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Abstract

The topics here deal with some current progress in electromagnetic wave propagation in a family of

substances known as metamaterials. To begin with, it is discussed how a pulse can develop a leading

edge that steepens and it is emphasised that such self-steepening is an important inclusion within a

metamaterial environment together with Raman scattering and third-order dispersion whenever very

short pulses are being investigated. It is emphasised that the self-steepening parameter is highly

metamaterial-driven compared to Raman scattering, which is associated with a coefficient of the same

form whether a normal positive phase, or a metamaterial waveguide is the vehicle for any soliton

propagation. It is also shown that the influence of magnetooptics provides a beautiful and important

control mechanism for metamaterial devices and that, in the future, this feature will have a significant

impact upon the design of data control systems for optical computing. A major objective is fulfiled by

the investigations of the fascinating properties of hyperbolic media that exhibit asymmetry of

supported modes due to the tilt of optical axes. This is a topic that really merits elaboration because

structural and optical asymmetry in optical components that end up manipulating electromagnetic

waves is now the foundation of how to operate some of the most successful devices in photonics and

electronics. It is pointed out, in this context, that graphene is one of the most famous plasmonic media

with very low losses. It is a two-dimensional material that makes the implementation of an effective-

medium approximation more feasible. Nonlinear non-stationary diffraction in active planar

anisotropic hyperbolic metamaterials is discussed in detail and two approaches are compared. One of

them is based on the averaging over a unit cell, while the other one does not include sort of averaging.

The formation and propagation of optical spatial solitons in hyperbolic metamaterials is also

considered with a model of the response of hyperbolic metamaterials in terms of the homogenisation

(‘effective medium’) approach. The model has a macroscopic dielectric tensor encompassing at least

one negative eigenvalue. It is shown that light propagating in the presence of hyperbolic dispersion

undergoes negative (anomalous) diffraction. The theory is ten broadened out to include the influence

of the orientation of the optical axis with respect to the propagation wave vector. Optical rogue waves
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are discussed in terms of how they are influenced, but not suppressed, by a metamaterial background.

It is strongly discussed that metamaterials and optical rogue waves have both been making headlines

in recent years and that they are, separately, large areas of research to study. A brief background of

the inevitable linkage of them is considered and important new possibilities are discussed. After this

background is revealed some new rogue wave configurations combining the two areas are presented

alongside a discussion of the way forward for the future.

Keywords: waves, rogues, solitons

(Some figures may appear in colour only in the online journal)

1. Introduction

The discussions presented here deal with some current progress

in electromagnetic wave propagation in a family of substances

known as metamaterials [1–6]. The latter constitute a global

revolution in science, which is widely acknowledged to have

been launched properly in 1999, when Rodger Walser [1], from

the University of Texas, published the word ‘metamaterial’. The

latter describes an artificial material that exhibits properties

deriving from its composition, as opposed to its fundamental

intrinsic physical property. This means, in the visible light

domain, for example, that the size of the intrinsic components of

metamaterials must be well below the excitation wavelength of

operation. Hence, this implies the need to build nanostructures

for the optical domain. The metamaterial family is growing,

nicely, but only two important members will be discussed here,

and they are called double negative and hyperbolic [7], respec-

tively. The double negative metamaterial family members are

isotropic and derive their name from the fact that they possess

both negative permittivity and negative permeability. The

hyperbolic members have uniaxial symmetry and, for an optic

axis pointing along z, which is a popular wave propagation

direction, can have a permittivity tensor that is diagonal, with

positive x and y components and a negative z component. In

fact, there is a lot of versatility for hyperbolic media that helps to

identify applications with type I hyperbolic metamaterial pos-

sessing just one negative component of the dielectric tensor

negative. In the same hyperbolic family, there is type II that has

two negative tensor components.

For this focus article, section 2 contains basic steps leading

to a version of the widely known [7] nonlinear Schrödinger

equation (NLSE). It is set up to lead to computer simulation of

the behaviour of the double negative member of the metama-

terial family. Since the type of NLSE produced here is disper-

sion-based it is capable of generating nonlinear waves called

temporal solitons [8, 9] in such metamaterials. As discussed, in

detail, later on, soliton means a nonlinear wave, in the form of a

pulse, or a beam, in which broadening due to dispersion, or

diffraction, is balanced by the presence of nonlinear amplitudes.

Hence, the temporal soliton [8, 9] family member is a pulse in

which broadening due to linear dispersion is balanced by the

nonlinearity. It is selected here, without loss of generality,

because it can form the basis of a delightful discussion of what

have become known as rogue waves [10]. These can be created

by a special input condition for the NLSE, consisting of a

constant background being disturbed by small periodic pertur-

bations. It is interesting to note, at this stage, that this kind of

input can actually be a Peregrine soliton. The latter is named

after Howell Peregrine [11], who, back in 1983, at the University

of Bristol, looked brilliantly at these waves and found that they

appear to come out of nowhere and then disappear quite sud-

denly again. Notwithstanding the pioneering work by Peregrine,

his solitons are now broadly known as rogue waves. They still

have a fascinating background in hydrodynamics, concerning

waves leaping suddenly out of what seems to be a calm sea.

They have attracted the name ‘rogue waves’ because they do

appear from, apparently, nowhere, rise up to a dangerous height,

potentially do damage to shipping, and then disappear from

sight, without a trace.

In addition to the discussion of rogue waves other

sections of this article analyse waves in hyperbolic metama-

terials, with a detailed investigation of nonlinear stationary, or

non-stationary, diffraction in active planar hyperbolic media.

As indicated up to now, the nonlinear metamaterial work

that is emerging globally builds, credibly, upon the fact that

solitons [8, 9] already have well-known roots in hydrodynamics

dating back to John Scott Russell in 1834. It is interesting that

this early work was not appreciated for some considerable time,

yet, like the metamaterial world, it was also a global revolution.

This means that the ability of new, artificial, substances, like

metamaterials, to sustain soliton propagation is, therefore, a

beautiful modern development. For a realistic discussion, it is

convenient to focus upon only certain members of both the large

soliton family and the growing metamaterial family. For this

reason, without loss of generality, the attention of the next

sections will be upon temporal solitons and double negative and

hyperbolic metamaterials. The pulse-based basic physics of

stable nonlinear excitations is that they rely upon balancing

phase changes across their width that arise from the material

dispersion and nonlinearity. They are stable if they are described

by what is known as the one-dimensional cubic nonlinear [8, 9]

Schrödinger equation (NLSE) briefly introduced earlier on. This

fundamental one-dimensional NLSE is a completely satisfactory

model to describe how electromagnetic pulses behave in a

bounded dielectric, but any important additions to this basic

equation have to be investigated as well and leads us towards the

appreciation of the self-steepenng of pulses, for example.

Investigating solitons in a nonlinear double negative

metamaterial does give rise to a generalised NLSE, which

stresses that, by using the dispersion brought in by the relative

dielectric permittivity and the relative permeability, a lot of

new features emerge. For example, it soon becomes apparent

that the sign of the self-steepening [12] parameter can be

changed through frequency management. This has a dramatic
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impact upon modulation instability (MI) and short pulse

propagation [13–16]. However, the work that will now unfold

addresses how dispersion and metamaterial properties emerge

as an influence upon the coefficients of the NLSE. It is,

initially, surprising that the development below is in the

absence of any modelling of the loss that solitons will

encounter in a real system. This is because, as recent literature

shows, it is possible to minimise the role of loss, and still

introduce the fundamental double negative behaviour that is

such a globally attractive feature of negative phase metama-

terials. At this stage, it is also worth re-emphasising that there

is a perfect analogy between the general, multidiscipline,

nonlinear electromagnetic Schrödinger work and the study of

unstable waves on deep oceans. It is not a surprise, then, that

such instability in the hydrodynamic area was originally met

with considerable, and broadly-based, scepticism. However,

now it has been shown to be correct that the conditions for MI

are the conditions for the creation of solitons. This applies

very accurately to temporal solitons.

Since a double negative metamaterial exhibits an effec-

tive relative permittivity and an effective relative perme-

ability, both of which are frequency dependent, an

interrogating electromagnetic wave must have a wavelength

that perceives only these effective properties because the

metaparticles making up the material are sub-wavelength.

Double negative metamaterials can have negative permittivity

and negative permeability, both of which can be significantly

frequency dependent. Here, it is assumed that such material is

transparent and the aim, in section 2 is to determine just how

the metamaterial properties can be associated with new soli-

ton behaviour and to determine the extent to which this

behaviour can be controlled. Two forms of the latter will be

selected, one of which is magnetooptic control [17–21], and

the other invokes nonlinearity.

Many materials can be operated in a nonlinear regime

and this can be accessible through the use of pulses, that have

sufficient power to drive a nonlinear polarisation addition to

the linear displacement vector. In nonlinear optics, many

different types of materials have been investigated and,

broadly speaking, a lot of interest has been focused upon

materials that yield so-called second-order nonlinearity, or a

third-order response. Significant applications have emerged

for materials that possess a centre of symmetry. For such

media, it is the third-order nonlinearity that is important. This

is the case for silica glass from which optical fibres are made.

Almost paradoxically, a third-order nonlinearity associated

with an isotropic material with a centre of symmetry leads to

phenomena at the same frequency as that of the excitation,

with the third-harmonic being ruled out because of a lack of

phase matching. In this paper, it is a double-negative meta-

material with the classic third-order response that will be

considered.

This provides an opportunity to investigate temporal

solitons of the kind that has been written about so extensively

for optical fibres. In the model adopted here, a planar guide is

used, however, and the nonlinearity can arise from both di-

electric and magnetic polarisation properties. The type of

excitation selected actually comes from the large family of

solitons and a temporal soliton is controlled by dispersion and

nonlinearity. Strictly speaking, such a soliton emerges when

the chirping induced by the dispersion and the nonlinearity

exactly cancel each other out to give a constant phase across

the pulse. The manner in which attention can be directed only

towards nonlinearity and dispersion depends upon the

waveguide structure that is supporting the solitons. For

example, in an optical fibre, diffraction is eliminated in all

directions perpendicular to the propagation axis, but a planar

waveguide can also be used.

It is important to gain a thorough understanding of how

using a metamaterial can impact upon phenomena such as

self-steepening. For the latter, the dependence of the group

velocity upon the intensity of the pulse causes the pulse to

change shape. For a normal positive phase medium, the

trailing edge of the pulse will steepen, yet propagating a pulse

in a metamaterial can result in the steepening of the leading

edge of the pulse. Very short pulses are associated with self-

steepening and they can suffer from Raman scattering. Also,

it is possible that third-order group velocity dispersion can

come into play and the introduction of magnetooptics can be a

very important method of control.

2. Temporal solitons in metamaterial waveguides

2.1. Nonlinear Schrödinger equation (NLSE)

The standard NLSE often needs to be modified. For example,

a new term that measures the self-steepening of the pulse may

be required. Also, if a pulse is short in the time domain, it will

possess a broad frequency spectrum and the design of the

metamaterial may invoke Raman scattering. Basically, it is

possible for high frequency components of a pulse to be

converted to low-frequency components (Stokes lines), and it

is also possible for the opposite to occur (anti-Stokes lines).

Stokes lines are generated from the ground state and are more

densely populated than anti-Stokes lines. If the pulses prop-

agate in a metamaterial, then it is interesting to see what is the

actual influence of the model artificial material being used

upon self-steepening and to see whether the frequency

dependence of the relative permittivity and the relative per-

meability can produce a significant outcome. This frequency

dependence can be introduced through a variety of Drude

models of the kind adopted here.

The lowest order temporal soliton is one which arises

when the frequency chirp due to the nonlinearity is balanced

by the chirp created by dispersion. Both the nonlinearity and

the dispersion, therefore, add a chirp to the pulse, but as the

two oppose each other, they can cancel each other out.

Temporal soliton propagation is usually investigated using

optical fibres and clearly, because of the guiding by the fibre

core, diffraction is eliminated in both directions perpendicular

to the propagation axis. Another option, however, is to excite

the pulse in a planar waveguide. Here, the guided modes,

propagating along the z-axis, have the diffraction in the y-

direction eliminated, and it is assumed that pulses are suffi-

ciently broad in the x-direction to also avoid diffraction. This
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is the structure that is chosen here, and it is illustrated in

figure 1.

The global literature does provide a thorough description

of temporal soliton propagation in, positive phase, optical

fibres but the question is how does double negative, and,

therefore, negative phase, metamaterial, affect the propaga-

tion characteristics of this type of soliton? MI is often the pre-

cursor to the study of pulse propagation in metamaterial

structures and it has been the focus of a number of publica-

tions. In them it is clear that the familiar NLSE includes

influences from second-order dispersion, third-order non-

linearity and possibly self-steepening. The latter arises

because of a dependence of the group velocity upon the

intensity of the pulse, and, in the absence of normal disper-

sion, will cause a pulse to change shape dramatically. In a

positive phase medium, it is always the trailing edge of the

pulse that will steepen. However, it has been shown that, for a

pulse propagating in a metamaterial, there is a possibility for

the leading edge of the pulse to steepen. In this context,

magnetooptics can be introduced as a control mechanism.

For a positive phase medium, it is only electric non-

linearity that is included in any analysis, but there is a pos-

sibility for a metamaterial to possess double nonlinearity,

where the origin of the nonlinearity is both electric and

magnetic. This can be discussed in a regime for which loss is

not specifically included. This is because loss-free, or suffi-

ciently low-loss, metamaterials, are expected in the near

future. Indeed, it is now worthwhile, therefore, to investigate

outcomes based upon low loss rather than attenuation-domi-

nated materials.

The route to the, standard, NLSE is to implement the

slowly-varying amplitude approximation. This is when the

electric and magnetic field is split into a fast variation, a linear

modal field and an amplitude that varies slowly along the

propagation axis. The standard NLSE then yields the slowly

varying amplitude and accounts both for dispersion and

nonlinearity. It is an adequate model of wave propagation

events, in most cases. However, when pulses, whose duration

is the order of a few femtoseconds, are under consideration,

additional terms are needed in the NLSE in order to increase

the accuracy of the predicted behaviour. One such term

describes self-steepening of a pulse and is a vital nonlinear

effect that has been briefly referred to above. Another possible

addition is Raman scattering. As stated earlier, the latter either

causes high frequency components of the pulse to be con-

verted to low-frequency components, or vice versa. These are

called Stokes lines and anti-Stokes lines, respectively. A

further consideration is third-order dispersion. For a pulse

propagating in a metamaterial, it is interesting to investigate

whether the presence of a frequency-dependent relative

permittivity and frequency-dependent relative permeability

will have an influence on the higher-order terms.

A planar waveguide is used here because it has potential

for integrated circuits. The x and y directions are guided and

the temporal soliton propagates along the z-axis. Also the

excitation is assumed to be so sufficiently wide in the x-

direction that it minimises diffraction to such an extent that

such diffraction can be discounted in the theoretical model.

Hence, the derivation of the NLSE now emerges from a

weakly guiding (quasi-bulk) scenario. Physically this is an

appropriate approximation if L, the width of the metamaterial

core, is large and the cladding and substrate are assumed to be

total reflectors (metals). Another option is that the guiding

structure should be arranged so that the refractive index of

each layer is approximately matched across the boundaries.

This option will be adopted here. If the index variation is

restricted to be within 0.5% then, for a TM mode, the long-

itudinal component of the electric field, Ez can be neglected

because it is insignificant, when compared to the electric field

component Ey. The guiding system will, therefore, have a

semi-infinite cladding and substrate that, for the time being, is

composed of standard, positive phase, dispersion-free di-

electric. Selecting the substrate to be a magnetooptic material

can lead to important control capabilities over temporal

soliton behaviour. For the waveguide under consideration,

only the TM mode is influenced by magnetooptics when the,

transverse, Voigt configuration is used.

The metamaterial under consideration here, has a relative

permittivity, and a relative permeability, that have a strong

frequency dependence, and a frequency window exists in

which both properties have a negative value. This double

negative metamaterial is also assumed to be isotropic so that

any complication arising from anisotropy is not necessary.

Including anisotropy is just a complication that does not affect

the principle outcomes. The pulse is set to be associated with

an electric field E(r, t), and a magnetic field H(r, t), in the

time domain, t, with r being the spatial vector r=(x, y, z),
expressed in terms of the spatial Cartesian coordinates x, y

and z. For the double negative metamaterial, double non-

linearity means that both the relative permittivity and relative

permeability are nonlinear. Even so, electrically nonlinear

metamaterials, where only the permittivity is nonlinear have

been discussed specifically in the literature, hence, an

investigation into the propagation characteristics of these

materials is an important global topic to study. In the Fourier

domain, the electric and magnetic field associated with a

temporal pulse, have the form

ò òw w= =w w˜ ( ) ( ) ˆ ( ) ( )

( )

r r r rt t t tE E H, , e d , H , , e d ,

2.1

t ti i

where ω is an angular frequency, r is, again, simply the

position vector, and t is the time measured in the laboratory

frame. The tilde used in (2.1) denotes a Fourier component.

Figure 1 A metamaterial planar waveguide sustaining temporal
solitons.
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The basic electromagnetic equations, in the Fourier domain,

can now be written as

w wm m w w ´ =˜ ( ) ( ) ˆ ( ) ( )E r H r, i , , 2.2L0

w we e w c w
w we e w w

 ´ =- +

´ = -

˜ ( ) ( ( ) ∣ ˜ ( )∣ )

˜ ( ) ( ) ˜ ( ) ( )

( )H r E r

E r E r

, i ,

, i , , 2.3

L0
3 2

0

where e0 and m0 are, as usual, the permittivity and perme-
ability of free-space, respectively. For the third-order Kerr

nonlinearity that has been introduced here, it is assumed that
the coefficient, c( ) ,3 has the usual symmetry coefficient ¾

embedded within it. e w( )L and m w( )L are the linear relative
permittivity and linear relative permeability, respectively, of

the isotropic metamaterial. The total permittivity is given by

e w( ) and includes both the linear and the nonlinear

contributions.

