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Waves on glaciers 

By A. C.  FOWLER? 

School of Mathematics, 39 Trinity College, Dublin, Ireland 

(Received 30 March 1981 and in revised form 23 November 1981) 

This paper is an attempt a t  a mathematical synopsis of the theory of wave motions on 

glaciers. These comprise surface waves (analogous to water waves) and seasonal waves 

(more like compression waves). Surface waves have been often treated and are well 

understood, but seasonal waves, while observed, do not seem to have attracted any 

theoretical explanation. Additionally, the spectacular phenomenon of glacier surges, 

while apparently a dynamic phenomenon, has not been satisfactorily explained. 

The present thesis is that the two wave motions (and probably also surging, though 

a discussion of this is not developed here) can both be derived from a rational theory 

based on conservation laws of mass and momentum, provided that the basal kinematic 

boundary condition involving boundary slip is taken to have a certain reasonable 

form. It is the opinion of this author that the form of this ‘sliding law’ is the crux of 

the difference between seasonal and surface waves, and that a further understanding 

of these motions must be based on a more satisfactory analysis of basal sliding. 

Since ice is here treated in the context of a slow, shallow, non-Newtonian fluid flow, 

the theory that emerges is that of non-Newtonian viscous shallow-water theory; rather 

than balance inertia terms with gravity in the momentum equation, we balance the 

shear-stress gradient. The resulting set of equationsis, in essence, a first-order nonlinear 

hyperbolic (kinematic) wave equation, and susceptible to various kinds of analysis. 

We show how both surface and seasonal waves are naturally described by such a model 

when the basal boundary condition is appropriately specified. Shocks can naturally 

occur, and we identify the (small) diffusive parameters that are present, and give the 

shock structure: in so doing, we gain a useful understanding of the effects of surface 

slope and longitudinal stress in these waves. 

1. Introduction 

There are a t  least two main areas of geophysics in which one is led to consider the 

deformation of solids from the point of view of fluid mechanics. One is the convection 

of the earth’s mantle (e.g. Turcotte & Oxburgh 1972), which is studied in relation to 

the theory of plate tectonics; the other is the flow of glaciers and ice sheets. Although 

the materials in both cases are crystalline solids, each is capable of shearing motion by 

mechanisms such as dislocation creep (e.g Stocker & Ashby 1973). Over sufficiently 

long time scales, it thus seems that the motion of these solids may be adequately 

described by a rheological equation of state which relates the strain-rate tensor to the 

stress tensor. In mantle convection, relevant time scales are measured in millions of 
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years. In glaciers and ice sheets, the scale of large-scale fluid-like motions is upwards of 

10 years, and is as large as 5000 years for the Antarctic ice sheet. Thus i t  is reasonable 

to consider ice as a fluid when seeking to explain the various phenomena that are 

observed to occur in large ice masses. In so doing, we equivalently consider ice as a 

homogeneous continuum, thus ignoring short-time-scale phenomena such as crevasse 

formation, iceberg calving, etc., which may be analysed in the context of an elastic 

solid (e.g. Weertman 1977). 

This procedure is certainly a valid one to adopt in discussing the particular 

phenomena with which we shall be principally concerned. These are surface waves, 

seasonal waves and surges. In  terms of quantitative explanations, these three types of 

glacial motion have had varying degrees of success. Surface waves are undulations of 

the glacial surface profile which travel downglacier a t  speeds (typically) of three to 

four times the surface speed, which itself is typically of the order of 100 m per 

year (there is of course a substantial amount of variation in this figure). These waves 

are completely analogous to ordinary flood waves on rivers, and indeed are briefly 

discussed in Whitham’s (1974) book in the context of his kinematic wave theory. The 

waves propagate as a consequence of the equation of mass conservation, and many 

analyses using this idea have been given, stemming from work by Finsterwalder 

(1907), and more recently by Weertman (1958), Nye (1960) and Lliboutry (1965, 

1971). In its essentials, this theory solves the problem of surface waves, although some 

of the mathematical detail remains to be discussed. 

Seasonal waves are much less well understood. Additionally, they do not seem to be 

comparable to any other kind of fluid wave motion, and a satisfactory analytical 

explanation of their mode of propagation would therefore be welcome. Seasonal waves 

manifest themselves as fluctuations in the surface velocity which propagate downglacier 

a t  speeds in the range 20-150 times the surface speed: they can thus travel a t  speeds 

of the order of magnitude of 20 km per year. Although the fluctuations in speed are 

large, there is no apparent corresponding depth perturbation; thus the glacier surface 

remains relatively static during the propagation of these velocity waves. As such, 

these bear some resemblance to acoustic waves, and indeed they are referred to as 

‘Druckwellen’ (pressure waves) in early work by Deeley & Parr (1914). One of the 

objects of the present study is to examine whether the compressive effects of longi- 

tudinal strain-rate gradients are relevant in this context. Another early reference is the 

work of Bliimcke & Finsterwalder (1905); recent work on Nisqually glacier by Hodge 

(1974) documents the passage of seasonal waves in 1969. 

The third and most interesting phenomenon exhibited by glaciers is that of surging. 

A surge is a large-scale relaxation oscillation of a large portion of a glacial ice mass. The 

main characteristics of the motion have been summarized by Meier & Post (1969): 

briefly, a ‘ surge-type ’ glacier exhibits a ‘ quiescent’ phase lasting from 10 to I00 years, 

typically 20-30 years, during which the ice mass increases owing to accumulation of 

ice on its upper portions (the ‘accumulation area’). Consequently the thickness of the 

ice increases in a ‘reservoir’ area, until it reaches an apparently critical depth, when 

a surge is suddenly initiated. In surging mode, the ice in the reservoir area moves 

very rapidly, and there is a substantial displacement of ice downstream into a 

‘receiving’ area. In some cases, this can lead to rapid advances of the glacier, and 

velocities up to about 10 km per year have been recorded. Evidence for the periodicity 

of surges comes from examination of terminal and medial moraines, and i t  therefore 
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seems that surging is a self-regulating mechanism due to internal glacier flow dynamics, 

rather than being the result of any periodic external forcing due, for example, to 

fluctuation in the climate. From a mathematical point of view, this is a satisfactory 

state of affairs, since i t  suggests that a theoretical explanation should be found from 

a study of the equations of glacier flow alone; to date, this theory has not appeared. 

This is not to say that physical mechanisms, computer predictions, etc., have not been 

published: there are indeed a variety of different theories available (Robin 1955, 1969; 

Robin & Weertman 1973; Budd 1975, Campbell & Rasmussen 1969, Clarke, Nitsan & 

Paterson 1977; Cary, Clarke & Peltier, 1979; Yuen & Schubert 1979): the mechanisms 

discussed include a multi-valued basal sliding law, thermal runaway due to shear 

heating instability, instability of basal water flow, and so on. What seems to be lacking 

is a single mathematical framework in which to examine all these theories. This is not 

trivial, in view of the wealth of dynamic possibilities available, but it is one aim of the 

present paper to provide just such a framework. This is based on the concept of a 

rational model of glacier flow, proposed and developed elsewhere (Fowler & Larson 

1978; Fowler 1979a); the model is rational in the sense that it purports to give a precise 

description of an entity that mathematically closely resembles a glacier; for example, 

the geometry is not arbitrarily restricted by fixed boundaries, but the top surface is 

allowed to remain free. This turns out to have a crucial effect on the uniqueness of the 

flow (Fowler & Larson 1980a), and is obviously necessary for a study of surface wave 

motions. In principle, we should hope that the model would have built into it an 

explanation of all the phenomena described above and, if so, it will then emerge what 

the physical role is of the parameters which are present in the model. This has already 

been done for surface waves (Fowler & Larson 1980b), and briefly for seasonal waves 

(Fowler 1979a): the purpose of the present paper is to give a unified quantitative 

explanation of both these types of wave, and in particular to analyse the diffusional 

structure of shock waves which occur naturally in the diffusionless limit. In particular 

(because the equations are essentially viscous), there are two diffusion parameters, 

and we are able to identify these and estimate their relative importance. 

The corresponding study of surges is reserved for a future paper: we shall only make 

some further comments in the conclusions. Nevertheless, we have included a brief 

discussion of their properties here since we feel a proper theoretical understanding of 

the dynamic processes involved (for example the propagation of high-velocity regions 

upstream) can be firmly based on a knowledge of how both surface and seasonal waves 

propagate. For example, the quiescent phase of a surge occupies a time comparable 

to that which a kinematic wave takes to traverse the glacier length, while the surging 

phase has the time scale of passage of a seasonal wave. This is not fortuitous, and a 

surge might correspondingly be viewed in terms of a switching mechanism between 

‘kinematic ’ and ‘seasonal ’ states. The techniques for analysing this switching are 

those promoted here. 
It is also worth mentioning that periodic surges of the Antarctic ice sheet have been 

suggested as a constituent of ice ages (Bowen 1980; Hollin 1980; Aharon, Chappel & 

Compston 1980). Obviously, such a surge has never been directly observed, and a 

realistic explanation of surging could thus provide a sensible criterion for evaluating 

the possibilities of such an event occurring. 

10-2 
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f Accumulation 

FIGURE 1. Geometry of glacier flow. 

2. Mathematical model 

A detailed model for the flow of glacial ice masses has been derived and presented 

elsewhere (Fowler & Larson 1978; Fowler 1979a), and it is not our intention to go 

through this whole process here. Rather, we shall outline some important physical 

processes which arise in such a derivation. 

I n  what follows, we consider a two-dimensional ice flow as shown in figure 1. The two- 

dimensionality reflects the fact that the phenomena that interest us here are essentially 

of this nature; moreover, this would be an adequate description in wide-valley glaciers, 

where the main flow is unaffected by the valley walls. We take Cartesian axes (x, y) 
as shown in the diagram, with x pointing down the line of mean bedrock slope: the 

corresponding velocity components are (u, w). The top surface is denoted by y = q(x, t),  
the bedrock is y = h(x), assumed known; the surface ~ ( x ,  t) is a free boundary, which 

is to be determined as part of the solution. For the moment, we assume that h is 

arbitrary; later we shall take h = 0 as a simplifying, but inessential assumption. We 

define the glacier depth (perpendicular to the line of mean bedrock slope) as 

H(x ,  t) s q(x,  t) - h(x). (2.1) 

A glacier is a long but importantlyJinite flow. A typical length might be 1Okm. The 

flow is maintained by the accumulation of fallen snow in an accumulation area a t  the 

glacier head, which is subsequently packed into ice. This manifests itself as a source 

term on the top surface. Equivalently (since the climate is warmer downglacier), the 

ice melts or ablates there (in an ablation zone), which is why the glacier terminates a t  

its snout. The line dividing accumulation and ablation areas is called the firn or 

equilibrium line. A useful introduction to the physics of glaciers is the book by Paterson 
(1969). 
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The constitutive law that describes the flow behaviour of ice is generally assumed to 

be of the non-Newtonian form 

where the second invariants e and 7 are defined by 

e = A ( S ) f ( 7 ) ,  (2.2) 

2e2 = eijeij, = 7 . . 7 . .  23 z37 (2.3) 

the summation convention being understood, and S is a state variable. For cold ice 

below its melting point, X is the temperature; for temperate ice a t  its melting point, the 

temperature is effectively constant (depending only weakly on the pressure), and the 

relevant state variable is the moisture content of the ice (Lliboutry 1976). The form 

usually chosen for (2.2) is called Glen's law, after laboratory work by Glen (1955): 

e = A(S)7n.  (2.4) 

Here n is an exponent whose measured values lie close to 3. In  fact (Budd & Radok 

1971), laboratory and field experiments indicate that n increases with 7 ,  so that a 

better form for f (7 )  would be an expression such as 

f (7)  = sinh" (k). 
However, neither (2.4) nor (2.5) has the property thatf'(0) + 0,  which is a necessary 

condition that the viscosity be finite a t  zero stress, Other laws having this property 

can be constructed, for example a polynomial law (Colbeck & Evans 1973), or the Ellis 

model (Bird 1976): 

Actually, (2.5) is probably better, and has the added advantage that it is invertible, 

which simplifies computation. 

