical 

reasoning. When the incident plane wave crosses the interface 

of the modulated dielectric, it starts traveling initially as if no 
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periodicity were present. However, as the Bragg condition is 

satisfied, the successive reflections from the periodic perturba

tions add constructively, and more and more power propagates 

in the negative z direction. After a certain time, most of the 

energy is propagating toward negative z. However, as the peri

odic perturbation reflects irrespective of the wave direction, 

more and more energy is reflected back in the positive direc

tion, and so on. This results in an oscillatory power flow line 

as shown in Fig. 14. Evidently, the larger the modulation, the 

stronger are the reflections at each perturbation, the faster the 

energy flow is reversed, which implies a smaller value of A~. 

Inversely, if the modulation vanishes, the length A~ ~ 00• 

This effect is analyzed in detail by Tamir [ 128] . 
In the case where the periodicity direction is perpendicular 

to the boundary, the analysis is far more simple. The trans

verse wave number is fixed by the incident or source wave, and 

the problem becomes somewhat similar to the closed bounded 

structures. This problem was specifically studied by Tamir 

et al. [34] for TE waves and Yeh et al. [35] for TM waves. 

Finally, we briefly review the case of a slab of thickness 21 

with small perturbation in the direction perpendicular to the 

boundaries. The importance of this problem is mainly in its 

application to the study of DFB laser structures that we will 

review later. Starting from the coupled modes equations (Sec

tion II) and taking the adequate boundary conditions [ 132), 

the reflection coefficient R and transmission coefficient T can 

be derived in a straightforward way as 

R = iX 
[vfX2 

- A{P coth Uvfx2 - A(P) - iA/31 

v'x2 - A132 
T=-;:::;:====-=-~~~;::::;::===::;:=--'-~~~~--;:::;:::::===-

vfx2 - A[32 cosh Uvfx2 - A(32) - iA(j sinh Uvfx2 - A(32)° 

(54) 

Where we have assumed that there is no Fresnel-type reflec

tions at the end of the structure, the thickness of the periodic 
slab is l. In Fig. 15 are shown the magnitudes of the reflection 

and transmission coefficients as a function of the mismatch 

A(jl for a fixed value of the coupling coefficient xl. The 

properties of this structure are identical to an electric circuit 

filter. 

IV. BOUNDARY PERIODICITY 

Bragg scattering and/or distributed feedback also results 

from boundary periodicity. The presence of space harmonics 

is required to satisfy the boundary conditions. The scattering 

of a scalar wave incident on an infinite corrugated interface 

separating two different homogeneous media were studied 

about seventy years ago by Lord Rayleigh [ 133]. However, 

the Rayleigh method of solution has arou_sed some contro

versy. If the plane wave is assumed to fall on the interface 

from above, then, in the region above the highest points on 

the surface, it is generally accepted that the scattered field 
may be represented by a linear combination of space harmon

ics, each of which propagates, or is attenuated, away from the 

surface. The controversy has its origin in the further assump
tion (admittedly unjustified by Rayleigh) that this representa

tion is also valid within the corrugation and on the surface it
self; henceforth, this will be termed the Rayleigh assumption. 

It has been shown [ 134]-[139] that this assumption may 
result in serious errors if the periodic variation is not suffi
ciently small. Petit and Cadilhac [ 134)-[137), and Millar 
[ 138) did finally show that, in the case of a sinusoidal profile 
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Fig. 16. Different configurations of guides with periodic surface which 

have been considered in the literature. 

of the form h cos (Kz), the Rayleigh assumption is valid for 

Kh < 0.448 and could not be valid for Kh > 0.448. Thus the 

Rayleigh assumption yields good results only if the periodic 

change is sufficiently small, so that its use may produce erro

neous results in some practical cases, such as thick corrugated 

grating which have groove depths comparable to the wave

length. Another approximation has been the use of a Rayleigh 

assumption which incorrectly neglects the presence of incom

ing waves in the grating region [ 126] , [ 140] , [ 141 ] . 

Neviere et al. [ 135), [ 136] and Peng et al. [ 119], [ 139] re

solved rigorously the problem of electromagnetic waves in a 

dielectric waveguide with a general corrugated boundary. The 

approach taken by Neviere et al. requires a numerical integra

tion. They studied the scattering of a plane TE or TM wave 

incident on a grating which is underlain by a multilayered half

space. They also analyzed the case of limited incident beam 

and of guided waves. Peng et al. derived the solution in a form 

that lends itself readily to physical interpretation in terms of 

the effects due to the individual partial (space harmonics) 

fields. 
In the case where the grating profile is a rectangular profile 

(Fig. 16), the grating could be replaced by a layer of constant 

thickness but modulated dielectric constant. Then the prob

lem reduces to the cases discussed in Section III. If the peri

odic profile is of a more general form, then three methods can 

be used: I) By partitioning the grating into fine layers and ap

proximating each one of these profiles by a rectangular profile. 

Now we have a multiple layered grating with the same period

icity, and the problem can be resolved as Section III. Although 

this extension is only an approximation for the original grating, 

it can be made as accurate as desired by subdividing the grat

ing into sufficiently many fine layers. 2) By employing an ex

act numerical integration. 3) By averaging, for every value of 

z, the permittivity over x inside the grating layer. Thus for a 

profile of the form 

x=h(z)=h(z+A), forO<x<T (55) 

the averaged permittivity becomes 

(56) 

The problem is then reduced to that of a layer with uniform 
thickness, but with varying e(z). This much simpler method is 

probably less accurate than the previous two. 

In the case where the surface perturbation is small, simple 

approximation techniques and the coupled modes approach 

can be used. Marcuse [ 11], [ 125], determined the energy 

losses and the coupling in a dielectric guide with a slightly per

turbed boundary by considering the boundary region as a thin 
inhomogeneous layer as we discussed above. A somewhat sim

ilar approach is to replace the boundary perturbation by an 

equivalent surface current [ 123] . If the field at the interface 
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Fig. 17. Attenuation parameter in a dielectric guide with one boundary 
as a rectangular grating. The continuous line corresponds to the 
exact solution. The dashed line corresponds to an approximate 
solution using a perturbation method ( 119 J. 

between two media of dielectric constant e1 and e2 is equal to 

!!:1 = Cp exp iK.pz (57) 

then a small perturbation T(z) of the boundary would have 

approximately the same effect as a surface current equaj to 

J, = -ie0 e1 wT(z)E1 + ie0 e2wT(z)E1 

= -ie0 (e1 - e2 )wT(z)Cp exp iK.pZ. (58) 

If T(z) = T cos (Kz), then 

e1 - e2 
J, =-ieo -

2
-wTCp[exp i(K.p + K)z +exp i(K.p - K)zJ. 

(59) 

Consequently a reasoning similar to the one in the case of vol

ume periodicity (Section III) would follow. 
To check the accuracy of the approximate techniques dis

cussed above, Peng et al. [119] computed rigorously the 

variation of the normalized attenuation parameter a, which is 

due either to a stopband or to power leakage, for a square 

grating as a function of the grating thickness T and compared 

it to a perturbation analysis by Ogawa et al. [ 142]. Peng et al. 
showed that the two methods give comparable results for 

T << X where X is the wave wavelength. However, the per
turbation method gives increasingly larger values, especially 

for T ~ 0.2X where the rigorous method shows that a reaches a 
saturation value (see Fig. 17). The behavior of the solid curve 

in Fig. 17 was explained by noting that the basic surface wave 

along a uniform layer (T = 0) has an .evanescent field in the air 

region. When increasing T from zero, the surface wave is 

perturbed by adding material on top of the thin-film wave
guide. At first, this material appears in a region with strong 

fields, and therefore the effect on a is appreciable. However, 

as T increases further, the additional material appears in 

regions where the field is gradually decaying, until at about 
T(A = 0.2 any further addition of material occurs in regions 

where the field is exponentially small. Consequently, the ef
fect of increasing T beyond 0.2>. is negligible and Q approaches 

a constant. 
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The difference between the rigorous approach and perturba

tion approach discussed above can be minimized if the per

turbation is adequately weighted with the decaying exponen

tial field away from the boundary. 

The work on the effects of boundary perturbation was not 

limited to planar structures. Field distribution and mode 

conversion in circular dielectric and metallic guides with 

periodically changing diameters were analyzed in detail [ 143 J
[ 145 J. 