From equations (2.2) and (2.3), the basic metamaterial

Helmholtz equation is

w
e w m w + =( ) ( ) ( )

c
E E 0. 2.4L

2 %
2

2
%

This equation leads to the NLSE for temporal solitons. At this

point, however, it is necessary to choose the type of propa-

gating mode. The weakly guiding planar structure defined

here can support either TE or TM modal fields. It will be the

TM mode that is chosen, in preparation for the addition of a

Voigt magnetooptic influence. This is because it is only the

TM mode that is affected by this particular magnetooptic

configuration, and the TE mode remains unaltered. The

electric field components of the TM mode given here are

( ˜ ˜ )E E,y z but, for the weakly guiding structure discussed here,

it is the propagation of the vector component Ẽy that is of

interest.

The NLSE is the result of taking a weakly nonlinear

approximation. This approximation involves introducing a

slowly-varying amplitude, A(z, ω), a complex linear modal

field F(y), which is totally characteristic of the specific

guiding system, and a fast-variation involving the wave

number β0. This factorisation into three terms is expressed by

w= b˜ ( ) ( ) ( )E A z F y, e . 2.5y
zi 0

The form of Ẽy given in equation (2.5) can now be substituted

into equation (2.4). A separation constant, i.e. an eigenvalue,

b̃, can then be introduced, that leads to two equations of the

form

w
e w m w b

¶
¶

+ - =( ( ) ( ) ˜ ) ( )
F

y c
F 0, 2.6L

2

2

2

2

2

b b b
¶
¶

+
¶
¶

+ - =( ˜ ) ( )
A

z

A

z
A2i 0. 2.7

2

2 0
2

0
2

Multiplying equation (2.6) by A, and (2.7) by F, and then

recombining the equations to eliminate b̃2 leads to

b b
w

e w m w

¶
¶

+
¶
¶

- = -
¶
¶

-

´ ( ( ) ( )) ( )

F
A

z
F

A

z
FA A

F

y c

FA

2i

. 2.8L

2

2 0 0
2

2

2

2

2

For a weakly guiding system, the second derivative of F with

respect to y can be neglected on the grounds that it is, literally,

very small, when compared with the other terms. From the

layered guide structure illustrated in figure 1, the following

distributions of the relative linear permittivity, εL, the relative

linear permeability, μL and the nonlinear coefficient can be

assigned.
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The envelope equation for the entire weakly guiding wave-

guide system is therefore

b b
¶
¶

+
¶
¶

- + + =∣ ∣ ( )
A

z

A

z
A I A I A A2i 0, 2.10

2

2 0 0
2

1 2
2
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Note that because of the weakly guiding nature of the guide,

the multiplication of εL μL in each of the layers is within 0.5%

difference. Therefore, it can be assumed to not be a function

of y, and can be moved outside the integration and the

magnitude of the refractive index should be approximately the

same in the core, as the cladding and substrate, but does not

have to have the same sign. The basic envelope equation in

the Fourier domain, up to this point, is, therefore,

b b w b
w
m w

c

¶
¶

+
¶
¶

+ - +

´ =

( ( ) ) ( )

∣ ∣ ( )( )

A

z

A

z
A

c

A A

2i

0. 2.12

L0

2

2

2
0
2

2

2 2

3 2

In practice, the temporal soliton contains a distribution of

frequencies that are centred around an operational frequency,

ω0. A Taylor expansion can be performed around this

operational frequency, where the number of terms retained

depends upon the application required. This expansion

determines how (2.12) can be taken from the Fourier domain,

to the time-domain. This transition to the time domain can be

facilitated easily by re-writing the frequency, ω as

(ω−ω0)+ω0. Denoting the transformation to the time-

domain by the symbol leads to the time-domain outcomes
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Here only terms up to the third derivative are retained and the

origin of a self-steepening term can now be seen, along with

third-order dispersion. Raman scattering is yet to appear. The

next step is to transform this envelope equation to a moving

frame that has a velocity vg relative to what will be called the

laboratory frame. The merit of simulating the pulse in the

moving frame is that the influence from short-pulse, or

external, effects can be clearly observed, and this will become

obvious in any computer simulations.

Figure 2 is intended to clarify the definition of moving

and laboratory frames, and to illustrate show how a temporal

soliton will propagate in them. Events in the laboratory frame

are designated as being measured in global time, t. In the

moving frame, the time, t′ is defined as being local to the

pulse. These two times are connected by the group velocity of

the pulse, where the relationship is t′=t− z/vg. The zero

point of time is the same in both frames, and as its position is

arbitrary, it is useful to put the pulse centre at a time equal to

zero. This means that the time will range from negative to

positive values as the pulse is traversed. Figure 2 also shows

the trajectories of pulses that are launched with a velocity

greater, or less than, vg, in both frames. They are labelled, in

the moving frame, as fast, or slow, respectively.

The form of the NLSE appropriate for the propagation of

very short pulses in standard materials, in both the laboratory

and moving frame, can readily be found in the literature. The

form being sought here will show how a metamaterial affects

the self-steepening term.

The transformation from the laboratory frame, associated

with the coordinates (z, t), to a moving frame associated with

coordinates (z′, t′) can now be performed, using the arrows

(→) to label the process, in the following manner

b b
w
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After these transformations are applied, the main envelope

equation becomes
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Using the slowly varying amplitude approximation, it is

common practice to neglect the
¢
¶
¶z

2

2
term. However, now that

Figure 2. A sketch of the two frames of reference. (a) Illustrates a pulse in the laboratory frame, and (b) illustrates a pulse in the moving
frame, that has a velocity vg relative to the laboratory frame.
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higher-order terms have been retained, it is necessary to re-

examine this conclusion. Broadly speaking, the following

order of magnitude conclusions can be employed ~ ~
¢

¶
¶ ¢

¶
¶z t

2

2

c ∣ ∣( ) A3 2 and therefore ~
¢

¶
¶ ¢ ¶ ¢

¶
¶

.
t z t

2 3

3
On this basis, the

¢
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2

2

term can still be safely neglected.
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This can be simplified to give
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Equation (2.19) is now the final version of the dimensional

Schrödinger equation, and includes the standard nonlinear,

and self-steepening terms, along with both second- and third-

order dispersion. The equation involves the self-steepening

term = + - +
w

b
b m w

m
w w
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After these operators are expanded, the coefficient of self-

steepening takes the form
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In which it is recognised that the excitation is a backward

wave for which the phase velocity is vp<0 and the group

velocity is vg>0. The physical consequence of the term
¶
¶ ¢

(∣ ∣ )A A ,
t

2 is to steepen one edge of the pulse. This effect is

documented well in the literature, but the influence that the

metamaterial imposes is to change, radically, the form of the

coefficient of self-steepening, S. The form of the self-stee-

pening coefficient in a standard positive phase medium is

simply 1/ω0. If the limit is taken, where no metamaterial

properties are present, S goes back to the standard form only

for a dispersion-free medium with vp=vg.
Equation (2.19) is the dimensional form of the NLSE

required. It can be cast into a dimensionless form through the

following definitions

y m w c¢ = ¢ = = w
b

∣ ( )∣

( )

∣ ∣

( )z L Z t T T A, , ,

2.21

D
c

0
2

0
30

2

0
2

where the dispersion length is =
b∣ ∣

LD
T0
2

2

and T0 is interpreted

as the pulse width. At this point in the derivation it is

appropriate to include Raman scattering and is introduced

through the parameter τR, defined below. The form of the

dimensionless NLSE that includes self-steepening and Raman

scattering is now
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where the third-order dispersion is quantified by d =3
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and Raman scattering

is represented by
ò

t = =-¥

¥
( )

,R

tR t t

T

T

T

d
R

0 0

using a Raman

response function R(t). This equation exhibits a specific form

for the self-steepening coefficient. The Raman scattering

coefficient, t =R
T

T

R

0

is inversely proportional to the pulse

duration and the form of TR can easily be found in the lit-

erature. A typical value for a nonlinear material is the order of

10−15 s, or a femtosecond. This means that for a pulse with a

duration of 21 fs, the Raman scattering coefficient would take

a value of τR≈0.033. Once again, it should be noted that this
coefficient is independent of frequency and any metamaterial

properties.

Equation (2.22), the dimensionless form of the NLSE,

can be conveniently used to generate some illustrative

computer simulations. In addition, it can then be used, in

section 3, to generate rogue waves and their dependence upon

the influence of metamaterials.

2.2. Magnetooptic influence

If the guide shown in figure 1 is modified, so that it contains

some magnetooptic material, it will be possible to obtain

control over the temporal solitons by the means of an exter-

nally applied magnetic field. Classically, there are three

standard options for the type of magnetooptic control that can

be achieved. Very elegantly, the orientation of the magnetic

field with respect to the propagation direction leads to fasci-

nating outcomes for the pulse behaviour. They are known as

the Voigt, Faraday, and polar configurations. Here, it is the

Voigt effect that is adopted. This selection does not induce

any polarisation coupling and enables a very transparent form

of control to be developed. In this configuration, the external

magnetic field is applied in a direction that is perpendicular to

the propagation direction: in this case, along the X-axis. Once

again, it should be noted that the waveguide must be asym-

metric, with the magnetooptic material only being included in

either the cladding, or the substrate, for any effect to be

present. The waveguide in question will be of the form given

in figure 1, but with the substrate replaced with a magne-

tooptic material and the externally applied magnetic field

being orientated along the X-direction.

External magnetic fields actually induce off-diagonal

elements in the relative permittivity tensor of a magnetooptic
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material. The form of this tensor, appropriate for the Voigt

configuration, with an external magnetic field located along

the X-axis, is
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where e=nm and is the refractive index of the magne-

tooptic material in the absence of a magnetic field, and Q is

the magnetooptic parameter specific to the material. For

convenience, εyz is also defined here as the off-diagonal

permittivity element e = n Qi .yz m
2 The value of Q for standard

magnetooptic materials is the order of 10−4, but modern

magnetooptic materials have values that can be as large as the

order of 10−2. Again, it is emphasised that it is only the TM

mode that will be influenced by the magnetooptic effect: the

TE mode remains unaltered.

The magnetooptic presence perturbs the slowly varying

amplitude solution of the Schrödinger equation. The

contribution to
¶
¶
A

Z
can be developed for either a TE, or TM,

polarised wave. The slowly varying amplitudes adopted are

A
TE, or A, respectively. The outcome is very simple in form,

and for each polarisation, the rate of change of the slowly

varying amplitude is

w
e
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TE polarised: i 0,

TM polarised: i , 2.24yz
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where 〈εyz〉 is the effective averaged magnetooptic coefficient

over the waveguide structure. It is confirmed in equation (2.24),

that it is only the TM mode that is affected by this form of

magnetooptics. 〈εyz〉 contains an average over the modal field of

the waveguide structure, and an integration along y is involved.

Clearly, this will be zero if the waveguide structure is sym-

metric. However, if the structure is asymmetric, it is possible to

create a Voigt effect of order Q.

The perturbative method used to arrive at equation (2.22)

allows this term to simply be added to the NLSE using Gψ to

account for all of the nonlinear terms. Therefore, the NLSE, in

the presence of magnetooptics and in the moving frame of the

pulse, is

y
b

y
d
y

y y
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The normalisations used to arrive at (2.25) give a magne-

tooptic coefficient of the form = á ñw
v L n Q ,

c D m
2 where 〈Q〉 is

the effective magnetooptic parameter over the waveguide

structure.

If v is chosen to be simply a constant, the only outcome

would be to impart a phase shift to the soliton. In order to

create a more significant effect, v must be time-dependent.

Considering this type of time-dependence creates a need to

embrace the different frames of reference. The pulse is gen-

erally viewed in the moving frame, whereas the external

magnetic field is clearly in the laboratory frame. This means

that equation (2.25) needs to be considered carefully to ensure

that the correct function is allocated to the magnetic field

distribution. As equation (2.25) refers to the moving frame of

the pulse, a transformation must also be applied to the

magnetic field function to transform it to the moving frame

before it is added to the final equation. This transformation

involves the group velocity, vg, of the pulse. Therefore, the

magnetic field function, when expressed in the moving frame,

and also in dimensionless coordinates, is of the form

w
= + = +

= +
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where TL is the dimensionless time in the laboratory frame,

and is normalised via the equation t=T0TL . f is a function

that describes the magnetic field dependence on time, and

involves a maximum value vmax. How the introduction of this

type of function will change the propagation characteristics of

a soliton can be shown in the simulations.

2.2.1. Simulation of soliton behaviour. The NLSE, complete

with the short-pulse and magnetooptic terms, will yield,

numerically, a number of great scenarios. The terms in the

NLSE introduce metamaterial influences upon the soliton

behaviour. The simulations will show how the effects can be

combined to give interesting conclusions. These impacts can

also be addressed in a discussion of rogue waves, through

special input conditions.

Because the coefficient of self-steepening for a metama-

terial is strongly frequency dependent, it can be either greater,

or less, than zero. The effect of this metamaterial-driven

outcome on soliton behaviour can then be readily determined

with carefully selected simulations. In addition, although,

Raman scattering is not metamaterial dependent, for short

pulses where the self-steepening coefficient is significant, the

Raman term will also be important, so this also needs

investigation.

Simulations can be performed that show how all of these

effects combine to give metamaterial-specific outcomes, and

also how they can be controlled by a magnetooptic

environment. For the magnetooptic term to have an effect,

other than a change to the phase of the soliton, the external

magnetic field must be a function of time. Hence, the

waveguide can be demagnetised at different times, with

respect to the pulse creation. This can all be described by the

function below, where tv is the parameter being altered.

= -
- +

D

⎛

⎝
⎜

⎛

⎝
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⎞

⎠
⎟

⎞

⎠
⎟ ( )v

v t t Z V

t2
1 tanh . 2.27

v gmax

It is imperative to include the group velocity into this

function, otherwise the outcome would be a change in

amplitude, rather than a time-shift of the pulse.

All-optical computing will require the ability to manip-

ulate pulses into switching formats. It can be seen in
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figure 3(a), that in the positive self-steepening case, the pulses

have a reduced velocity and therefore arrive at the output

plane (Z=50) at a later time than expected, and in the

negative self-steepening case the two pulses have an

increased velocity, and arrive at the output plane at an earlier

time than expected. It can also be seen that in both cases of

the two different pulses, it is the shorter pulse that is more

strongly affected by the self-steepening. Figure 3(b) shows an

interesting interaction, causing a cross-over of the arrival

times at the receiving port. This is a very impressive outcome

arising from the use of a metamaterial.

The NLSE, derived above, provides an excellent model

for pulse behaviour in metamaterial guides. The type of

nonlinearity used here is assumed to be Kerr-like. It is

emphasised that self-steepening is an important inclusion, but

that other effects, such as Raman scattering and third-order

dispersion should also be considered when very short pulses

are being investigated. It is emphasised that the self-

steepening coefficient is highly metamaterial-driven, and the

form derived here is consistent with the literature. The

coefficient of Raman scattering is immune to the frequency

dependence of the metamaterial, and is of the same form

whether a normal positive phase, or a metamaterial

waveguide is the vehicle for soliton propagation.

Finally, as can be seen in figure 4, there is an attractive

interplay between self-steepening and magnetooptics so the

influence of magnetooptics provides a beautiful and important

control mechanism, that alters the speed of a pulse. It is

anticipated that this work will have a significant impact upon

the design of data control systems for optical computing.

3. Asymmetric hyperbolic metamaterials

3.1. Asymmetry in EM devices and hyperbolic media with

graphene

The objective of this section is to examine interesting prop-

erties of hyperbolic media which exhibit asymmetry of sup-

ported modes due to the tilt of optical axes. Such a topic

deserves elaboration since structural and optical asymmetries

in components manipulating electromagnetic waves is a

feature characterising the operation of some of the most

successful devices in photonics and electronics during the last

decades. From asymmetric sub-wavelength unit cells of

microwave transmission lines which make exotic and con-

trollable metamaterials [22], to photonic crystals employing

asymmetries to steer and accumulate light [23], structures

supporting unequal modes of processing the flow of electro-

magnetic energy is of prime usefulness. Ultra-effective

asymmetric light-trapping photovoltaic devices have been

designed [24], while it has been recently shown [25] that by

introducing tailored optical asymmetry in clusters of particles

manipulating light, efficient beam guiding is achieved, con-

trollable by the operational frequency. Rudimentary designs

like split ring resonators [26] led to backward-wave effective

media with numerous applications are working with a struc-

tural asymmetry creating the necessary sharp resonances.

Even the concept of non-reciprocity which is utilised in any

signal manipulation except for filtering, is based on emulating

asymmetries in the macroscopic description [27] mainly

through external bias in a variety of oscillating wavelengths

from mid-infrared [28], to radio [29] and acoustical [30].

Hyperbolic media [31, 32] which are uniaxial materials

behaving as ordinary dielectrics along one direction and as

metals along the other, constitute a preferential class of media

in building wave-manipulating structures with asymmetries.