Glen's law is sufficiently accurate over the range of stresses encountered in glaciers 

(7 5 1 bar), and we shall adopt it here for the reason that it is the most widely accepted 

form. Also, it has not been suggested, and we do not suspect, that the precise form of 

f (7)  has more than a quantitative bearing on the behaviour of solutions. 

This is not true of the state dependence A(&'), which introduces (in cold ice) coupling 

of the flow and temperature fields. This situation also arises in the study of the ffow of 
the earth's mantle (Yuen & Schubert 1977), poIymers and plastics (Pearson 1977, 

1978) and chemical reactors (Gavalas 1968), where it is known that such phenomena 

as multiple steady states and thermal runaway (Gruntfest 1963) can occur; these 

phenomena have been suggested as a possible mechanism of surging by Clarke et al. 

(1977) and Yuen & Schubert (1979), although this last contention is controversial 
(Fowler 1980; Fowler & Larson 1980a,c). Although consideration of the state 

variable renders the problem less tractable, it has not been suggested that its inclusion 

is relevant to a study of wave motions, and we do not suggest so here. Because of this, 

we shall simply set A(#)  = constant, and suppose that this simplification will do no 

more than quantitatively affect the results. 

At the bedrock, a glacier is capable of boundary slip if the basal ice is temperate, 

which is quite realistic even in cold (polar) regions owing to viscous heating of the ice. 

This is because an extremely thin film of melt water separates the ice from the bedrock 

due to pressure melting or regelation (Nye 1967). This is the phenomenon whereby 

f (7)  = a17+u27m. (2.6) 
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increased pressure upstream of a bedrock protrusion lowers the local melting point, 

whereas decreased pressure downstream increases it: the resulting (small) temperature 

difference induces a heat flux though ice and rock which melts a film of water (typically 

of thickness N 10-6m), wnich then flows to the downstream side of the protrusion 

where it refreezes. By this mechanism, the shear stress on the ice a t  the bed is zero, and 

the ice can slide over the bed: glaciological observations of this basal slip are common- 

place (e.g. Kamb & LaChapelle 1964). In  this case the basal shear stress of the main ice 

flow is taken up a t  the bed by the pressure variation (i.e., although the shear stress at 

the bedrock is zero, that 'seen ' by the flow away from the bed is a mean stress due to 

pressure fluctuations exerted by a smoothed bed profile). I n  order to determine the 

size of this shear stress, it is necessary to solve the local bedrock flow and match it  (via 

matched asymptotic expansions) into the 'outer' flow. The matching condition then 

provides a functional relation between the basal stress 7 b  and the basal velocity ub 

(Fowler 1979b), which we write as 

If the bedrock is sufficiently rough, then (2.7) gives ub N 0 for 7 b  N O(1) (both u b  and 

7 b  are supposed scaled and dimensionless). This is effectively the normal no-slip 

condition (Richardson 1973). If we measure the 'slope) of the bedrock roughness by a 

parameter v* 1 (which may be defined as the maximum magnitude of the slope of 

the rough bedrock relative to the average profile), then Fowler (1981) showed that 

ub N O ( ~ * / v * ~ + l ) ,  where tr* is the ratio of bedrock roughness amplitude to the glacier 

depth, and n is the exponent in Glen's law. Thus if tr* N sliding is non-trivial if 

v* - 4, substantial if v* N &, and dominant if v* < 5. It is therefore quite realistic to 

consider glaciers whose dominant motion is due to basal sliding: indeed, this is the case 

for the Nisqually glacier (Hodge 1974). The proper scaling of the equations of motion 

in this last case is given in appendix A. 

The form of the sliding law has been studied extensively, principally by Weertman 

(1957), Lliboutry (1968)) Nye (1969, 1970), Kamb (1970), and others more recently. 

Two recent and contrasting reviews are those by Weertman (1979) and Lliboutry 

(1979). In the absence of ice-bedrock separation (to be discussed later) and with very 

small scale microrelief, one form of this law is 

7 b  "f(Ub) .  (2 .7)  

7 b  = RU'$" (2.8) 

(Fowler 19811, where n is the exponent in Glen's flow law, and R is a roughness 

parameter. Other forms have been mooted, but the important property is that 71, 

increases with U b ,  as would be expected on physical grounds. The complicating effect 

of water a t  the bed has led Lliboutry and others to develop theories to encompass this 

possibility: we return to this in due course; Bindschadler (1979) has shown that in such 

cases a completely different sliding law may be preferable. 

To close this section, we recall from Fowler & Larson (1978) the principal equations 

with which we shall be concerned: these are now cast in dimensionless, scaled O(1)) 

form. The kinematic wave equation 

Ht + &, = s&, t )  (2.9) 

governs the (dimensionless) depth H(x,  t ) .  Here the flux 

Q = /'ud?l, (2.10) 
h 
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and the flux function s(x, t )  represents the source on y = 7 due to accumulation and 

ablation. The task of determining Q will be addressed in 5 3. To do so, we require the 

equations of momentum balance. These can be written in the dimensionless form 

(2.11) 

Py = 72,-71y, (2.12) 

r2y = - 1 +pyx + S2P, - S271X, 

where we neglect inertial terms, as the Reynolds number is typically - IO-l3. I n  (2.11) 

and (2.12), r1 and r2 are the longitudinal and transverse stress-deviator components, 

and p is the pressure (minus its hydrostatic component). The parameter ,u represents 

effects of surface slope variations, and Grepresents the shallowness of the flow. We may 

think of p N l O - l ,  S N typically. The term - 1 in (2.11) represents longitudinal 
(downglacier) gravity acceleration, and indicates that the balance we have chosen is 

that between shear-stress gradient and this driving acceleration. 

The appropriate stress conditions on y = 7 then turn out to be 

7 2  + a2(p - 71) 7, = 0, 

71+P+727, = 0, 

and lastly the constitutive flow law may be written in the form 

i 
71 = 2u E-(%-lM 

7 2  = (uy + G2v,) e-(n-l)In, 

E = [(uy+G2v,)2+482u:]t. 

(2.13) 

(2.14) 

3. Scaling considerations 

Our immediate objective is to derive an expression for the flux Q by finding the x 
velocity component. How we do this depends on what we assume about ub, and what 

1evelsofaccuracyweretain.IfweputG = 0, wefind,from (2.11), (2.13)and(2.14), that 

provided r2 > 0, i.e. if qz < 1,fp. It follows that 

and thus 

(3.3) 

Now the term S2r1, in (2.11) is a longitudinal compression term, and thus in con- 

sidering seasonal waves, where u may change rapidly with x, this term may act in a 

diffusive manner for seasonal shock waves. We therefore wish to examine under what 

circumstances it can be important. 

If we balance G2r1, with rZy in the y momentum equation, then it turns out that such 

a shock region leads to a messy elliptic problem, which, we consider, somewhat 

obscures the fundamentally one-dimensional nature of such a region. 
What we really want to do is to seize on this one-dimensionality of seasonal waves, 
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that  is, that  the glacier behaves almost like a rigid ‘elastic’ body during the passage of 
these waves (Hodge 1974; Lliboutry & Rayneaud 1981). Apart from simplifying the 

analysis, this is essentially what is observed. One way to do this is to suppose that the 

basal sliding velocity is formally much larger than the deformation due to shearing; this 

would be the case if the bed roughness were comparatively small (or if cavitation were 

present, see Q 5 ) .  In  this case (which may accurately represent what happens during a 

surge), it is appropriate to write the scaled velocity field in the form 

(3.4) 

where a prime denotes differentiation with respect to x. The parameter p is a measure 

of the ratio of the velocity difference between surface and base due to shearing within 

the ice to the basal sliding velocity. It is determined entirely by the physical inputs to 

the model and the basal sliding law, also regarded as an input (as boundary condition). 

It is thus an externally controllable parameter, and to consider i t  small (e.g. p N &) is 

equivalent to supposing that basal sliding is predominant, as for the Nisqually glacier 

(Hodge 1974). 

At this stage (having shown how the bedrock h manifests itself in the flux (3.3)) we 

put h = 0, and we do not consider that  this will be an important simplification provided 

h’ N O( 1) in practice (which rules out ice falls, for example). The scaling of the problem 

analogous to that in Fowler & Larson (1978) is now slightly different, and is carried out 

in appendix A. The resulting version of (2.11)-(2.14) is 

u = ub(x, t )  +pul(x,  91 t ) ,  ‘U = -yu; +bVl(x,y, t )  (p  < 11, 

71 = 2[u; + /3UlX] P - 1 ,  

r2 = [UlY - svu;: y + 62VlX] w - 1 )  

(3 .5a)  

(3.5b) 

e = [{u,, - suu;: + S2VlX}2 + 4v2{u;, + pulx}2]4 

Pu + T1y = P 7 2 x ,  

(3.5c) 

( 3 . 5 4  

r2 = u S y , ( - p + ~ ~ ) ,  p+rl  = - - p ~ ~ q ,  on y = 7. (3.5.f 1 

s = vp (3.6) 

TZY = - 1 + P7x + 4 P X  - T l X ) ,  (3.5e) 

Here 

defines v, and we assume u 5 1, i.e. ,8 2 8. If /? < 8, the glacier really is almost rigid, and 

the scales change again. This may be reIevant for surge propagation, but we omit any 

consideration of it here. 

Now suppose that ub, and hence u, changes rapidly through a distance x N u < 1. 

(Note that u and v here are unrelated to the roughness parameters discussed in Q 2.) 