The scattering of acoustic waves from periodic gratings was 

also a subject of continued interest in the last 15 years. Water

man { 146] studied the general problem of scattering of a 

scalar wave from a periodic surface. The problem of the 

diffraction of a plane-wave incident on thin periodically spaced 

parallel plates was solved many years ago by Carlson and Heiss 

{ 14 7] , [ 148 J using Wiener-Hopf methods, and by Berz [ 149] 

and Whitehead [150] using a residue calculus method from 

complex function theory. More recently, Desanto [ 151 ] , 

(152] solved exactly the scattering of a plane wave by a one

dimensional thin comb with soft (Dirichlet) and hard (Neu

mann) boundary conditions, where he used a residue calculus 

technique, and he illustrated the Rayleigh anomaly, Wood 

anomaly, and Brewster angle anomaly. He also [ 153] . con

sidered the case of periodically spaced thin parallel plates, 

where each period is divided by a further parallel plate into 

two regions which are, respectively, "free" and "filled." The 

filled regions have a wavenumber and density different from 

those of the surrounding media and the free regions. Both 

soft and hard boundary conditions were considered on the 
plates. 

Another type of problem that has been considered is the 

propagation of acoustic waves in plane ducts with sinusoidally 

perturbed walls. lsakovitch ( 154] considered the case of a 

waveguide with one sinusoidal wall. Samuels [ 155] studied 

the case where both walls are sinusoidally perturbed in phase. 

Salant (156] generalized the previous work to the case where 

the phase difference between the perturbations on the two 

walls is arbitrary. They used a first-order expansion approach 

and found properties similar to the case of electromagnetic 

waves in perturbed waveguides. Nayfeh made a more detailed 

analysis of the resonance region [ 157] and added the effect 
of a mean flow in the duct [ 158). 

An extension of the study of wave scattering from a periodi
cally perturbed surface is the study of wave scattering from 

rough surfaces. A rough surface can be described by the spec

trum of the roughness; thus it can be analyzed as a summation 

of a large number of periodic perturbations with specific 

weighting functions. The field of scattering from rough sur

faces is out of the scope of this review. The reader is referred 

to a selected number of papers which cover the work in that 
area: Marcuse [ 111] for rough optical guides; Valenzuela 

et al. [ 159]; Tyler et al. [ 160] and Barrick [ 161] for scatter

ing from the ocean surface; and Beckman [ 162] for scattering 

from rough.surfaces in general. 

V. SoURCE RADIATION IN PERIODIC MEDIA 

Wave radiation from discrete electromagnetic sources in a 

periodic medium was considered by numerous authors. Casey 

[49] analyzed the radiation of electric and magnetic dipoles 
in a dielectric, and Elachi [51] extended the work to the 

case of plasma and uniaxial plasma. Singer and Tamir-Berman 

[SO] studied the radiation from a filimentary source. Ceren

kov and transition radiation were also investigated for the case 
of periodically stratified dielectric [ 46], [ 48], plasma [ 4 7 L 
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and uniaxial plasma (52]. The presence of the periodic 

perturbation leads to some special effects related to caustic 

surfaces and radiation cones. In this section, we review in 

some detail the formulation for the radiation of a magnetic 

dipole in sinusoidally periodic medium to illustrate the ap

proach for resolving this type of problem. Then we briefly 

review other works in this field. 

The solution for the radiation from a point or line source 

proceeds in a way similar to the cases of plane waves con

sidered in Section II. The geometry studied by Casey [ 49] 

and Elachi (51] consists of an electric or magnetic dipole 

antenna located at p = 0 and z = z0 with the moment vector 

of the dipole directed along the z axis. The entire space 

around it is filled with a lossless dielectric, where the permit

tivity e is a periodic function of z. As a consequence of the 

symmetric geometry chosen, the electromagnetic field is 

independent of the azimuthal coordinate </>. 

In the case of a magnetic dipole, the radiated electric field 

satisfies the following wave equation outside the source 

( ~+_!_~_..!...+~)E-µ.i,e
02
E=O (60) 

op
2 

p op p2 oz2 ot2 

where E = Ee<P. Using the separation of variables method and 

the Floquet theorem, the solution can be written as 

E= f+oo W(1<.)'L,EnB1(8p)expi_(K+nK)zdK. (61) 
_.. n 
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Fig. 18. A sketch of a wave vector diagram showing the saddle points 
(three in this case) which contribute to the far-field radiation in the 
direction 6 0 • It also shows two inflection points which would lead to 
caustics in the directions 6c and 6~. 

When p-+ 00, the electric field expression becomes 

[ 
-2i ]1'2 I+ .. 

E = -i --. - LL cqo~l 2 cnq exp [irFnq(K)] dK 
1r7 sm 8 q n _ .. 

(66) 

where the En's are given by the same recurrence relation as where 

in (7) and (9), B 1 is Fnq(K) = (K + nK) cos 8 + Oq sin 8 

7 2 = p2 + z2 Bessel function for p < a 

Hankel function for p > a 

and a is the radius of the magnetic dipole loop. It is straight

forward to see that the expression of E is an integration over 

an infinite number of plane waves radiated in different direc

tion with a weighting function W(K ). The dispersion relation: 

~(o, "· w) = det llMll = o (62) 

gives the value of o as a function of " for a fixed w. An 

example of the wave vector diagram (i.e., o (K)) is given in 

Fig. 6 which shows that the solution is multivalued and, 

using the superposition principle, the field has to be written 

·exp i(K + nK)z dK. (63) 

where Oq are the different values of o, and Enq corresponds to 

the amplitude of the nth space harmonic of the qth mode. 

The relative values Cnq = Enq/E0q may be determined by solv

ing (62). Taking cq(K) = Wq(K)Eoq(K)/Oq(K) the field expres

sion becomes 

·exp [i(K + nK)z] th.. (64) 

The values of cq can then be derived from the source condi

tions [ 49] , [ 51 ] which in this case is 

[Hz(P >a) - Hz(P < a)lp-+ a= /o~(z) (65) 

where / 0 is the current in the loop, and ~(z) is the delta 

function. 

tan 8 = p/z. 

Using the steepest descent method when r-+ 00, we find 

2i (6 s )
1

'

2 

E = - -. -
8 
LL L ~ <:lqsCnqs 

r sm / q n uqs 

·exp [irFqs - i(11'/4)(1 - sign 0~ 8 )]. (67) 

Where the index s means value at the saddle point, the summa

tion over j means summation over all the saddle points (it is 

possible to have more than one), and the prime corresponds 

to derivation relative to K.. The saddle points are determined 

by 

dFq I = O---+ dog I = - cot (8). (68) 
dK. K=Ks dK. liq=liqa.K=Ka 

Thus, for a given radiation direction 8, the field is mainly 

generated by the saddle points which are given by (68). This 

can be illustrated using the wave vector diagram shown in Fig. 

18. For each value 8, the saddle points can be graphically 

determined as the points where the normal to the wave vector 

diagram is in the direction 8 relative to the horizontal axis. 

Of special interest is the presence of inflection points near the 

interaction regions between two modes (i.e., stopband). At 

these points, o" = 0 and the field given by (67) is very large. 

This is a focalization and radiation enhancement effect due to 

the inhomogeneity of the medium. The corresponding conical 

surface of radiation is called "caustic." The caustic cone angle 

8 c is given by 

8c = arccot (-do 1 ). 
dK. at inflection point 

(69) 
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Fig. 19. Radiation pattern G of a dipole in a sinusoidally modulated 
dielectric where the modulation is equal to 11 = 0.25 and where 
'lt./A = 0.8. The dashed line corresponds to 11 = O. 
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Fig. 20. Radiation pattern in a sinusoidally modulated uniaxial pluma 
where 11=0.25, wp0 /w=0.75, and 'lt./A=0.7. The daahed line 
cotteaponds to the pattern in a vacuum. 

In Fig. 19 we present an example of radiation pattern in a 

sinusoidally periodic medium where AfA. = 1.25 and 11=0.25. 
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There are four caustics at (} c = 43°, 137°, 82°, and 98°. For 

larger values of A/A more caustics appear. 
The case of radiation in plasma and uniaxial plasma was also 

resolved. Of special interest is the result that in 'the case of a 

uniaxial plasma, radiation does occur outside the radiation 

cone (Fig. 20) under the same conditions where this is not 

possible in the case of a homogeneous uniaxial plasma [ 163 J. 
A similar approach was used to study Cerenkov and transi

tion radiation in a stratified dielectric, plasma or uniaxial 

plasma [ 46], [ 47], ( 49), [52]. In the case of the dielectric, 

owing to the inhomogeneity, the radiation given off by a 

charged particle moving uniformly through the medium con

tains not only Cerenkov-type radiation but also transition

type radiation. The radiation is emitted at an infinite number 

of angles because of the presence of the space harmonics. 

Radiation is also present at all velocities of the particles be

cause of transition-type radiation. Casey et al. [ 46] discussed 

also some interesting effects resulting from the Bragg reflec

tions, such as Cerenkov radiation emission in the backward 

direction. 

In the case of a periodically stratified plasma, only transition 

radiation is emitted. This case was analyzed in detail by Casey 

and Yeh [ 49] . They found that the emission is most pro

nounced in a band of frequencies beginning slightly above the 

average plasma frequency. 

Another type of radiation from a moving particle in the 

presence of a periodic structure is the Smith-Purcell radiation. 