Such materials have borrowed their name from the shape of

their dispersion curve which is a hyperbola [33]. The basic

difference between hyperbola and ellipse (ordinary uniaxial

dielectric dispersion relation) is that the former extends to

infinity; therefore, the hyperbolic material can support pro-

pagating wavenumbers with infinite magnitude. Such a shrink

in the effective wavelength can offer unique packaging

opportunities in optical devices, infinite density of states [34]

and lead to designs of ultra-efficient absorbers [35], radiation

enhancers [36–38], nano-resonators [39], diffraction-free

focusing and imaging [40]. The most direct way to fabricate a

structure emulating hyperbolic media properties is to stack

parallel layers or sheets of plasmonic materials or even perfect

metals [41] into an ordinary host of positive permittivity. If

that lattice is very densely populated and deeply sub-

wavelength, then effective-medium approximation [42, 43] is

Figure 3. Inputs: ψ=sech(T+ 2)+2sech(2(T−2)). (a) S=0.02, and (b) S=−0.02.

9

Nanotechnology 28 (2017) 444001 A D Boardman et al



applicable: the permittivity along the direction parallel to the

layers would be close to that of the host, namely positive and

the permittivity along its normal axis would be plasmonic.

One of the most famous plasmonic media with very low

losses is graphene [44]which additionally possesses a number of

advantages. First of all, it is a two-dimensional material which

offers wave manipulation infinitely concentrated in space (one-

atom-thick) and makes the implementation of effective-medium

approximation more feasible. Furthermore, the properties [45] of

graphene hardly resemble the ones of the bulk graphite from

which it has been exfoliated; most characteristically, it has very

high surface conductivity [46] which admits the process of

waves passing through it. A significant advantage of graphene is

its extreme durability and flexibility which accompanies its

characteristic of being easily isolated in stable form. It has been

reported [47] that spatially inhomogeneous and non-uniform

conductivity patterns across a flake of graphene, can produce an

one-atom-thick platform for infrared metamaterials and trans-

formation optics devices. Graphene is also very commonly used

to inherit exotic effective properties into common backgrounds

like epsilon-near-zero response [48] or hyperbolic dispersion

[49]; therefore, graphene-based asymmetric hyperbolic media

would be the major objective of our research.

As indicated above, asymmetry is in the nature of

hyperbolic medium due to the totally different permittivity

along its two major axes; however, if we are interested in

asymmetry of excited modes, we should tilt the optical axes.

The new effective properties appearing in a hyperbolic slab

due to the asymmetry induced when arbitrarily tilting the

optical axis are analysed in [50] and the asymmetric modes

supported by such a structure are obtained in [51]. In such

asymmetric hyperbolic structures, interesting phenomena

have been identified giving rise to applications like super-

Planckian far-zone thermal emission [52] and nonlinear signal

manipulation employing backward-propagating waves

[53–55]. Furthermore, similar hyperbolic layers are proven to

exhibit extremely efficient attenuation [56] and absorption

performance for specific incidence angles [57], which is

wideband [58] and realistic in terms of construction [59].

In this section, we are initially considering an arbitrary

uniaxial medium with tilted optical axis and determining the

propagation constants of the permitted waves into its volume.

We find the condition for maximum asymmetry between the

modes and we realise that is fulfilled only for hyperbolic

media (with suitable tilt). Most importantly, the propagation

constants differ dramatically each other and, in the lossless

limit, their difference become infinite (one finite, one infinite).

For a certain class of hyperbolic permittivities, the afore-

mentioned extreme asymmetry can be combined with perfect

impedance matching with free-space leading to zero reflec-

tions for a specific angle of incidence. We propose a realistic

design of suitable doped, free-standing graphene multilayers

and determine the period of the lattice and the characteristics

of graphene to possess the aforementioned combination of

unique features (extreme asymmetry and perfect matching)

for specific bands. For these values of input parameters, we

examine a finite-thickness slab of such a tilted graphene

multilayered structure in terms of its absorbing efficiency. We

realise that both wideband and wide-angle performance is

achieved and huge asymmetry between the modes is recorded

in the vicinity of Lorentz resonances. To this end, we regard

the corresponding waveguiding structure which has been

additionally grounded. The waveguidance condition is

derived and the dispersion curves are sketched revealing the

existence of: backward propagating, forward propagating and

evanescent modes into the slab depending on the operational

frequency.

3.2. Asymmetry of modes in uniaxial media

We consider a uniaxial medium characterised by two relative

permittivities: ε|| and ε⊥ while being magnetically inert

(μ=μ0). We use the Cartesian coordinate system (x, y, z)

defined at figure 5, where a slab of thickness h of that material

is shown; the optical axis of the medium forms a tilt angle θ

with the z axis (normal to the interfaces). The incident plane

wave propagates into free space and possesses a sole y

magnetic component (TM wave), so that electric field lies on

Figure 4. Example of the interplay between self-steepening and magnetooptic control. ψ=sech(T). (a) S=−0.02, vmax=0, (b)
S=−0.02, vmax=−0.5.
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the zx plane and both permittivities get activated; furthermore,

its direction of propagation makes an angle f with the z axis

of our Cartesian coordinate system (oblique incidence). For

θ=0, the permittivity tensor of the medium is diagonal and

for θ≠0 is full as shown below:

e q
e
e
e

e
e e
e

e e

= =

=

^

^

^

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

[ ( )]

[ ] ( )

0

0 0

0 0

0 0

,

0

0 0

0

, 3.1

xx zx

xz zz

where: εxz=εzx=(ε||−ε⊥) cos θ sin θ, εxx=ε⊥
sin2 θ+ε|| cos

2 θ and εzz=ε⊥ cos2 θ+ε|| sin
2 θ. The time

dependence of type exp (−iωt) with circular frequency ω is

suppressed throughout the analysis. The tilt angle is kept

within the interval: 0<θ<90°, while the incidence angle

covers all the directions across the upper half space:

90°<f<90°.
If we seek for waves with magnetic field =H

- -ˆ ( )k x k zy exp i ix z into the aforementioned medium and take

into account that kx=k0 sin f, as imposed by the incident

illumination ( w e m=k0 0 0 is the free-space wavenumber), we

obtain the following two possible values (superscripts 1 and 2)

for the propagation constant kz:

=
e e q f e e e e e e q f

e e e e q

- + + - -

+ + -

^ ^ ^ ^

^ ^

   

 

( )

( )

( ) ( ) [( ) ( ) ( ) ]

( ) ( )

k k

.

3.2

z
1,2

0

sin 2 sin 2 cos 2 2 sin

cos 2

2

Our objective is to examine the conditions under which the two

waves with propagation constants (3.2), supported by the tilted

uniaxial medium are as different as possible each other (max-

imal asymmetry). For the sake of brevity and without loss of

generality, we can consider that one of the two permittivities of

our material is equal to that of vacuum: e = 1. Furthermore,

we are initially regarding lossless media e Î^( ).

By inspection of (3.2), one clearly sees that the common

denominator gets nullified when the tilt angle takes the

following special value q :0

q q= = e
e

+
-

^

^( ) ( )arccos , 3.30
1

2

1

1

which is real only if ê is negative. Indeed, for a fixed angle q,
the value of the transversal permittivity which makes the

denominator of (3.2) vanish is: e = <q
q^
-
+

( )

( )
0.

cos 2 1

cos 2 1
Such a

conclusion means that our uniaxial medium has a hyperbolic

dispersion relation e e+ =^ ^ k k k2 2
0
2 [31]; it behaves as a

normal dielectric along the one direction (vacuum, e = 1)

and as a metal along the other e <^( )0 .

It is remarkable that when evaluating (3.2) at the specific

angle (3.3), one understands that only one of the wave-

numbers tends to infinity; the other remains finite. In part-

icular:
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0

0

for q q .0 It is clear that in proportion to which side we

illuminate the structure, the same wave can have infinite or

finite propagation constant. Furthermore, when one works

close to q q= ,0 only one of the two waves exhibits  ¥k ;z

the other one has a limiting propagation constant

= e f f f
e
-

-
^

^
k ;z

cos cot sin

2
when the side of excitation changes,

the two waves switch position. Therefore, we have just

introduced a regime q q=( )0 at which the two modes sup-

ported by the same medium are infinitely different each other.

Hereinafter, all the wave characteristics and the considered

examples will mainly get examined in the parametric vicinity

of that extreme asymmetry state: q q .0
The waves can have nonzero imaginary part of their

propagation constant only if the quantity under the square

root of (3.2) is negative. It is straightforward to obtain:

q e

q e
¹ 

> <

< < <

f
e

f
e

- ^

- ^

^

^

⎧

⎨
⎪⎪

⎩
⎪
⎪

( )
( )

[ ] ( )kIm 0

arccos , 0

arccos , 0 1

3.5z

cos

1

cos

1

which means that even with a lossless uniaxial medium, one can

excite waves into it which have changing magnitude along z by

tilting properly the anisotropy axis (and selecting e <^ 1). Note

that in case ¹[ ]kIm 0,z the imaginary parts of the two waves
( ) ( )k k,z z
1 2 are opposite each other. It is also noteworthy that

[ ]kIm z is always zero in the vicinity of q q= 0 because

q < f
e- ^( )arccos .0

cos

1
The same conclusion can be reached if

we consider the ranges of ê leading to nonzero [ ]kIm .z More

specifically, if q f>( ) ( )cos 2 cos 2 we have complex kz for

e< < q f
q^

-( ) ( )
0 ;

cos 2 cos 2

2 cos2
on the other hand, if q <( )cos 2

f( )cos 2 , one obtains ¹[ ]kIm 0z when <q f
q

-( ) ( )cos 2 cos 2

2 cos2

e <^ 0. However, the permittivity e = <q
q^
-
+

( )

( )
0,

cos 2 1

cos 2 1
leading

Figure 5. The schematic of our structure. A uniaxial (ε||, ε⊥) slab of
thickness h and tilted optical axis by angle θ, gets excited by a TM
obliquely incident plane wave along direction forming an angle f
with the normal axis. The uniaxial permittivities may be the
macroscopic averaging of the response from graphene multilayers
with surface conductivity σ.
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to the extreme-asymmetry regime, does not fall within the

aforementioned ranges; it is always negative and smaller than
q f

q
-( ) ( )

.
cos 2 cos 2

2 cos2
If we had a half-space filled with the uniaxial

medium instead of the finite slab of figure 5, the selection of the

correct solution would be made on the basis of the sign of the

imaginary parts. Furthermore, in the case of =[ ]kIm 0,z one

can consider negligible but nonzero losses for ê . Finally, in all

the following numerical results, graphs and contour plots of this

section, the derived formulas are evaluated in MATLAB com-

puting environment with use of standard built-in functions and

in-house developed source code.

In figure 6(a), we demonstrate the asymmetry between

the two modes described above. The real parts of the two

wavenumbers [ ]( )k kRe z
1,2

0 from (3.2) are shown as function

of tilt angle q for three different transversal permittivities ê .
The first one ( [ ] )( )k kRe z

1
0 is represented with light thick line

and the second one ( [ ] )( )k kRe z
2

0 with dark thin line. Since

we have selected f =  >22.5 0, it is always the first wave

that can possess infinite wavenumber as indicated by (3.4);

this happens at different q q= 0 for various ê according to

(3.3). We notice that the two wavenumbers have a highly

dissimilar θ-variation especially in the vicinity of q q= 0 as

totally anticipated. However, when q goes above a threshold,
the real parts of the two wavenumbers are identical which

means that nonzero imaginary parts are appeared; such an

effect is indicated by (3.5). Indeed in figure 6(b), where the

(common) absolute value of imaginary part of the two kz is

depicted as function of θ, one observes that it has non-trivial

variation for the same interval of θ that the couples of curves

in figure 5 coincide each other. This feature is attributed to the

lossless e Î^ and the presence of square root in (3.2)

for e = 1.

3.3. Wave impedances and perfect matching regime

It worths mentioning that the impedances of the two waves

defined by the supported wavenumbers (3.2) are either equal

or opposite each other. If one evaluates the ratio between the

transversal (with respect to the z propagation axis) electric

component (x direction) over the transversal (and unique)

magnetic component (y direction), one obtains:

h= 
e e e q f

e

+ - +^ ^ ^

^
( )

[ ( ) ( ) ( )]
Z , 3.60

1 cos 2 cos 2

2

where h m e=0 0 0 is the free-space wave impedance. Note

that Z is either purely real or purely imaginary for a lossless

medium e Î^( ). If e =^ 1, we obtain h f= = Z Z cos ,0 0

namely the well-known TM impedances of waves travelling

into vacuum either along one (+z) or the opposite (−z)

direction. This is not the case when e ¹^ 1; the two waves

(with superscripts 1 or 2) do not necessarily retain the same

sign for their impedance in (3.6) regardless of the variations in

angles q f( ), and permittivity ê . As indicated by (3.4), the

two waves usually change positions in proportion to the signs

of the real and imaginary part of their k ,z which in turn are

determined by the sign of angle f and the ranges of other

parameters.

If one evaluates the wave impedances (3.6) at the angle

q q= ,0 where the extremal asymmetry is occurred, one obtains

the following limiting expression: h f e= - ^ ∣ ∣Z sin0 for

q q= 0 (where e <^ 0). By comparing it with the formula for

the TM wave impedance Z ,0 we can directly find the condition

for perfect matching between our medium and free-space:

h h f e f=  =  = -
q q

f
e - ^
^

( )

∣ ∣
Z Zlim cos tan .

3.7

0 0
sin

0
2

0

This set of parameters combines two unique features for the

medium under investigation: (i) extreme asymmetry (one kz
finite, the other infinite) of the supported modes q q=( )0 and

(ii) perfect matching with free-space =( )Z Z .0 Note that such a

case corresponds to f q=  ,0 and to e = 0,zz while the off

diagonal permittivities exz are non-zero.

Figure 6 (a) The real part of the normalised wavenumbers [ ]k kRe z 0 of the two waves (light and dark colours) and (b) the common absolute
value of their imaginary part ∣ [ ]∣k kIm ,z 0 as functions of the tilt angle q for various negative transversal permittivities e = - - -^ 0.1, 1, 10.
Plot parameter: f = 22.5 .
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In figure 7(a), we represent the difference between the

wave impedance Z and the TM impedance into free space

h f=Z cos0 0 showing how far we are from the matching

regime. The variation of the quantity h f-∣ ∣Z cos0 is

shown with respect to the tilt and incidence angles q f( ), .

With the white line we mark the angle q0 for extremal mode

asymmetry and we see that perfect matching at q q= 0 is only

achieved when the direction of the incident field becomes

parallel f q=( )0 or symmetric f q= -( )0 to the optical axis

of the uniaxial medium. As far as ê[ ]Im is concerned

(figure 7(b)), it has small values for most combinations q f( ),

including the q q= 0 case (white line) and increases abruptly

for a quasi-normal illumination and very large tilt angles q.
That means that for f q=  0 the matching =Z Z0 is not

hindered by larger [ ]ZIm .

In the following, let us focus on a characteristic case:

f f=   =  tan 1 45 which leads to e = -^ 1; similar

results are reported for e ¹ 1 and e ¹ -^ 1 but we confined

ourselves mainly to this combination of permittivities for

brevity and better understanding of the effect. In that case, we

obtain: e e= = 0xx zz and e e= = 1.xz zx Such a regime

q f= =  ( )45 will be extensively analysed but let us first

examine in the next subsection how the desired hyperbolic

properties (e > 0 and e <^ 0) are emulated by actual

materials.

3.4. Graphene multilayers as hyperbolic medium

One of the most common way to build a medium that is

characterised by effective hyperbolic properties is to use thin

layers of plasmonic materials alternated by slabs of ordinary

host (vacuum in the simplest case) [41]. Graphene can be

isolated and constitute a very flexible and durable 2D medium

[44] which if it gets suitably doped with electric charge car-

riers, exhibits remarkable plasmonic properties by supporting

both high- and low-energy plasmons [60]. For this reason, we

are going to achieve plasmonic ê by stacking numerous

graphene multilayers to form a lattice with a small spatial

period.

The crucial quantity characterising the operation of gra-

phene is the complex surface conductivity s (measured in

W1 ) which expresses how easily the carriers of electric

charge (electrons) are moving on the surface of the medium. It

is comprised of two terms: one corresponding to the transition

of electrons within the same energy level (intraband transi-

tions, low-energy plasmons, sintra) and another describing the

hop of charges to neighbouring energy levels (interband

transitions, high-energy plasmons, sinter). The related for-

mulas are extracted with use of Kubo model [46] for con-

ductivity and their approximate versions are given below:
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where mc is the chemical potential expressing the energy
transferred to the graphene flake during the doping with elec-

trons (of charge e) and t is the relaxation time of charges. The

symbols kB and  are used for the Boltzmann constant and the

reduced Planck constant respectively, while T is the local

temperature. The total surface conductivity of graphene is the

sum of the aforementioned two terms: s s s= + .intra inter

We are planning to use graphene to mimic hyperbolic

properties in operational wavelengths l p w= c2 ( =c
e m1 0 0 is the speed of light into vacuum) covering the lower

part of visible spectrum and higher part of mid-infrared:

m l m< <0.5 m 3 m. Feasible values for the chemical poten-

tial are between 0.2 and 1.2 eV, while the relaxation time can

vary substantially within the limits: t< <0.01 ps 1 ps. The

temperature is kept fixed throughout the considered exam-

ples: =T 300 K.

