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Preface
Staphylococcus aureus is notorious for its ability to become resistant to antibiotics. Infections
caused by antibiotic-resistant strains often occur in epidemic waves initiated by one or a few
successful clones. Methicillin-resistant S. aureus (MRSA) is prominently featured during these
epidemics. Historically associated with hospitals and other healthcare settings, MRSA now has
emerged as a widespread cause of community infections. So-called community or community-
associated MRSA spreads rapidly among healthy individuals. Outbreaks of community MRSA
infections have been reported worldwide and community MRSA strains are now epidemic in the
United States. There is reason for concern because MRSA often are or can readily become
resistant to multiple antibiotics, thus limiting treatment options.

Introduction
Staphylococcus aureus is naturally susceptible to virtually every antibiotic that has ever
been developed. Resistance is often acquired by horizontal transfer to genes from outside
sources, although chromosomal mutation and antibiotic selection are also important. This
exquisite susceptibility of S. aureus led to Alexander Fleming’s discovery of penicillin,
ushering in the “antibiotic era.” Penicillin was truly a miracle drug: uniformly fatal
infections could be cured. Yet, by the mid-1940s, only a few years after its introduction into
clinical practice, penicillin resistance was encountered in hospitals and within a decade it
had become a significant problem in the community. S. aureus is remarkable in its ability to
acquire resistance to any antibiotic.

A fundamental biological property of S. aureus is the ability to asymptomatically colonize
normal people. Approximately 30% of humans are asymptomatic nasal carriers of S.
aureus1, 2; i.e., S. aureus is normal flora. S. aureus carriers are at higher risk of infection and
they are presumed to be an important source of spread of S. aureus strains among
individuals. The primary mode of transmission of S. aureus is by direct contact, usually
skin-to-skin contact with a colonized or infected individual, although contact with
contaminated objects and surfaces or might also play a role3–6. Various host factors,
including loss of the normal skin barrier, presence of underlying diseases such as diabetes
and acquired immunodeficiency syndrome, or defects in neutrophils function predispose to
infection.
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Infections caused by antibiotic-resistant strains of S. aureus have reached epidemic
proportions globally7. The overall burden of staphylococcal disease, particularly that caused
by methicillin resistant S. aureus strains (MRSA), is increasing in many countries in both
healthcare and community settings8–13. In the United States the emergence of community-
associated MRSA (CA-MRSA) strains as a major cause of skin and soft-tissue infections14,
15 accounts for much of this increase. The rapidity and extent to which CA-MRSA strains
have spread has been remarkable. In addition to the United States CA-MRSA strains have
been reported from Canada, Asia, South America, Australia, and throughout Europe,
including Norway, the Netherlands, Denmark, and Finland, countries with historically low
prevalence of MRSA.12, 16–29 Globally, CA-MRSA strains have shown a remarkable
diversity in the number of different clones that have been identified.

In addition to increasing prevalence and incidence CA-MRSA strains appear to be especially
virulent. Overwhelming and tissue-destructive infections, such as necrotizing fasciitis and
fulminant, necrotizing pneumonia30–32, which have been associated with CA-MRSA
strains, were rarely seen prior to their emergence. The factor or factors responsible for this
hypervirulent behavior of CA-MRSA are not known, but PVL, which has been
epidemiologically associated with severe skin infections and pneumonia caused by
methicillin-susceptible S. aureus (MSSA) strains33, has been proposed as a potential leading
candidate.

Antibiotics arguably constitute the most concentrated selective pressure ever brought to bear
on S. aureus in its long co-evolutionary history with mankind. The consequences of this
selective pressure in conjunction with horizontal and vertical gene transfer are the subject of
this review. Given their critical importance as therapeutic agents, the story will focus on
resistance to penicillins and the structurally related beta-lactam antibiotics.

Epidemic Waves of Antibiotic Resistant Staphylococcus aureus
Emergence of antibiotic resistance by S. aureus can be visualized as a series of waves
(Figure 1). The first wave began in the mid-1940s as the proportion of infections caused by
penicillin-resistant S. aureus rose in hospitals 34, 35. These strains produced a plasmid-
encoded penicillinase that hydrolyzes the beta-lactam ring of penicillin essential for its
antimicrobial activity. Penicillin-resistant strains then were observed to cause community
infections; by the early 1950s and 1960s they had become pandemic 36. These infections,
both in hospitals and the community, were caused primarily by a S. aureus clone known as
phage-type 80/81 36–39. Pandemic phage-type 80/81 S. aureus infections largely
disappeared after the introduction of methicillin 40, but the prevalence of penicillinase-
producing strains of other S. aureus lineages has remained high ever since.

Introduction of methicillin marks the onset of the second wave of resistance. The first
reports of a S. aureus strain that was resistant to methicillin were published in 1961 41, 42.
Although the specific gene, mecA, the methicillin resistance determinant which encodes the
low affinity penicillin binding protein, PBP 2a (also referred to as PBP 2′), was not
identified until more than 20 years later, it was appreciated early on that the resistance
mechanism was different from penicillinase-mediated resistance because there was no drug
inactivation. Unlike penicillinase-mediated resistance, which is narrow in its spectrum,
methicillin resistance is broad beta-lactam antibiotic class resistance to penicillins,
cephalosporins, and carbapenems. Among the very earliest of MRSA clinical isolates is the
archetypal strain COL, a member of the “archaic” clone of MRSA and perhaps the most
studied MRSA strain, which was isolated from a patient in Colindale, United Kingdom in
1960 42. COL is a member of the most successful of all MRSA lineages, which includes
both hospital and community-associated strains.
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These archaic clone of MRSA strains circulated in hospitals throughout Europe until the
1970s 43. There were isolated reports of MRSA from hospitals in the United States44, 45, but
the rest of the world was largely spared and these early MRSA never gained a foothold in
the community. By the 1980s for unclear reasons archaic MRSA strains had largely
disappeared from European hospitals, marking the end of the second and the beginning of
the third wave of antibiotic. Descendants of the archaic MRSA clone (e.g., the Iberian and
Rome clones46) and other highly successful MRSA lineages emerged (Table 1) 47–49,
constituting the third wave of antibiotic resistance. Outbreaks of infections caused by MRSA
strains were reported in hospitals in the United States in late 1970s and by the mid-1980s
were endemic50, 51. These strains swept the globe leading to the worldwide pandemic of
MRSA in hospitals that continues to the present time. Although global in distribution and
impact, MRSA was still confined mainly to hospitals and other institutional healthcare
settings, such as long-term care facilities. The ever increasing burden of MRSA infections in
hospitals led to more usage of vancomycin, the last remaining antibiotic to which MRSA
strains were reliably susceptible, and under this intensive selective pressure vancomycin
intermediate S. aureus (VISA, which are not inhibited in vitro at vancomycin concentrations
below 4 to 8 μg/ml)52 and vancomcyin-resistant S. aureus (VRSA, inhibited only at
concentrations of 16 μg/ml or more)53 strains of MRSA emerged.