Smith and Purcell [ 164] demonstrated the generation of visi

ble light by means of high-velocity electron beam grazing an 

optical grating. They ascribed the radiation mechanism to 

the formation of a vibrating dipole which consists of the 
moving charge and its accompanying oscillating image pro

duced by the corrugated grating surface. Toraldo di Francia 

[ 165] offered an alternative explanation of this mechanism. 

He demonstrated that the radiation takes place via the various 

spectral orders of a grating, excited by the slow evanescent 

waves associated with a charge in its uniform rectilinear 

motion. Later, Hessel [ 166] used a formulation similar to 

the ones reviewed in this paper to derive a rigorous solution 

for the Smith-Purcell radiation from a reflection grating 

(represented by a plane with sinusoidally varying surface 

reactance) excited by a bunched, traveling current sheath. 

He specifically analyzed the presence of resonances which are 

similar to the Wood's resonances that we discussed previously. 

He also presented a graphical method for determining the 

location of the resonance using the Brillouin diagram. 

VI. TRANSIENTS IN PERIODIC STRUCTURES 

Very little work has been done in the analysis of transients 

in periodic structures. Hill and Wait [1671 studied analytically 

and numerically the scattering of an impulse and step excita

tion function by a grating of thin conducting cylinders. Elachi 
et al. [ 132] used the simple coupled modes approach to study 

the reflected and transmitted pulse when a rectangular or 

Gaussian pulse impinge on a periodic slab. The approach 

basically consists in getting the spectrum of the reflected and 
transmitted pulses using the expressions of the reflection R ( w) 

and the transmission T(w) coefficients of the slab which were 
derived in (54). Thus the reflected pulse is 

11+00 
r(t) == 2 G(w)R(w) exp (-iwt)dw 

11' --

(70) 
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Fig. 21. Reflected and transmitted pulses for different values of 
coupling coefficient. Incident rectangular pulse has length of 2.0 
time units and carrier frequency at Bragg condition. Note difference 
in vertical scales. 

and the transmitted pulse is 

1 l+co 
p(t) = - G(w)T(w) exp (-iwt) dw 

27T -co 
(71) 

where 

l

+co 
G(w)= -co g(t)exp(iwt)dt (72) 

and g(t) is the incident pulse. The slab, which basically acts 
like a passband filter, may distort the pulse appreciably if the 

coupling coefficient is not excessively small (Fig. 21 ). 
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VII. ACTIVE PERIODIC STRUCTURES 

Probably, the major impetus in the renewed interest in 

periodic structures is the development of distributed feedback 

(DFB) lasers. In 1971, Kogelnik and Shank [ 54] reported the 

operation of a dye laser using a distributed feedback resonator 

which consists of a grating throughout the active medium. 

The periodicity was generated by exposing a thin film of 

dichromated gelatin to the interference pattern produced by 

two coherent ultraviolet beams from a helium-cadmium laser. 

The gelatin was then developed that resulted in a spatial 

modulation of the refractive index. The developed gelatin was 

then soaked in a solution of rhodamine 6G to make the dye 

penetrate into the porous gelatin layer. The resulting DFB 

structure was transversely pumped with the ultraviolet radia

tion from a nitrogen laser, and laser oscillation at 0.63 µm was 

observed. 

This led to a large number of experiments and papers on dif

ferent types and varieties of DFB lasers (Fig. 22). Shank et al. 

[ 5 5] developed a tunable DFB laser. The feedback was ob

tained from a spatial modulation of both gain and index of re

fraction, induced by pumping a liquid organic dye solution 

(rhodamine 6G in ethanol) with fringes formed by the interfer

ence of two coherent beams from a ruby laser. The tunability 

was achieved either by varying the angle between interfering 

pump beams or the refractive index of the dye solvent. Hill 

and Watanabe (57] built a DFB laser where the active medium 

is an optically pumped organic dye solution film adjacent to a 

thin dielectric film with a periodically modulated index of re

fraction. This side-coupled DFB laser was operated in different 

modes: normal wave gain and feedback; normal wave gain and 

evanescent wave feedback; and evanescent wave gain and nor

mal wave feedback. Fork et al. (58] used a nondestructively 

read-reversible optical memory material (photodimers of acridi

zinium ethylhexanesulfonate) to provide feedback in the form 

of an adjustable period phase grating which can be optically 
written (at A= 0.364 µrn) or erased (at A= 0.313 µrn). The 

lasing dye, the photodimers, and the supporting matrix are 

made into a single material by doping methylmethacrylate and 

acrylic acid with rhodamine 6G tosylate and photo~imers of 

acridizinium ethylhexanesulfonate, and polymerizing the re

sulting solution to forni a hard transparent plastic. The writ

ing and erasing times were equal to 1 s and 4 s, respectively. 

However, faster switching is physically achievable. Higher 

order Bragg gratings were also used as DFB resonator by 

Bjorkholm and Shank (59]. They showed that the resulting 

large decrease in the corresponding coupling coefficient (28) 

would require only a relatively small increase in the gain needed 

for oscillation. Higher order DFB cavities have a periodicity 

equal to a multiple of one-half the oscillation wavelength, and 

therefore are easier to construct. 

The above types of DFB lasers used volume modulation of 

the complex index of refraction to achieve the distributed 

feedback. Another approach, which was proposed by a number 

of scientists (60) and first developed by Schinke et al. (61 I 
consists in periodically varying the thickness of the waveguid

ing regions. The change in the guide thickness leads to a 

modulation of the longitudinal effective wave vector, thus it 

produces effects similar to refractive index changes in the 

guide medium. The surface grating was milled, with an argon

ion beam, into an Si02 substrate through a Shipley AZ1350 
photoresist mask which had been first exposed with an inter

ference pattern produced by a single-frequency krypton laser 
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Fig. 22. Sketches of different active periodic structures which have been studied by a number of authors and are reviewed 

in thJa paper. Light-pumped DFB laser where (a) the active medium has a periodic index ofrefraction, (b) the pumping 
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operating at 0.3507 µm, and then developed. The guiding 

medium was spin-coated polyurethane doped with rhodamine 

6G to provide gain. 

tion, i.e., mode conversion (see next section) and distributed 

feedback occur simultaneously. Wang and Sheem [66] ex· 

tended the spatial periodicity to two dimensions, and developed 

a DFB laser with two-dimensional gratings with periods of 

0.635 and 4.34 µm. 

Bjorkholm et al. [ 64) and Kogelnik et al. [ 6S) added another 

variety by depositing the DFB laser guide on an anisotropic 

substrate. This structure leads to hybrid Bragg scattering 

between oppositely traveling waves with orthogonal polariza-
Optically pumped GaAs semiconductor surface DFB laser 

was first reported by Nakamura et al. [671. The DFB laser 
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was obtained by periodically corrugating the air GaAs inter

face with a corrugation period of 0.35 µm and groove depth of 

-500 A. Optical pumping was provided by a Q-switched ruby 

laser (A.= 0.6943 µm) and the DFB laser oscillated at A.= 0.83 

µm. The same authors [69] then developed epitaxial GaAs 

waveguide DFB lasers which allowed controlled optical con

finement. They also reported an optically pumped GaAs DFB 

laser with a corrugation of 0.11-µm period [80]. Shank et al. 

[82] also developed a double heterostructure GaAs-GaAlAs 

DFB laser with 0.115-µm periodic grating. 

The logical second step was the development of electrically 

pumped DFB semiconductor lasers. The threshold analysis 

of a double heterojunction GaAs-GaAlAs DFB laser with an 

internal corrugation was conducted by Nakamura and Yariv 

[72]. Their results indicated the possibility of significant 

threshold reductions as well as of new possibilities of trans

verse mode control. A number of experimental developments 

of different configurations of electrically pumped semiconduc

tors or DFB lasers were then reported. Stoll and Seib [ 85] 

demonstrated a distributed feedback GaAs hemojunction 

injection laser. The p-n junction was formed by diffusing zinc 

into heavily n-type GaAs, and the grating was ion machined 

into the surface of the p-type layer. The grating had a 0.35-

µm periodicity for third-order Bragg feedback and 0.05-µm 

groove depth. Nakamura et al. [ 84] developed a GaAs-GaAlAs 

double heterostructure diode DFB laser. They also used third

order coupling for laser oscillation. Anderson et al. [86] re

ported a double heterostructure GaAs injection DFB laser with 

a first-order coupling. Scifres et al. [93] used fourth-order 

coupling in a GaAs-GaAlAs single heterojunction diode. 

The above lasers were operated at 77 K. Reinhart et al. [94] 

reported the first room-temperature double heterostructure 

injection laser using distributed Bragg reflectors (DBR). 

Casey et al. [95] and Aiki et al. [96] used separate optical 

and carrier confinement to operate GaAs-GaAlAs hetero

structure DFB lasers at room temperature. 