Back into our configuration of figure 5, we assume that

the slab of thickness h is comprised of a dense lattice of

parallel graphene flakes which are tilted with respect to z axis

Figure 7. (a) The normalised difference h f-∣ ∣Z cos0 between the real part of the common wave impedance Z and the TM wave

impedance h f=Z cos .0 0 (b) The imaginary part of the normalised common wave impedance hZ 0 of the two waves, represented as

function of the tilt angle q and the incidence angle f. The white lines correspond to the tilt angle q q= 0 leading to the extreme asymmetry

regime. Plot parameter: e = -^ 2.
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by angle q. The distance between two neighbouring graphene

sheets is d and they are infinite along y axis and finite on zx

plane. The period d of the structure is much smaller than the

oscillating wavelength l so that the whole structure behaves

effectively as one medium. The background material into

which we locate the graphene flakes, is vacuum e =( )1 as

indicated above, for brevity. Under the assumption that

ld , one can treat the cluster of graphene macroscopically

as a homogeneous medium. Obviously e = 1, equal to the

host material’s (vacuum), because the 2D media cannot

interact with electric fields normal to their surface. As far as

the effective transversal permittivity of the free-standing

graphene lattice is concerned, it is given by [59, 60]:

e e@ + = +sh sh
^ ( )‖ i 1 i . 3.10

k d k d

0

0

0

0

The expression (3.10) is derived by evaluating ordinary

mixing formulas when one of the two materials gets infinitely

concentrated on a surface (2D medium graphene).

It would be interesting to examine the possibility of

achieving through (3.10), a macroscopic perpendicular

permittivity e @ -^ 1 which leads to perfect matching with

free space as dictated by (3.7) for f =  45 . One could point

out that when q = 45 , the matching (zero reflection) for

f = 45 becomes trivial because the incident field does not

‘see’ the two-dimensional graphene and thus the only case

one should examine only the case for f = - 45 . This

objection is only partially correct: we are interested not only

for zero reflection but for perfect absorption with slightly

lossy plasmonic media which is not trivial at all; therefore we

investigate both the incident angles f =  45 whose beha-

viour is very similar in terms of absorption. We are con-

sidering a lattice of graphene flakes with period

< <d1 nm 5 nm and typical value =d 3 nm; all the other

parameters are varying within the ranges defined above. In

figure 8, we show the variation of the real and the imaginary

part of ê according to (3.10) with respect to the time oscil-

lation wavelength l and the distance d between two

successive graphene flakes. In figure 8(a), one clearly notices

that very negative values of effective ê are obtained for

larger wavelengths. Therefore, the regime e = -^[ ]Re 1 can

be achieved for all the considered lattice periods d if one

chooses properly the operating wavelength, as indicated by

the white line giving the suitable combinations of l( )d, . By

observing figure 8(a), one can clearly spot the large change in

ê[ ]Re from lower to higher l which is owed to the vanishing

interband transitions as frequency decreases. A similar and

more obvious switch is appeared for the same reason in

figure 8(b), where the imaginary part of ê is represented in

dB: ê∣ [ ]∣10 log Im . It should be also stressed that the losses

along the white line of e = -^[ ]Re 1 are very low which

means that the perfect matching purpose of (3.7) can be

served well by the tilted stack of graphene sheets into

vacuum.

In figure 9, we fix both the operational wavelength l and

the distance d and we represent ê as function of relaxation

time t and chemical potential m ;c the combinations of t m( ), c

giving e = -^[ ]Re 1 are again indicated by the white solid

line. One clearly remarks that in order to emulate a negative

ê[ ]Re (figure 8), highly doped (increased mc) graphene is
required which is sensible because the strong plasmons [60]

excited across the flakes are essential. The dependence from t
is weak for e <^[ ]Re 0 but scattering time plays a role for

low doping. In figure 9(b), we show the variation of ê[ ]Im on

the same map and again we record negligible losses for the

interesting state indicated by (3.7).

3.5. Perfectly absorbing configuration

The regime described by the conditions (3.7) which combines

two interesting features (extremal mode asymmetry, perfect

matching with free space) can be of high practical importance

and is the objective of this subsection. When the incident

illumination meets the front surface of the slab at =z h 2 if

(3.7) is valid, no reflections will occur due to perfect

Figure 8. The: (a) real part ê[ ]Re and (b) imaginary part ê( [ ])10 log Im in dB of the effective transversal permittivity ê emulated by a free-

standing cluster of parallel graphene flakes, represented on the map of the operational wavelength l and the lattice period d. The white lines
correspond to e = -^[ ]Re 1. Plot parameters: m = 0.6 eV,c t = 0.1 ps.
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matching; therefore, all the power of the input will enter the

slab. Within the slab, the input wave will excite the mode

with huge [ ]kRe z and due to the inevitable losses of the device

(in the case of graphene, they are hidden in the real part of

conductivity s from (3.8) and (3.9)), will lose the vast portion of

its carrying power before reaching the rear interface = -z h 2.

That is because even the slightest e s h=^[ ] [ ] k dIm Re 0 0

(from (3.10)) will lead to a sizable [ ]kIm z due to the huge

[ ]kRe .z Accordingly, the quantity [ ]k hIm z would be fairly large

even for tiny thicknesses h to fully absorb the travelling wave.

This characteristic is not apparent in figure 6 because a lossless

host medium e =^( [ ] )Im 0 is considered.

For this reason, we show in figure 10 the variation of k kz 0

for the realistic (and thus slightly lossy) case of graphene mul-

tilayers. In particular, we consider three different lattice thick-

nesses @d 1, 2.5, 4 nm and we examine the change of the

real and the imaginary part of that wavenumber which takes

theoretically unbounded values (according to (3.4) referring to

the lossless scenario), in the neighbourhood of the operational

frequency at which e @ -^[ ]Re 1 according to figure 8. The tilt

of the optical axis is of course q = 45 as mentioned earlier. It is

clear that k ,z in all cases, experiences Lorentz resonance around

wavelength l at which vicinity the equality e = -^[ ]Re 1

occurs. Even with the very small imaginary part of the

perpendicular permittivity ê[ ]Im as appears along the white line

of figure 8(b), we obtain extremely high imaginary part for the

supported propagation constants [ ]kIm z (tens of times of the

free-space wavenumber k0) which, combined with perfect

matching, guarantees extremely high absorptions. Finally, the

denser is the lattice, the higher is the damping factor

-( [ ] )k hexp Im z of the hyperbolic medium and thus the

absorbing effect is expected to be stronger.

Let us verify the conjectures for the significant absorbing

potential of a thin layer populated by tilted graphene multilayers

under the conditions (3.7). The slab of figure 5 is illuminated by

an obliquely incident TM wave with magnetic field: =Hinc

f f- +ˆ [ ( )]H k x zy exp i sin cos0 0 and the corresponding

magnetic fields for the reflected and transmitted waves would be

given by: f f= - -ˆ [ ( )]RH k x zH y exp i sin cosref 0 0 and

f f= - +ˆ [ ( )]TH k x zH y exp i sin cos .trans 0 0 The complex

reflection and transmission coefficients are derived after

imposing the essential boundary conditions at = z h 2 but are

not shown for brevity since their formulas are quite lengthy.

Obviously, the quantity ∣ ∣R 2 gives the portion of the incident

power that is reflected, the quantity ∣ ∣T 2 corresponds to the

portion that is transmitted and = - -∣ ∣ ∣ ∣A R T1 2 2 is the

absorbed power by the thin graphene-based hyperbolic slab.

In figure 11, we consider the three cases of @d 1, 2.5,

4 nm examined in figure 10 for incident illuminationf = 45 as

dictated by (3.7). In the same graph we represent the absorption

A and the transmitted power ∣ ∣T 2 as function of the oscillating

wavelength l. First of all we have perfect absorption of the

incident field not only at the frequency that e = -^[ ]Re 1 is

achieved (from the map of figure 8(a)) but for a range of

Figure 9. The: (a) real part ê[ ]Re and (b) imaginary part ê( [ ])10 log Im in dB of the effective transversal permittivity ê emulated by a free-

standing cluster of parallel graphene flakes, represented as functions of electrons transport scattering time t and the chemical potential of
doped graphene m .c The white lines correspond to e = -^[ ]Re 1. Plot parameters: l m= 2 m, =d 3 nm.

Figure 10. The change of the real (light colours) and the imaginary
(dark colours) parts of the wavenumber k kz 0 with respect to

operational wavelength l for three different lattice periods
@d 1, 2.5, 4 nm. Plot parameters: f = 22.5 , q = 45 ,

m = 0.6 eV,c t = 0.1 ps.
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wavelengths around it. Therefore, we report wideband perfect

absorption and the width of the fully absorbing zone becomes

smaller as d decreases. The transmission explodes far from the

optimal frequency and is complementary to A because the

reflection coefficient is trivially zero f q= = ( )45 . In

figure 11(b), we regard the same configurations as in figure 11(a)

but now they are working at different frequencies: each one at its

optimal wavelength extracted from figure 8(a); the behaviour is

similar regardless of the choice of d. In this graph, reflection is

not zero because the incidence angle f changes; thus, we show

the variation of A and ∣ ∣R 2 which are almost complimentary each

other (negligible transmission). It is noteworthy that the

absorbing performance of our device exhibits substantial

endurance with respect to f, which additionally leads to wide-

angle absorption. As far as the reflection coefficient is concerned,

it becomes larger when moving towards normal incidence and of

course we take =∣ ∣R 12 for the grazing angle f = ( )90

illumination.

In figure 12, we pick one of the cases examined in

figure 11 (the one with =d 4 nm) and show in contour plot

the variation of the absorption A on the map of the wave-

length spectrum l and the incidence spectrum f. Obviously a

‘plateau’ of perfect absorption is created around the optimal

frequency and f = 45 , which is quite extensive leading to

both wideband and wide-angle behaviour (as indicated in

figure 11).

In figure 13, we examine the effect of the graphene

characteristics t m( ), c and the thickness of the slab h on the
absorbing performance A of our system for a wavelengths

range. In figure 13(a), we notice that larger transport scat-

tering time of the electrons leads to more narrow absorbing

bands around the same optimal wavelength l. This could be

anticipated from figure 9(b), where it is shown that higher t
leads to less lossy ê and thus to sharper resonances. On the

contrary, the maximal A when mc is varying is exhibited at
different frequencies (figure 13(b)). In particular, the

frequency responses of l= ( )A A are equally sharp regard-

less of m ,c while the optimal wavelength becomes smaller as
the chemical potential of the doped graphene gets larger. In

figure 13(c), we remark that a thicker device (larger h) gives

the absorption a wideband character since increases the fre-

quency range of the perfect absorption. It is noteworthy that

the thickness resonance is absent due to the difference in

propagation constants for upward and downward waves

within the slab.

3.6. Waveguiding configuration

In this subsection, we examine the waves that can be guided

into an asymmetric hyperbolic slab similar to that of figure 5

with the difference that is PEC backed from the bottom side

= -( )z h 2 . Again the uniaxial medium with permittivities

e ê( ), is emulated with use of tilted graphene flakes

Figure 11. (a) The absorbing A (light colours) and the transmitted ∣ ∣T 2 (dark colours) power from the slab as functions of the operating

wavelength l for three different lattice periods @d 1, 2.5, 4 nm and f = 45 . (a) The absorbing A (light colours) and the reflected ∣ ∣R 2

(dark colours) power from the slab as functions of the incidence angle f for the same thicknesses d working at their optimal wavelengths l.
Common plot parameters: q = 45 , m = 0.6 eVc , t = 0.1 ps, =h 100 nm.

Figure 12. The absorbed power A by the slab on the spectra plane of
the wavelength l and incidence angle f. Plot parameters: q = 45 ,

m = 0.6 eV,c t = 0.1 ps, =h 100 nm, =d 4 nm.
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characterised by the surface conductivity s as evaluated from

(3.8) and (3.9). Obviously, the perpendicular permittivity ê is

dependent on the operating frequency w p= f2 , the chemical

potential mc and the scattering time t. For simplicity, we
regard the two-dimensional problem with fields independent

from y variable and consider waves travelling along x axis

with propagation constant k .x The magnetic field is again

assumed of the TM form: = ˆ ( )k xH y exp i x S(z), where S(z) is

a suitable function determined by the boundary conditions,

and the waveguiding condition takes the form:

e e e e e- -

=
e e e

e e e e

- -

- -

( ( )( ) )

( )
( )

( )( )

k k htan

. 3.11

zz x xz xx zz zz

k k

k k

0
2 2 2

xz xx zz x

zz x xz xx zz

2 2
0
2

0
2 2 2

The transcendental equation (3.11) can be numerically

solved with respect to complex kx for a range of different

frequencies w p l= =f c2 ; in this way, the dispersion

diagrams are obtained. Suitable built-in FORTRAN libraries

containing efficient algorithms for finding roots of complex

functions like (3.11) on the complex plane ( [ ] [ ])k kRe , Imx x

have been used. Such equations possess a countable number

of (families of) solutions, only few of which are indicatively

represented in the following dispersion graphs.

In figure 14, we show the real parts [ ]kRe x of complex

wavenumbers kx which satisfy (3.11) for a continuous

spectrum of linear frequencies f and three different tilt angles

q =   0 , 15 , 25 (different colour: green, blue, red); two

families of solutions are represented for each q (different

markers: circles and squares). The cut-off frequency

@f 40.3 THz0 separates the considered frequency band in

two parts: for <f f ,0 propagating modes @( [ ] )kIm 0x having

either positive or negative inverse group velocity w¢[ ( )]kRe x

(derivative of [ ]kRe x with respect to circular frequency

w p= f2 ) are guided. On the contrary, for >f f0 the regarded

medium loses its hyperbolic nature and therefore leaky modes

(with ¹[ ]kIm 0x ) are appeared, which are very similar each

other regardless of angle q. It is noteworthy that for q = 0,

namely when graphene sheets are orthogonal to waveguide

boundaries, the propagating waves are characterised by

w¢ <[ ( )]kRe 0x which means that they are all backward-

directed. As far as the other tilt angles are concerned, the

supported waves are backward for frequencies below a limit

(which is lower for larger q) and forward-propagating above

it. In particular, these frequency limits are @f 38.8 THz for

q = 15 and @f 38 THz for q = 25 which play also the role

of accumulation frequency points. Indeed, in the vicinity of

each of them, all the propagating modes (for fixed q)
get almost vanished ( [ ] )kRe 0x passing through the almost

same point. When it comes to the cutoff frequency f ,0 it is not

dependent on q but it acts also as accumulation point where

Figure 13. The absorbed power A in contour plot as function of the operating wavelength l and: (a) the scattering time t ( =h 100 nm,
m = 0.6 eVc ), (b) the chemical potential of the doped graphene mc ( =h 100 nm, t = 0.1 ps) and (c) layer thickness h (t = 0.1 ps,

m = 0.6 eVc ). Common plot parameters: q = 45 , =d 4 nm.
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the waves change their behaviour (from propagating to

leaky). Note that in the neighbourhoods of accumulation

points, the wavevector component which is normal to slab

boundaries ( )kz becomes huge because close to these fre-

quencies the Lorentz resonances of figure 10 are occurred.

From figure 14, it is obvious that the orientation of graphene

sheets can engineer waveguides with required spectra of modes;

characteristically, if graphene sheets are parallel to the waveguide

boundaries, only plasmonic modes will get supported propagating

along the flakes [60]. However, one can control the waves

existing into such a component without changing its structural

characteristics such as the doping of graphene. In figure 15, we

show the dispersion curves of two families of modes obeying

(3.11) for three different chemical potentials m .c We notice again

the presence of accumulation points which are being shifted

towards larger frequencies for slight increase of doping energym .c
The guidance of backward and forward waves at the

same frequency can offer the opportunity of matching their

phases (acquiring the same kx) as has been reported in

[53–55]. In particular, we notice from figures 14 and 15 that

backward modes are supported for smaller frequencies than

the forward modes for a specific selection of q and m .c If one

assumes nonlinearity, then the same types of modes appeared

on ( )f k, x plane around accumulation frequency =f f ,0 will

get reproduced at larger frequencies (higher-order harmonics).

Therefore, the possibility of matching for a specific wave-

guide and at a certain frequency f a forward-propagating wave

with a backward-propagating mode of a higher harmonic

becomes feasible. Such potential of phase matching in a slab

of the asymmetric hyperbolic material is illustrated in

figure 16, where the dispersion curves of three backward

modes (green) and three forward modes (blue) are shown.

The red curve represents the fictitious dispersion of one of the

backward waves excited at a higher harmonic: in such a

conditional scenario, the matching will be achieved at their

common kx (marked by black dashed line).

4. Nonlinear stationary and non-stationary

diffraction in active planar anisotropic hyperbolic

metamaterial

4.1. Introduction

In the present section, we consider nonlinear non-stationary

diffraction in active planar anisotropic hyperbolic metama-

terials [61–66]. Such a metamaterial is definitely periodical

and multilayered. In the present section each a layer from

which a metamaterial consists of (‘elementary layers’), is

considered to be as such an isotropic. All an anisotropy of a

metamaterial as a whole will follow from the multilayered

structure only and not from a properties of the medium

Figure 14. Representation of the solutions of (3.11) on the map of
frequency f and the real part of the normalised supported
wavenumber along x axis [ ]k kRe x 0 for various tilt angles q. Plot
parameters: m = 0.15 eV,c =d 20 nm, =h 300 nm, t = 10 ps.

Figure 15. Representation of the solutions of (3.11) on the map of
frequency f and the real part of the normalised supported
wavenumber along x axis [ ]k kRe x 0 for various doping of graphene

m .c Plot parameters: q = 25 , =d 20 nm, =h 300 nm, t = 10 ps.

Figure 16. Representation of dispersion curves corresponding to
three backward modes (green) and three forward modes (blue). The
red line gives the curve of a (fictitious) backward wave dispersion
relation. The black dashed line gives the wavenumber for matching
regime. Plot parameters: m = 0.1 eV,c q = 55 , t = 10 ps,

=d 20 nm, and =h 300 nm.
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included in separate layers. In this section, we will emphasise

the following questions. (i) Rather general nonlinear evol-

ution equation where only temporal dependence of an ampl-

itude is supposed to be slow, and not spatial dependence. (ii)

Hyperbolic metamaterial is considered as periodical media

with repeating elementary cell with three layers inside each.