If we suppose that vlu 5 1 ,  then e N 1 in ( 3 . 5 ~ )  and so ~ 8 7 ~ ~  in (3.512) is - 1 only if 
uS/a2 - 1, i.e. if, from (3.6), /3u2 = v s  N u2. By assumption u 2 I,, so a2 2 v2, thus 

/? - u2/v2 2 1, which is inadmissible by assumption in (3.4). It follows that ~ 8 7 ~ ~  

becomes non-negligible in ( 3 . 5 e )  only if u u, so that 

e N 2vjuq 

r1 = 2u;,J2vu;,I’/n-l. 
in this region, and 

Thus in the compression zone, 
lln-1 

EU7L-l N (5) ) (3.9) 
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we suppose however that 7 2  remains O(l ) ,  as is physically reasonable, thus 

which suggests we choose 

as the rescaling factor. In  the compression zone, we expect p N 71. Now 

p72x/71y - p/ml  - p/(CT/v)(n-l)/% - p2/(n+l)< 1, 

therefore ( 3 . 5 4  is approximately (to O(pz/(a+l))) 

Equations (3.5f) imply 
py + = 0. 

p+T1 = S ’ 7 $ ( p - ~ ~ )  on y = 7; 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

even if 7 changes by O(1) in the compression zone, the right-hand side of (3.13) is 
O(P/a2) N /32/(n+l), hence, to O(pz/(n+l)), 

p = -TI; (3.14) 

thus, in the compression zone, (3.5e) may be written to leading order as 

7zy = - 1 + ,Mj’, - 2V8T1x, (3.15) 

where 71 is a function of x and t given by (3.8).  The boundary condition on y = 7 is, 

from ( 3 . 5 ~ 7 ,  

72 = 2 ~ 8 7 ~ 7 ~  on y = 7, (3.16) 

and thus (3.15) implies 

72 = (7-9) [1--11L7,+2vS71x]+2vs717x. (3.17) 

From (3.17) we derive the expression for the basal stress 7-13 by putting y = h = 0, 

7 - h = H ,  to obtain 

Tb = H[1  -pH,] f 2V8(H71)x. (3.18) 

Using (3.8) we write this in the form 

713 = H[l-/hHx] +a[HU61U;111n-1]x, (3.19) 

where the parameter a is defined by 

a = 28(2v)l/n. (3.20) 

We recall that u; = aub/ax in (3.19). The formula (3.19) shows that, by assuming 

/3 < 1 in (3.4), we may (via the scaling analysis of the appendix) derive an explicit 

formula for 713, whereas for the elliptic problem which is relevant when /3 - 1, such an 

expression is not easily obtainable. A typical estimate for a is given, when S N 10-2, 

p N thus we may take a < 1 and neglect compressive 

stresses, except in those regions where u (and hence u b )  changes by O( 1)  in distances 

x <  1. 

There are two points to note. Firstly, the reasoning above is based on the con- 

sideration that rZy - Jwlx; we left puy, out of the discussion. This is legitimate if the 

jump in 7 is small enough, but in any case S V T ~ ~  can only be non-negligible if i t  is 2 72y, 

n = 3, by a N 1.2 x 
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and the argument proceeds as before. Secondly, the formula for the basal stress above 

parallels the arguments of Robin (1967) and Collins (1968), and its relation to their 

work should be clarified. Their work seeks a correction term to Nye’s classical (1952) 

expression for the basal stress in terms of the depth h and the angle of inclination a of 

the top surface to the horizontal (not the same a as used here) : 7 b  = pgh sin a. I n  essence, 

the arguments mirror that presented here, except that our whole procedure is based 

on dimensionless variables, and also the corrective term in (3.19) is computed on the 

basis that it becomes asymptotically comparable to the other term H( 1 -pH,), which 

is just a direct transcription to dimensionless form of Nye’s formula (Fowler 1981). 

Robin’s motivation was to seek corrected profiles of ice sheets due to bedrock ir- 

regularity. We deliberately exclude bedrockirregularity (h  = 0 ) ,  but seek the corrective 

terms which may act as diffusion effects in dynamic wave propagation. In  fact, the only 

change to (3.19) if h =+ 0 is that H, in the first bracket is replaced by H,+ h,; however, 

this is only the case if h, O ( l ) ,  and thus the present analysis is inapplicable to the 

problem of determining the basal stress when hx% 1, which is exactly the case of 

interest to Robin (1967) a,nd subsequent workers (e.g. Budd & Radok 1971); this 

latter is still a matter of some controversy (e.g. Hutter 1981). Our approach is comple- 

mentary to the aims of these authors. 

We can now consider the basis for an analytic study of wave motions. In  the case 

that p < 1, so that the motion is predominantly by sliding, then the expression (3.19) 

gives zt leading-order estimate for the basal stress, assumed functionally related to the 

basal velocity, in (thin) regions where compressive stress is appreciable. Now, although 

(3.19) is not correctly derived away from such regions, it is asymptotically equivalent 

(since a < 1) to the leading-order version of the exact equation (with 6 = 0 )  there. 

Therefore it is reasonable to suppose that (3.19) will provide a suitable expression for 

the basal stress in the whole ice domain of interest, a t  least for the study of the kinds 

of wave that concern us. We are now in a position to commence this study; before 

doing so, we summarize the main results of this section. 

From the original model of two-dimensional glacier flow presented by Fowler & 

Larson (1978), we have derived a kinematic wave equation by neglecting any effects 

of the state variable on the flow law (in ( 2 . 2 ) ) ,  it being our contention that such a 

neglect is not of qualitative relevance to the analysis given here. In  considering this 

equation, we have isolated two particular variants which will (as we show below) 

suffice to explain the structure of both surface and seasonal waves. 

The kinematic wave equation for the depth H i s  

Ht + Q, = sZ, (3.21) 

where s(x,t) is a prescribed surface flux function (being the space integral of the 

accumulation rate) and Q is the mass flux through a section. 

If we set the bedrock profile h = 0 and neglect longitudinal stress effects (6 = 0) ,  

then the basal stress 713 is, from (3.1), 

(3.22) 

(3.23) 



Waves on glaciers 293 

and the basal sliding law requires 

Tb =f(ub), or u b  = F(7b), (3.24) 

where F is the inverse off. The neglect of 6 (i.e. longitudinal stress terms) is valid 

provided Ub 5 O( 1)  and Q (or H )  does not change by O( 1) in a distance O(6);  this will 

depend on the magnitude of ,u. We note from parametric estimates (Fowler & Larson 

1978) that since ,u = a/€*, E* = mean bedrock slope, it is reasonable to take 

6 < p <  1. (3.25) 

If u b  or H changes by O( 1)  in a distance O(S) then the discussion after (3.3) indicates 

that the shock structure is given by the solution of an elliptic problem, and is corre- 

spondingly messy. Alternatively, we may suppose that basal sliding is dominant, in 

that the longitudinal velocity may be written as 

(3.26) 

(3.27) 

7 b  ' f ( U b ) ,  (3.28) 

and a uniform asymptotic expression for the basal shear stress is 

713 = H[1 -,UH,] +a[HuLIuLI1in-l]x, (3.29) 

a = 26(2v)l/n, v = s/p 5 1, (3.30) 

where u; = &,/ax .  The term in a is a leading-order correction in regions where ub 

changes rapidly over distances (from (3.11)) of O(S//lll(n+l)), and is present in case 

longitudinal stress variation is important in smoothing out discontinuities in seasonal 

shock waves. Away from such regions, we neglect this term because we may take 

a < 1,  typically a - 6. The assumption that Y 5 1, i.e. 6 5 /3, restricts our attention 

to glaciers that are 'malleable', i.e. in which shear stress does indeed balance gravity; 

thisisareasonableassumption to make. Theset (3.21), (3.26), (3.28) and (3.29) provides 

a second self-consistent model, which we shall see is useful in studying seasonal waves. 

Additionally, the form of the functionf(ub) in (3.28) must be specified. 

4. Surface waves 

Consider the first model set of equations derived in the preceding section: 

I 
H t  + Qx == 8x2 

7 b  = H[1 -$&I, 

u b  = F ( 7 b ) .  I 
4.1. The case ,u = a = 0 

If we adopt the above approximations, and put u b  = 0, then 

Q = Hn+2/(n + 2),  

Ht + H"+lH, = s,. 
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This form of the equation was studied by Fowler & Larson (1980b). It may be written 

in characteristic form 

dH 
Hn+l, - = s,(x,~), - ax 

z-  at 
(4.4) 

whence the solution may be written down in terms of a characteristic parameter (see 

Fowler & Larson 1980b). We note from (4.4) that the wave speed is Hn+l; from (3.5) 

the surface speed is 

with ub = ,u = 0, this implies that the wave speed is n + 1 2: 4 times the surface speed. 

The characteristic solution can be used to study small disturbances, seasonal variations, 

and the formation and propagation of shocks. When s = s (x) ,  perturbations of the 

equilibrium profile Hn+2/(n+ 2) = s(x) will generally lead to shock formation in which 

the depth is discontinuous across a moving shock front xd(t) ,  where 

[&I HT+2 - Ht+2 

[HI - (n+ 2) (Hl- H2)' 
- 

dt 

and Hl and H2 are the values of H on either side of the shock. Stable shocks are those 

where H decreases across a shock as x increases (Fowler & Larson 1980b, Whitham 

1974). 

The above discussion remains valid if Ub + 0, provided the sliding velocity is a well- 

behaved function of the basal stress. With p = 0, we have 

whence 

Q = &(H)  = H P ( H )  + H n f 2 / ( n  + 2). 

The wave speed is 

whereas the surface velocity is now 

&'(H)  = (HP)'+H"+l, 

If we suppose 

then 

Hn+l 

n+ 1 '  
U, = F ( H )  +- 

F ( H )  = CHm (m < n),  

I Q'(H) = (m + 1 )  CH" + Hn+l, 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

If ice were Newtonian, then m = 1 (Nye 1969); if regelation and deformation are equally 

important, then an empirical estimate is m = &(n+ 1)  (Weertman 1957). Thus the 

wave speed is still likely to be about three to four times the surface speed, provided 

these values of ub are realistic; this is the case as long as the basal ice maintains 
contact with the bedrock. 
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In  essence, the results above have been derived previously (Nye 1960); they are 

restated here to emphasize that well-behaved functions P ( T ~ )  (P N 1, P’ N 1) will 

contribute to surface waves, but not to seasonal waves. 

4.2. The case p =+ 0, a = 0:  shock structure 

Theneglectofpin (4.1) willremainvalidaslongasH, = O(1) but,when lHzl N l/p$ 1, 

then this is no longer true. IH,I is large precisely where the equations with p = 0 

develop shocks, and thus we hope that p will play the role of a diffusion-like parameter 

for the nonlinear hyperbolic equation for H .  

We first put U b  = 0;  then (4.1) gives 

(4.1 5 a )  

or 

Ht + (1 -pH,)% Hn+lH, = s, + 1 -pH,)n-l Hzx. (4.15b) 

This is in the form of a convective diffusion equation, and p does indeed play the role 

of a diffusion coefficient. We remark that the diffusion is degenerate in that the coef- 

ficient of H,, goes to zero with H ,  and thus we expect some subtlety in prescribing 

boundary conditions where H = 0,  particularly at the snout (Fowler & Larson 1980b, 

Sinirnova 1963, Nye 1963). 