The MRSA invasion of the community constitutes the fourth and latest wave of antibiotic
resistance. Some of the earliest cases of community-associated MRSA (CA-MRSA)
infections occurred in indigenous populations in Western Australia in the early 1990s54–56.
These MRSA strains were distinguishable from contemporary clones (i.e., genotypes)
circulating in Australian hospitals by their pulsed field gel electrophoresis patterns and
susceptibility to most antibiotics other than beta-lactams, suggesting that they were either
remote, feral descendants of hospital strains or community strains that had acquired mecA by
horizontal gene transfer. In the US, the first well-documented cases of MRSA infection that
were truly community associated occurred in otherwise healthy children in 1997–99 57.
These children had no risk factors for MRSA and all died with overwhelming infection,
suggesting that these community MRSA strains were especially virulent. Like their
Australian counterparts, these CA-MRSA isolates were unrelated to hospital clones and
were susceptible to most antibiotics The CA-MRSA epidemic in the US can be traced to the
early 1990s, based on retrospective data from 1993–1995 showing a dramatic increase in
MRSA infections in Chicago among children lacking risk factors for hospital-associated
MRSA exposure58. CA-MRSA has since been reported in numerous populations including
American Indians and Alaska natives 59; Pacific Islanders 60; athletes 4; jail and prison
inmates 61; men who have sex with men 62; contacts of patients with CA-MRSA infection
63; military personnel 61; adult emergency room patients 14; and children in day care centers
64. CA-MRSA clones have also gained a foothold in hospitals and are increasingly identified
as a cause of hospital-onset and heathcare-associated infections 10, 12, 25, 65, 66.

The epidemic wave of CA-MRSA in the United States, and Canada as well67, 68, is actually
two overlapping epidemics. The USA400 clone, which was isolated from the pediatric cases
described above, was most prevalent prior to 2001 3, 57, 69. USA400 remains a common
cause of community-onset disease in among indigenous populations in Alaska and the
Pacific Northwest 70. A second epidemic clone, USA300, which is unrelated to USA400 and
has largely displaced it in most other locations, emerged between 1999 and 2001, and now
causes the vast majority of CA-MRSA infections in the United States3, 4, 71–74.

Outbreaks and epidemics of CA-MRSA now occur worldwide and with a similar
epidemiology, although the specific clones that have emerged vary with geographical
location. CA-MRSA strains are not merely escapees from healthcare facilities; their
genotypes indicate that they are not closely related to endemic hospital clones and these
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community strains are susceptible to numerous antibiotics to which hospital strains are
routinely resistant. Two molecular markers not found in typical hospital MRSA are strongly
associated with emergence of CA-MRSA regardless of geographical origin: a specific
cassette element encoding mecA and genes encoding Panton-Valentine leukocidin (PVL).
These markers are discussed in detail below.

Skin and soft-tissue infections are the most common type of CA-MRSA infection,
accounting for approximately 90% of cases, of which 90% are abscesses and/or cellulitis
with purulent drainage 14, 15. CA-MRSA strains also appear to be especially virulent with
the capacity to cause fulminant, overwhelming infections, such as necrotizing fasciitis,
necrotizing pneumonia, bone and joint infections accompanied by septic thromboembolic
disease 31, 75–77, purpura fulminans with or without Waterhouse-Friderichsen syndrome 78,
orbital cellulitis and endophthalmitis 79, infections of the central nervous system 80, 81, and
bacteremia and endocarditis 66, 82

Molecular epidemiology of Staphylococcus aureus in the antibiotic era
S. aureus Clonal Complexes

Robust sequence-based molecular methods for genotyping strains of S. aureus, and
multilocus sequence typing (MLST) 83 in particular, have made the study of the
evolutionary history of S. aureus possible (Box 1). MLST is performed by sequence analysis
of approximately 450 bp internal fragments of seven housekeeping genes. Isolates that have
identical sequences at all seven genetic loci are considered a clone, and assigned a unique
sequence type (ST). Sequence types that differ by single nucleotide polymorphisms at fewer
than three loci are considered closely related, and are grouped into clonal complexes (CC)
(Figure 2). This is accomplished by application of the eBURST algorithm
(http://eburst.mlst.net), which uses multilocus sequence typing data to group closely related
strains into a clonal complex. It also predicts the probable founding clone (i.e., sequence
type) of each group and recent evolutionary descent of all other strains within the clonal
complex from the founder84, 85. The analysis can be further refined to identify specific
subclones by the addition of other methods, such as spa typing86 pulsed field gel
electrophoresis of genomic DNA, or by the presence of other genetic markers (e.g., toxin
genes or specific plasmids).

Box 1. Genotyping is used to identify S. aureus strains and predict phylogeny

Multilocus sequence typing (MLST) is sequence based genotyping method. The
method is based on single nucleotide variations (each variant is termed an allele) of 7
housekeeping genes in S. aureus, which provides a discriminatory allelic profile, known
as sequence type (ST)83, for each bacterial isolate. MLST, because it indexes variations
that accumulate slowly over time can be used to measure long periods of evolution
among S. aureus lineages and is highly reproducible. S. aureus isolates having identity at
5 or more of the 7 housekeeping genes/loci based upon MLST are known as a clonal
complex (CC)84, 87.