Ring DFB lasers were also developed by Wang and Tsang 

[97]. Other types of DFB lasers were proposed by a number 

of authors. Marcuse [62] analyzed the use of DFB in capillary 

waveguide lasers. Elachi et al. [90], [ 124] studied DFB fiber 

lasers and D FB diffuse waveguide lasers. Fisher [ 8 7] , Y ariv 

[ 88], and Elachiet al. [ 89] proposed different schemes for the 

potential use of crystals as DFB cavities for X-ray lasers. The 

DFB concept was also studied by Elachi as applied to bulk and 

surface microwave acoustic oscillators [ 105], [ 106] and 

magnetic wave oscillators [ 104] . 

The theoretical analysis of the DFB concept was first given 

by Kogelink and Shank [56] using the coupled mode theory 

for the case of transversely unbounded, mirrorless structure. 

Their analysis was then extended by a number of authors. 

Chinn [71] and Streifer et al. [91] studied the effects of end

mirror reflectivity. Elachi et al. [90] considered the case of 

transversely bounded DFB lasers. Wang [77] analyzed the 

distributed Bragg reflection (DBR) configuration where the 

corrugated structure and active medium are longitudinally 

separated. Wang et al. [73], [74], [77] used truncated 

Floquet harmonics and the method of multiple reflection 

to derive the threshold condition of DFB and DBR lasers. 

They discussed the relation between the truncated space 

harmonics and the forward backward waves used in the 

coupled modes theory. They pointed out that the labels 

"forward" and "backward" waves used in the coupled modes 

theory correspond to phase velocity and not direction of 
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energy flow. Based on this, they claimed that the boundary 

conditions applied by other authors using the coupled modes 

approach are not correct. However, Yariv and Gover [92] 

did show that the two approaches are identical. In this section, 

we review the theoretical analysis of DFB lasers following the 

work of Kogelnik and Shank [56] and Elachi et al. [90] 

which used the coupled modes approach. 

The coupled waves equations for a forward pth mode wave 

FP.(z)e i/3pz coupled to a backward qth mode wave Bq(z) · 

e i/3q z in an active medium are similar to the ones for a passive 

medium. These equations are 

where g is the gain coefficient of the medium, Cp and Cq are 

efficiency factors which depend on the modes, Xpq is the 

coupling coefficient that takes into account the transverse 

phase matching, and 11{jp and 11{jq are related to the fre

quency mismatch Aw relative to the exact Bragg frequency 

Wpq by 

11{jp = l/lpAw =~I Aw 
Wpq 

11{jq = l/lqAw =~I Aw. 
W Wpq 

(74) 

The solution for the above equation is given by (26). The 

boundary conditions which reflects the fact that the system 

must self-oscillate are 

Fp(-L/2) = Bq(L/2) = 0 (75) 

in the absence of end reflections, where L is the length of 

the DFB and active medium. Replacing Fp and Bq in (73) by 

their expressions from (26), and using the above boundary 

condition, we find 

AK AK = Cp - Cq g + i I/Ip - l/lq Aw 
1, 2 2 2 

[ (
Cp + Cq . I/Ip + l/lq A ) 2 

± g+1 w 
2 2 

+x~ ] 

1/2 

(76) 

and 

AK - AK (AK - AK2 ) I 2 -+· inh I L --lXpq s . 
2 2 

The above equation is the threshold condition. Its solution 

gives the threshold gain gL needed for oscillation and the 

frequency of oscillation Wpq +Aw. The solution is multi

valued and gives many solutions for Aw and g which cor

respond to the oscillation spectrum. If the two interacting 

modes are identical, then AK 1 = -AK 2 and the threshold 

condition reduces to 

AK= ±ix sinh (AKL) (77) 

where 
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which is the equation originally derived by Kogelnik and 

Shank, and is valid for both index and gain coupling. This 

equation could have also been derived from the expression of 

the reflectioncoefficientR [see Section III, (54)) of a periodic 

slab by taking R-+ 00 and replacing ill(j by C,,g +ii/Ip ~w. 

In the above derivation, we assumed that there is no Fresnel 

reflection at the two ends of the DFB structures. Chinn [ 71], 

Wang [77), and Scifres et al. [158) did analyze the effect of 

end reflectors in some detail. They showed that the presence 

of the reflectors does not necessarily decrease the threshold 

gain. The phase of the end reflection coefficient plays a major 

role, and it could even increase the threshold gain. This seems 

reasonable because the wave reflected at the ends has to add 

in the right way with the wave reflected by the grating. 

Wang et al. [73)-[75], [77) used a different approach 

based on a truncated Floquet solution. They derived the 

oscillation condition for a variety of DFB configurations and 

DBR configurations. The DBR consists in having the periodic 

structure separated from the active medium, and positioned 

at the two ends, i.e., replace the mirrors in a conventional laser 

by gratings. They derived general formulas of which the 

different configurations are special cases. 

The DFB and DBR cavities are especially useful in the field 

of thin-film and integrated optics. In those structures, it is 

extremely hard to build in end mirrors. It is far easier to 

construct a grating. these type of cavities have also potential 

for extremely high-frequency laser (i.e., X-ray region) where 

no mirrors are available, or for high-power lasers where mirror 

burning is a serious problem. 
Most of the work in the field of active periodic structures 

was directed toward DFB and DBR oscillators. However, a 

few other applications were also considered. Yariv and Arm

strong analyzed the use of periodic structures as traveling wave 

optical amplifiers and oscillators [ 169). A number of authors 

analyzed the possibility of developing a solid-state traveling 

wave amplifier that would be similar to the vacuum TWT and 

would operate in the optical and submillimeter region. Al

though the idea sounds simple, there are problems of low

velocity saturation of carriers. Solymar and Ash [ 1 70] , 

Sumi [ 1 71 ], and Mayer and Van Duzer [ 1 72) considered the 

scheme where a current conducting semiconductor is placed 

in close proximity to an external slow-wave structure. Gover 

and Y ariv [ 107] considered the case of a periodically cor

rugated interface in a monolithic way, which may be accom

plished by diffusion, ion implantation, epitaxial growth, or 

carrier injection. This structure would allow tighter coupling 

between the carrier current and the slow electromagnetic 

wave. Experimental evidence for interaction between drifting 

carriers in n-type InSb and slow electromagnetic waves sup

ported by meander-type and helix-type circuits at 77 K was 
reported by Sumi and Suzuki [ 173]. Superlattices (Section 

IX) were also suggested by Gover and Y ariv [ 174) as struc

tures which could be used to accomplish intraband radiative 
transition, and develop IR amplifiers and modulators. 

Another field considered is the use of active corrugated 

structures, in which each slot region is connected to a micro
wave solid-state amplifier, as a reflecting antenna or a surface 

wave amplifier. Panicoli et al. [ 175 I suggested a revolutionary 
spherical reflector antenna formed by a corrugated surface. 

By properly adjusting the depth of the corrugation on the 

reflector, and hence the phase of the reflection coefficient, it 

is possible to eliminate the coma aberration and to broaden its 

frequency bandwidth. Lee and Fong [176) suggested and 
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analyzed an improvement to it by adding microwave solid

state reflection amplifiers, such as Gunn diodes or IMPATT 

diodes, in the slots. This would allow the control of both 

the amplitude and phase of the reflectivity. These degrees of 

freedom can be used to advantage in amplifying the incident 

wave, shaping the beam, correcting the aberrations and broad

ening the bandwidth. Lee and Fong also analyzed the use of 

the same structure as a surface wave amplifier. The wave is 

amplified as it propagates along the structure and interacts 

with the discrete active diodes. The main advantage of such an 

amplifier lies in the fact that, unlike the conventional amplifier 

operating in waveguides, the corrugated structure does not 

support higher order modes and, therefore, should minimize 

some stability problems for diode operations. 

VIII. PASSIVE PERIODIC STRUCTURES 

Periodic structures also have considerable applications as 

passive structures. In the field of integrated optics and thin

film optics they have been used as filters [ 177), [ 178), grating 

couplers [ 179)-[ 181], mode converters [ 182)-[ 185], modula

tors [ 186)-[ 188), beam deflectors [ 189)-[ 192), for acoustic

optic interaction [ 193 ]-[ 196] for second harmonic generation 

[ 99)-[ 103], and frequency selective coupling [ 197). They 

have been used extensively as transducers and filters in the 

field of integrated surface microwave acoustics [53), [198)

[210]. They were suggested for pulse compression [211), 

[212) and for generation and detection of thermal waves 

[ 213]. These structures are also commonly encountered in 

nature. Cholesteric liquid crystals (CLC) have a natural helical 

structure with a typical period of 1 µm. Biological filters are 

encountered in insects compound eyes. Natural and synthetic 

crystals are very common, and their interaction with electrons 

and waves has been studied intensively for many years. Other 

areas of investigation also include the flexural motion in peri

odic beams, periodically stiffened structures used in aeronau

tical and naval frame works, the propagation of acoustic waves 

in ducts with sinusoidally perturbed walls, and their scatter

ing by thin plates. Some of these structures are sketched in 

Fig. 23. 