In the coordinate frame OZ axis is aligned perpendicularly to

the boundaries of layers, OX one is along the boundaries.

Therefore, the tensor of the effective permittivity possesses

only diagonal components. One of these layers (namely the

third) is supposed to be active, and for the simplification, the

approximation of the total compensation between the losses

and gain is used in the present paper. (iii) We compare two

approaches. Namely, one of them is based on the averaging

over an unit cell, while the other one does not include sic an

averaging. The first one is, in fact, metamaterial approach.

The second one is more accurate than the metamaterial

approach and is applicable for the mesoscale medium with the

scales intermediate between metamaterials and photonic

crystals. We would like to emphasise that these two approa-

ches are rather complimentary, than contradictive to each

other! In fact the more accurate approach without an aver-

aging will be used, first of all, to justify the possibility of an

application of the method of the averaging for the nonlinear

active hyperbolic (metamaterial) media. Again, we emphasise

that such a possibility is not evident as such for a nonlinear

hyperbolic media even in the case when the metamaterial

approximation is valid in the linear limit (or in the case of

relatively small amplitude). It is very important in the context,

that the metamaterial is nonlinear and active. In this paper we

will consider only the case of total net gain/losses, in other

words their exact mutual compensation. There is also another

aspect of the comparison between the results of the above

mentioned two approaches to the modelling of the nonlinear

wave processes in a (layered) hyperbolic active metamaterial

media: with and without an averaging. The point is that, in the

active nonlinear media, stationary solution could not exist at

all, at least for some specific set of parameters. Therefore,

generally speaking, even an eхistence of a stationary solution

(s) for some specific conditions specified below, will be

investigated. To provide a possibility of such an investigation,

the creation of the corresponding algorithms will be neces-

sary. (iv) In the moderately nonlinear regime, a possibility of

a formation of hot spots is investigated. This is exactly the

case, when the investigation included a possibility of an

existence of a stationary regime. To provide this, a proper

algorithm have been developed, basing on the method of

establishing stationary solution (asymptotically, as an evol-

ution of the corresponding non-stationary solution) [67]. If we

consider a propagation of the electromagnetic waves through

the layer of a hyperbolic active nonlinear metamaterial with

the finite width, such a propagation includes the reflections of

two types. The first one is the reflections on the boundaries

between the elementary layers. The second one is the

reflection on the (two) boundaries between the metamaterial

and surrounded medium (media), and the last will be con-

sidered as to be the semi-infinite and homogeneous, for the

simplification. The following physical and methodological

questions are addressed. (1) What should be the physical

approximations and the form of the corresponding equations,

necessary to describe such a wave propagation and search the

corresponding physical effects? (2) Which interesting non-

linear effects and under which conditions are possible in a real

active nonlinear metamaterial under a condition of the mod-

erate nonlinearity (corresponding criteria of the moderate

character of the nonlinearity will be clarified later)? The last

question in the most general formulation is very non-trivial.

The thicknesses of the elementary layers should be specified,

when the results coincide, which are obtained from two

approaches pointed above. Any real metamaterial includes

finite losses or gain. In the present paper we will only start the

consideration of these problems for active nonlinear hyper-

bolic medium, and use an approximation of totally compen-

sation between gain and losses: the case of a medium with net

zero losses/gain.

4.2. Basic equations. Two approaches: with and without an

everaging

Consider the nonlinear propagation of electromagnetic waves

in a bounded layered medium. There are 3 alternating ele-

mentary layers of thicknesses d1, d2, d3, as seen in figure 17.

Thus, the thickness of the elementary cell is

d=d1+d2+d3. Along OY axis the system is uniform. The

propagation of nonlinear modulated waves with the compo-

nents Ex, Hy, Ez is investigated. The positive frequency

components are ∼exp(−iωt), where t is time, ω>0 is a

circular frequency. Within each (isotropic) layer the depend-

ence of the permittivity of the electric field is [68]:

e e
a
g

= +
+

º +

( ) ( )
( )∣ ∣

( )∣ ∣
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The model of the local saturating nonlinearity is used here

[68]. Each elementary layer is assumed as uniform, so εL, α, γ

are step-like functions of z. Generally εL and α are complex,

because the cases of possible dissipation and active media are

investigated. The coefficient of the saturation of the non-

linearity is assumed as real and positive: γ>0.

Figure 17. Geometry of the problem. The elementary cell includes 3
layers. Layer 1 possesses εL1<0, layers 2, 3 possess εL2,3>0.
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The Maxwell equations are:
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Below the lengths are normalised to ln=1 μm, time is nor-

malised to tn=ln/c. The relations between the components

of the electromagnetic field are:
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(1) Let us consider the first approach. The equation for the

slowly varying amplitude of the magnetic field H is:
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4.4

Note that equation (4.4) is written for each

elementary layer, and each of them is isotropic as such

for the used model of a hyperbolic metamaterial.

Standard boundary conditions of the continuity of

E H,x y at the boundaries =z 0 and =z L between the

layer of the metamaterial and surrounding medium and

between all elementary layers included into the

metamaterial (figure 17) are applied. Generally H(z, x,

t) is slowly varying in time only, whereas the

dependencies on z and x are arbitrary. Both direct and

reflected waves in each layer are taken into account

here. In equation (4.4) the inverse permittivities b ( )z x,

depend on both coordinates, especially on x due to

nonlinearity, and are step-like functions on z.

The thickness of layered medium is Lz, so it is

localised within the interval 0<z<Lz. At z<0 and

z>Lz there are linear media with the real permittivity

εi. At z<0 there are an incident wave with the

incidence angle θi and reflected one. At z>Lz there

exists the transmitted wave only.

At z<0 the magnetic field is the sum of the

incident wave and reflected one:
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The slowly varying amplitudes Ai,r satisfy the

following equations:
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The boundary conditions at z=0 can be written

down as:
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After expression of the derivatives ∂Ai/∂z, ∂Ar/∂z from
(4.6), one can get the following approximate boundary

condition for H at z=0:
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Because at z>Lz the outgoing wave exists only, at

z=Lz the corresponding boundary condition is
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(2) Also the second approach is applied where the averaged

values of the permittivity and therefore a consideration

of the hyperbolic metamaterial as effectively continuous

medium, are used. Accurately speaking, this approach is

applicable, when the typical width of the layers is much

less than the wavelength in the medium. Nevertheless

we will compare the results of both approaches for the

values of the widths of the layers lying in the range

from 0.1 to 0.25 of the wavelength. It is assumed that

the elementary layers 2, 3, are nonlinear, whereas the

1st one is linear. The non-dimensional units are used

with c=1. Within the averaged medium we have in

each point of it:
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Here Ex, Ez are averaged values of the components of the

electric field: Ex ≡ 〈Ex〉, Ez ≡ 〈Ez〉. In this approach the

equation for the slowly varying amplitude H(z, x, t) is:
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z x

The amplitude H(z, x, t) is slowly varying with respect to time

t only, as in equation (4.4). The formulas for the averaged
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components of the inverse permittivity are:
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These formulas are applied in each point of the averaged

medium, where the values of Ex, Ez are computed. Here d1,2,3
are the thicknesses of the elementary layers, d=d1+
d2+d3. In (2) only the ratios d1,2,3/d are important but not

their absolute values. Respectively, it is supposed that the

change of the field components E H, ,x z y, as well as of the

values bx z, along the layers (in the direction x) happen on

the lengths, much larger than the thicknesses of the layers

d .1,2,3 The approximation of this layers is used here. The

nonlinear permittivities of the elementary layers 2, 3 are

calculated as:
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Here E2x etc are the components of the electric field in the

corresponding elementary layers near the specific point within

the averaged medium. There is the problem of the

correspondence between the averaged values Ex, Ez and E2x,

E3x, E2z, E3z within the elementary layers. Because the

tangential component of the electric field is continuous in the

layered medium, one can write down:

= = ( )E E E . 4.13x x x2 3

The normal component of the electric induction is also

continuous:
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It is follows from (5) that
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The formulas (4.10)–(4.15) are used jointly, so several

iterations should be applied. Note that in distinction to

equation (4) used in the first considered approach,

equation (4.11) describes the whole metamaterial as a

continuous medium. Therefore the boundary conditions

between the elementary layers included in the metamaterial

(figure 17) are not applied for the equation (4.4). Nevertheless

the boundary conditions at the boundaries =z 0 and =z L

between the layer of the metamaterial and surrounding

medium are still necessary and applied. The last boundary

conditions have the form similar to (4.9).

Note the following concerning the physical sense of the

averaging, formulas (4.10)–(4.15). The presence in the

metamaterial, consisted of the periodically alternation iso-

tropic layers, of the anisotropy, which is evident from the

formulas (4.11), has a clear physical sense. Let us consider

first a linear media. In this case formulas (4.11) have been

derived accurately, (this derivation is not presented here)

using the consideration of the periodical media with the far-

ther approximation of thin layers. Qualitatively, the descrip-

tion of the anisotropy of the hyperbolic metamaterial may be

drawn from the equivalent transmission line, describing a

planar multilayered metamaterial [69, chapter 7, paragraph 2,

formulas (7a) and (7b)]. In accordance with this approach, an

averaged transverse field components (E H,x y in our case)

would be determined through an average value of the effec-

tive impedance, which is proportional to eá ñ,xx where the

brackets á ñ... mean a proper averaging (in our case by the

period of the structure) of the value placed inside the brackets.

From the other hand, as it follows from [69, chapter 7,

paragraph 2, formula (4)], an averaged longitudinal field

component, in our case E ,z would be determined through the

value proportional to eá ñ- .zz
1 For the hyperbolic metamaterial,

based on the isotropic alternating layers, in each, e e= ,xx zz

while the signs of exx alternate from layer to layer belonging

to each cell of the structure. Providing that eá ñ > 0,xx it is

easy to see that e eá ñ = á ñ <- - 0.xx zz
1 1 Therefore we get hyper-

bolic uniaxial metamaterial with the opposite signs of the

diagonal tensors of the dielectric permittivity. In the nonlinear

case, of course, the periodicity of the medium, which is the

basis of an averaging, disappears. Nevertheless we still use

the relations (4.11) in the same form, as that for the linear

case, phenomenologically, accounting for a contribution of

the nonlinearity into the values e2,3 (formulas (4.12)) and,
respectively to b e, x z1,2,3 , (formulas (4.11)), as it is described

above. This is one of the reasons why the comparison

between the accurate approach without an averaging (see

equation (4.4)) with the metamaterial approximation of the

continuous media (equation (4.10b)) is really necessary and

important.

Equation (4.4) added by boundary conditions has been

solved by the finite differences method where the operator

factorisation, or the method of Douglas–Rachford [67], has

been applied namely equation (4.4) is rewritten symbolically as:
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Here τ is the step for time t, tp ≡ p·τ, p=0, 1, 2K; H p
≡

H(tp). And equations (4.16)–(4.13) can be represented as:
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The boundary conditions (4.8) and (4.9) are also rewritten

in terms of χ p+1. The operators L̂1,2 are approximated by finite

differences [67, 70]. The inverse permittivity β is a piecewise-

continuous function of z, so the values of β are approximated

between the nodes for H: if the values of H in the nodes

are Hj≡H(zj)≡H(j·hz), j=0, 1, 2K, then βj+1/2≡
β(( j+1/2)·hz). Each distance d1,2,3 includes integer numbers

of spatial steps hz. To take into account the nonlinearity, the

iterations have been applied. This method is unconditionally

stable.

The system is limited in x-direction, 0�x�Lx, so the

boundary conditions at x=0 and x=Lx are H=0.
The boundary conditions (4.8) and (4.9) have been

approximated by finite differences too. They are applied at the

second fractional step in (4.18), to compute χ p+1. The deri-

vatives ∂χ p+1/∂x are calculated in the positive direction of x,

because vx>0. In the point xl ≡ l·hx the approximation is

∂χ p+1/∂x≈(χ p+1
l −χ p+1

l−1 )/hx. This approximation makes

possible to calculate χ p+1 from smaller values of x to higher

ones: l=1, 2, 3,K, and to use for computing χ p+1
l the value

of χ p+1
l−1 , which has been just calculated.

The implicit–explicit methods, like Peaceman–Rachford

one [67], do not provide good stability in our nonlinear case,

as our simulations demonstrated. The schemes like splitting

with respect to physical factors, or the summatory approx-

imation, require small temporal steps and therefore practically

unusable here.

The incident wave is assumed as a beam bounded in x-

direction:
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The temporal dependence is tanh-like and the maximum

amplitude of the incident wave tends to A0 at the boundary

z=0. Below the established values of the electromagnetic

field are presented. As it will be shown below, strongly

nonlinear phenomena, namely hot spot formation is possible

for the present system with the corresponding parameters.

This is the case, when a possibility of stationary solution is

not evident beforehand, and to prove such a possibility, the

method of establishing (steady-state solution) and, respec-

tively, the initial-boundary condition (4.19) are quite

adequate.

4.3. Details of the structure and requirements for materials

4.3.1. Details of the structure. The simulations have been

done for hyperbolic media. For linear EM waves the

parameters of the elementary layers are chosen to get

e¢ > 0,x e¢ < 0,x where ε′ ≡ Re(ε). The medium 1 is with

e¢ < 0,L1 ones 2 and 3 are with e¢ > 0.L1 The hyperbolic media

possess the properties, which are important both for

theoretical and practical views. Below it is assumed that the

real parts of the media 2, 3 are equal: e e¢ = ¢ .L L2 3 The

anisotropy is neglected.

4.3.2. Requirements for materials. The materials for the

elementary layers should satisfy the following requirements:

e e¢ < ¢∣ ∣ ;L L1 2 the dissipation within each layer should be

smaller as possible.

In the near-infrared and visible optical range (wave-

lengths λ0=0.5–2 μm, ω=5×1014–4×1015 s−1
) the

medium 1 can be metallic of high conductivity or semi-

metallic, like Ag, Au, Cu, Bi. The linear effective permittivity

is:

*
e e

w
w w n

w
p

= -
+

º
( )
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;

4
. 4.20l

p
p1 lattice

2
2

2
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Here ωp is the plasma frequency, n0 is the electron

concentration, m* is the effective electron mass, ν is the

electron collision frequency.

The critical parameters are the electron concentration n0
and the collision frequency. It should be preferably

n0=1021–2×1022 cm−3, to provide the negative effective

permittivity in the corresponding layer(s), as it is required for

the hyperbolic metamaterial, in the optical range of moderate

absolute values e¢ = -3L1 to −10. Namely, the effective

permittivity is negative due to the electron plasma, thus, 0.2ωp

<ω<0.5ωp. The collision frequency should be relatively

small ν�1013 s−1.

The layers 2, 3 should be dielectrics with high (with a

positive real part) permittivity in the optical range and low

losses (or even active, i.e. to provide amplification), like

Hf2O5, Ta2O5, Al2O3, e¢ 10.L2

In the THz range (wavelengths λ0=0.5–0.03 mm, or

ω=1012–6×1013 s−1
) the narrow-gap semiconductors n-

InSb, n-InAs, n-Cd1−xHgxTe are perspective. The frequency

of EM wave should satisfy the inequality w E< / ,g where

E = -0.1 0.4 eVg is the forbidden gap for narrow-gap

semiconductors. These semiconductors possess small effec-

tive electron masses m*=(0.002–0.02)me and low collision

frequencies ν=(1011–3×1011) s−1 at moderate doping

levels n0=(1015–1016) cm−3. As the layers 2, 3, the

dielectrics like TiO2, MoO2, SrTiO3, LiNbO3 with high

permittivities e¢ 20L2 can be used. Also SrTiO3 and LiNbO3

possess high dielectric cubic nonlinearity of the negative

signs.

In the optical range the unity of unidimensional

amplitude of the electric field can be estimated as

1 GW cm−2 for the intensity. In THz range the unity is

estimated as 10MW cm−2 for dielectrics of high nonlinearity.

It is demonstrated below that the nonlinear behaviour of

EM waves within the hyperbolic medium depends essentially

on the sign of cubic nonlinearity.

The surrounding media at z<0 and z>Lz possess the
permittivity εi matched to the hyperbolic medium in the linear

case. Namely, the value of εi has been chosen to provide zero

reflection coefficient at z=0 in the case of the incidence of

the plane wave at the incidence angle θi.
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In the experimental realisation of hyperbolic media the

essential problem is the linear dissipation, because usually the

elementary layer 1 is metallic or semimetallic. Therefore, to

observe various wave phenomena there it is rather better to

provide a compensation of this dissipation, and the elementary
layer 3 should be active, where  L3<0. Below namely the case

of the compensated dissipation is considered, where all linear

permititvities εL and nonlinear coefficients α are assumed as

real. The results of simulations are tolerant to changes of the

lengths and the widths of the hyperbolic medium.