Pulsed-field gel electrophoresis (PFGE)has a somewhat more rapid clock speed than
MLST and is suitable for evaluation of more recent evolution among groups of strains.
The method relies on separation of SmaI-digested S. aureusgenomic DNA fragments
according to size in an agarose gel by by pulsed-field electrophoresis. Related strains are
clustered according to an 80% similarity coefficient 99. The CDC has developed a
national PFGE database for S. aureus, which uses the “USA” designation (e.g., USA300
for the ST8, PVL-positive community associated MRSA).99
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spa typing86 is based upon sequence analysis of variable number tandem repeats in the
gene encoding protein A (Spa). Spa typing takes into account point mutations in the the
repeat region as well as the number of repeat variations. The method is suitable for
investigation of local or global S. aureusoutbreaks. This sequence-based analysis of a
single target locus is a relatively inexpensive way of acquiring robust data that can be
used to determine both epidemiological and phylogenetic relationships.

Studies 47, 83, 87–90 of MSSA strains, carriage isolates and hospital and community isolates
causing disease, collected worldwide between 1961 through 2004, show that 88% of the
strains can be assigned to one of one of 11 clonal complexes (CC1, CC5, CC8, CC9, CC12,
CC15, CC22, CC25, CC30, CC45, and CC51/121 47, 84, 89–93), (Figure 3A). Percentages of
isolates range between 2% and 9% for ten complexes; CC30 is an outlier, accounting for
21% of isolates.

Clonal complexes for contemporary isolates are almost certainly the same as those of strains
circulating prior to 1940. For example, the ST5 lineage, the founder of CC5, is estimated to
have existed for over 2000 years 94. Furthermore, when Gomes and colleagues 95 genotyped
22 penicillin-susceptible and 77 penicillin-resistant MSSA blood culture isolates dating from
1957 to 1973 by the Statens Serum Institute of Copenhagen, which has collected and
maintained every blood culture isolate from patients in Denmark from 1957 to the present,
they found that 86% of the isolates fell into 7 clonal complexes, the two most common being
CC8 and CC30, which together accounted for 46% of the isolates (Figure 3B). The
distributions of penicillin-sensitive and penicillin-resistant isolates were similar. Relatively
few isolates were tested and all originated from a single country, which probably accounts
for the absence of isolates from CC9, CC12, CC15, or CC22.

CC8 and CC30 have given rise to epidemics during each of the four waves of antibiotic
resistance. The first well-characterized pandemic of antibiotic resistant S. aureus attributable
to a single clone was caused by phage type 80/81 strains, which belong to CC30 96.
Originally isolated in Australia in 1953 39, phage type 80/81 strains were penicillin-resistant
and caused both hospital and community outbreaks on a global scale96. Phage type 80/81
strains are prevalent in strain collections dating back to 1927; these strains were considered
to be highly transmissible and particularly virulent, and were also among the first to be
identified as penicillin resistant 37. Phage type 80/81 isolates in a collection dating to the
1950s and 1960s have been shown almost uniformly to possess genes for PVL96, which is
reminiscent of the association of PVL and resistance to methicillin in the contemporary
epidemic CA-MRSA strains. For unknown reasons, phage type 80/81 strains virtually
disappeared in the early 1960s, coincident with the first use of semi-synthetic penicillins,
which are resistant to penicillinase. Modern descendents of the ST30/CC30 lineage include
the PVL-positive southwest Pacific (SWP) clone of CA-MRSA in Australia and hospital
associated ST36 EMRSA16 clone, a major cause of nosocomial infections and bacteremia in
the both Australia and the United Kingdom 96–98.

MRSA Clonal Complexes
The very first MRSA clinical isolates, of which COL is an example, were ST250 and
members of CC8. ST250 MRSA strains circulated in the UK and Europe prior to the 1970s,
but never established a presence in the United States, and had largely disappeared by the
1980s. However, other highly successful clones emerged, including the ST247 Iberian/
EMRSA5 clone, which is closely related to ST250. No fewer than nine other endemic
nosocomial clones are descendants of the ST8 founder of this lineage. The CA-MRSA strain
USA300 (which is PVL-positive) that is prevalent in the US is also ST8 99.

Chambers and DeLeo Page 5

Nat Rev Microbiol. Author manuscript; available in PMC 2010 May 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



MSRA strains generally been concentrated into a subset of the S. aureus clonal complexes,
including CC1, CC5, CC8, CC22, CC30, and CC45, although as discussed below CA-
MRSA have exhibited some diversity. These clonal complexes were widespread prior to
emergence of methicillin resistance 43, 95, indicating that superior epidemicity preceded
acquisition of drug resistance and that the adaptations and innovations that make clones
successful also may favor their adaptation to antibiotic selective pressures.