A. Filters 

The filtering property of periodic structures is basically a 

result of the presence of stopbands where the longitudinal 

wave vector becomes complex leading to exponential attenua

tion of the incident wave. The energy is reflected backwards 

over a finite frequency band. The efficiency of the filter is 

characterized by its relative bandwidth ~w/w and coupling 

coefficient X· The transfer function of this filter is given by 

(54) and shown in Fig. 15. Recently Flanders et al. [177) 

have reported the development of a thin-film guided wave 

filter using surface corrugations. They achieved a reflectivity 

of 75 percent and a bandwidth of less than 2 A at 3 dB. Multi

layered optical filters have been known for many years [ 15], 

[ 16 ]. 

Acoustooptical interactions were also considered for optical 

filtering [ 178]. Of special interest is the tunable acoustooptic 
filter (TAOF), developed by Harris [216], [217], where a 
polarized optical wave parametrically interacts with a volume 
acoustic wave in an anisotropic crystal such as quartz or 

CaMo04 , leading to selective 90° polarization shift for the 

optical waves which satisfy the Bragg frequency. An ade

quately positioned output polarizer would only transmit the 

rotated band of the input spectrum. This system is under 
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Fig. 23. Sketches of different passive periodic structures which have been studied in the literature, and are reviewed in this 
paper: (a) multilayer filter; (b) optical surface wave filter; (c) mode converter; (d) electrooptic modulator where the 
periodic perturbation is controlled electrically; (e) input coupler; (g) second harmonic generator; (h) nonlinear frequency 
mixer; (i) light deflector using acoustic waves to generate a controlled grating; (j) transducer for surface acoustic waves; 
(k) a scheme proposed for pulse compressor using a grating; 0) two-dimensional mechanical structure consisting of 
coupled plates; (m) multilayered cornea of the horsefly eye; (n) rhabdom of the eye of the Buckeye butterfly, consisting 
of periodic .iisks in a guide; (o) section of the rhabdom of a skipper eye, consisting of a circular guide with corrugated 
surface. 

consideration for a variety of applications including spacecraft

bom spectrometers. 

with a periodicity A= 2rr/K such that 

/ip - K = -{iq 
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(78) 
Most of the other applications are based on the fact that a 

periodic structure supports an inf"mite number of space har

monics with different longitudinal wave vectors. 

B. Mode Converters 

A transversally bounded structure supports a large number 
of guided modes of different longitudinal wave vectors fit· 

Thus they are not cross-coupled. If the structure is periodic 

then the pth mode is coupled, through one of its space har
monics, to the oppositely propagating qth mode leading to 
energy transfer from the pth to the qth mode, i.e., mode con

version. The sam~ effect could also occur between two codi
rectional modes if 

fiq + K = /iq (79) 
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with back and forth power transfer between the two modes. 
Mode conversions have been experimentally demonstrated in 
thin-film guides [ 182)-( 185). 

C. Couplers 

The same principle is used in grating couplers. A plane wave 

incident on the surface of a thin-film grating excites an infinite 

number of space harmonics of wave vectors: 

13n = k sin 0 + nK (80) 

where 0 is the incidence angle. If one of these harmonics is 
phase matched (i.e., has approximately equal wave vector) 

with a guided mode, then efficient coupling occurs. Coupling 

efficiency as h.igh as 40 percent has been demonstrated with 

gratings made from photoresist and fabricated directly on the 

film. The theoretical analysis is similar to the one discussed in 
Sections III and IV [ 179)-[ 181]. 

D. Parametric Interactions 

Periodic structures were also suggested for parametric inter
action and second-harmonic generation. Practically all non
linear media have a frequency dependent index of refraction. 

This implies that colinear parametric interactions are not 
efficient because of phase mismatching, i.e., 

(81) 

Thus parametric interactions usually require an anisotropic 
material or a bounded structure which supports many modes 

of different wave vectors [ 215]. However, the use of periodic 
structures allows controlled phase matching, because K can be 

adjusted. For instance, in the case of second-harmonic genera

tion, a structure with periodicity A= 2rr/K such that 

l2/3(w)- /3(2w)I = K (82) 

would give phase matching and efficient second-harmonic 
generation. This concept was first suggested by Bloembergen 

and Sievers [99), and some varieties of it later studied by 
others [ 100 ]-[ 102] . This scheme allows the use of highly 

nonlinear but isotropic material for parametric interaction. 
Recently, Levine et al. [ 103) succeeded in accomplishing 

phase-matched second-harmonic generation at >.. = 1.06 µm 

(fundamental frequency) in a nitrobenzene filled waveguide 
using a periodic electrode, with period A= 13.6 µm, to modu

late the nonlinear susceptibility. 

E. Deflectors and Modulators 

Periodic structures have also been developed and used for 

beam deflection and modulation. One could achieve periodic 
changes in the refractive index by the electrooptical effect 
using a modulation voltage applied to a periodic electrode 

pattern or by the acoustooptical effect using acoustic waves 
at appropriate frequencies. Since the changes of refractive 
index can now be controlled by either the applied voltage or 
the amplitude of the acoustic waves, this type of deflector or 
mode converter can also serve as a modulator or switch. Gia 
Russo and Harris [184) and Polky and Harris [187) demon
strated the electrooptical Bragg modulation at >.. = 0.63 µm in 
nitrobenzine waveguides. They were able to achieve up to 
SO-percent modulation. Switching and modulation of light 
using magnetooptical effects in garnet waveguide were accom
plished by Tien et al. [ 188). The magnetooptic effect was also 
used by Tsang et al. [ 185]. Experimental demonstration of 
acoustic deflection of optical surface waves at>..= 0.63 µm was 

reported by Kuhn et al. [189] in glass waveguides at 191-320-
MHz acoustic frequency. Cheo and Reeder [192) demon-
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strated acoustic deflection at >.. = 10.6 µm in GaAs epitaxial 

waveguide. Many other authors reported acoustooptic deflec
tion and scattering experiments. Acoustooptic interactions 
were also considered for optical mode conversion [ 182)-[ 184). 

F. Two·Dimensional Structures 

Another type of periodic structure that has been studied 

recently is the two-dimensional periodic metal mesh. Ulrich 
and Take [218) guided 337-µm waves in the form of TM sur

face waves along thin copper sheets perforated in a regular 
pattern. Wave propagation in two-dimensional surface periodic 

structures were also studied by Lee and Jones [219). 

G. Surface Acoustic Waves 

Periodic structures are also widely used in microwave acous

tics as transducers, couplers, and filters. lnterdigital trans
ducers on piezoelectric surfaces are used for excitation and 

detection of acoustic surface waves [53), [198)-[202]. Grat
ings have been used for the coupling of volume and surface 

waves [203)-(205). They are also used for filtering [206)
(209). By combining a number of grating filters on a single 

substrate, Melngailis and Flynn [206) developed a 16-channel 
surface acoustic wave filter bank for real-time spectral analysis. 

Gratings with linearly varying periods were also developed to 
achieve a pulse compression filter with extremely high-time 

bandwidth product of 1500 [209). For more detail about the 
use of periodic structures in surface acoustics the reader is 

referred to two general review papers [ 53], [ 201]. Blotekjaer 
et al. [210) recently gave a thorough theoretical analysis of 

acoustic waves in structures consisting of periodic metal strips 

on a dispersive medium using the Floquet formulation. They 

analyzed a number of different structures and the case of 
higher order Bragg scattering. 

H. Ultrasonic Light Diffraction 

The diffraction of visible light by ultrasonic compression 

waves propagating in a liquid was predicted by Brillouin in 

1921 and observed a decade later by Debye and Sears, and 
Lucas and Biquard. Since then, many investigators have 

studied this phenomenon under a variety of experimental 
conditiOns obtained by varying one or more of the following 

quantities: incidence angle, wavelengths of the ultrasonic and 

light waves, amplitude of the ultrasonic wave; and width of 
the ultrasonic beam. An excellent review of the experimental 

and theoretical work in this area is given in the book Principles 

of Optics, by Born and Wolf [ 15), and in a paper by Klein and 
Cook [214 ]. 

I. Ocean Waves 

Work was also reported on the propagation of ocean waves 
in periodic structures and their interaction with periodic 
boundaries. Rhines [ 220) studied the propagation of internal 
gravity waves in a periodic sheer flow, and the interaction of 
long gravity waves and Rossby waves with a corrugated bot

tom (i.e., boundary) and he discussed the stopband, passband 

effect on ocean waves. 