We wish to use (4.15) to examine the structure of diffusionless shocks in the same 

manner that Burgers’ equation (Whitham 1974) is used to study the shock structure 

of weak shocks in gas dynamics (Cole 1968). We note that, in a shock, arelevant length 

scale is x N O(p),  and the corresponding time scale is also O(p).  We therefore define 

x = p x ,  t = p ;  (4.16) 

n+2 

then, to leading order in ,u, (4.15a) is 

(4.17) 

Because the shock structure has length scale x N p < 1, the relevant boundary 

conditions to apply are that 

H+H*, X + + _ C Q ,  H - > H + ,  (4.18) 

where H+ and H- are values of H on either side of a shock when p = 0. We require also 

an initial condition. However, since the time scale for (4.17) is t N p < 1, the shock 

structure reacts very rapidly compared with the rest of the surface. We may thus 

suppose that H+ and H- are constant (vary with t and not 7 ) ,  and that the solution of 

(4.17) rapidly evolves into a travelling-wave solution with constant profile. Note that 

we expect H, < 0, so that 1 - H, > 0, as required by the original model (Fowler & 

Larson 1978). 

We now seek a solution 
H = $ ( x ) ,  z = X - CT, (4.19) 

00. We quickly find where the shock speed c is to be determined, and I$ + H* as z --z 

that $ is given implicitly by 

(4.20) 
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and K and c are given by 
H’”+2 Hn+2 

ni -2  n + 2  
K=--  cH- = -- + cH+. (4.21) 

The upper limit $,,E (H+, H-) is arbitrary (it merely prescribes the origin of 2 ) .  Con- 

sideration of A ( $ )  shows that (4.20) gives a monotonic trajectory between H- and H+, 
so the existence of the postulated shock structure is assured. Furthermore, this analysis 

carries over directly to the case u b  =+ 0,  provided we suppose $F($) is convex, i.e. 

($F($))” > 0 (which is reasonable). 

The neglect of terms in S in the above analysis is valid provided p B 6, as in (3.25), 

that is if the mean bedrock slope E* < 1. This is certainly a sensible estimate: one might 

typically have e* N 10-l. If /3 < 1 in (3.26), so that the flow is predominantly by basal 

slip, then the same analysis of the corresponding equations goes through: from (3.29) 

and (3.30), the neglect of 6 is valid if 

i.e. if 

(4.22) 

This also is not unrealistic, in view of the high value of n. Since the presence of ,u is 

sufficient to smooth out shocks in H ,  we might suspect that small values of a: (or 6) 

have a regular perturbative effect on these shock structures, since they are not 

necessary for their existence. This conjecture is borne out in the study of seasonal 

waves, and shows that, from a dynamic point of view, it is surface slope andnot longi- 

tudinal stress which has the principal controlling influence on surface wave motions. 

The nonlinear diffusive analysis above should be put in its proper context. Other 

authors (Hutter 1980, Lick 1970) have sought higher-order nonlinear equations with 

which t o  study nonlinear wave motions, by analogy with the derivation of the 

Korteweg-de Vries equation (Cole 1968) in shallow-water theory with small disturb- 

ances. This equation governs the long-time weakly nonlinear behaviour of small- 

amplitude waves in shallow water. Ordinary shallow-water theory is not limited to 

small amplitudes, but develops shocks because of the nonlinearity. The papers of 

Hutter and Lick are thus both concerned with surface waves of (dimensionless) 

amplitude a and wavelength A, and the implicit assumption is that a < 1, 6 < h < 1 

(so that the ice mass is virtually a slab). The analysis then purports to show that 

variants of Burgers’ or the Korteweg-de Vries equation arise in the same way; 

however, complications occur because of the singularity of Glen’s flow law at zero 

stress, and the extra parameter S (and p) .  The present theory avoids this difficulty by 

not being restricted to small amplitudes, and hence not encountering increasing 

singularities a t  higher order in 6. Although we imagine that such singularities would 

properly occur in succeeding terms of an expansion in 6, we surmise that these could 

be dealt with by an appropriate strained co-ordinate (Van Dyke 1975), and are thus 

unimportant a t  leading order in the present approximation. This is not necessarily 

true for ‘weakly nonlinear’ analyses, and it is therefore worth asking, in the glacio- 

logical context a t  least, if such analyses are relevant in view of the dominant diffusive 

influence of p. 

The present model describes surface perturbations of wavelength h provided only 

h % 6, and the amplitude is unlimited. This suggests that the shock structure above is 
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sufficient to cope with the evolution of any initial disturbance whatsoever. Further- 

more, it is reasonable to suppose that even a very short wavelength disturbance would 

spread out until the shock structure previously derived was attained since the longi- 

tudinal stress also has a diffusive effect. In  that case, the analysis here gives an 

effectively complete description of surface wave motions. The shock thickness is O(,u), 

or dimensionally O(pZ) = O(d/s*) ,  where E* is the mean bedrock slope, and d is the 

depth. Thus the shock thickness may range from 200 m for thin steep glaciers to 10 km 

for thick, gently sloping ones. Thus, even though p< 1, it is unlikely that severe 

surface slopes will actually be observed in practice. 

5. The basal sliding law 

We will now suppose that the flow is predominantly by basal sliding, so that p < 1 

in (3.4). We have already noted in $4 that, if the basal stressf(ub)is well-behaved, then 

we can expect kinematic surface waves to propagate downstream a t  low speeds. 

Seasonal waves, on the other hand, propagate a t  high speeds, but without substantial 

changes in depth; it therefore seems that such behaviour may be due to the sliding law 

not being well-behaved. I n  order to consider this further, it is necessary to digress to a 

discussion of sliding theory. 

As previously discussed, we can expect the sliding law 7-13 =f(ub)  to be a well- 

behaved, increasing function of U b  so long as the ice maintains effective contact 

(separated only by a thin water film) with the bedrock; this concurs with the intuitive 

notion that the frictional resistance increases as the velocity increases. There are 

two things that can go wrong. In  the formulation of a complete sliding theory (Fowler 

1981), the thickness of the regelation water film is unknown, and is to be determined 

as part of the problem. However, a typical estimate for this thickness is N 10-6m, and 

thus the ice flow is unaware of the regelation film, a t  least as far as a disturbance of the 

bedrock boundary is concerned; in other words, the ice-flow/bedrock temperature 

sliding problem (as formulated e.g. by Nye 1969) uncouples from the determination 

of the regelation film thickness. However, the dimensionless O( 1) film thickness C ( x )  is 

then determined from the ice-flow/bedrock temperature problem, and one finds that 

there is no obvious reason why C should remain positive and finite. If either C + co or 

C + 0, then we deduce that the dimensionless formulation is inconsistent, and the 

problem must be recast. This inconsistency has been noted by Nye (1973) (see also 

discussion by Fowler 1981; Morris 1976, 1979). As far as I am aware, this inconsis- 

tency has not been resolved. In  the regelation context, it has been suggested (Nye 

1973) that other physical features may be relevant; on the other hand, the mathe- 

matical inconsistency in sliding theory needs to be removed before introducing 

additional physics, so that the stated problem at least has a mathematical solution. 

In  principle, it is fairly clear how t o  do this. We remove the restriction that C should be 

O( 1) by considering three differing boundary types: attached, lubricated and separated. 

While C N O(l) ,  the bed is lubricated, and the ice/rock problem uncouples as before; 

if then C. -+ 0, we expect an ‘attached’ region, in which there is no regelation film, and 

we require (for example) the shear stress a t  the interface to be non-zero. (Such dis- 

continuity in the boundary conditions for a viscous fluid will lead, on a short time scale, 
to viscoelastic behaviour of the medium, i.e. stick-slip motion.) If, on the other hand, 

C --f 00 (as occurs in Nye’s (1873) rege1at)ion past a wire with concave portions of the 
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boundary) then we must have a ‘separated’ boundary, in which the ice-water interface 

leaves the neighbourhood of the bedrock. This constitutes a cavity, whose boundary is 

unknown. From the point of view of the flow of ice, we require an extra boundary 

condition in this cavity; the most likely candidate is that the pressure is constant, and 

this additional condition should in principle determine the free boundary. Solution of 

this problem has been initiated by Fowler (19793), and further work is currently in 

progress. 

Alternatively, if the bedrock is such that C is finite, then cavities may also occur by 

virtue of the pressure in the water film a,ttaining the triple-point pressure at which ice, 

water and water vapour can co-exist (Morland 1976). This is about 0.006bar (Dorsey 

1940); cavitation of this type is directly comparable to ordinary fluid cavitation 

(Batchelor 1967), and will occur if the pressure variation due to flow over the bedrock 

reaches the order of magnitude of the overburden pressure N pg’d. With a basal stress 

[710 and a mean bedrock roughness slope v*, the pressure variation required to balance 

the drag is - [T],/v* = pg‘de*/v* by definition of [?I0 (A 18). Thus cavitation will 

occur if pg’de*/v* Zpg’d, i.e. if the mean bedrock slope e* > the mean bedrock rough- 

ness slope v* (Morland 1976); thus cavitation by this means is more likely to occur in 

steep glaciers with smooth bedrocks. 

Xliding with cavitation 

There are a t  least two possible mechanisms, described above, that will predict sub- 

glacial cavities; and such cavities are indeed observed (e.g. Theakstone 1979; Vivian & 

Bocquet 1973). It is thus pertinent to enquire what the effect of such cavities will be on 

the drag. The unsatisfactory state of the regelation theory is probably partly to blame 

for the fact that few coherent examinations of mathematical formulations of this 

problem have been attempted. The main exponent of sliding with cavitation has been 

Lliboutry, who has, in a series of papers (1968, 1976, 1978, 1979) attempted to devise 

tractable forms for the sliding law when cavities are present. His papers do not solve 

mathematical problems, but they possess great physical insight into the process of 

cavitation, and give important clues as to the possible behaviour. Lliboutry (1968) and 

Weertman (1964) detected the possibility of a multiple-valued sliding law F ( r b ) ;  with 

7 b  = f(ub), this would mean f would decrease with increasing Ub over a range of 
velocities. It is obvious that, a t  a given velocity, the drag will be less when cavitation 

occurs than when it does not; this is because (at least for cavities in which the triple 

point pressure is reached) the cavity pressure is constant downstream of obstacles, and 

thus the integral of the pressure over the ice interface (which is the drag) only has an 

effect due to the pressure on the upstream face. Thus the effect of cavitation must be to 

decrease f ’(ub); the extent of this decrease is uncertain. 

Fowler (19793) gives the result of a computation which shows that, fortheparticular 

case of a Newtonian flow over a sinusoidal bedrock with v* -+ 0 (vanishing bedrock 

roughness slope), the formation of a cavity a t  a critical stress decreases f ‘ to zero; 

thus the prospect off ‘ becoming very small or even negative seems plausible. 

The experimental results of Drake & Shreve (1  973) are of relevance here. They found 

that regelation velocities of wires through ice blocks increased dramatically (by factors 

of lo3) when the drag on the wire reached approximately 1 bar (i.e. the ambient hy- 

drostatic pressure). At this level of the drag one supposes that a cavity is able to 
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FIGURE 2. Assumed form of sliding law in this paper; for u 2 u,,f(u) = r ( e u ) ,  where 
f($) is regular at $ = 0. 

form, thus enabling the velocity to increase dramatically for small increases of the 

driving load. Their experimental results are very similar to figure 2 above. 