4.4. Results of simulations

All of the computations under this heading have been performed

with original programs created with the use of Lahey/Fujitsu
Fortran 95, licenced as CIICAp, UAEM in Mexico. In the linear

case, i.e. absence of nonlinearity, the main attention is given to

comparison of the simulations of wave beam propagation within

the framework of direct simulations without averaging and for

averaged media (figure 18). During the simulations without an

averaging, it is used that the values in the brackets in the third

terms in equations (4.4) and (4.10b) is continuous on the inter-

face between the layers of the hyperbolic medium (because they

are proportional to the tangential components of the corresp-

onding electric fields, in accordance with equations (4.3) and

(4.10b)). The results of simulations have been practically the

same when the thicknesses dj of the elementary layers should

satisfy the inequalities dj·ω/c (|εLj|)
1/2�0.05. When, for

instance, the frequency of EM wave is ω=2×1015 s−1, the
permittivities are εL1 =−10, εL2,3=20, the thicknesses of the

elementary layers should be d2,3�10 nm, d1�20 nm.
The used parameters are εL1=−10, εL2,3=20, Lz

=50 μm, Lx =20 μm, half-widths of incidents beam are

x0=1–3 μm, ω=(1–30)×1014 s−1, incidence angles θi
=(0–30)°. The thicknesses of the elementary layers are

chosen as d1,2,3=5–20 nm. The typical results are given in

figure 18. It is seen that the results of non-averaged simula-

tions, equation (4.4), and within the framework of the aver-

aged medium, equation (4.10b), coincide. In figure 18 the

incident beam possesses the incidence angle θi =30°, x-

component of the group velocity of the incident beam is

positive and directed upwards. The x-component of the group

velocity of the refracted wave within the hyperbolic medium

at x>0 is negative and is directed downwards. Thus, the

hyperbolic medium possesses the negative refraction.

In the nonlinear case, the layers 2, 3 are assumed to be

nonlinear, whereas 1 is linear. Two cases are considered: α>0
(figure 19) and α<0 (figures 20 and 21). In the first case the

input beam is subject to essential nonlinear diffraction. The

second case is much more interesting. Within the hyperbolic

media the hotspots are formed (near m m» »x z13 m, 27 m

figure 20 and m m» »x z12 m, 35 m, figure 21) where the

EM energy concentrates.

Note that (1) while beam width increases in two times,

the intensity in the peak of hot spot increases in ∼1.5 times

(compare figure 21 with figure 20), and (2) for the input beam

width equal to 2 μm, the area of the hotspots are of order of

2 μm2
(figure 21).

From figures 19–21 one can see that the nonlinearity is

moderate there and the results of simulations are practically the

same both in the direct simulations, equation (4.4), and with the

averaged permittivities, equation (4.10b). The sizes of the hotspots

in figures 20 and 21 are 2–3μm, i.e. 3–5 wavelengths calculated

for the averaged permittivity λ=λ0/(e¢x)
1/2≈0.4μm. The

moderate character of the nonlinearity is also determined by the

following extra requirement, if the hotspots are under considera-

tion. Namely, a typical size of the hotspots should be of the order

of at least few, say five thicknesses of the elementary layers

included into the metamaterial. Such a condition is satisfied for

the present simulations.

4.5. Limiting case of the stationary NSE

Equation (4.11) can be reduced to the stationary NLSE [67] in

the case of the moderate nonlinearity. NSE has the structure:
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The wave amplitude ( ˜ ˜)U z x, is slowly varying with respect to

z̃. The coefficients Kx,z, N, and the function F can be expressed

through the parameters of the hyperbolic medium and the fre-

quency. Equation (4.21) has been written down in the rotated

coordinate frame ˜ ˜XOZ , where ˜OZ axis is aligned along the

group velocity within the hyperbolic medium. The group velo-

city Vg is obtained from the linear dispersion equation:
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Here the frequency dispersion of the components of the inverse

permittivity bx z, is neglected. When the frequency dispersion is

taken into account, the signs of the components of the group

velocity preserve.

Therefore, under enough small thicknesses of the ele-

mentary layers in the case of the moderate nonlinearity the

dynamics of the nonlinear beams in the hyperbolic medium

can be described by NSE, where one-directional propagation

of EM wave is considered.

In the case of the propagation along OZ, i.e. perpendi-

cularly to the boundaries of the layers, the structure of sta-

tionary NSE is standard [68]:
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Equation (4.23a) is written down in the case of moderate

nonlinearity. Here D=0 is the linear dispersion equation for

EM waves in the hyperbolic medium. Equation (4.23a) can be
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rewritten in the equivalent manner:
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One can see that in the case of the negative cubic nonlinearity

α<0 the signs of the diffraction and nonlinear coefficients

coincide, and the bright spatial solitons can be formed.

Figure 18. Propagation of linear waves. The circular frequency is ω=6π×1014 s−1
(λ0=1 μm). Parts (a), (b) are |E|2 and |H|2 for the

thicknesses of elementary layers d1=7.5 nm, d2 =d3=3.75 nm. Parts (c), (d) are the same, but d1=15 nm, d2=d3=7.5 nm. Parts (e), (f)
are the same, but the simulations are within the framework of averaged permittivities. For the chosen parameters the averaged permittivities are εx
=5, εz =−40; the permittivity of the contacting medium is εI =4.203. The half-width of the incident beam is x0=1 μm.
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4.6. The main results and discussion

The method of averaging can be applied when the thicknesses

of elementary layers are small and the nonlinearity is mod-

erate. When the following inequality is valid di �0.1λi where
di is the thickness of each elementary layer, λi ≡ λ0·εi

−1/2 is

the wavelength of the electromagnetic wave in this medium,

the results of simulations are the same both within the direct

consideration of the layered medium and within the averaging

approach for the hyperbolic medium. In this case it is possible

to reduce the nonlinear equation for EM wave propagation to

the standard NLSE, where the wave amplitude is slowly

varying with respect the longitudinal coordinate, i.e. along the

direction of propagation. When the inequalities are valid 0.1λi
�di �0.25λi, there are some quantitative differences within

two approaches pointed above but the results are qualitatively

similar. At larger thicknesses of elementary layers the dif-

ferences between two approaches are qualitative and the

averaging approach is not valid. The averaging in the meta-

material approximation of the continuous media is based on

the formulas (4.10b) and (4.11). These formulas have been

derived, accounting for the periodicity of the structure and

with the farther application of the approximation of the thin

layers (continuous media) in the linear limiting case. For the

nonlinear media, the application of the formulas (4.11) in the

same form, as that for the linear case, is only phenomen-

ological. This is why it was necessary and important to verify

the metamaterial approximation for active nonlinear media

(formulas (4.10b) and (4.11)) by means of the comparison

between the results of the corresponding modelling with these

obtained using more accurate approach without an averaging

(based on the equation (4.4)). We would like to emphasise

that the positive result of such a comparison is obtained in the

present work only for the case of the nonlinear active media

with net zero gain (total compensation between gain and

losses). A possibility of the metamaterial approach to the

hyperbolic nonlinear periodical active media with the nonzero

net gain, as to the continuous media is questionable, even

providing that the requirements of the metamaterial

Figure 19. Propagation of nonlinear waves. The circular frequency is ω=6π×1014 s−1
(λ0=1 μm). The nonlinear coefficient for

elementary layers 2, 3 is α=1, γ=0.5. Parts (a), (b) are |E|2 and |H|2 for the thicknesses of elementary layers d1=7.5 nm,

d2=d3=3.75 nm. Parts (c), (d) are the same, but the simulations are within the framework of averaged permittivities. For the chosen
parameters, the permittivity of the contacting medium is εI =4.203. The half-width of the incident beam is x0=1 μm.
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approximation applicability are satisfied in the linear limiting

case. These problems will be a subject of the next paper.

For solving nonlinear problems various difference

schemes have been applied. The implicit–explicit method of

Peaceman–Rachford does not possess good stability. The

method of the summatory approximation needs very small

temporal steps and is practically not applicable. It is very

interesting, that the method of the operator factorisation, or

the method of Douglas–Rachford (known more in the

hydrodynamics [67], than in the nonlinear optics), seems the

most appropriate.

Nonlinear effects are different for different signs of

nonlinearity. In the case of the negative nonlinearity of the

layers with positive permittivity the hotspots can be formed

within the hyperbolic medium. In the case of the positive

nonlinearity of the layers with positive permittivity the non-

linear diffraction of the EM wave beams occurs.

In near-infrared and visible optical range the metallic (or

semi-metallic) layers with high conductivity can be used as

media with the negative permittivity, whereas the dielectrics

with a high values of permittivity can be used as another

layers. In the THz range the narrow forbidden gap semi-

conductors, like n-InSb, can be used as media with the

negative permittivity. The metallic layers possess dissipation,

even in the metals with high conductivity. Therefore, the

dissipation should be compensated, to observe the nonlinear

wave phenomena. A mechanism of compensation of dis-

sipation can be a creation of active dielectric layers, for

instance, by means of inserting quantum dots with the

inversion of energetic levels. In this paper only the case of

exact compensation is considered. The dynamics of nonlinear

waves under moderate net amplification is of great interest,

very non-trivial, in accordance with our preliminary evalua-

tions, and is a subject of future work. The first approach

described in the section 4.2 including equation (4.4) is the

appropriate one and will be applied for a solution of such a

problem(s). In particular, the question of a possibility of

stationary regimes as such, while the hotspots are formed in

the nonlinear media with a wave amplification is, again, very

non-trivial and will be considered elsewhere.

Figure 20. Propagation of nonlinear waves. The circular frequency is ω=6π×1014 s−1
(λ0=1 μm). The nonlinear coefficient for

elementary layers 2, 3 is α=−1, γ=0.5. Parts (a), (b) are |E|2 and |H|2 for the thicknesses of elementary layers d1=7.5 nm,

d2=d3=3.75 nm. Parts (c), (d) are the same, but the simulations are within the framework of averaged permittivities. For the chosen
parameters, the permittivity of the contacting medium is εI =4.203. The half-width of the incident beam is x0=1 μm.
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5. Spatial solitons in hyperbolic metamaterials

In this section we investigate the formation and propagation

of optical spatial solitons in hyperbolic metamaterials. To

model the response of hyperbolic metamaterials we use the

homogenisation (or ‘effective medium’, see also section 4

[71]) theory, with a macroscopic dielectric tensor encom-

passing at least one negative eigenvalue. We first show that

light propagating in the presence of hyperbolic dispersion

undergoes negative (anomalous) diffraction. Then we discuss

how the solitons features—width and trajectory—depend on

the orientation of the optical axis n̂, i.e., its angle with the

wavevector.

Let us consider a non-magnetic uniaxial medium

described by the dielectric permittivity tensor  . Uniaxiality
implies the existence of just two independent eigenvalues for

 , corresponding respectively to ^ (double multiplicity, for

electric fields normal to the optical axis) and  (single mul-

tiplicity, for electric fields parallel to the optical axis). In

hyperbolic metamaterials, one of two eigenvalues is negative

[72]. The linear propagation of monochromatic light in

homogeneous media is fully determined by the dispersion

relationship = ( )k k k .z z y The isofrequency curves in the plane

k kz y undergo a topological transition according to the sign of

the permittivity eigenvalues. For elliptic ( > >^ 0, 0) and

hyperbolic (  <^  0) media the curves are ellipses and

hyperbolae, respectively [31, 72]. In the hyperbolic case the

two possible conditions  < 0 and  > 0 define type I and

type II materials, respectively.

In uniaxial crystals the elements of the dielectric tensor 
can be written as   d= + =^ ( )n n i j x y z, , ,ij ij a i j (see

section 3.2), where dij stands for the Kronecker’s delta, ni are
the Cartesian components of the optical axis n̂, and

  = - ^a is the optical anisotropy. In order to avoid

coupling between ordinary and extraordinary components, we

assume exclusively in-plane rotation of n̂ in the plane arbi-

trarily chosen as yz. Thus, the knowledge of the angle q
between the optical axis n̂ and the axis z suffices to univocally

Figure 21. Propagation of nonlinear waves. The circular frequency is ω=6π×1014 s−1
(λ0=1 μm), the incidence angle is θi =30°, the

amplitude of the incident beam is A0=1. The nonlinear coefficient for elementary layers 2, 3 is negative α=−1, γ=0.5. Parts (a), (b) are
|E|2 and |H|2 for the thicknesses of elementary layers d1=7.5 nm, d2=d3=3.75 nm. Parts (c), (d) are the same, but the simulations are

within the framework of averaged permittivities. For the chosen parameters, the permittivity of the contacting medium is εI =4.203. The
half-width of the incident beam is x0=2 μm, the centre of the incident beam is x1=14 μm.
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determine the optical response. The dielectric tensor  then

reads
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where, in general, all the elements of  can vary with position.

Since we are interested in the extraordinary wave, we can assume

that the electric field oscillates in the plane yz. For the sake of

simplicity, we consider a two-dimensional structure by setting

¶ = 0x and account for the nonlinear response through a generic

nonlinear polarisation P .NL To avoid nonlinearity-induced cou-

pling between the ordinary and the extraordinary waves, we set

⋅ =ˆP x 0.NL If the spatial derivatives of ij are neglected,

Maxwell’s equations can be recast in the form [64, 73]



 w

= -
¶
¶

- - ( )E
H

y
E P

i 1
, 5.1z

zz

x zy

zz

y

zz

zNL,





 





w

w

¶
¶

+
¶
¶

= - -

- +

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ ( )

H

z

H

y
E

P P

i

i , 5.2

x yz

zz

x
yy

yz zy

zz

y

y
yz

zz

zNL, NL,


  

wm
w

¶

¶
+

¶

¶
= - -

¶
¶

-
¶
¶

( )

E

z

E

y
H

H

y

P

y
i

i 1
.

5.3

y zy

zz

y
x

zz

x

zz

z
0

2

2

NL,

Under the assumptions above, equations (5.1)–(5.3) govern light

propagation in the presence of any type of nonlinearity, both in

the paraxial and non-paraxial regimes, regardless of the nature of

the elements ij (which can be complex or real, either positive or

negative).

Hereafter we exclude the presence of gain or losses by

considering a Hermitian dielectric tensor (i.e., * =ij ij). A

general result on light propagation in the linear regime

( =P 0NL ) can be derived from equations (5.1)–(5.3). Let us

consider a beam propagating in the anisotropic medium with

wavevector parallel to the axis z. The evolution operator on

the lhs of equations (5.2) and (5.3) suggests that light pro-

pagation occurs as in isotropic materials, but in the frame



¢ = -y y z,
yz

zz

¢ =x x and ¢ =z z, analogously to a swimmer

in a flowing river [64]. The latter transverse velocity is called

walk-off and is well known in optics as linear birefringence

[74]. Walk-off manifests itself as a non-vanishing angle



d =tan
yz

zz

between the wavevector and the Poynting vector

S, i.e., an energy flow (i.e., rays) non-orthogonal to the

wavefronts, at variance with isotropic materials. We stress

that, according to the model above, the walk-off angle does

not depend on the spatial spectrum (or transverse size) of the

beam, a result hardly achievable using plane wave expansions

[75]. The calculated walk-off angle versus the optical axis

angle q is plotted in figure 22(a). In elliptic media with a small

positive anisotropy, the walk-off is maximised for q » 45

[76]. Conversely, in hyperbolic media the walk-off increases

monotonically with the angle q, reaching an absolute value of

90 at the edge of the existence region, when surface waves

are excited at the input interface of a hyperbolic sample [77].

We just ascertained the beam trajectory by investigating

the role of walk-off. Another important figure is the beam

width versus propagation. In order to determine the beam

width, we need to rewrite equations (5.1)–(5.3) as a single

Helmholtz equation. When


yz

zz

i.e., the walk-off angle-,

undergoes small variations in the transverse direction (y) and

adiabatic changes in the longitudinal direction (z), we can

rewrite equations (5.1)–(5.3) in the moving frame ¢ ¢ ¢x y z

defined above. Then, optical propagation can be fully

described by a magnetic field satisfying [64, 73]
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Figure 22. Walk-off angle d (a) and diffraction coefficient Dy (b) versus the angle q between optical axis and wavevector for an elliptic

medium with  > 0a (blue solid line), a hyperbolic type I (dashed red line) and a hyperbolic type II (dotted orange line). Here the absolute
values of the permittivity eigenvalues are   =^∣ ∣/ 2.250 and   =∣ ∣/ 2.89.0 The edge of the existence region for homogeneous plane waves

is at 48.6 .

28

Nanotechnology 28 (2017) 444001 A D Boardman et al



where




 

= -ne
yy yz

zz

2

0

2

0

is the refractive index for extra-

ordinary plane waves propagating along z, and



=D
n

y
e

zz

0
2

is

the diffraction coefficient. Since the existence of homo-

geneous propagating waves requires a real refractive index n ,e
non-attenuated plane waves always exist in elliptic materials,

whereas they exist in hyperbolic media only for some angles

q, in agreement with the hyperbolic isofrequency curve [72].

The diffraction coefficient can also be expressed as

 


= ^ 
( )D . 5.5y

zz
2

In hyperbolic media it is   <^  0, thus equation (5.5) pre-

dicts negative (or anomalous) diffraction [73]. In figure 22(b)

the diffraction coefficient Dy is plotted versus the optical axis

orientation given by q. While in the elliptic case non-atte-

nuated light propagation is always allowed and the diffraction

coefficient slightly differs from unity for small anisotropies

[76], the topological transition in the dispersion strongly

affects the diffraction: in fact, a plane wave expansion pro-

vides = - ¶
¶

=
D k ny

k

k
k

0 0
0

z

y
y

2

2 [78], corresponding to the con-

cavity of the spatial dispersion ( )k k .z y Figure 22(b) plots the

values derived from equation (5.5). Dy is always real and

negative, with a singularity at the edge of the existence

region.