J. Pu'/se Compression 

In his book on the theory of sound, Lord Rayleigh [ 211] 
wrote: "At Tarling there is a flight of about 20 steps which 
returns an echo of a clap of the hands as a note resembling 
the chirp of a sparrow." This effect was simply explained by 
considering the backscattering of a noise signal (i.e., signal 

with a wide band) from an off-axis grating (Fig. 23(k)]. The 
portion of the signal with a larger value of >.. will be ba~-
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scattered by the grating cycles further away from the axis; 

thus they will take a longer time to reach back the receiver 

and the pulse is dispersed. Inversely, a chirped pulse is com

pressed. This scheme was suggested by Kock [212) to com

press acoustic chirp pulses. 

K. Thermal Diffusion Measurement and Temperature Waves 

Eichlen et al. [ 213] considered the use of thermal phase 

grating to measure thermal diffusion and to excite and detect 

temperature waves (second sound) in solids. Two light waves 

with different directions of propagation were derived from a 

pulsed neodymium Y AG laser and then superimposed in an 

absorbing sample to generate an interference field. Due to 

absorption, a spatially periodic temperature distribution 

occurs, producing a spatial modulation of the index of refrac

tion which then can be considered as a thermal phase grating. 

The light of an argon laser simultaneously incident on the 

sample is diffracted by the thermal grating. When the excita

tion is eliminated, the decay time of the diffracted light is 

measured. From this decay time the thermal diffusivity of 

the sample is determined. 

L. Insect Compound Eyes 

Periodic structures do also appear in nature. Optical filters 

are present in the insect compound eyes. These eyes contain 

components that function as interference filters, diffraction 

gratings, multimode waveguides, and waveguide variable 

attenuators. The insect compound eye [221)-[226] is a close

packed collection of thousands of little eyes called ommatidia 

located at the surface of the insect's head. Each ommatidium 

possesses a set of optical components. The light is first inci

dent on a lens (the cornea) of a 25-µm diameter. It is then 

focused on the entrance of a transparent cylinder (crystalline 

tract) a few microns in diameter and hundreds of microns 

long. This tract has a refractive index greater than the index 

of its surrounding medium, thus it acts as a multi.mode wave

guide. At _the end of the guide is the rhabdom which plays the 

role of a photodetector. Many two-winged flies have their 

corneal lenses coated with a periodic set of layers [Fig. 23(m)] 

that cause brightly colored reflections when illuminated with 

white light [224). These layers are of alternately high and low 

refractive indexes. They are about 0.1 µm thick (i.e., 0.2-µm 

period). Depending on the particular species, there are any

where from six to over thirty layers which play the role of a 

rejection-band filter. Over the entire compound eye, a given 

species may have up to four different filter types, with differ

ent transmission characteristics as a function of wavelength, 

organized in various patterns of stripes or patches of a given 

filter type. 

Other species, such as most butterflies, have a reflecting 

filter (the tapetum) which is at the bottom of each rhabdom. 

The butterfly tapetum is a periodic set of cytoplasmic plates 

that alternate with air space [Fig. 23(n)] . This is identical to a 

guide periodically loaded by dielectric discs. For white light 

propagating down the rhabdom waveguide onto the filters 

there is a large reflection for wavelengths within the filter re

jection band. The reflected wave propagates up the rhabdom 

and out of the eye. where it can be observed as colored eye

shine. Light of other wavelengths simply propagates through 

the filter and is absorbed in the basal pigment. A typical value 

for the cytoplasmic plates period is about 0.25 µm in the 

Buckeye butterfly eye. However, neighboring rhabdoms could 

have entirely different reflection properties. 
A· third type of optical filter which is commonly found in 

the skipper's eyes consists of rings around the rhabdom wave-

1689 

guide [Fig. 23(0)) with axial periodicity of about 0.18 µm. 

This is identical to an optical fiber with a periodically corru

gated surface. 

The corneal layers, the butterfly tapetum, and the skipper 

rhabdom all change the spectral response of the photodetec

tor. Their purpose seems to enltance the contrast of colored 

objects in a background of dissimilar color. 

M. Cholesteric Liquid Crystals 

Hundreds of papers and textbooks have been written about 

waves and particles in periodic, almost periodic, and disturbed 

crystals. So we will not review this field except briefly in the 

next section. However, here we will briefly review the work 

on cholesteric liquid crystal because of their unique properties. 

Cholesteric liquid crystals ((:LC) can be represented by a 

structure consisting of molecules arranged in thin anisotropic 

layers with the successive layers rotated through a small angle, 

leading to a spiral configuration [Fig. l(q)] [227), (228). 

These crystals have a very strong rotary factor: 60 000 deg/mm 

compared to 300 deg/mm for ordinary organic liquids. They 

are characterized by a dielectric tensor: 

€+fl cosKz 

fl sin Kz 

0 

fl sin Kz 0 

€-fl cosKz 0 

0 €3 

where K = 4rr/A and A is the pitch of the spiral. This dielec

tric tensor can be represented by an ellipsoid of principal axes 

€3 (parallel to z), € + fl and€- fl. The ellipsoid spirals around 

the z axis with a pitch A. e3 , €and fl are constants which char

acterize the crystal. The value of A is usually of the order of 
lµm. 

The analysis of optical wave propagation in such a structure 

proceeds in exactly the same way as discussed for the Floquet 

approach in Section II, except that we use the tensor expres

sion of e(z). The analysis done by Elachi and Yeh [229) did 

show that these structures have a unique stopband beharior. 

Depending on the relative values of €J , €, and fl there could be 

one, two, or three first-order Bragg stopbands when the inci

dence angle is changed from 0° to 90°. This can be contrasted 

to the fact that only one first-order Bragg stopband exists in 

all the cases studied in this paper. The presence of multiple 

first-order stopbands is a result of the anisotropy (e 4: e3), 

which implies that the medium can support two different 

eigenmodes. The three stopbands are a result of the inter- and 

cross-coupling of these eigenmodes. 

Cholesteric liquid crystal have been used for a variety of 

optical filtering functions [ 230), [ 231]. These include notch. 

multinotch, bandpass, and multibandpass capabilities, extend

ing over a wide wavelength range from the near ultrmolet to 

the far infrared. Furthermore, the fact that the pitch of the 

spiral configuration is a function of temperature, pressure, 

added chemicals, etc., may permit numerous other applica

tions. Many experimental and theoretical papers on the su~ 

ject have been published (227)-[239]. These crystals have 

also been used for phase-matched third-harmonic generation 
[239). 

N. Mechanical Structures 

Work on periodic structures was also undertaken in the fields 

of structural, mechanical, and acoustical engineering. Cramer 

and Leilich [240) studied flexural motion in periodic beam 

structures, and showed that waves can propagate in some ~ 
quency bands but not others. Heckl [ 241] considered a sys

tem of beams coupled together to form a regular grillaae ad 
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demonstrated the same property. He studied the propagation 

of bending, longitudinal, and torsional waves. Mead [ 242] in
cluded the effects of damping in the wave propagation theory 
for periodic beams, and later [ 243] discussed the nature of 
the propagating waves and their possible interaction with 

acoustic waves. He specifically considered the case of a beam 

on regularly spaced rigid supports and transversely elastic 
supports. He also considered the coupling between converted 

pressure fields, such as those associated with farfield jet noise 
or turbulent boundary layer pressure fluctuations, and the 
periodically supported beam. Of special interest was the case 

where pressure field velocity is equal to the phase velocity of 
one of the eigenwaves on the beam leading to strong coupling. 

This coupling condition, which is well known in physics and 
electrical engineering, is called the "coincidence" excitation 

condition by mechanical and structural engineers. He demon

strated that at relatively low convection velocity, the pressure 

field could simultaneously excite two positive and one nega
tive group velocity waves of different frequencies, and he ex

plained a scheme where a low-speed convected flow can excite, 

indirectly, a wave in the beam having sonic wave velocity, 

which could then radiate acoustic waves. This work has then 
been followed [ 244] by a study of the harmonic and random 

responses of periodic beams on elastic supports and subjected 

to convected loading. The objective of his work was to 

analyse the damaging effect of vibration which could exist in 

the use of aerospace structures stiffened at regular intervals by 
identical stringers and excited by an intense noise field, or in 

the use of large reinforced plates in heat exchanges systems of 
nuclear power stations. Sen Gupta [ 118] also showed how 

natural frequencies of finite beam-type periodic structures can 
be found from the wave propagation characteristics. 

The theoretical analysis of the vibration of beam-type struc
tures was based on the difference equations approach which is 

adaptable to the discrete nature of these structures [ 117]. The 

approach basically consists in determining the transfer matrix 
of a unit element which is then repeated to simulate the whole 
system. This is similar to the approach used to study the 

transmission properties of optical multilayer filters [ 15]. The 
resulting general properties are similar to the properties of the 

other periodic structures reviewed in this paper. 