Lliboutry, in his latest paper on this subject (1979), gives a good review of various 

relevant physical mechanisms, together with an approximate derivation of an appro- 

priate sliding law. He distinguishes two modes of cavitation, autonomous and inter- 

connected. Autonomous cavitation occurs when each cavity is isolated, and parti- 

cularly when it does not connect up to the subglacial hydraulic system (which drains 

off melt water). In this case the pressure in a cavity is determined by the requisite 

mathematical description ; for cavities a t  triple point pressure, this pressure is essen- 

tially zero. In  the interconnected regime, the cavities are connected via striae, joints or 

other channels in the bedrock, and the pressure in the cavities is consequently 

essentially that of the local subglacial drainage system, p w  (with insignificant head 

loss between cavities and the main channel system). This concept has a slight subtlety 

built into it: if the entire bedrock is so scratched that the water pressure everywhere is 

pw then presumably not only cavities but also the water film must be a t  pressure pw. 

This appears to contradict the whole notion of a water film, which requires a pressure 

gradient to drive the regelation flow. A reformulation of the problem would be to 

consider an ice boundary which is alternatively attached (no water film) or separated, 

in which case we prescribe no shear stress andp = p w  on the separated boundary. Such 

a formulation is again fraught with difficulty. 

We have discussed the physics of sliding in some detail, in order to explain how 

cavitation may lead to a sliding stress f (u) which is radically different to that appro- 

priate when no ice-bedrock separation occurs. Clearly, this is a subject of continuing 

research, and it is not our intention to try and rigorously derive an appropriate law 

here. Rather, we seek to study the dynamic effect of choosing an f (u) that reflects the 

behaviour discussed above. In  the analysis to follow, we shall therefore specifically 

assume that the sliding law f (u) has the form shown in figure 2. That is, we shall 
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suppose that, for u greater than some critical velocity uc a t  which cavitation sets in, f’ 
is small and f increases slowly as shown. For u < uc, f N O( 1); specifically we suppose 

f f ( u c - )  N m(toO(e))sothattheslidinglawvalidforbothu > ucandu < uc, Iu-ucl < 1, 

may be written in the form 

(5.1) 

where %($) = 1 if + > O , Z ( $ )  = 0 if 4 < 0 ,  denotes the Heaviside step function, andf 

is an O( 1) function of its O( 1) argument. The assumption that f is discontinuous a t  

u = uc is not unrealistic and, in any case, is not expected to have a major effect on the 

solutions. We suppose that f can be continued back to u = 0 as shown in the dotted 

line in figure 2,  so that we may take Taylor expansions about u = 0;  we supposef,f’, 

etc. are O( 1). The parameter e is chosen < 1 to reflect the possibility that cavitation has 

this drastic effect on the sliding law. As already stated, results of Drake & Shreve 

(1973) and Fowler (1979b) support this conjecture. We do not propose (5.1) or figure 2 

as a universal form of sliding law; we simply observe that it is plausible, and examine 

the dynamic consequences. Before proceeding, we note that a sliding law of this form 

is probably reasonable if we can neglect the effect ofp,. This, however, is an unrealistic 

assumption; in particular, it is known that seasonal fluctuations (due to precipi- 

tation) can affect the sliding velocity via the variation inp,. In  a more realistic analysis 

we should take account of this. Nevertheless, the present work offers a first con- 

sistent analysis of the dynamic effects of a cavitational sliding law, and as such we 

wish to lay our emphasis more on the dynamics, rather than become enmeshed in the 

complexities of the particular sliding law. 

f (u) = f ( 6 4  + m(u - UC)* (uc - u), 

6.  Seasonal waves 

In  this section, we follow the analogous procedure of $4 in studying seasonal waves. 

Thus, first we identify the basic diffusionless wave-propagation characteristics, and 

then we seek to understand how discontinuities in the predicted flow may be smoothed 

by appropriate diffusion parameters. The equations (3.21), (3.27)-(3.29) are 

( 6 . 1 ~ )  

H[1 -pH,] +CLIHU,IU,I1-jZ = f (u). (6 . lb)  

For convenience, we take n = 1 in (6.1 b ) ;  this simplifies the analysis, without (we hope) 

altering the qualitative conclusions. We make some comments on length scales as we 

proceed. With n = 1, 01 = 4P/P is not very much different from its value when n = 3, 

say. Then (6.1 b)  is 

The parameters ,u and a are included in (6.2) to represent the effects of diffusion, due 

respectively to large surface gradients and large longitudinal velocity gradients. We 

study first the diffusionless equations. 

Ht + (Hu), = s,, 

-pH,] + a(Hu,), = f (u). (6.2) 

6.1. p = 0 1 = 0 ; ~ + 0  

With Q = Hu, the steady-state solution of (6.1) is Q = s(x), where the flux function s(x) 
is positive and typically concave downwards between x,, (the head) and xs (the snout) 

respectively. If we put ,u = CL = 0, then this implies that  

H = f (u), u f (u) = s(x). (6.3) 
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FIGURE 3. Schematic profile of steady-state glacier surface showing 
subcritical (u < u,) and supercritical (u > uo) zones. 

For u < u,, f is a well-behaved function of u, and so u and hence H in these regions 

both increase in a smooth way with s; in these regions, s 2 uc f (u,). If (as shown in 

figure 2) we define 

Hc = J ( O ) ,  (6.4) 

then H 5 H, when u uc in these regions. However, if s increases beyond Hcu, (the 

critical flux), then cavitation is initiated and, as s increases, figure 2 shows that u 
increases without an appreciable change of H ;  thus, while s N O( l),  s 2 Hcuc,  we have 

u N O( l),  H -N H,, so that the steady state is approximately 

H N H,, u -N s(x)/H,. (6.5) 

A typical longitudinal profile of H is then its shown in figure 3. 

In  subcritical regions ( H  5 H,), kinematic waves propagate as before, but the 

critical zones (H  ‘v H,)  admit the possibility of seasonal waves. To examine these, let 

x = 0 a t  the upstream end of a critical zone, i.e. define x so that s(0) = Hcu,. For 

x > 0, u > u,, andf(u) = ~ ( s u ) ;  note that Hc =+ f(uc), as seen from figure 2. As long as 

u > u,, we supposejhas a regular Taylor series about u = 0. In x > 0, we put 

H = H ~ + c x ,  t = €7, f (u) = ~ ( E u ) ;  (6.6) 

then (6.1) is, with 16 = a = 0, 

x, + “Hc + €2)  UI, = 832, ( 6 . 7 ~ )  

(6.7b) 

If we consider variations of u in which u N 1, then, since H, = f ( O ) ,  we expand (6.7 b )  

to Ole) as 
x = U f ’ ( 0 )  + O ( 4 ,  (6.8) 
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so t,hat (6.7) gives the wave equation for u, to leading order: 

f ’ ( 0 )  u, + f ( O )  u, = s,. (6.9) 

This is a linear wave equation for u which we can solve for arbitrary initial conditions 

on u. At higher order in e,  the full equation (from (6.7)) is weakly nonlinear; owing to 

the finiteness of x, however, this nonlinearity is irrelevant in considering the evolution 

of smooth profiles. For example, the solution of the initial-value problem when the 

climatic input s(x) is steady, is 

(6.10) 

which represents a rightward-travelling wave with dimensionless speed 

dx/dt = 6-l dx/dT = f ( O ) / e p  (0) .  

Note that we are here assumingf’(0) > 0 (figure 2). If the sliding law was multivalued, 

we should havef’(0) < 0, and thus backward-travelling waves; this is exactly what 

must happen in surges (see Meier & Post 1969, Meier 1979). Withf’(0) > 0, $ in (6.10) 

is the perturbative term. If this arises from an initial fluctuation in H of O ( E ) ,  then 

outside the critical zone, conditions are essentially constant in time; it follows that we 

require the perturbation to become small a t  critical boundaries, where u = uc. For a 

forward-travelling wave as in (6.10), this is done by prescribing $ = 0 a t  x = 0:  in fact 

$(c )  = 0 for < 0. Any O( 1)  disturbance to u propagates downstream, and the velocity 
returns to its equilibrium value. Fowler (19793) derived an expression for u when 

periodic seasonal fluctuations in accumulation contribute to seasonal waves. The 

appropriate boundary condition is to have u = uc a t  x = 0. However, we also require 

that u = uc a t  the x-value downstream (xl, say) where the steady-state flux s(x) 
becomes critical, i.e. s(xI) 2 Hcuc. The solution of (6.10) cannot do this, and thus a 

more-detailed consideration of the model is necessary to complete the analysis. 

Let us examine the main characteristics of these waves. I n  this theory (i.e. with the 

various assumptions we have made) seasonal waves will travel a t  velocities O( l/e) 

times the surface speed in critical zones, where the depth His effectively constant. The 

fluctuation in velocity u will generally (even for a small climatic fluctuation) be O( l),  

whereas, although there is a corresponding (and proportional, (6.8)) surface wave, its 

amplitude is much smaller. Observations indicate a range for E of 0.005-0.05 (speeds 

20 to 200 times the surface speed). Such a prediction is in principle verifiable by 

a corresponding study of cavitational sliding. 

We observe that the analysis of seasonal waves by Fowler (19793), while in essence 
giving similar results, was derived in a more heuristic manner, by assuming a priori 

that Q’(H) was essentially constant ( =  l/e there). Here we see that 

and thus this assumption is in fact borne out in the present case. 

6.2. Shock formation: transcritical shocks 

As remarked above, the linear wave equation (6.9) is derived as e -+ 0 from a weakly 

nonlinear equation (6.7). This implies that, as long as u > uc, a smooth initial profile 
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will remain smooth on times of O( 1) (i.e. of interest), since the nonlinearity, which has 

the effect of steepening the profile, is small. Nevertheless, it is of interest to compare the 

relative effects of nonlinearity and diffusion (with both small) in case we wish to 

analyse the development of a discontinuous initial profile such as might be physically 

motivated by the surge of a tributary glacier. The procedure is similar to that in 9 4, 
but we omit the details. 

Consider a shock structure joining two regions of the supercritical regime, u > uc. 

Within the shock we rescale x with a parameter a, to be determined. We retain 6 $. 0 

since we will require nonlinearity in order to balance the diffusive terms. It turns out 

from (6.1) that the nonlinearity is actually O ( E ~ ) ,  and the relative magnitudes of terms 

in the travelling-wave equation for u (analogous to (4.20)) are: 

surface-slope diffusion, p ~ / a ;  

longitudinal-stress diffusion, a/alflIn; 

nonlinearity, s2. 

A study of the actual system shows that each diffusion term separately (or together) 

will provide a shock structure, provided u decreases with x through the shock (as 

suggested physically). Choice of CT is determined by balancing nonlinearity with the 

largest diffusive term. For example, take n = 1, a N then we 

choose a/@ = s2, hence a = a)/€. However, a$/& N 3 2 O(1) in this case, and the 

‘shock) length is therefore not in fact small. The conclusion is that, on length scales 

5 0(1), the nonlinearity of the (supercritical) sliding law is far too small (if E 5 
to maintain a coherent shock, and a discontinuous initial profile simply begins to 

diffuse away. 