Staphylococcal Chromosome Cassette mec, SCCmec
The discovery by Hiramatsu and colleagues that mecA is always found within a mobile
cassette element was a great advance for understanding the biology of methicillin resistance
and provided an additional tool for determining evolutionary relationships among MRSA
100. This element, SCCmec (staphylococcal chromosome cassette mec) is integrated into
orfX, a S. aureus gene of unknown function (Figure 4). To date eight SCCmec allotypes,
designated I through VIII 49, 100–104, have been described (Table 2) along with numerous
subtypes and more are likely to be identified as sequence data become available for more
MRSA strains (see http://www.staphylococcus.net/for additional descriptions and
information). Similar elements are present in coagulase-negative staphylococci, which are
commensual organisms that are normal skin flora of humans and other mammals 105. gene
complexes, mec and ccr (the recombination/excision locus that encodes the gene or genes
that mediates integration and excision of the whole cassette into orfX), are used to classify
SCCmec types (Table 2). There are also other differences among the various SCCmecs,
particularly in insertion sequences and antimicrobial resistance genes, but as these are
themselves mobile elements, they have not proven useful in classification of major types,
although they are useful in defining subtypes. class A mec gene complex (class A mec) is the
prototype complex. It contains PBP 2a-encoding mecA, the complete mecR1 and mecI
regulatory genes upstream of mecA, and the hypervariable region (HVR) and insertion
sequence IS431 downstream of mecA. The class B mec gene complex is composed of mecA,
a truncated mecR1 resulting from the insertion of IS1272 upstream of mecA, HVR, and
IS431 downstream of mecA. The class C mec gene complex contains mecA and truncated
mecR1 by the insertion of IS431 upstream of mecA, HVR, and IS431 downstream of mecA.
There are two distinct class C mec gene complexes. In the class C1 mec gene complex, the
IS431 elements upstream and downstream of mecA both have the same orientation. In the
class C2 mec gene complex, the orientation of IS431 upstream of mecA is reversed. C1 and
C2 are regarded as different mec gene complexes since they have likely evolved
independently. The mecA, mecR1, and mecI sequences are highly conserved with >99%
nucleotide sequence identity. The ccr complex consists of two adjacent genes ccrA and ccrB
in SCCmec I–IV, VI, and VIII, and ccrC in V and VII. MRSA strains isolated prior to 1990,
all nosocomial isolates, contained predominantly SCCmecI–III. Community MRSA isolates
overwhelming contain SCCmecIV or SCCmecIV subtypes or, less commonly, SCCmecV 28,
106. SCCmec IV is increasingly identified in contemporary hospital MRSA strains as well.

The three epidemic waves of MRSA correspond to evolutionary changes in SCCmec. The
early MRSA strains, COL and other CC8 strains that circulated in the UK and Denmark in
the early 1960s, all carried type I SCCmec. These clones were replaced in the 1980s by new,
and arguably more successful, lineages that eventually became established in hospitals
throughout the world. These clones, predominantly CC5 and CC8, carried type II or III
SCCmecs (e.g., New York/Japan EMRSA, EMRSA-16 in Australia and the United
Kingdom, Brazilian clone, Hungarian clone), or the type IA variant of the archaic SCCmec
type I (Iberian clone). Why types II and III were more successful than type I SCCmec is not
known, but it could be that the recombinase genes, which are defective in type I SCCmec but
functional in types II and III100, limited the potential for horizontal gene transfer of type I
SCCmec into new genomes.
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What gave rise to the most recent worldwide epidemic wave of community MRSA, is the
“invention” of SCCmecIV, which appears to have evolved from type I SCCmec, although it
has type 2 ccrAB 107. Originally identified in the community-associated MW2/USA400
strain, the first occurrence of type IV SCCmec in S. aureus may have been in the ST5
“Pediatric” clone that was circulating in hospitals in the late 1980s and 1990s 108. The
ultimate origins of mecA and SCCmec elements may never be known, but there is good
evidence suggesting that coagulase-negative staphylococci are the sources 109–111.

The success of SCCmecIV is borne out by two observations. First, it is the most widely
distributed among S. aureus isolates. It has been found in 9 distinct MRSA clonal complexes
or sequence types, compared to only 2 such lineages for type I, 3 for type II, and 2 for type
III 107. Second, CA-MRSA strains containing SCCmecIV have growth rates faster than
hospital MRSA strains carrying other SCCmec types and these growth rates are no different
from MSSA isolates 106. In a rabbit bacteremia model fitness and virulence of USA300,
which carries SCCmec type IVa, was indistinguishable from its isogenic methicillin-
susceptible variant 112. Thus, the type IV methicillin-resistance cassette appears to exact
little or no cost in fitness for the organism.

Epidemiology of Community-Associated MRSA
As mentioned above, the earliest reported cases of CA-MRSA infection in the US were
caused by a USA400 strain, MW2 57. MW2 is closely related to the PVL-negative clone,
WA-1, which is an important CA-MRSA in Australia and to the MSSA strain 476 in the
United Kingdom.55 USA400 has been supplanted by USA300, which is by far the most
frequent cause of CA-MRSA infections in the US 113. The USA300 clone seems to be
particularly well adapted to the community with reports of CA-MRSA infections caused by
USA300 or its close relatives in Australia and Denmark and outbreaks of CA-MRSA in
Columbia114–116. USA300 strains can also cause healthcare-associated infections65, 66, 117,
118

While there is evidence of international spread of these USA300 and USA400,18, 23, 119, 120

CA-MRSA strains unrelated to either have been responsible for infections outside of the
United States. ST80 in is the predominant clone circulating in Europe, ST59 in Taiwan, and
ST30 in Eastern Australia, demonstrating that CA-MRSA strains have evolved in separate
geographical regions 21–23. There also can be considerable strain diversity in CA-MRSA
from country to country. For example in Australia 45 distinct clones of CA-MRSA have
been identified23; many of these are related to well-known MRSA lineages, but others
appear to be novel. Diversity of CA-MRSA isolates has been noted by others as well18, 27,
114, 119, 120. In the United Kingdom the vast majority of CA-MRSA infections are caused by
EMRSA-15 (ST22) and EMRSA-16 (ST36), which are also important hospital clones121;
ST80 is also present, but it accounts only for a small proportion of isolates122. A CA-MRSA
strain, ST 398, of swine origin and transmissible to humans has also been described123, 124.

The epidemiology of CA-MRSA is quite similar regardless of country of origin. Isolates
tend not to be multiple drug-resistant, SCCmec types IV and V are typically present, and
infections of skin and soft tissue are the most common. The presence of PVL among CA-
MRSA isolates is more variable. For example in Australia and the United Kingdom most
CA-MRSA clones do not produce PVL23, 121 and prevalence of PVL among the more
common CA-MRSA isolates from Denmark ranged from 17% to 100%120. On the other
hand isolates of clones that typically do not carry PVL genes, e.g., EMRSA-15 and
EMRSA-16, have been found on occasion to be PVL-positive121.