The evolution of the beam width is determined by D .y To

see that, let us consider light propagation in a linear and

homogeneous dielectric. Equation (5.4) then turns into a

standard paraxial Helmholtz equation with respect to the

normalised transverse coordinate h = ¢


.
y

Dy

For example, for a

fundamental Gaussian beam of waist w the Rayleigh length L

is = p
l

L
n w

D

e

y

2 2

[76]. The physical outcomes of <D 0y can be

grasped by writing equation (5.4) in the paraxial limit [73]
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where the slowly varying envelope A is defined through

= ¢ ¢ ¢( )H A y z, e .x
k n zi 0 0 Equation (5.6) is a Schrödinger

equation with effective time z for a particle of mass
k n

Dy

0 0

subject to a photonic potential- -( ) ( )/k n n n2 .e0
2

0
2

0 Thus, in

the presence of hyperbolic dispersions, a wavepacket behaves

like a particle of negative mass [73]. The latter analogy paves

the way to the prediction of interesting phenomena. First,

optical propagation in homogeneous hyperbolic media can be

modelled as a time-inverted propagation. As a direct con-

sequence, a hyperbolic slab of appropriate length can com-

pensate the diffraction occurred in an isotropic slab, thus

permitting the recovery of the initial field distribution [73].

Second, if compared to elliptic dispersion, light beams react

in the opposite way to gradients in the refractive index, with

photons now being attracted (pulled) towards regions with

lower refractive index [73].

Such exotic response to an index gradient has important

consequences on the design and realisation of dielectric

waveguides in hyperbolic metamaterials, with optical con-

finement achievable when the refractive index is lower in the

core than in the periphery of the waveguide (cladding and

substrate in a planar waveguide).

We are now able to discuss the main properties of optical

spatial solitons in hyperbolic media. For the sake of simpli-

city, we assume a medium with a local Kerr-like nonlinear

response and a homogeneous linear permittivity. Thus, the

nonlinear polarisation can be modelled as a refractive index

change dependent on the local intensity as [67]

- = ∣ ∣ ( )n n n A . 5.7e
2

0
2

2
2

When equation (5.7) is valid, equation (5.6) becomes a

standard NLSE, thus supporting solitons with a hyperbolic

secant profile [67]. The detailed analysis of soliton properties

for other types of nonlinearities can be carried out starting

from equation (5.6) and considering the exact nonlinear di-

electric tensor.

To address the role of negative diffraction, we first

consider soliton propagation in the absence of walk-off. The

main difference with respect to isotropic materials is the link

between dark/bright solitons, and the sign of the Kerr coef-

ficient n2 [79, 80]. In full analogy with the case of temporal

solitons, self-focusing (defocusing) corresponds to a negative

(positive) Kerr coefficient [67, 81, 82]; hence, dark and bright

solitons are supported by hyperbolic metamaterials when

>n 02 and <n 0,2 respectively (see also equation (4.23b)

and relate discussion in section 4.5) [73]. Such result can be

intuitively understood from the properties of a linear wave-

guide in hyperbolic materials, considering that a (first-order)

spatial soliton is the fundamental mode of the guide written

by the soliton itself [83]. Examples of light propagation in a

type I material with q = 0 computed via a BPM code based

on the Crank–Nicolson algorithm and operator splitting are

plotted in figures 23(a)–(c). As predicted, self-focusing and

the formation of bright solitons can be observed when the

Kerr coefficient is negative (panel (a)). Conversely, beams

undergo self-defocusing (i.e., diffractive spreading larger than

in the linear regime) when the Kerr nonlinearity is positive.

Moreover, both the nonlinear effects are enhanced when the

input power is increased.

We now consider the formation of bright spatial solitons

as the angle q varies and the normalised excitation n P2 is

clamped to a negative value. The most apparent effect is a

change in beam trajectory owing to the different walk-off

angle d, see figures 23(d)–(i) [84]; in type I (II) materials, the

walk-off angle spans from 0 to 90 (−90 to 0) degrees (see

figure 22(a)). For different q, the beam profile changes as well

owing to the different amount of diffraction, even if the

normalised power n P2 is kept constant. Accordingly, the size

of the self-focused wavepacket gets larger as the angle q
approaches the edge of the existence region, i.e., when dif-

fraction diverges.

To conclude this section, let us mention a few forth-

coming developments and generalisations of this work. The

first is the solution of equation (5.4) employing the nonlinear
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tensor permittivity of an actual medium, either of second or

third order or both [67]. In fact, since equation (5.4) is a

complete vectorial model for the propagation of the electro-

magnetic field, it allows one to address, for example, the role

of longitudinal fields when self-trapping reaches scales

comparable with the wavelength [85]. Another important

point is the accurate assessment of the homogenisation theory

by solving the complete Maxwell’s equations in a real

hyperbolic metamaterial [86, 87]. In fact, our simplified

model does not consider the role played by the unavoidable

losses [78, 88, 89] and the inherent spatial nonlocality of the

response [90, 91].

6. Rogue waves in metamaterial waveguides

6.1. Introduction and background

The theme of this section is optical rogue waves. However, in

this case, the waves will be subject to a metamaterials

environment and also a magnetooptic influence. It is clear that

optical rogue waves have been written about very vigorously

in the literature. Historically and currently it is the dispersive

type of NLSE that has been used and if rogue waves were not

the main interest then it would be temporal solitons that

emerge from this type of equation. The question of whether

spatial solitons could be used will be discussed later on.

Metamaterials and optical rogue waves have both been

making headlines in recent years and they are separately large

areas of research to study. Here a brief background of the

almost inevitable linkage of these two fascinating subjects is

considered with important new possibilities being discussed.

Initially we consider the background then show interesting

new results combining the two areas and go on to discuss the

way forward for the future.

A rogue is broadly considered to be something that does

not follow the generally accepted path. In the context of what

is being discussed here, in an analogous fashion to hydro-

dynamic rogue waves, we consider optical phenomena that do

not follow the traditionally accepted path with peaks of

intensity that appear to spring out from an almost flat back-

ground (albeit with a small perturbation) only to decay away

again with equal rapidity. In the section below one scenario

considered is the famous case of a single peak appearing and

disappearing, known as a Peregrine soliton, and in a sub-

sequent scenario a multi-peak solution is discussed.

It is worth pointing out that such rogues have been

observed but are a comparatively rare event in nature. The

reason for this is that it is a relatively low probability that any

natural physical system has precisely the boundary condition

that leads to rogues. When considering hydrodynamic rogue

waves it was until relatively recently difficult to make

appropriate measurements at sea. This lack of natural evi-

dence led for a long time to a disbelief about rogue wave

Figure 23. Nonlinear light propagation when the input is a Gaussian beam of waist 2 μm, planar phase front and wavelength λ=1064 nm.

(a)–(c) Intensity evolution for q = 0 when (a) = - ´ -1 10
n P

Z

112

2
m2 V−2 W (Z is the medium impedance), (b) = ´ -1 10

n P

Z

112

2
m2 V−2 W,

and (c) = ´ -5 10
n P

Z

122

2 m2 V−2 W; the considered medium is a type I hyperbolic media. (d)–(f) Intensity evolution in a type I hyperbolic

media for q = 10 (d), q = 20 (e) and q = 40 (f) for = - ´ -1 10
n P

Z

112

2
m2 V−2 W. (g)–(i) Intensity evolution in a type II hyperbolic

media for q = 60 (d), q = 70 (e) and q = 80 (f) for = - ´ -n P

Z
1 10

2

2
11m2 V−2 W. Absolute values of the permittivity eigenvalues are

  =^∣ ∣/ 2.26140 and



=
∣ ∣

2.8744,
0

respectively.
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events. However, interestingly, it is possible to generate them

in laboratory experiments. Indeed, convenient fibre-based

experiments taking advantage of high-speed telecommunica-

tion-grade components have recently confirmed the existence

of extreme wave phenomena that can occur both in optical

systems and in hydrodynamics [92–97]. Analogies between

hydrodynamics and optics have been known since the

1960–1970s thanks to two main findings: (1) the derivation of

the soliton solution of the NLSE in the form of secant-

hyperbolic shaped (temporal or spatial) profile, and (2) the

studies of the Benjamin–Feir/Bespalov–Talanov (or mod-

ulation) instability [98–104].

Wave dynamics in weakly nonlinear dispersive media,

such as in optical Kerr media or on the surface of deep water,

can indeed be described by the NLSE. However, it was

recently shown that this correspondence applies even in the

limit of extreme nonlinear wave localisation described by the

common mathematical model [96, 97]. In particular, note that

the NLSE admits general breather solutions on a finite

background, i.e. pulsating envelopes that well mimic the

dynamics of rogue waves that may appear from nowhere and

disappear without leaving a trace. As a consequence, we can

first address the issue of rogue waves in (almost-) con-

servative systems in terms of NLSE breathers whose entire

space–time evolution is analytically described [105]. Their

pulsating and localisation properties make such mathematical

solutions the simplest nonlinear prototypes of the famous

hydrodynamic rogue waves [106], in particular the doubly

localised (in space and time) breather solutions (i.e. Peregrine

soliton and higher orders) [107]. These pulsating solutions

also include solutions that are either periodic in space and

localised in time or periodic in time and localised in space

which are are refered to as Kuznetsov–Ma breathers and

Akhmediev breathers respectively. Taking the period of both

of these latter solutions to infinity gives rise to the Peregrine

solution.

If we now recall that breather solutions describe localised

carrier perturbations with a strong amplification, they provide

support to the nonlinear stage of the universal MI phenom-

enon [108]. We distinguish two MI regimes: on the one hand,

the noise-driven MI that refers to the amplification of initial

noise superposed to the plane wave that leads to spontaneous

pattern formation from stochastic fluctuations; on the other

hand, the coherent seeded MI (or coherent driving of MI) that

refers to the preferential amplification of a specific perturba-

tion (i.e., leading to a particular breather solution) relative to

any broadband noise. In either case, the wave dynamics can

be interpreted in terms of breathers and competitive interac-

tions. Most importantly, the coherent seeded MI can be used

to efficiently stabilise and manipulate the output wave, thus

allowing it to generate and quantitatively measure NLSE

breather properties in optical fibres.

It is also important to say that breather dynamics appear

even with initial conditions that do not fulfil the mathematical

ideal and optical studies have strongly contributed to that end.

In fact it can be said any kind of disturbance of the ideal

NLSE propagation induces a deviation from the expected

theoretical solutions (specific to each breather on a finite

background), but most of the features related to their pulsating

dynamics remain clearly observable. Breathers on a finite

background may be considered as ‘robust solutions’ (but

unstable solutions from the mathematical point of view)

[109], in the sense that they can be excited or propagated even

with non-ideal conditions, and the main features of a localised

high amplitude event (i.e., rogue wave) still occur. In general,

fibre characteristics are chosen in accordance with both

spectral bandwidth and peak power of the wave evolving into

the fibre in order to avoid the potential impact of higher-order

dispersive or nonlinear effects [110]. Nevertheless, besides

fibre losses, higher order effects linked to pulse propagation

such as third-order dispersion, self-steepening, and the Raman

effect can be considered, even theoretically by extending the

NLSE [109]. Exact rogue wave solutions were even found in

such complex equations that are integrable in special cases,

such as the Sasa–Satsuma or the Hirota equations [111–114].

From a metamaterials perspective the key work that is

often considered to be the starting point is that of Veselago in

1967 [115]. However it was not until the 1990s with

improved computing power and manufacturing techniques

that these materials could be studied in great depth and in

2000 John Pendry [116] extended Veselago’s work to creat-

ing the perfect lens. Since then there has been an explosion of

papers in the metamaterials field. Metamaterials offer the

potential to control a range of electromagnetic behaviour in

ways that cannot be achieved with materials found in nature

and the ability to create purpose built materials to fulfil new

and novel functionality where these artificial structures, that

exert influence over electromagnetic waves at the sub-wave-

length level, are extensively being studied and designed. Here

we contribute to this expansion.

The study of rogue waves in metamaterials is currently at

an early stage, only a few recent numerical studies based on a

transmission line model (with NLSE reduction) or a cubic-

quintic NLSE can be found. In particular, it was shown there

is the possibility of producing extreme waveform events, with

strong similarities to NLSE breather waves (Peregrine, but

also Akhmediev or Kuznetsov–Ma breathers) [117–119]. In

the following, we bring together both of these subjects by

investigating the propagation behaviour of wave excitation

corresponding to rogue breather solutions in transparent

metamaterials with the addition of magnetooptic properties;

wherein higher-order dispersive or nonlinear effects are

included. Hence the fascinating idea of rogue wave emer-

gence in the form of Peregrine solitons (and near-Peregrines)

within a nonlinear metamaterial environment and where

potentially magnetooptic control could be exerted is resear-

ched as a new pathway.

6.2. Simulations

The world is becoming very interested in hyperbolic meta-

materials and breather type solutions however for this type of

metamaterial appropriate extensions to the dispersion type

NLSE are not yet available. As the best way to investigate

rogue waves is based on the dispersion type of NLSE the use

of double negative media is the way forward where
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appropriate extensions to the NLSE have already been

developed and could thus be readily adapted for the purpose

of studying rogue waves. The question of whether the work

can be moved into hyperbolic metamaterials is a question for

another time.

In this section with the dispersion based NLSE we are

looking at solutions of the type that have a flat background

with a small perturbation. We assume the material is isotropic

and it has a negative permittivity and negative permeability

thus the form of the metamaterials considered here is trans-

parently double-negative [120] and our aim is to give some

new physical insights on how the metamaterial properties can

affect rogue waves in the form of NLSE breathers. More

particularly, we reveal that their dynamical behaviour can be

influenced and controlled, by metamaterial effects, namely the

self-steepening, and magnetooptic effects. Here we restrict

our analysis to temporal forms of rogue solutions, however, it

is worth mentioning that both spatial and temporal waveform

solutions can be considered in metamaterials, in a similar way

to the standard soliton solution [120, 121].

The general approach to the NLSE is to assume that the

components (both electric and magnetic fields) of an

electromagnetic wave propagating in a metamaterial can be

factorised such that there is an amplitude that is slowly

varying along the propagation direction, a linear modal field

contribution and a fast plane wave variation that introduces a

propagation wave number. Here a modified approach is

adopted such that an appropriate extension to the NLSE [120]

is utilised that takes into account the metamaterial properties

with self-steepening and magnetooptic effects.

Although both electric and magnetic nonlinearities could

be included for a given metamaterial, it has been shown [121]

that the effective nonlinearity can be combined into a single

nonlinear coefficient. Here however it is assumed that the

nonlinear behaviour discussed originates from an isotropic

Kerr dielectric. A typical waveguide structure that is used

here is shown in figure 24. It is a planar structure with a

metamaterial core that has boundaries in x and y directions

and propagation is along the z-axis.

The structure is set so that it is weakly guiding as dis-

cussed in section 2 of [120]. When part of the structure (as

shown in figure 24), in the form of the substrate, is replaced

with a magnetooptic material, it is possible to control solitons

with the application of a magnetic field. Here the magnetic

field is applied in what is known as a Voigt configuration.

This has an externally applied magnetic field in the plane of

the guide perpendicular to the direction of optical propaga-

tion, which here can be applied along either the positive or

negative x-direction.

The form of the extended NLSE is given below in

equation (6.1) and is as discussed in equation (2.22) of [120].

It is noted that there is also the capability of adding higher

order and Raman scattering effects however in the simula-

tions discussed below these parameters are not invoked, but

will be utilised in future work. This form of the NLSE does

not yet contain the magnetooptic parameters, which will be

discussed further below.
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where b2 is the group velocity dispersion, S is the self-steepening
coefficient which is discussed below. d b b= ( ∣ ∣ )/ t6 ,3 3 2 0 b3 is
the third order dispersion, t0 is interpreted as pulse width and tR
is the Raman coefficient. c( )3 is the third-order nonlinear Kerr

coefficient in which the assumption of a weakly guiding system

has been embedded. In the simulations presented later in this

section the parameters that are considered are self-steepening and

the use of a range of magnetooptic parameters that are used to

adjust the effect of self-steepening in the metamaterial. It should

be noted that the self-steepening coefficient S in equation (6.1)

involves very specific properties of the metamaterials which has

been pointed out by previous authors [12, 122] however here the

self-steepening term is that laid out in equation (2.21) of [120]

which is arrived at via a different approach and the result is less

restrictive than other approximations.
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it is further

noted that the form of the NLSE given here allows for the

nonlinear coefficient to be dispersive which if included would

give a form for the self-steepening coefficient:
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The approach here however is to consider a non-dispersive

scenario for c( )3 thus =c¶
¶w

( )

0.
3

The dispersion of c( )3 is to be

the subject of future work.

The important issue of whether the self-steepening

coefficient is affected by metamaterials solutions is discussed

in [120] (see figure 3 of [120]) and it is clearly demonstrated

that this is the case for a judicious selection of S. (In these

early stage results similar values to those used in previous

Figure 24. A diagram of a possible waveguide system with negative
phase nonlinear metamaterial.
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temporal solitons simulations are adopted to allow compar-

isons of the different starting conditions used—see below.)

The use of typical drude models is adopted that are of the

form:

e w e= -
w

( ) ( ), 6.5D
1
2

m w = - w
w w

( ) ( )1 , 6.6
1m

e

2

2 2

where we and wm are plasma frequencies associated with the

permittivity and permeability respectively and the dimen-

sionless frequency w w w= / .e For a specific application

w w= ,0 the operational frequency. It is then convenient to

write (with a dispersionless c( )3 ):
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If the addition of the magnetooptic parameters are now con-

sidered it can be shown that:
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The magnetooptic parameters that are set in the simulations

are thus: tν the delay of the magnetisation after excitation by

the electromagnetic input, Δtν which is the normalised time

over which the magnetisation takes place, vg the group

velocity and νmax, the maximum value of magnetisation

which is defined in equation (3.4) in [120] as:

n =
w

( )
c
L n Q , 6.11D mmax

2
sat

where LD is the dispersion length, nm is the refractive index of

the magnetooptic material and Q is the magnetooptic para-

meter that is usually taken to define the strength of its influ-

ence Qsat represents the saturation of this parameter. The

values selected for nmax thus reflect the parameters in

equation (6.11). For ordinary magnetooptic materials Q is

typically of the order 10−4 but is not limited to this where

suitably designed material for the substrate could enhance this

by several orders of magnitude. Using an asymmetric struc-

ture for the waveguide also increases the influence of Q. Here

in these initial results the various parameters are selected for

the simulations (with the appropriate values been given with

individual simulations) in line with previous results obtain for

temporal solitons.