Although supercritical shocks are of little concern, transcritical shocks are of much 

more interest. These must form when a forward-travelling seasonal wave in u > uc 

reaches the ‘barrier’ between super- and subcritical zones, a t  u = uc. At this point, 

(5.6) shows that the characteristic slopes are discontinuous, and a transcritical shock 

must form, joining an upstream region in which u > uc to a downstream one in which 

u < uc. We now analyse the propagatioc and decay of such shocks. 

Let us first re-define the origin so that it is near the (steady-state) critical barrier 

where u = u,. Then H 2: H,, and to be specific we define 

,LA N 10-l) e - 

~ ( 0 )  = H c ~ c ,  (6.12) 

with s(a) 2 0 in x >< 0. Rather than put a = p = 0 immediately, we observe that a 

shock is essentially a singular region joining regions wherep and a have a regular (small) 

perturbative effect on the solutions. From the definitions of a, p and E ,  we take 
reasonable estimates of these parameters to be a N 10-3, ,u N 10-l) E N It is thus 

natural to define 

a = ddi, ,u = E 4 p ,  (6.13) 

and to consider di and p = O(1). It turns out that the definitions in (6.13) are also 

convenient distinguished limits in later manipulation. 

In  order to formulate a coherent mathematical problem, we will examine the 

effect of a seasonal wave arriving a t  the critical barrier x 2: 0, and travelling into a 



304 A .  C .  Fowler 

subcritical zone in the steady state. Additionally, we taken = 1 in (6.1).  With slat = 0 

andf(u) given by (5.1) for u < uc, and using (6.13), the equations (6.1) imply 

U H  = s(x), (6.14) 

H[1 -p~;fH,. = Hc+m(u-uC)+O(s), (6.15) 

where the expansion forf(u) in (6.15) is valid to O ( ( U - U , ) ~ )  if Ju-ucl < 1 ,  whatever 

the form off(u) a t  smaller u. The subcritical regular solutions of (6.14) and (6.15) are 

given by power series in €4, and may be found by straight substitution. We suppose 

s'(0) = - a  (a > 0 ) ;  then, for small x, one finds 

(6.16) 

(6.17) 

as may be checked a posteriori. 

,u - €4. Specifically, when u > uc, 

The incoming seasonal wave is essentially given by (6.8) and (6.10),  even when 

(6.18) 

where in terms of (6.10) we have put @(r)  = #[-f(O)r/f'(O)]; @(r) represents the 

(positive) difference between u and uc of the incoming seasonal wave at  the critical 

barrier x N 0. For an O(1) disturbance to the (finite) critical zone, we will have @ = 0 

for r c 0 ,  and positive over a finite range, (0 ,  M )  say, and then 0 = 0 for r > M .  

Now let x d ( T )  denote the position of a transcritical shock. The values of H and u on 

x d +  and X d -  are given by (6.16) and (6.17), and (6.18), respectively, provided x d  is 

small; this will be the case, at least for small r. The evolution of the shock with time is 

given by 

d X d  E[uH]+ -=- 

[HI; 

(see e.g. Murray 1970), where the square brackets denote the jump in 

quantity from x d +  to X d - .  From (6.16)-(6.18), we therefore find that 

(6.19) 

the enclosed 

For an incoming seasonal wave, a transcritical shock first forms where u = uc, whence 

(6.17) appears to imply (but see below) that the initial condition for Xd is 

(6.21) 

this confirms that x d  N s f  < 1, a t  least for sufficiently small r. As long as x d  7 O ( B ) ,  
we put 

x d  = &z%, 0(1), (6.22) 
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and then (6.20) is, correct to O(d) ,  

(6.23 a,  b )  
PmHc uc . 
Hc +muc' pH: 1' xs(o) = 

Hc Q(7) - - .  - ax: 

a7 ma 

Hc + muc [x' + Hc + muc 

it follows from (6.23) and the nature of @(7),  that x i  - 1 for all r ,  so that (6.23) is 

accurate for all r. The solution of (6.23) is 

(6.24) 

0 is positive and of compact support, so that (6.24) shows that the shock travels 

forward a t  a speed dxdldr = O(s4). As 7 increases, the incoming wave amplitude (D(7) 

increases, and the shock velocity increases proportionally, though this is offset by the 

shock advance into subcritical territory. For @ of compact support, (D(7)dr is 

bounded above, and so dxzldr -+ 0 as r -+ M > 0 ( @ ( M )  = 0) .  We then expect that 

neglected terms O ( d )  in (6.20) are relevant, and thus that, for r > M ,  the shock 

continues to propagate as a subcritical kinematic wave of amplitude O(e4). Since in 

fact the transition shock width (as we show below) is O(e3) if a, ,u are given by (6.13), 

and the shock width of a kinematic wave is also O(p) N O(s f ) ,  we anticipate that the 

profile of the wave will evolve smoothly; only its speed will change quite abruptly 

from dxldt N O(s-4) to dxldt - O(1). 

Although ( 6 . 2 3 ~ )  is a valid representation forthe shock speed, the initial condition 

is less accurate. This is because the steady-state regular solutions do not join a t  u = u,; 

thus u < uc when x > e4~mHcuc / (Hc+muc)  (from (6.17)) but, when u > uc, we have 

in the steady state H N Hc+O(e),  and thus u - s (x) /H - uc-ax /Hc whence u > uc 

for x < 0. Thus even the steady state is singular a t  O(&) and we require diffusive 

terms to cross the barrier between x = 0 and x = s4,umHcuc/(Hc+muc). The present 

problem thus differs from other shock-propagation problems in that the basic steady- 

state has a singular region incorporated in it; this is the ' barrier' between super- and 

subcritical zones. In view of these comments, it is only consistent to append, as initial 

condition to (6.23a), the requirement 

s: 

XZ(0) 6 bmHcuc or x i ( 0 )  - O(1). 
Hc +mu,' 

(6.25) 

6.3. Transcritical diffusion 

Having shown how a shock can transmit the seasonal wave through the critical barrier, 

we wish to examine how diffusion will act to smooth out such a profile in reality. Let 

us first recall the equations to be solved. These are 

Ht + (uH),  = ~ ' ( x ) ,  (6.26) 

H [ 1  -be4H,]+&s3(Huz), = f ( s u )  +m(u-uc)2P(uc-u). (6.27) 

The form of (6.27) shows that we can expect to have H, and u,, continuous a t  u = uc, 

but that higher derivatives will be discontinuous. To focus our attention on the 

transition region, we must rescale the variables. The nature of the shock solution 

immediately suggests that we put 
x = €8X,  t = €7; (6.28) 
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additionally we will define the critical point Xd(7)  via 

u = uc on X = Xd(7) .  (6.29) 

We expect, but do not assume, x d  to be similar to  xX of (ii). The scales for u and H a r e  

a little complex, differing in X > x d  and X < Xd, and also depending on whether we 

consider the steady or time-dependent state. With this warning, we shall try to 
indicate the procedure in a logical fashion. We assume that u 2 uc for X 5 Xd.  

6.3.1. Matching 

from (6.16) and (6.17), 

Matching principles (Cole 1968) imply that the transition solutions should satisfy, 

(6.30 a )  
maX ,LmaHE 

H H , - € : [ ~  + + muc (Hc +muc) 

- a x  bmaHcuc + 
Hc+muc (H,+mu,) 

u - the+€+ (6.30 b) 

as X + + co, since the shock travels into a subcritical steady-state zone. To match the 

supercritical zone, we note from (6.27) that  H N H,+ef ' (O)u+O(e~)  is the regular 

solution for it when u > uc, and thus (6.10) is still accurate when ,u N €4, to O(e4) 

(actually, to O(e4x)); expanding for small x, i t  easily follows that we require the 

matching conditions 

u - u c  + @(T + O(e4)) -- + O(€), ( 6 . 3 1 ~ )  

H N He + O(S) ,  (6.31 b) 

as X -+ -a; this includes both steady-state (u - u,-sHaX/Hc+O(c)) and time- 

dependent (u - uc + @ ( T )  + O ( d )  cases. 

€+ax 

Hc 

6.3.2. Xcaling 

(i) X > Xd.  We define, motivated by (6.30) (and foresight), 

-maX ,LmaHE 

H = H c + d  Hc + mu, - ( Hc + +x+] 9 

( 6 . 3 2 ~ )  

(6.32b) 

and we require 
$+,x+ N O ( d )  as X - 2  a, ( 6 . 3 3 ~ )  

(6.333) 

Substituting (6.32) into (6.26) and (6.27), we obtain, after some arithmetic, 

B - ~ X , ' + H C $ S + Z L ~ X ~  = O ( S ~ ) ,  ( 6 . 3 4 ~ )  

~+-$i iHc~&+a"e~H~#$,  = rn$++O(ef).  (6.34 b) 

Equation (6.34) apparently implies x+ = O(&), whence also#+ = O(st) ,  as is required at  

X -+ + co. However, we require (at least in the unsteady case) #+ N O( 1)  on X = X,;  
there is therefore a singular region near xd, which we analyse by putting 

x = Xd(7)  + e'x. (6.35) 
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This recovers the singular $&x term in (6.343); there is no singular behaviour for x+, 
however, which is indeed Old) ,  as predicted. With (6.35), ( 6 . 3 4 ~ )  gives an equation 

for x+/& ( N O( i ) ) ,  with a bounded solution provided X i ( 7 )  > 0. With x+ N O(ea), 

(6.34b) then gives for $+, correct to O(&, 

EHc$ha = m$+. (6.36) 

Solving this, we finally have the (time-dependent) solution in X > xd, to satisfy 

(6.36) and (6.331, ,. 

a B m H c u c ] e x p [  -(%) 4 ( x-xd(7) e4 )], ( 6 . 3 7 ~ )  

’+= H c + m u c  [ X d - H c  +muc EHc 

x+ = O(&. (6.37b) 

In  the steady state, with a/& = 0 in (6.34), X+ = - Hc#+/u,,  and the resulting 

linear equation for $+ has zero as the only bounded solution; hence the steady-state 

solutions are 

$6’ x+ O(fd), x > X d ,  (6.38) 

and, as a result, the steady-state value of Xd must be 

note that this concurs with the value of xZ(0) in (6.23b). 

(ii) X c X d .  Now consider the supercritical region, in 

(6.39) 

which u > u,; we write 

u = ~ c i - $ - ,  H = HC+$x-; (6.40) 

together with (6.28), (6.26) and (6.27) become, withf(u) = ~ ” ( B u )  = Hc +sf’(O) u + O(s2),  

X; + Hc $2 = -sf [a + { x - ( ~ c  + $-) }XI  + O ( S ) ,  (6.41) 

X- - ,iiHc XX + EHC $,YX = O ( d ) .  (6.42) 

The tirne-dependent problem requires, from (6.31), 

q5- N @(r),  x- N 0 to O ( d )  as X - t  -a. (6.43) 

At leading order, $- and x- satisfy 

XF +He$, = 0, ( 6 . 4 4 ~ )  

x-- , iZHcx~+EHC$2x = 0; (6.44b) 

we return to this linear problem in due course. 