Nasal carriage of MRSA has increased in parallel with the emergence of MRSA as a
community pathogen, which is not unexpected given that approximately 30% of people have
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asymptomatic nasal colonization with S. aureus. Between 2001 and 2004 carriage of MRSA
strains in a US population based study approximately doubled from 0.8% to 1.5% 2 and the
percentage of community-associated MRSA genotypes increased from7% to 24.2% 88.
Although the sites of carriage (e.g., nasal versus groin versus other) and the relationship
between carriage of CA-MRSA strains and disease is not entirely clear, CA-MRSA strains,
especially USA300, appear to be more easily transmitted than other strains,125 which could
account for increasing carriage rates in the community. Thus, no individual or group can be
considered not at risk for CA-MRSA infection.

Virulence of Community-Associated MRSA
Compared to infections caused by healthcare-associated MRSA strains and community
MSSA, CA-MRSA infections have been associated with fulminant and lethal infections and
worse clinical outcomes30, 77, 126, giving rise to the clinical impression that CA-MRSA
strains, especially USA300, are more virulent than other strains. Much of what the
information about the unique virulence properties of CA-MRSA is based on studies of
USA300 strains, the most extensively investigated clone. The USA300 core genome
(chromosome excluding mobile genetic elements) is quite similar to that of the early MRSA
strain, COL 127. Yet, studies in animal models indicate that USA300 is more virulent than
COL128, 129. Expression of virulence factors by USA300 is high and USA300 130, 131 and
closely related strains are more lethal than more distant relatives and cause more extensive
disease in animal models of infection129, 130. The major difference between COL and
USA300 genomes resides in mobile genetic elements, which include prophages, plasmids,
pathogenicity islands, and transposons, acquired through horizontal gene transfer. These
elements encode factors that may impact transmission, antibiotic resistance, and virulence.
Prophages ΦSa2 and ΦSa3, which are present in USA300 strains and not in COL, could
contribute to the noted differences in virulence between these two lineages. Prophage ΦSa2
contains lukS-PV and lukF-PV, which encode PVL. Prophage ΦSa3 encodes staphylokinase,
staphylococcal complement inhibitor (SCIN), and S. aureus chemotaxis inhibitory protein
(CHIPS), all of which are modulators of the innate immune system 132, 133. ΦSa3 is present
in strains other than CA-MRSA. A pathogenicity island, SaPI5, similar to the one that is in
COL, is present in USA300. SaPI5 encodes two additional superantigens not present in
COL, SEQ and SEK, which also are found in other MRSA and MSSA lineages. S. aureus
produces many other molecules that promote host colonization, facilitate evasion of the
innate immune system, and/or alter immune responses (Tables 3–6) 131, 134, 135. Most of
these molecules are not unique to CA-MRSA. The virulence factors more commonly found
in CA-MRSA compared to other strains, those that are linked by epidemiology to CA-
MRSA infections, or those that have been studied in animal models of CA-MRSA infection
are discussed below.

Panton-Valentine leukocidin (PVL)
PVL has been studied extensively since its discovery by Panton and Valentine 70 years
ago136. The role of PVL in the marked epidemicity and enhanced virulence of CA-MRSA is
subject of debate. PVL is comprised of two subunits, LukS-PV and LukF-PV 137 that are
encoded by prophage ΦSa2 138 that is acquired by horizontal gene transfer. LukS-PV and
LukF-PV are secreted by the bacterium. These subunits bind to specific membrane
receptors, yet to be identified, and associate to form pores in the membrane of host
leukocytes139, 140. At high concentrations (200 nM) PVL causes lytic cell death, but at
sublytic concentrations (5 nM), PVL appears to partially activate neutrophils in a
phenomenon often called priming, as they release potent mediators of inflammation, such as
leukotriene B4, interleukin-8, and neutophil granule contents through exocytosis 141–143. In
addition, PVL primes neutrophils for enhanced release of reactive oxygen species upon
stimulation with the widely used neutrophil agonist N-formylpeptide (fMLP) 144. Thus, PVL
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could contribute to pathogenesis by causing an exaggerated inflammatory response and
injury to the host. Several lines of evidence, largely circumstantial, indicate that PVL is
associated with severe skin infections and severe necrotic hemorrhagic pneumonia 33, 145,
146. Both the phage type 80/81 penicillin-resistant strains that were associated with
numerous outbreaks and severe disease in the 1950s and USA300, now the leading cause of
skin and soft tissue infections in the United States and a cause of extremely severe
infections, produce PVL. The epidemiologic association between PVL and emergence of
genetically unrelated (i.e., different and unrelated sequence types) CA-MRSA strains that
are geographically dispersed is striking.

There are other observations, however, that call into question the presumption that PVL is
driving the CA-MRSA epidemic. It is found infrequently in other common and quite
successful community strains. For example, PVL genes are present in only ~1–10% of
MSSA clinical isolates 89, 147, 148. And although USA300 and USA400 are both PVL-
positive, it is USA300 that has become the predominant CA-MRSA clone in the US. This
suggests that factors other than PVL are important for the recent emergence of CA-MRSA.