In order to consider metamaterial effects on the NLSE

breather type of input, the Crank–Nicolson method has been

implemented in MATLAB to numerically solve the propa-

gation equation. The developed code is capable of solving the

extended NLSE as laid out in [120] which takes into account

the appropriate effects of self-steepening and magnetooptic

parameters. It requires an initial starting condition which then

determines how this input condition will evolve as propaga-

tion occurs along z. As discussed in section 6.1 there is a very

real choice of the kind of starting conditions that can be

selected. Here in order to initiate a specific type of rogue

wave condition we initially base our input on the solution to

the standard NLSE determined by Peregrine which for the

standard NLSE gives rise to a solitary pulse on an almost flat

background. Following this we go on to look at a non-ideal

starting condition which is discussed in more detail below.

The Peregrine solution can of course be used to describe

the evolution of a single peak analytically, however by using

a known solution as an input condition it allows the validity

of the numerical solver to be checked for the case where there

are no additional terms in the NLSE. Further, having done

this, it then allows us see how the evolution of such a well

known input is changed in the presence of metamaterials and

magnetooptics by re-introducing the additional terms in the

extended NLSE.

The exact Peregrine solution to the NLSE is
y = - + + +[ ( ) ( )]/z t z1 4 1 2i 1 4 4 e z2 2 i which has the

characteristic that it peaks at z=0, both before and after this

value the peak decays rapidly. If a specific value of z is now

selected, for example z=−10, it can then be used as a

starting condition for the numerical solver which in the

absence of additional terms in the NLSE should give a similar

solution to the analytical approach.

Hence first we check the validity of our numerical solver

for this new type of input and align it with previous work

such as [96] by selecting the exact solution at z=−10 along

the z-axis prior to the peak of the breather and allowing it to

propagate along z. It can be clearly seen from figure 25 that

Figure 25. This numerical simulation uses the exact solution of the
Peregrine soliton as a starting condition at normalised distance
z=−10 (at this point none of the extensions to the NLSE are being
used). The Crank–Nicolson technique is then used to propagate
along the z-direction. It can be seen that the result of this process is a
single peak at position z=0 that subsequently decays in line with
the analytical result. It is noted that, although the important
perturbation in the initial condition is included, at z=−10 the
variation on the value of y∣ ∣2 is very close to 1 thus the plot appears

almost flat at this point. The dark areas to either side of the main
peak centred about z=0 are due to the normalised value of y∣ ∣2

dropping below 1 as would be expected.
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the result of this process is indeed a single growth/decay
cycle centred at position z=0 in agreement with the analy-

tical solution. Note that all figures shown below are pseudo-

colour plots showing the evolution of wave intensity y∣ ∣2 as a

function of normalised distance and time in order to highlight

breather peak localisation. The variation of y∣ ∣2 from a value

of 1 is small at z=−10 and cannot easily be distinguished in

the plots, however it is still present and significant as without

it there would be no peak at z=0.
Subsequently in order to consider metamaterial effects

the parameters that are adjusted here are as given above (see

also [120]), which are: S the self-steepening coefficient, tν the

delay of the magnetisation after excitation by the electro-

magnetic input, Δtν the normalised time over which the

magnetisation takes place, vg the group velocity and νmax, the

maximum value of magnetisation

Having established the Peregrine solution the next step is

to introduce self-steepening. The self-steepening can be

negative or positive, and it is shown that it is possible to

arrange for the peak of the Peregrine to appear in different

time slots depending on the values selected for the self-stee-

pening coefficient.

As a starting point the values selected for the self-stee-

pening coefficient S are in line with those of [120]. As already

stated above, a slight disturbance of the ideal NLSE propa-

gation induces a deviation from the expected theoretical

solution, but as shown in figure 26 most of features related to

the Peregrine soliton remain clearly observable, i.e. the main

features of a localised high amplitude event (i.e., rogue wave)

still occur with similar peak power. It is also interesting to

note that by using S=−0.02 in the simulation the time shift

on the near-Peregrine soliton is of the same order of the effect

on the standard soliton pulse, see figure 8(a) in [120].

Figure 26(a) illustrates this effect, the Peregrine soliton peak

is shifted away from zero on the time axis by ∼−0.45 (for a

distance D = )z 8 . Figure 26(b) shows the shift with

S=+0.02 which is then shifted to the opposite side of zero-

time line. Figure 26(c) shows a smaller shift from

S=−0.005 and figure 26(d) has a larger shift resulting from

a value for S=−0.04. This kind of tilted Peregrine soliton

structure was also observed in the case of approximate

polynomial rogue-wave solutions obtained beyond the

integrable Sasa–Satsuma or Hirota equations [111]. This

rogue wave structure makes an angle θ with the z-axis, which

Figure 26. Effect of self-steepening on the excitation of the NLSE Peregrine soliton using a value of (a) S=−0.02, (b) S=+0.02, (c)
S=−0.01, and (d) S=−0.04. Note the opposite time shifting of the intensity peak of near-Peregrine soliton for opposite values of S. As in
figure 25 the darker areas to the side represent the points where the value of y∣ ∣2 drops below 1. The inital starting condition also gives a very

small deviation from 1 at z=−8, which accounts for the almost flat appearance of the initial starting condition.
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corresponds to an effective velocity proportional to the self-

steepening coefficient S [111].

At this point magnetooptic effects are introduced. This,

as discussed previously is enabled through the values given

for tν, Δtν and νmax. It is also noted that with the parameters

set, for the magnetooptic effect to operate on the central peak

of the Peregrine soliton, then there needs to be sufficient

propagation distance prior to where the peak manifests itself.

Figure 27(a) shows the effect of using a value of S=−0.02

with magnetooptic parameters set as νmax=−10, tν =200,
Δtν =10 and vg=0.03. It can be seen that the addition of

the magnetooptic parameters moves the peak back to the

position t=0. It is noted that there is an overall clockwise

rotation of the rogue wave structure. It is further noted that if

a greater lead in distance is used then a lower value of νmax

can be used to achieve a similar response. Alternatively a

larger effect can be achieved with the same value of νmax.

Figure 27(b) shows the influence of the same magnetic

parameters but with the propagation prior to the main peak

being 12 dimensionless units along the z-axis rather than 8. It

is thus demonstrated that a significant controllable effect can

be brought about on the near-Peregrine soliton through

metamaterial effects, without cancelling the main features of

the rogue wave solution. This of course is only an initial early

stage result but the work is ongoing and it is intended to

report further work in the near future.

As discussed above there are broader categories of

solution to the NLSE that can be studied; for example the

Akhmediev breather solution is one of these. This category of

solution has, for example, been studied in [123] and gives

multiple peaks in the time domain. However of particular

interest here are non-exact types of breather solutions men-

tioned above, that to a large extent can reproduce the exact

solution for the Akhmediev breathers but also tend to produce

additional features.

Hence we now investigate the excitation of NLSE

breather solutions with non-ideal input conditions. Our

objective is to assess the impact of negative phase nonlinear

metamaterials in this area, in particular to extend the con-

clusions drawn for optical fibre platforms [96, 123, 124] in

the presence of self-steepening and the addition of magne-

tooptic parameters. This is carried out in a similar manner to

the process adopted for the exact solution simulations dis-

cussed above.

Here again the first step is to ensure correlation between the

simulations previously carried out for the standard NLSE with

non-ideal inputs [123] and the new simulator with metamaterial

extensions. Figure 28 shows a test simulation carried out with

the following input condition: y w= + ( )t1 0.145 cos as

Figure 27. (a) Effect of magnetooptic parameters set as νmax=−10, tν =200, Δtν =10 and vg=0.03 on the self-steepening S=−0.02.
The addition of the magnetooptics has moved the peak back towards the origin of the time axis (see figure 26(a)). (b) Same parameters but the
difference lies in the distance propagated prior to the peak localisation. Here the starting point for the input is at −12 rather than −8 it can be
seen that the magnetooptic effect now moves the peak to the positive part of the time axis. The small deviation of the starting of y∣ ∣2 from 1

again gives the appearance of an almost flat initial condition. The dark areas either side of the main peak are again present where the value of
y∣ ∣2 drops below 1.

Figure 28. Simulation of the standard NLSE with the following input

condition y w= + ( )t1 0.145 cos . The periodic emergence of

near-Akhmediev breathers correlates well with figure 7(b) from
[123]. Note the first row of peaks is what would be expected from an
exact analytical solution. Here however, as in [123], the chosen non-
exact input condition produces two rows of peaks. As with previous
plots the darker areas to the sides of the peaks represent y∣ ∣2

dropping below a value of 1.
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originally given in figure 7 from [123] where w = ( – ) /a2 1 2 1 2

and a=0.25. This input condition simply corresponds to an

intensity-modulated continuous wave with angular frequency w
linked to the governing parameter a (recall that a determines the

physical behaviour of the excited breather solution, the excited

breather is part of the family of Akhmediev breathers). At this

point the simulation does not contain any extensions to the

NLSE. We observe that non-ideal initial conditions yield peri-

odic evolution as a function of propagation in contrast to the

exact Akhmediev-breather (AB) theory with a single growth/
decay cycle of the temporal periodic pattern. However, each

growth-return cycle remains well-described by the analytic AB

solution.

Having established a correlation between this and pre-

vious work, the self-steepening effect is now added to the

simulation (S=−0.02). Figure 29 shows such a scenario

where it can be seen that both the first and second set of peaks

have been rotated and moved in a negative direction with

respect to the time axis. The second set have moved by

approximately −0.6 on the normalised time axis for a pro-

pagation length D =z 10.5. This corresponds to a slightly

longer propagation distance from the input than that in

figure 26(a) for the exact solution where there is a slightly

smaller shift. The first set of peaks shifts by approximately

−0.2 or less, for a significantly shorter propagation distance

from the input (D =z 3.5). It can thus be seen that the

effective velocity induced by self-steepening correlates well

with different input conditions. It is noted that the shift leaves

both sets of peaks aligned in the same orientation and rotated

counter clockwise. Moreover the spatial localisation of the

maximum intensity peak does not change significantly.

Figure 30 shows the effect of adding magnetooptic

parameters with similar values to that used in figure 27

(νmax=−10, tν =200, Δtν =10 and vg=0.03). It can be

seen that the first set of peaks has not reached its original

position prior to the addition of self-steepening and magne-

tooptic effects and still has counter clockwise rotation

whereas the second set of peaks has moved well past the

original position with a clockwise rotation. This again illus-

trates here that the magnitude of the response from the

magnetooptics is position dependent.

Figure 31 has similar input parameters to figure 30 but

importantly with νmax=−4 rather than −10. This has the

effect of moving the central point of the second set of peaks

back to the starting position prior to the addition of self-

steepening and magnetooptics. However as with previous

simulations there is a small clockwise rotation as there is a

greater effect of the magnetoptic addition the further along z.

It also raises the possibility of having different magnetooptic

parameters in different parts of the guide to allow for similar

shifts on the time axis for different distances. Here we are able

to almost cancel the effective velocity induced by self-stee-

pening with an appropriate magnetooptic response.

Figure 29. (a) Impact of self-steepening (with S=−0.02) on the non-ideal excitation of a near-Akhmediev breather (a=0.25). The input
condition is y w= + ( )t1 0.145 cos . It can be seen that both sets of peaks have moved along the time axis in a negative direction. (b)

Expanded plot of the central portion of figure 29(a). On both plots the darker areas to the side of the main peaks show the value of y∣ ∣2

droping below a value of 1.

Figure 30. Impact of self-steepening and magnetooptic parameters
on the non-ideal excitation of a near-Akhmediev breather

(a=0.25). The input condition is y w= + ( )t1 0.145 cos .

Similar values are used to those selected for figure 27 (νmax=−10,
tν =200, Δtν =10 and vg=0.03). There is a clear distinction
between how the first and second sets of peaks respond due to the
position along z. Alongside the peaks, as in previous plots there
continues to be darker areas on the plot where y <∣ ∣ 1.2
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These latter results with the use of non-exact input con-

ditions thus show similar responses to the exact breather

excitation. It is thus possible to see how a range of different

input conditions could potentially be controlled. Although not

yet fully optimised the parameters used here indicate that

reasonably accurate control can be achieved that would allow

useful systems to be developed. There are now a wide range

of possibilities in terms of self-steepening, magnetooptic and

other parameters that are now being researched for this pur-

pose. The fact that breathers propagating with a certain angle

to the line t=0 can also be induced by non-ideal input wave

excitation, as well as propagation effects, is interesting to note

[123]. The resulting inclined trajectory is usually associated

with an asymmetric spectrum or/and frequency detuning,

with a distinct mean group velocity of the breather under

study. Note that rogue wave solutions analysed in the fra-

mework of the Sasa–Satsuma equation already revealed

strong spectral asymmetries [125]. Again a detailed analysis

of spectral evolution will be mandatory in future works, this

information is important for a complete investigation of the

rogue wave properties.

6.3. Conclusions

To conclude this section, we investigated the propagation

behaviour of wave excitation corresponding to rogue NLSE

breather solutions in transparent double-negative metamater-

ials, wherein higher-order dispersive or nonlinear effects are

included. An appropriate extended NLSE was used which is

not integrable. It takes into account typical higher order

effects from metamaterials, such as the self-steepening and

the magnetooptics parameters. We revealed the impact of the

self-steepening on both Peregrine and Akhmediev breathers

as the change of the mean group velocity of the evolving

breather under study. Such time-shifting signatures can be

also found in integrable systems such as the Sasa–Satsuma or

the Hirota equations. With the application of magnetooptic

influence/control over these phenomena, we demonstrated

that the impact of self-steepening on breather waves can be

cancelled or overcome, similarly to studies of the standard

NLSE soliton. Most importantly, we confirmed that the extra-

terms studied here to the NLSE do not prevent the emergence

of rogue wave structures almost identical to rogue NLSE

breather solutions. Conversely, they offer a possible man-

agement of their unique pulsating dynamics and spatio-

temporal localisation properties.

7. Towards the future

All of the investigations presented here offer some interesting

perspectives on the interaction of electromagnetics and

metamaterials. One broadly interesting example is illustrated

in the final section, where it is demonstrated that promising

responses can be elicited through the propagation of rogue

waves in metamaterials under magnetooptic influence. It is

important to emphasise, however, that there are many other

possibilities to consider, as indeed this article shows. Hence,

the whole material presented here provides starting points for

some exciting new research areas and ways forward become

apparent.

The discussions given here show that one of the great

advantages that metamaterials offer is the potential to intro-

duce novel and interesting properties into electromagnetic

environments. These can be conveniently simulated by

additions to the standard NLSE including, for example,

quintic nonlinearity, the influence of Raman scattering, and

the impact of magnetooptic effects. As shown earlier a strong

application is the adaptation of rogue waves propagating in

metamaterial environments. Several studies of suitable mod-

ifications to the NLSE [117, 120] for this type of propagation

have emerged, already, for exploring aspects other than

magnetooptic interaction with rogue waves, or near-rogue

waves. For the latter, any modifications to the NLSE do need,

however, to be considered in conjunction with various

Figure 31. (a) Effect of magnetooptic parameters set as νmax=−4, tν =200, Δtν =10 and vg=0.03 on the self-steepening S=−0.02.
The second set of pulses is moved back toward the original starting position by the addition of magnetoptic parameters and after being moved
away by the effect of self-steepening. (b) Expanded plot of the central portion of figure 31(a). On both plots it can be observed alongside the
peaks there continues to be darker areas that represent y <∣ ∣ 1.2
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different classes of solutions particularly those with non-ideal

starting conditions that were outlined above but also with

other variants of non-ideal starting conditions that have yet to

be explored. Future work also needs to include a detailed

analysis of spectral evolution, this information is important

for a complete investigation of the rogue wave properties

under the various conditions discussed.

The list of possible future work does not stop there,

because consideration needs to be given to other types of

metamaterials. To date the concentration has been on double

negative metamaterials, but the use of hyperbolic metama-

terials is now a key ingredient in the way forward and a lot of

the discussion in other sections covers this topic.

The advantages of hyperbolic media over double nega-

tive metamaterials includes the ease of construction at the

nanoscale and their non-resonant nature, which is extremely

important for broadband features. Beautiful materials like

graphene can be used and the role of the position of the

optical axis can be investigated thoroughly for future

designs [50].

Hyperbolic metamaterial can be designed to operate over

a broad range of frequency bands and open up the possibility

of many other important features they can, for example, be

shaped into very sub-wavelength cavities [126, 127]. How-

ever, in order to create designs for this class of metamaterials,

simulations will require an even more general NLSE. In fact a

range of different aspects of this work having been carried out

in this area by, for example [50, 73]. The work presented here

does not yet take us to the creative position we have for

double negative media. For hyperbolic metamaterials to be

considered, in the generation of rogue waves, for example,

with magnetooptic control a lot of further work is needed and

this is a major definition of the future of this area.

The literature shows that the global work to date has been

with temporal solutions however there are spatial solutions

that can also be studied along with all the possibilities out-

lined. In addition, as discussed, there are authors who have

used transmission lines as metamaterials [118, 119] and it

may be interesting to consider how this type of medium could

be taken forward. There is thus an extensive list of options

that can be studied in future programmes of work, giving rise

to a very exciting way forward with the line of research

discussed.
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