The steady-state problem requires, from (6.31), 

+ O ( S ) ,  x- N O(s*) as X -+ -a; 
€*ax 4- N -- 

HC 

with x; = 0 in (6.41), $2 O(et) ,  the solution for $- is then 

st 

HC 
$ - w  -- [ a x  + ucx-I + O(s) .  

(6.45) 

(6.46) 

It follows from (6.42) and (6.43) that x- is given by 

x- = - A  exp [X/,iZHc], (6.47) 

where the constant A is to be determined by continuity requirements a t  xd. 
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FIGURE 4. Schematic steady-state solutions in the transition region: (a) for H ;  (a) for u. 

6.3.3. Continuity considerations at X d :  initial condition and steady state 

We must now complete the formulation by specifying the continuity conditions to 

be satisfied on xd, and also the initial condition. Let us first recapitulate what we have 

foundso far.$6.3.1 describes thematching conditionsto besatisfiedat X - t  & co ((6.30) 

and (6.31)). In  $ 6.3.2 (i) we scale the variablesin the subcriticalzone X > x d ,  obtaining 

the solutions (satisfying the matching condition a t  X -+ + co) (6.37). These are valid in 

both steady and time-dependent cases: in the former, we require Xd given by (6.39); 

in the time-dependent case it is as yet unknown. I n  6 6.3.2 (ii) we derive the scaled 

problem for the supercritical zone X < X d :  the relevant time-dependent equations are 

given by(6.44); here u-uC = $- N 1. In  the steadystate,thescalingisslightlydifferent 

(since @ = O ) ,  and the solutions are given by (6.46) and (6.47), with A yet to be 

determined. 
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The initial condition for the time-dependent problem will be the steady-state 

solution: let us first complete this solution. We do so by requiring that, onXd, H ,  H,, u 

and ux are continuous: continuity of uxx then follows from (6.27). The steady-state 

solution in x > X d  is given by (6.32), with x+ - #+ N o(sa), x d  given by (6.39). It 
follows that, on X = x d ,  

u = u C ,  UX = -da/(H c+muc), 

(6.48) 

to O(s). I n  terms of $- and x-, given by (6.40), we thus require (6.46) and (6.47) to  

satisfy, on X = x d -  , 

We satisfy the condition on x- by requiring that 

x d  PmaH, 

Aexp[z] = Hc+mucy 
(6.50) 

where x d  is given by (6.39). It is easily checked that the other constraints in (6.49) are 

then satisfied automatically. 

The steady state is thus given by (6.32)’ (6.38)-(6.40), (6.46), (6.47) and (6.50). 

A schematic view of the profiles of x and # is shown in figure 4. Surface slope (p) 

diffusion acts to provide a stationary shock structure in the supercritical zone, wherein 

H changes by O(s*) in a length O ( d ) .  At this level of approximation, the compressive 

stress (a) diffusion has a negligible effect. 

Now consider the time-dependent problem. The solution in X > x d  is given in 

§6.3.2(i)  by (6.32) and (6.37), where x d  is to be determined. Continuity of $-, $62, X- 
and XX a t  x d  then requires that 

(6.51) 

fife 
Hc + muc 

b d  + ma 
$6- = 0, $2 = O(& x- = - 

H ,  + muc 

-ma + O(d)  ’’ = Hc+mu, 
on X = X ; .  

We can now restate the time-dependent problem to be solved as follows. We define 

$ = $6--@(T) (x < x d ) ;  (6.52) 

eliminating x from (6.44) and integrating once yields as the equation for $ 

di$xT+JHc$,-$ = 0 (X C x d ) ;  (6.53) 

the matching condition a t  X = - co is 

$ + O  as X-t-00; (6.54 a )  

the continuity requirements, a t  leading order, are 

$ = - @(TI, $x = 0 on X = X & ) ;  (6.54b) 

the initial condition (since O(0)  = 0) is 

$ = O  on T = O .  (6.54 c) 
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In  terms of $, x- is given by integrating (6.42) once, using the continuity condition for 

x- in (6.51), to obtain 

’HZ }]. (6.55) +(  mu ) e x P ( A )  x d ( 7 )  ( x d ( 7 ) + ~ c + m u c  

Hc + muc PHc 

We then require the matching and continuity conditions 

x - + O  as X - t - 0 0 ,  ( 6 . 5 6 ~ )  

x~ = -ma/(Hc+muc)  on X = x d - ,  (6.56b) 

and finally the initial conditions, from (6.39), (6.47) and (6.50), 

( 6 . 5 7 ~ )  

(6.57 b)  

Our problem is thus to solve (6.53)-(6.57) for the unknowns $, x-, x d  in r 2 0, 

-a < x < x d ( 7 ) .  

6.3.4. Time-dependent solution; u > uc 

This is not as hard as it looks. Let us suppose X ~ ( T )  is known; then we can solve 

(6.53)-(6.54) for $ by using Riemann’s representation method (e.g. Copson 1975). 

The details are given in appendix B. The result is 

x exp [ -’Hc!7-7) dr, (6.58) 
a 1 

where CE ( -  co, Xd(7) )  is the space variable and 7 

defined by 

0 is the time variable; ~ ~ ( 6 )  is 

(6.59) 
7 0 ( 0  = (5 < Xd(O)), 

(6 > Xd(0)) .  Xd[70(6)1 = 6 

Although (6.58) is rather fearsome, we may obtain its asymptotic behaviour as 

6 -+ - co, for fixed 7;  this is given by 

(6.60) 

as 6 + - 03, where we assume cD(0) = 0, W(0) > 0 (see appendix B for details). 

We can see from (6.60) that the presence of non-zero ~5 makes the decay of $ (and 

hence 4) oscillatory. Por smaller &, this oscillation is damped out, as may be seen by 

putting d = 0 in (6.53). 

The solution (6.58) satisfies (6.53) and (6.54). It remains to consider (6.55)-(6.57). 

Integration by parts of (6.55) and consideration of (6.60) shows that ( 6 . 5 6 ~ )  is auto- 

matically satisfied: it is also easily seen that (6.573) is true. It only remains to satisfy 
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(a 1 

FIGURE 5. Schematic solutions in the transition region: (a )  for u;  ( b )  for H .  The steady 
solutions (figure 4 (a )  and ( b )  for H and u respectively) are shown dotted. 

(6.563) and (6.57a), and we hope thereby to  determine xd(7). From (6.55), we evaluate 

To evaluate I l r X X ,  we write (6.58) in the form 

(6.62) 
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where we have used the series expansion for J,, J,(z) = 1 - $z2 + &z4.. . . The integrand 

in (6.62) is an analytic function off;, so we may differentiate under the integral sign. 

Using the definition of T , ( [ ) ,  we obtain, after some manipulation, 

Together with (6.61) and (6 .56b)  this implies 

1 ma ,ZHZ 1 @ ( T )  -ma 

-a ( Hc + mu,) ( X d ( 7 )  + Hc + mu,) p X, (7) Hc + muc ’ 
+;- = 

whence 
Hc @(r)  Xi(?)  = 

ma 

Hc + muc 

(6.63) 

(6.64) 

The final condition is (6 .57a) ,  which is the initial condition for x d .  Solving (6.64) and 

(6 .57a) ,  we find 

X a  = muc)/ ;  @(7)d7 I (6.65) 

which describes the evolution of the critical point Xd.  This completes the solution of 

the transcritical diffusion problem. By comparison, we see that (6.65) is identical to 

( 6 . 2 3 ~ )  if we make the identification 

Xz = X d - P H c ,  (6.66) 

and it follows from the above analysis that the appropriate boundary condition for 

x;(O) in (6.25) is 

] * Hc + muc 

lie xX(0) = - 
Hc + muc * 

(6.67) 

The forms of the time-dependent solutions for u and H in - co < X < + 00 are 

sketched in figure 5 .  

7. Summary and conclusions 

The precise aim of this paper has been to develop a mathematical description of the 

two main types of glacial wave motion, and it is hoped that this development is 

satisfactorily complete. By a mathematical description, we mean a theoretical analysis 

that  explains the pertinent facts, and that is also self-consistent mathematically, being 

systematically derived, using established approximation methods, from a general 

continuum model. Since the equations of motion that we consider are complex, it is 

not surprising that the analysis becomes fairly involved, and we do not offer any 

apology for this. Nevertheless, the methods presented here are in principle straight- 

forward, and we hope that the results, a t  least, will be comprehensible to glaciologists 

(as well as the applied mathematician). 

Since the results of the present work deviate in certain respects from those of other 

authors concerning waves (Nye 1960; Lick 1970; Hutter 1980), let us review the 

procedure of the paper, and then summarize the relevant physical results. 

First, we consider a complete continuum model (Fowler & Larson 1978). This model 
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is then non-dimensionalized using the external inputs (boundary data) in such a way 

that all variables are of numerical order one, and all parameters are 5 O(1). By then 

judiciously taking asymptotic limits where appropriate, we derive from the continuum 

equations an approximate model, which can be used to study both surface and 

seasonal waves. In  order to simplify the ensuing analysis, we further suppose that 

basal sliding is the dominant constituent of motion, although we do not believe that 

this assumption is qualitatively necessary for the wave-propagation mechanisms we 

discuss. 

The dynamics of the resulting, essentially one-dimensional model are crucially 

dependent on the form of the basal sliding velocity, which prescribes a relation between 

the basal stress 7-13 and the basal velocity u (and possibly other quantities). We take the 

view that the phenomenon of subglacial cavitation will have a dramatic effect, 

changing the slope of the stress-velocity curve from an O(1) quantity to an O ( E )  

quantity (8 - a t  a critical velocity; we suppose this change occurs discon- 

tinuously, i.e. the slope is discontinuous a t  u = uc. Supposing that 7 b  is a function of u 

only when u > uc is tantamount to supposing that the cavities are autonomous, that 

is, unconnected to the subglacial drainage system; if we relax this assumption, then 

7 b  must also be a function of the effective pressure N = (overburden pressure) - (water 

pressure). However, to assume 713 = f ( u )  is nevertheless physically sensible, and is 

reasonable here since our aim is to understand the dynamic effects of cavitation, rather 

than to add to the literature concerned with the sliding law itself. 

Our model thus consists of a kinematic wave equation (derived from the mass 

continuity equation) supplemented by an expression for the flux. We can state the 

results with reference to the assumptions above, although (in 9 4) we have discussed 

the effect of shearing motion on surface waves. With a velocity u and a depth H (both 

made dimensionless and U( l)), the flux is Ifu, the basal sliding law gives 7 b  = f (u), and 

the model is completed by an expression for 7 b  in terms of H and u. This is a slight 

generalization of Nye’s (1952) formula, and includes two dimensionless parameters p 

and a ;  p multiplies H, and is therefore a measure of the effect of the surface slope on 

the stress; a multiplies (Hu,), (in the Newtonian case), and is therefore a measure of 

the effects of compressive stress. Both these parameters are typically small, estimates 

of physical relevance being p - l W 1 ,  a - 4 x 10-3. In the absence of dynamic wave 

motions (and hence shocks) it is reasonable to neglect both p and a to leading order in 

determining the stress. It then follows that this is given by 7 b  N H, and thus the 

critical velocity uc of the sliding determines a critical depth Hc 1~ f ( u c )  (the precise 

definition of Hc is slightly different). According to the sliding law, when (at least in a 

steady state, where we can neglect ,u and a )  H 5 Hc, then also u < uc, and so cavi- 

tation is absent, andf’(u) - O( l ) ;  however, when H 2 Hc then u > uc, andf’(u) - O(E) ;  

cavitation exists in such regions of greater depth. 