Experimental evidence does not provide a clear picture. Voyich et al. found that USA300
and USA400 wild-type and isogenic PVL-deletion strains (Δpvl) strains caused virtually
identical courses of infection in mouse abscess and sepsis models and that there was no
difference in neutrophil phagocytosis or lysis after uptake, although because these
experiments were conducted with culture supernates the results could reflect the action of
multiple lytic factors149. Similar results in a rat pneumonia model were reported by
Montgomery and Daum150. Bubeck Wardenburg et al. showed that USA300 and USA400
wild-type and isogenic PVL-deletion strains were equally virulent in these mouse abscess
and pneumonia models 151, 152. Diep et al. used two rabbit bacteremia models to compare
hematogenous dissemination of wild-type and Δpvl CA-MRSA strains to major organs 153.
Although PVL did not promote seeding of lungs, spleen or blood by USA300, there was a
modest, transient contribution of PVL to colonization of the kidneys. However, in series of
experiments using the same USA300 wild-type and mutant (Δpvl) strain pair as Voyich et al
149, Brown et al found that the parent was more virulent than the Δpvl mutant in murine
pneumonia and abscess models and that disease caused by the wild-type strain was
attenuated by immunization with recombinant LukF-PV or LukS-PV 154. In addition,
Labandeira-Rey et al found evidence suggesting that PVL may play a role in murine model
of staphylococcal pneumonia 155. Direct instillation of high doses of purified toxin provoked
an inflammatory response in the lung and reduced survival. These investigators, using a
laboratory strain transduced with PVL-encoding bacteriophage to establish infection,
reported worse outcome for the PVL-producing variant. However, in addition to presence or
absence of PVL, this laboratory construct has major alterations in global gene expression
that confounded interpretation of the data. As PVL has no impact on protein or gene
expression in USA300 or USA400 153, it is possible that factors other than PVL accounted
for the experimental results. The data in aggregate suggest that the contribution of PVL to
CA-MRSA pathogenesis may be relatively minor or perhaps dependent on an as yet
unidentified bacterial factor or host-susceptibility component.

Alpha-hemolysin (Hla or alpha-toxin)
This pore-forming toxin causes destruction of a wide-range of host cells, including epithelial
cells, erythrocytes, fibroblasts, and monocytes and is lethal in animal models when injected
in purified form 156. Alpha-hemolysin is ubiquitous among clinical isolates, although some
strains lack an active alpha-toxin. Recent studies by Bubeck Wardenburg et al 151

demonstrated that alpha-hemolysin is essential for USA300 and USA400 to cause lethal
pneumonia in a murine model. Toxin levels produced by these strains in vitro correlate with
severity of lung disease 130, 151, 157.
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Alpha-type phenol-soluble modulins (PSMa)
Alpha-type phenol-soluble modulins (PSMα) from a novel group of peptides in S. aureus
that have some similarity to phenol-soluble modulins (PSMs) of S. epidermidis 131. High
expression of PSMα could contribute to the enhanced virulence of CA-MRSA; PSMs are
produced at much higher levels in vitro by prominent CA-MRSA strains, including USA300
and USA400, compared to hospital MRSA strains 131. PSMα peptides recruit, activate, and
ultimately lyse human neutrophils, thus promoting S. aureus pathogenesis and contribute
significantly to USA300 and USA400 virulence in mouse abscess and sepsis models. The
studies by Wang et al131 are the first to identify molecules of CA-MRSA that account at
least in part for the enhanced virulence of USA300 and USA400.

Arginine catabolic mobile element (ACME)
ACME is a 30.9 kilobase segment of DNA that appears to be unique to USA300 112. This
element is adjacent to SCCmecIV and is mobilized by the recombinases encoded on
SCCmec. This DNA element contains two potential virulence factors including a cluster of
arc genes that encode an arginine deiminase pathway and Opp-3, which encodes an
oligopeptide permease operon158, 159. Deletion of ACME but not SCCmec has been shown
to decrease fitness of USA300 in a rabbit bacteremia model 112. Thus, ACME could
contribute to the fitness and epidemic spread of USA300.

Although mobile genetic elements such as ACME are likely to play a role in transmission of
CA-MRSA, there are differences in virulence potential and human disease manifestation
even among similar USA300 isolates. For example, Kennedy et al used comparative whole
genome sequencing to determine whether USA300 arose by convergent evolution toward a
hypervirulent phenotype or from a recent common ancestor of high virulence potential 113.
Eleven USA300, which included those from a wide range of clinical syndromes and from
different geographic locations in the US, were examined. The strains differed by only a few
single nucleotide polymorphisms (SNPs), ranging from 11 to 408 in number compared to
the USA300 reference strain FPR3757 genome. Phylogenetic analysis indicated that eight of
the strains, differing on average by 32 SNPs from the reference strain and 50 SNPs from
each other, clustered together with the reference strain and had descended from a recent
common ancestor. These 9 closely related isolates comprise the epidemic USA300 clone; 8
of the 9 were ACME positive and all contained the same SCCmec type IVa subtype. The
two other strains, both of which lacked ACME and carried a different SCCmec subtype, type
IVb, were outliers. Unexpectedly, the virulence of the more closely related isolates was
variable in animal infection models. Some of these isolates had caused dramatically different
disease syndromes in humans (e.g., necrotizing pneumonia versus abscess in isolates that
differ by only 23 SNPs), which serves to underscore the importance of host factors in
disease presentation and severity.

Treatment in the Era of Community-Associated MRSA
CA-MRSA has had a profound impact on empirical therapy of suspected staphylococcal
infection. Most beta-lactam antibiotics, including all orally available agents, no longer can
be assumed to be effective for a variety of common staphylococcal infections and skin and
soft-tissue infections in particular. In regions where CA-MRSA is prevalent antimicrobial
therapy, if it is indicated for treatment of staphylococcal infection, should be active against
MRSA strains. Yet, there are few clinical data to support the use of agents other than
vancomycin, daptomycin, or linezolid. The oral agents that are recommended for treatment
of CA-MRSA skin and soft tissue infections, despite lack of rigorous clinical studies,
include clindamycin, long-acting tetracyclines (doxycycline and minocycline), TMP-SMX,
and, as adjunctive agents to be used in combination, rifampin and fusidic160–162.
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Surgical incision and drainage is the treatment of choice for cutaneous abscesses; adjunctive
antimicrobial therapy is of little or no benefit in most cases 14, 15, 163, 164. Antibiotic therapy
after drainage of CA-MRSA abscesses is not routinely recommended unless the patient has
severe or extensive disease, or has rapid progression in the presence of associated cellulitis;
has signs and symptoms of systemic illness; is very old or very young or has medical
comorbidities or immune suppression (e.g., diabetes mellitus, HIV infections, neoplastic
disease); or has an abscess in area that is difficult to drain or an abscess that is associated
with septic phlebitis 160.