IX. WAVES AND PARTICLES IN CRYSTALS 

Many phenomena concerned with waves and particles in 

crystals follow a very similar theoretical pattern as we dis

cussed before for the case of electromagnetic waves in periodic 

media. As a matter of fact, most of the impetus in the study 

of periodic structure in the first half of this century was in the 
fields of Bragg scattering in crystallography and energy bands 
in solid-state physics. Slater [ 24 5] wrote a review paper on 
the work in the field of interaction of waves in crystals as of 

1958. The reader interested in that aspect of the field of waves 
in periodic structures is referred to that review paper or to a 
wide range of text books [ 246] . In this section we will only 
review the most recent and unique work on some types of 
crystals which seem to be very promising for new future appli
cations and theoretical development. We will briefly discuss 

the work on superlattices, zeolite crystals, and disordered 
systems. 

A. Superlattices 

A new type of periodic structures which have been recently 
developed and are attracting considerable attention are the 
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superlattices. They consist of accurately deposited thin layers 
(from 10 A up to few hundred Angstroms) of two different 

semiconductors of matching lattice constants. When these 
man-made electron potential square wells are built up into 
stacks of 10 to 1 00 periods, they essentially constitute an 
infinite configuration (because of the finite mean free path of 

the carriers) known as a superlattice. These structures open 
the possibility of creating quantum states with predetermined 

energy levels and bandwidths. The superlattices built to date 

consist of GaAs layers which form the "well," and GaAlAs 
layers which form the "barrier" of the square well. These two 

semiconductors are extremely closely matched in lattice con

stant. These structures are built by a molecular beam epitaxy 
technique. Their properties have been recently explored by a 

number of scientists. Esaki and Chang [247] studied their 
current transport properties which show nonlinear character

istics and exhibit an oscillatory behavior beyond a certain 
threshold voltage. Tsu et al. [ 248] measured the photocurrent 

in a superlattice and observed peaks of photon energies which 

correspond to transitions between quantum states in ·the 

valence and conduction bands. As a function of the applied 
voltage, the photo current exhibits pronounced negative dif

ferential conductance when the potential energy difference 

between two adjacent wells of the superlattice exceeds the 

bandwidth of the quantum states. Van der Ziel et al. (249] 
reported laser oscillation from optically pumped multilayer 

heterostructures of the above type. Dingle et al. (250] 
demonstrated the evolution of resonantly split discrete well 
state into the lowest band of a one-dimensional superlattice. 

They monitored the evolution of GaAs absorption spectrum as 
the number of coupled wells has increased from one to ten or 
more. Structures with ten or more coupled wells appear to 

approximate the sliperlattice regime, whereas structures with 
fewer wells are well described in terms of interacting single 

wells. They interpreted their experimental data with an 

exact solution of the Schroedinger equation for transmission 

through multiple rectangular potential barriers. 
It should also be mentioned that recently Gover and Y ariv 

[ 174] discussed the possibility of using semiconductor super

lattices for intraband radiative transitions and for the develop

ment of infrared amplifier and modulators. 

B. Zeolites 

Another type of crystals which have unique properties and 
which attracted some interest recently are the zeolite crystals 
(251), (252). They are naturally occurring or synthetic 

aluminosilicate porous structures, commonly termed mole

cular sieves, with one-, two-, or three-dimensional channels 

having minimum pore diameters of 3 to 12 A. These channels 
are formed by the juncture of large sodalite cage units that are 
arranged in a periodicity analogous to that of simple atomic 
and molecular crystals. This leads to a periodic change in the 

diameter of the channels with periodicities from a few ang

stroms to few tens of angstroms. These structures have been 
recently proposed as potential DFB cavities for X-ray lasers 
(89). 

C. Disordered Crystals 

Recently a number of papers appeared in the solid-state 
physics field which extend the field of periodic structure to 
the study of multiperiodic structures, almost periodic struc
tures, and disordered structures. Sah and Srivastava [ 12) con
sidered a generalized diatomic lattice whose unit cell con-
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sisted of any combination of A atoms and B atoms. This was 

a generalization of the work by Kerner [ 253] who considered 

an array of purity atoms with impurity atoms periodically 

interspaced. Most of the work in the study of binary alloys 

was directed toward the analysis of the Saxon-Hutner theorem 
and its converse. The theorem basically states that a level (i.e., 
frequency) which is forbidden (i.e., in a stopband) in the 

iiifmite one-dimensional lattice formed of pure type-A poten

tials and in that formed of pure type-B potentials, is also for

bidden in any arbitrary substitutional alloy. of A and B. 

The original conjecture by Saxon and Hutner refers only to 

6-potentials of the Kronig-Penney type situated at the centers 

of equal cells, and it has been proved by Dworin [ 254]. 

Kerner [253) showed that the above theorem does not hold 
for square-well potentials. Landaur and Hellund (255) and 

Hori (256) demonstrated that the theorem may not be valid 

for potentials other than 6 potentials. More recently Tong 

[ 11] showed that the Saxon-Hutner theorem and its converse 

are not necessarily true for all kinds of potentials, and he gave 
the condition required for the theorem to be valid. Other 

workers analyzed the case of disordered alloys [257) and al

most periodic structures [ 25 8]. 

X. FABRICATION TECHNIQUES 

A review of the different techniques for fabrication of 
periodic structures is somewhat out of the scope of this paper. 
However, in this section, we will briefly review the techniques 

which have been developed in the last few years to construct 
extremely small period surface and near surface gratings for 

surface acoustic wave and thin film optical devices. A recent 
review paper was given by Smith [259). The reader who is 

interes.ted in the details is referred to that excellent paper. 
The basic principle of the fabrication technique of surface 

gratings are illustrated in Fig. 24. A substrate surface is coated 

with a radiation-sensitive polymer film and exposed to radia
tion of spatially periodic intensity with the desired period. 

Following exposure, a development step removes either the 

exposed or unexposed polymer, thereby leaving the periodic 
pattern in relief on the substrate surface. The substrate itself 

can then be patterned either by etching a relief structure in it, 
by chemically doping the patterned areas, or by depositing a 

material into the grooves of the polymer relief pattern. A 

number of simple variations and additions can be made to the 

above process. 
The formation of the pattern in the polymer film is usually 

accomplished by photolithography, electron lithography or 
X-ray lithography. In photolithography a photo-resist which 

responds to visible or ultraviolet light is used. The periodic 
pattern may be formed by a holographic technique where two 
laser beams (from the same source) are interfered together to 
form interference fringes. This technique of producing gratings 
was first proposed by Rudolph and Schmohl [260) and it 
provides accurate, precise, and low-distortion gratings. Re
cently Shank and Schmidt [ 168] have reported gratings with 

periodicity as fine as 1108 A. Another technique is the use of 

a pattern which can be imaged onto the coated substrate 
(projection printing) usually with some demagnification, or 
it can be used in contact with the surface (shadow printing). 

These techniques can be used to generate gratings of a period
icity of few microns. For finer gratings, the diffraction effects 
lead to distortions. This is eliminated by the use of X-ray 
lithography where shorter wavelength radiation is used ( 10 A). 
Recently, gratings of 0.36-µm period produced by holographic 
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Fig. 24. Different techniques and steps to fabricate a surface grating 
(259). 

means on an X-ray mask, were replicated in PMMA (poly

methylmethacrylate) (261]. The third technique, electron 
lithography, uses an electron beam transmitted through a 

mask or a beam which is programmably scanned. Gratings of 
periods as small as 0.3 µm are readily fabricated in PMMA 

films. Single lines of 0.045 µm width have been written. 
However, no one has yet made I-to-I gratings with such line 

widths, primarily be<;ause of problems caused by electron 
scattering. 

The etching or removal of material from the substrate can 

be achieved by ion bombardment (removed by sputtering) 

(262). Such etchings exhibit extremely high-resolution capa
bility (0.1-µm gratings [168)). Chemical etching can also be 

used, however it exhibits undercutting and is generally of low 

resolution. A detailed review of the ion implantation tech
niques was given by Gibbons [263), [264). 

XI. FUTURE Anv ANCES AND PROBLEMS 

The study of waves in periodic structures has been active 
since the end of the last century, and it was applied to an 

amazing variety of fields, as we discussed in this paper. It 
seems that every few years a new advance in a field of science 
refuels the interest in the study of periodic structures, the 
most recent being the fields of integrated optics, DFB lasers, 

and superlattices. In this section, we speculate about the 

areas where we think the interest in theoretical analysis and 

experimental development will be highest in the immediate 
future. Some areas are already under investigation. Some that 
have not yet been investigated seem to be promising. We 
would like to emphasize that some of the following discussions 

are purely speculation, and the reader should consider them 

as such. 
The field of DFB lasers have been active for the last few 

years and is expected to be so in the near future. There is 

need to undertake a Floquet analysis of active periodic struc
tures especially as related to DFB lasers with surface periodic

ity, because deep groove gratings can be achieved with present
day technology. Similarly, the effects of leaky wave radiation 

on DFB lasers have not been analyzed. An extensive analysis 
of active periodic guides similar to what was done for periodic 
antennas might be rewarding. 