It therefore follows that the (steady-state) depth will generally be as shown in 

figure 3. Since the flux uH through a section is equal to the integral of the accumulation 

rate (~(x)), which will generally be a positive concave downward function (i.e. 

d2s/dx2 c 0 ) ,  the flow will be divided into one or more supercritical zones, where 

u > u,, H 2 H,, i.e. s (x)  2 Hcuc ,  and subcritical zones (at either end) where u c uc, 

H 5 H,, and s (x)  5 Hcuc. 
If 9 < Hcu, throughout, then the whole glacier is subcritical, and time-dependent 

motions consist of kinematic waves. As these pass downglacier, they evolve non- 
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linearly and, if ,u = a = 0, shocks will ultimately form. In  this case p acts as a diffusive 

term, smoothing such shocks out monotonically over a length scale O(p). I n  dimen- 

sional terms, this is O(d/e*)  metres, where d is a typical depth (in m) and e* is the mean 

bedrock slope. Thus the wave profile becomes sharper for glaciers which flow over 

steeply sloping bedrock. The relative importance of longitudinal stress in the diffusion 

region is given bya/pl+lln, where nis the exponent in Glen’s law; with typical estimates 

as before, this term is small, and it is consistent to ignore it in the analysis. (This will 

not be true, though, for steeper bedrocks, when p becomes smaller.) 

Now consider the case shown in figure 3, where there is a supercritical region. Within 

this region (and neglecting diffusional terms p and a) ,  the analysis shows that fast, 

essentially linear waves travel through a t  a speed N 0(1/e) (relative to the surface 

speed). These waves consist of O(1) variations in velocity, but only O(e) variations in 

depth, which, although an important constituent of the motions analytically, will 

probably be unobservable experimentally. They are not ‘ compression waves ’, deriving 

their properties solely from the assumed form of the supercritical sliding law. 

The linearity of supercritical seasonal waves implies that they travel without change 

of shape, and so a shock-structure analysis corresponding to that for surface waves is 
irrelevant. However, since supercritical zones are bounded upstream and downstream 

by ‘critical barriers’ at which s(x) N Hcu,, and beyond which u < uc, the transition 

behaviour of supercritical waves arriving a t  a critical barrier is of some interest. The 

disparity of amplitudes and time scales in the two regions suggests that a transcritical 

shock must then form (in the diffusionless limit) a t  the critical barrier. The incoming 

wave has speed O( l/e), depth amplitude O(s),velocity amplitude O( 1). A shock analysis 

(with p = a = 0) shows that a transcritical shock forms across which the velocity jump is 

O( l), the depth jump is O ( d ) ;  the shock travels forward a distance O(&) a t  speed O(E-4) 
as the supercritical wave arrives and is absorbed. When the incoming velocity wave 

amplitude has decreased to zero, we are left with a depth discontinuity of height 

O(e+), which then proceeds to travel forward as a surface wave into the subcritical zone. 

Thus the supercritical incoming wave is turned into an outgoing subcritical surface 

wave by the ‘shock-absorbing ’ critical barrier. 

To study the effect of diffusion on this transcritical shock, we consider a < 1, p < 1, 

and motivated by the parametric estimates a N p N 10-1, define 

ti = c c / d  N O( l), = p / d  N O(1). It then turns out that  the steady-state solution has 

has a transcritical singular region, as shown in figure 4. A distance O ( d )  upstream of the 

critical barrier C, the depth decreases by O ( e f ) ,  although there is no singular region 

downstream of C in the steady state. As a seasonal wave arrives at C a t  speed O( l/e), 

the amplitude of u upstream jumps rapidly by O( 1), causing the transition point C to 

move forward. The diffusion region is of thickness O(s*), and over this u decays 

oscillatorily (if di + 0) to its incoming amplitude, far from the transcritical region; thus 

the effect of compressive stress is to introduce an oscillatory space dependence of u 
(and thus also H )  upstream of C. 

Downstream of C, little happens; the depth H is virtually unaffected, and there is a 

small singular region of width O(e2) over which u changes by 0(1/e). These conclusions 

are represented pictorially in figure 5. 

Finally, let us note that there are many facets of the real flow which we have ignored: 

for example the shearing motion (in $6),  non-uniformity of the transverse valley profile 

(Nye’s shape factor), the effect of temperature variation, the variation of the bedrock 

e N 
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h =k 0, flow round corners, incorporation of effective pressure and discussion of sub- 

glacial drainage in the sliding law. The reasons for such omissions are various: irrel- 

evance to the topic a t  hand, resulting simplifications, and so on. Let us, however, 

re-emphasize the scope and nature of an analysis such as that presented here. Given 

a set of observations, we seek in a mathematical framework to provide an (at least) 

qualitative explanation of their behaviour, and to give (rough) quantitative descrip- 

tions as well. In  so doing, we retain onZy that which is considered relevant to the 

specific observations. Such simplified models offer primarily the ability to understand 

complex phenomena and also serve in elucidating and predicting the actual behaviour 

observed, both on the computer and in the field. 

Part of this work was presented a t  a Working Seminar on problems in nonlinear 

continuum mechanics, held at  the Dublin Institute for Advanced Studies, Ireland, 

12-16 May 1980. 

I would particularly like to thank Kolumban Hutter for detailed comments on a 

first draft of this paper. 

Appendix A. Scaling the glacier model when basal slip is dominant 

I n  this appendix we derive the appropriate scaling of the model equations of glacier 

flow when the velocity due to shearing is asymptotically smaller than that due to basal 

slip. The development parallels that of Fowler & Larson (1978), to which the reader is 

referred. 

The longitudinal velocity is written as 

u = u[ub + pull ; (A 1)  

here U is a velocity scale, u b  and u1 are dimensionless velocities due to slip and shearing 

respectively. We suppose u b  N 1, u1 N 1, p < 1. If d (to be determined) and 1 are 

relevant depth and length scales, then the two-dimensional continuity equation 

implies that the vertical velocity v may be written as 

21 = 6u[-u;y+pv,l, (A 2) 

where 6 = d / l  is the aspect ratio, and U is found by prescribing that 6U is of the order 

of magnitude of the surface accumulation rate. In  (A 2), y is the dimensionless vertical 

co-ordinate: uI and v1 satisfy 

Glen's flow law 

U I Z + V I Y  = 0. (A 3) 

eij = Arn-lrij, e = Arn (A 4) 

may be written, with r12 = +rZ1 = r2, rll = -rZ2 = rl, as 

where 

I1 

(A 7) 
F L M  120 
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Using (A 1) and (A 2), (A 7) is 

where 

(A 6)  gives 

We now define the stress scale 

and write 

so that (A 11) and (A 12) are 
r2 = [T] ?%, 71 = V [ T ]  Tl, 

;i2 = elin-1 [ u 1y - Jvu;: y + S2V1,1 3 

7 1  = 2Elin-l[u;, + pulz]. 
- 

We scale the pressure minus its hydrostatic component in the same way as T ~ ;  thus 

we put 

Substitution of (A 15) and (A 16) into the momentum equations 

P = r ) A + p g ' d ( ~ - y ) + v [ 7 1 ~ *  (A 16) 

(A 17) 
P[Ut  + uu, + flu,] = - P, + 71% + 2y 

P [ V t  + UV, + VV,I = - P y  + 7 2 2  - 71y - +pg'E*,) pg' ,  

now gives (3.5) directly; the surface boundary conditions are found likewise. This is 

effected by choosing the same balance of stress and gravity, that is rZy N pg's*, whence 

we specify 

[TI = pg's*d. (A 18) 

The two relations (A 13) and (A 18) serve to specify d completely; the only difference 

between the case /3 N 1 and /3 < 1 is the factor p in  (A 13). Since from (A 13) and (A 18) 

we find 

there follows 
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This gives d in terms of physically prescribed parameters ( V  is prescribed and not U ) .  
The factor ,81/(n+n) is of little numerical significance; for example, if p - &, n N 3, then 
pl/(n+4 N *. 

Appendix B 

The problem is 

Here we derive the solution of (6.53), (6.54) and its asymptotic form as X -+ - co. 

(B 1) i 
E$xT+FHc$x-$ = 0 ( x  < x d ) ;  

$ = O  on 7 = O  and X = - c o ;  

$ = - @ ( T ) ,  $rx = 0 on X = x d ( 7 ) .  

We use Riemann’s representation method (Copson 1975). The line 7 = 0 is a charac- 

teristic, but the data $ = 0 on it  is consistent with the equation, and 5~ solution may 

be found in the usual way. Specifically, the value of $ at a point ( & q )  in ( X ,  ?)-space 

(6 < x d ( 7 ) ,  q > 7 )  may be found in terms of a Riemann-Green function R ( X ,  7; 6,~) 
which sat,isfies 

d R x ,  -FHcR, - R = 0 (6 < X 6 xd(7), 0 < 7 < q) ,  

R , = O  on r = y ,  

dR,-,GHcR= 0 on X = g ,  

R( t - ,q ;  E,q)  = 1. (B 2) 

With the boundary conditions on Xd in (B l) ,  $ is given by 

$(~ ,y )  = -@(TI+! C ~ ( 7 )  [ .-TR]~T, (B 3) 

where C is the portion of the curve x = x d ( 7 )  between x = max {c, Xd(0))  and 

X = xd(7). ( w e  assume XA > 0, as subsequently verified in the main text.) (B 2) is 

easily solved to find 

whence the explicit form for $(& 7) is 

It is easy to see that (B 5 )  satisfies $ = 0 on 7 = 0. To check the condition a t  X --f - co, 
we refer to the asymptotic analysis below. 

To consider the asymptotic behaviour of $ as 5 -+ - 00, define 
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Assume @(r) and Xd(r) are analytic functions of r. (If @ is, then Xd is also, a posteriori 

where we make use of the recursive formula d(z"J,(z)) /dz  = Z " & ~ ( Z )  (Carrier, Krook & 
Pearson 1966). Further terms may be obtained easily, and it is obvious, since G is 

analytic in Sand 1/1[\ (by inspection), and since lJ,(z*)I N z*-3 for all v > 0 as z* -+ m, 

that the series (B 13) is asymptotic. We find, using (B 9), that 

(4% 161) = @(TI, 

if @(O) = 0. In this case, the leading-order asymptotic expansion for 9 as 6 -+ - 00 is 

. .  
valid for fixed 7 as 161 -+ 00. 
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