Vancomycin is still is the preferred drug for treatment of serious MRSA infections.
However, prolonged, persistent, or recurrent bacteremia during therapy 165, 166, high rates of
microbiological and clinical failures 167, nephrotoxicity 168, and increasing prevalence of
non-susceptible strains 169, 170 limit its effectiveness. Randomized clinical trials of alterative
agents such as linezolid and daptomycin show that they are comparable, or more precisely,
non-inferior, but not superior, to standard therapy 171–176. and drug toxicity remain concerns
regardless the choice of agent.

One or more compounds under development are likely to become available for treatment of
MRSA infections in the near future 177, 178. Telavancin, dalbavancin, and oritavancin are
vancomycin derivatives that rapidly kill S. aureus in a concentration-dependent manner in
vitro. Whether more rapid killing will translate into improved efficacy over vancomycin for
more serious infections, such as endocarditis or bacteremia, remains to be determined.
Carbapenems and cephalosporins that bind PBP 2a, the penicillin-binding protein that
mediates methicillin resistance, with much higher affinity than the currently available beta-
lactams, have been developed 179. Two cephalosporins, ceftobiprole and ceftaroline 180, 181,
have been shown to be clinically effective for treatment of MRSA skin and soft infections.
An issue with these and the other anti-MRSA beta-lactams under development is that they
are very broad spectrum for the targeted treatment of MRSA infection. Further studies are
needed to define their eventual role in therapy of MRSA infections.

The vancomycin-derivatives and anti-MRSA beta-lactams, which can only be administered
intravenously, do not address the need for orally active agents. Orally bioavailable
oxazolidinones active against MRSA are in early stages of development 182.

Several non-traditional approaches to treatment and prevention of MRSA infections have
been or are under investigation. These include lysostaphin 183, antimicrobial peptides 184

and other natural products (e.g., tea tree oil) 185, and anti-staphylococcal vaccines 186. There
are major challenges in the development of these agents, including prohibitively expensive
cost, potential for hypersensitivity with repeated administration of protein products, short
half lives with systemic administration, and short-lived or partially protective immunity with
vaccines, as was the case with an anticapsular vaccine that proved to be ineffective 187.
These are years away from the clinic, if they make it at all. Prudent use of agents that are
now available is essential to avoid further erosion of the antimicrobial armamentarium.

Concluding Remarks
S. aureus is an extraordinarily adaptable pathogen with a proven ability to develop
resistance. Especially concerning is the steadily erosion in the effectiveness of beta-lactam
antibiotics during a relatively brief 60-year time period. Although details vary the basic
themes of each successive wave of antibiotic resistance are similar. Resistance, often as a
consequence of horizontal gene transfer, is initially encountered in hospitals and healthcare
institutions, where the selective pressures for resistance are greatest. Resistant strains are
contained within hospitals temporarily, but eventually though a series of modifications and
adjustments, invariably find their way into or arise from within the community to emerge as
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fully fit and virulent pathogens. Understanding of the forces that direct the evolution of
virulent and drug-resistant organisms is imperfect, but overuse and misuse of antibiotics is
clearly a contributing factor. Discovery and development of new antimicrobials, while
necessary, is unlikely to solve the problem of drug resistance for very long. New
technologies leading to improved and more rapid diagnostics, a better understanding of
pathogenesis of staphylococcal disease, and non-antimicrobial approaches to prevention and
treatment of infection will also be needed to forestall the coming of the post-antibiotic era.
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Figure 1.
A timeline of the four waves of antibiotic resistance in Staphylococcus aureus. Wave 1,
which continues today, began shortly after the introduction of penicillin into clinical practice
in the 1940s. The first pandemic antibiotic resistant strains, from lineage named phage type
80/81 (Φ80/81), were penicillin resistant and produced PVL (Panton-Valentine leucocidin).
Wave 2 began almost immediately upon the introduction of methicillin into clinical practice
with isolation of the first MRSA (Archaic clone), which contained type I SCCmec (MRSA-
I) and extended into the 1970s in the form of the Iberian clone. Wave 3 began in the mid-to-
late 1970s with emergence of new MRSA strains, which contained novel SCCmec, types, II
and III (MRSA-II and III), marking the on-going worldwide pandemic of MRSA in
hospitals and healthcare facilities. The upsurge in vancomycin usage for treatment of MRSA
infections eventually led to emergence of vancomycin intermediate S. aureus (VISA)
strains. Wave 4, which began in the mid-to-late 1990s, marks the emergence of MRSA
strains in the community. Community MRSA strains where susceptible to most antibiotics
other than beeta-lacams, were unrelated to hospital strains, contained a novel, smaller, more
mobile type IV SCCmec (MRSA-IV), and a variety of virulence factors, including PVL.
Vancomycin-resistant S. aureus (VRSA) strains, of which 10 or so have been isolated
exclusively in healthcare settings, were first identified 2002.
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Figure 2. An example of multilocus sequence typing scheme and designation of clonal complexes
Approximately 450 nucleotides of seven chromosomal “housekeeping” genes (arcC,
carbamate kinase; aroE, shikimate dehydrogenase; glpF, glycerol kinase; gmk, guanylate
kinase; pta, phosphate acetyltransferase; tpiA, triose phosphate isomerase yqiL, acetyl-CoA
acetyltransferase), selected for their presumed absence of selective pressure and therefore
relatively stable in nucleotide sequence, are sequenced. Each unique sequence within a gene
locus is assigned a unique number. The numbers are concatenated in left-to-right in the order
shown to provide a seven interger series of numbers, which is assigned a number
designating this sequence type (ST). Strains which are identical at all seven loci are
classified as the same ST. Strains differing at one or two loci, are related, but as they are not
identical, are assigned different STs. Closely related STs are grouped into a clonal complex.
In the example shown, ST1, ST5, and ST8 differ at most loci and thus are not closely
related. ST250 and ST247 differ from each other at one locus and from ST8 at one or two
loci, respectively. Thus, ST8, ST250, and ST247 are closely related and from a clonal
complex, CC8, so designated because analysis of sequence identities and differences in a
large collection of strains indicates ST8 is the founder of this clonal complex, the ancestor of
both ST247 and ST250, and that ST247 is a descendant of ST250.
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Figure 3. Distribution of antibiotic-susceptible and -resistant S. aureus among clonal complexes
a) MSSA (blue) versus MRSA (red) clonal complexes. b) Penicillin-susceptible S. aureus
(PSSA, blue) versus penicillin-resistant S. aureus (PRSA, red) clonal complexes. Data in (a)
were collected from 6 continents (1961–2004) and those in (b) are from a single study of 99
isolates collected in Copenhagen from 1957–73. See text for details.
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Figure 4. Comparison of methicillin-resistance cassettes typical of hospital- or community
MRSA
Type II mec (SCCmecII) is most abundant in hospitals whereas Type IV mec (SCCmecIV)
is present in the most abundant CA-MRSA strains. Transposon Tn554 encodes resistance to
macrolide-lincosomide-streptogramin B antibiotics and spectinomycin. SCCmecII encodes
resistance to multiple antibiotics whereas SCCmecIV encodes resistance to methicillin
alone. IS431, insertion sequence 431. See text for additional details.
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Table 3