Of potential interest is the phase-matched coupling between 
a guided wave and a leaky wave parallel to the surface. As we 
mentioned in Section III and sketched in Fig. 13, near that 
phase-matching point there are two real solutions. One corre-
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sponding to the guided wave, the other to the leaky wave 

which, in that narrow region, is completely "bound" as a re

sult of the coupling. The question is whether or not these 

two waves can be used as a distributed feedback pair leading 

to DFB laser oscillation at some of the Wood or Raleigh 

frequencies. 

Another area of interest is the potential use of crystal struc

tures as DFB cavities for X-ray lasers. This scheme has been 

suggested, but theoretical and experimental work is still 

needed to evaluate its use. 

The DFB concept has been suggested for the development of 

surface acoustic wave and magnetic wave oscillators. The same 

idea might also be applicable in other fields-for instance, the 

use of the active corrugated antenna analyzed by Lee and 

Fong [ 176) as a DFB oscillator in the microwave region. The 

structure basically consists of a corrugated metallic structure 

with amplifying diodes in the grooves. 

The DFB concept might be used in self-sustaining lasers. It 

is well known that in conventional high-power lasers, the 

stationary wave in the active medium leads to modulation of 

the gain and probably the index of the medium. The question 

is, could this modulation itself play the role of a grating which 

would lead to distributed feedback of the light that generates 

it? In other terms, could the light wave generate its own feed

back? This idea opens wide the whole area of the study of 

nonlinear DFB lasers and nonlinear coupling. 

Most of the work in the field of periodic structures was di

rected toward multidimensional structures with one periodic

ity. Some work has been done in solid-state physics in the 

analysis of double or multiperiodic potentials which resulted 

in a number of controversies. This field seems to be of some 

interest both for theoretical and experimental investigations. 

A multiperiodic grating can be used for multifrequency DFB 

lasers or filters. Some basic questions are still not well under

stood concerning the stopbands of these structures, especially 

the ones resulting from multiple scattering. That is, for a 

medium where 

e(z) = e[l + 71 1 cosK1z + 712 cosK2 z + · · · + '11n cosKnzJ 

(84) 

a wave can be scattered succes&vely by more than one of the 

above periodicities. This effect is intensively used in radar 

oceanography (over the horizon radar) in the remote study of 

ocean wave spectra. A number of interesting cases may be 

envisioned; for instance, the case of almost periodic functions. 

The field of superlattices is another exciting one. The fact 

that it allows the development of lattices with specified band 

gaps is very interesting. This and other areas mentioned above 

opens a new and challenging field for the theoreticians. Could 

we determine a uni- or multiperiodic structure which would 

give a specified set of stopbands and passbands? Evidently, as 

most inverse problems, the solution, if any, is not simple. 

This field would have a wide range of applications in super

lattices, integrated optics, integrated acoustics, and structural 

engineering. 
Another area of interest is the analysis of transients and 

beams in periodic structures. Very little work has been under
taken in this field; a variety of problems in antenna theory, 
integrated optics, and integrated acoustics can be envisioned. 

We would like to mention the extension of the work in 
periodic structures to cylindrical and spherical geometries. 

Even though this field seems of academic interest for the time 

being, unexpected applications might spring up in the future. 
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One which comes to the mind of the author is a recent paper 

by Schloessin [265) who suggested that the spherical bound

ary between the Earth's mantle and core is periodically per

turbed by convection cells. This, if true, might have implica

tions on the propagation of seismic waves in the Earth's body. 

A possible application in planetary science is the fact that 

periodic plasmas have a passband at frequencies below th.e 

plasma frequency. It is well known that the Earth's iono

sphere acts as a stop screen for all electromagnetic radiation of 

frequency below about 10 MHz coming in from outside our 

planet. However, presently available high-power radars [266) 

could perturb the ionosphere in a periodic fashion. Thus it 

might be possible to punch a "hole" in the ionosphere allow

ing the passage of some radiation for radio-astronomical 

studies. 

XII. CONCLUSION 

The field of waves in periodic structures has been active since 

the late part of the last century. In this review paper we cov

ered the theoretical techniques which are used in studying the 

wave propagation and source radiation properties in un

bounded and bounded periodic media. These techniques can 

be applied to all types of waves; electromagnetic, acoustic, 

magnetic, electron, ocean, internal, temperature, flexural, and 

mechanical waves. The passband, stopband, and space har

monic properties are common to all of them. The variety of 

applications reviewed in this paper do show the commonality 

between these fields. This common approach allows the trans

fer of concepts developed in one field to another, and may re

sult in fruitful new advances. 

As speculated in Section XI, the field of waves in periodic 

structures will be very active in the near future. New techno

logical developments will continue a strong interest in this 

field, as has happened often times in the past. 

APPENDIX A 

WAVE EQUATIONS IN A PERIODIC MEDIUM 

1. Electromagnetic Waves 

The source free wave equations in a medium whose permit

tivity is a function of the axial coordinates are [ 35] 

'V X 'V XE- k~ [e(z)/eol E = 0 

(A-1) 

'V X 'V X if - ['Ve(z)/e(z)] X 'V X if - k~ [e(z)/e0 ) if= 0 

(A-2) 

where k~ = 1.1.oe0 w2
, e0 and I.Lo are the free-space permittivity 

-+ -+ 
and permeability, E and H are the electric and magnetic field 

vectors and e(z) is the permittivity of the inhomogeneous me

dium. It can be shown that all field components in this me

dium can be obtained from the scalar quantities <1> 1 and <1>2 as 

follows (35): 

-+ i -+ 
H=- -'V X 'V X (<l>1ez) 

IJ.oW 

for transverse electric waves; and 

-+ i -+ 
E = -- 'V X 'V X (<l>2ez) 

we(z) 

if= 'V x (<1>2~) 

(A-3) 

(A-4) 

(A-5) 

(A-6) 
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for TM waves. ez is the unit vector in the z direction. From 

the above equations, and separating the variables in rectangu

lar coordinates, one obtains 

ct> 1 ={sin (sx)} {sin (wy)} U(z) (A-7) 
cos cos 

and 

cf>2 ={sin (px)} {sin (qy)} V(z) (A-8) 
cos cos 

wheres, w, p, and q are separation constants. U(z) and V(z) 

satisfy the differential equations 

{;z
2

2 + [k5(e(z)/eo)- s2 
- w

2
]} U(z) = 0 (A-9) 

and 

{

dz 

dz 2 
-- ---+ [k5(e(z)/eo) - p

2 
- q

2
] V(z) = 0. (

de(z)) 1 d } 

dz e(z) dz 

This equation can be simplified if we take 

W(z) = V(z)/Ve(i). 

The wave equation for W(z) then becomes 

(A-10) 

(A-11) 

{
d2 [(e1/2)" e'(e1/2)' ]} 
-+ --+ + (k5efeo - p

2 - q
2e1/2) W = o. 

dz2 e2 e3 

Now, let us assume that e(z) is periodic 

e(z) = e0 e,[ 1 + 17g(Kz)J 

(A-12) 

(A-13) 

where 11 is the modulation coefficient (17 < 1) and g(Kz) is a 

normalized periodic function of period 2rr/K. Then the above 

differential equations can be written in the form 

d21/I 
d~ 2 +fWl/l=O (A-14) 

where 

1/l=U 

rm= k5e,l 1 + 11g<m - s
2 

- w2 
= L: an exp (inn 

n 

~=Kz (A-15) 

for the TE waves, and 

1/1= w 

11g"m 3 [ 11l<~) ] 

rm= 2[1 +17gWJ- 4 1+11gm 

k2 
+ K2 e,[ 1 + 17g(~)J - p2 - q2 

= L bn exp in~. (A-16) 
n 

If the periodic medium is a plasma, then we replace e(z) by 

[ 
w;(z)] 

eo l--
w2 

where Wp/2rr = x plasma frequency. 
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2. Acoustic Waves 

The one-dimensional equations which govern the acoustic 

wave propagation in a medium are 

OU oT 
p-=- (A-17) 

ot oz 

OS OU 
-=- (A-18) 
ot oz 

T=Cs (A-19) 

where p is the mass density, u is the lattice velocity, s is the 

strain, T is the stress, and C is the elastic constant. The wave 

equation is simply 

o2 u w2 

-+p-u=O. 
oz2 c 

(A-20) 

If p or/and Care periodically modulated, then the above equa

tion will have the same form as (1 ). 

Similar wave equations can be derived for magnetic waves 
[104). 

3. Electron Waves 

The well-known Schroedinger wave equation for electron 

waves is 

d 2 1/I 8rr2 m* 
dz 2 +~ [E- V(z)] 1/1=0 (A-21) 

which, for the case of a periodic potential V, has the same 

form as (A-14). Eis the energy, his Planck's constant, and m* 
the effective electron mass. 
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