Virulence factors of Staphylococcus aureus that interfere with bacterial killing.

Target cell, host factor or response Gene(s) Protein or molecule
Putative function/effect on immune
system

Antimicrobial peptides aur Zinc metalloproteinase aureolysin,
Aur

Degrades LL-37

dlt operon Dlt operon, DltABCD Promotes resistance to cationic
antimicrobial peptides and group IIA
phospholipase A2

icaA, icaD,
icaB, icaC,
icaR

Polysaccharide intercellular adhesin,
PIA

Resistance to cationic antimicrobial
peptides

isdA, isdB Iron-regulated surface determinants
of S. aureus, IsdA and IsdB

Resistance to antimicrobial peptides, skin
fatty acids, and neutrophil reactive
oxygen species

mprF Multiple peptide resistance factor,
MprF

Promotes resistance to cationic
antimicrobial peptides

sak Staphylokinase Inhibits host α-defensins

Oxygen-mediating bacterial killing ahpC, ahpF Alkyl hydroperoxide reductase
subunits C and F, AhpC and AhpF

Promotes resistance to ROS

crtM, crtN Carotenoid pigment, staphyloxanthin
(S. aureus golden pigment)

Promotes resistance to reactive oxygen
species

isdA, isdB Iron-regulated surface determinants
of S. aureus, IsdA and IsdB

Resistance to neutrophil reactive oxygen
species

sodA, sodM Superoxide dismutase, SodA, SodM Promotes resistance to reactive oxygen
species
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Table 4

Hemolysins and anti-platelet factors produced by Staphylococcus aureus.

Target cell, host
factor or
response Gene(s) Protein or molecule

Putative function/effect on immune
system

Erythrocytes hla, hly Alpha-hemolysin (α-hemolysin), Hla Causes cell lysis (also affect epithelial cells,
fibroblasts, and monocytes)

hld Delta-hemolysin, Hld Causes cell lysis

hlgA, hlgB, hlgC Gamma-hemolysin subunits A, B, and C; HlgA, HlgB,
HlgC; two-component leukocidin

Causes cell lysis

Platelets clfA Clumping factor A, ClfA Causes platelet activation

fnbA, fnbB Fibronectin-binding proteins A and B, FnbA and FnbB Causes platelet activation

katA Catalase, KatA Detoxifies hydrogen peroxide

sodA, sodM Superoxide dismutase, SodA, SodM Promotes resistance to reactive oxygen
species
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Table 5

Leucocidins and anti-phagocytic factors produced by Staphylococcus aureus.

Target cell, host factor or
response Gene(s) Protein or molecule

Putative function/effect on
immune system

Polymorphonuclear leukocytes cap5 or cap8 genes Capsular polysaccharide Inhibits phagocytosis

clfA Clumping factor A, ClfA Inhibits phagocytosis

eap Extracellular adherence protein, Eap Inhibits leukocyte adhesion

hlgA, hlgB, hlgC Gamma-hemolysin subunits A, B, and C;
HlgA, HlgB, HlgC; two-component
leukocidin

Causes cell lysis

lukD, lukE Leukocidin D and E; LukD and LukE; two-
component leukocidins

Causes leukocyte lysis

lukS-PV, lukF-PV Leukocidin S-PV and F-PV subunits; two-
component leukocidin, PVL

Causes phagocyte lysis

psm Phenol-soluble modulin-like peptides, PSMs Cause leukocyte lysis

sbi IgG-binding protein, Sbi Sequesters host IgG

scn Staphylococcal inhibitor of complement,
SCIN

Inhibits complement

ssl5 Staphylococcal superantigen- like 5, SSL5 Binds P-selectin glycoprotein
ligand-1 and inhibits neutrophil
rolling

Chemotaxis chp Chemotaxis inhibitory protein of S. aureus,
CHIPS

Inhibits chemotaxis

ecb Extracellular complement- binding protein,
Ecb

Inhibits C5a generation

efb Extracellular fibrinogen- binding protein,
Efb

Inhibits C5a generation

sbi IgG-binding protein, Sbi Sequesters host IgG

scn Staphylococcal inhibitor of complement,
SCIN

Inhibits complement

ssl7 Staphylococcal superantigen- like 7, SSL7 Binds to C5a and IgA

Nat Rev Microbiol. Author manuscript; available in PMC 2010 May 16.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chambers and DeLeo Page 31

Table 6

Superantigens produced by Staphylococcus aureus.

Target cell, host
factor or
response Gene(s) Protein or molecule

Putative function/effect on immune
system

T-cells sea, seb, secn, sed, see,
seg, seh, sei, sej, sek, sel,
sep

Staphylococcal enterotoxins; SEA, SEB,
SECn, SED, SEE, SEG, SEH, SEI, SEJ, SEK,
SEL, and SEP

Activate T-cells (superantigen)

tst Toxic shock syndrome toxin-1, TSST-1 Activates T-cells (superantigen)
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