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Wax diffusivity under given thermal gradient: a mathematical model

S. Correra∗, A. Fasano†, L. Fusi† , M. Primicerio† , F. Rosso†

Abstract

In this paper we describe how to obtain wax diffusivity and solubility in a saturated crude oil using

the measurements of solid wax deposit in the experimental apparatus known as cold finger. Assuming

that migration of dissolved wax is primarily driven by thermal gradients, mathematical models are

derived relating the deposit growth rate to the above mentioned quantities. We will investigate the

case in which the oil is not agitated. The stirred case is studied in part II. Comparisons with available

experimental data are performed and possible sources of errors are discussed.

1 Introduction

Waxy crude oils (WCO’s) are mineral oils containing a sufficiently large amount of wax (a complex
mixture of heavy hydrocarbons), a property that is going to affect pipelining operations under particular
thermal conditions. This peculiar feature of WCO’s is due to the fact that when temperature drops
below the so-called cloud point Tcloud (or WAT=wax appearing temperature) wax crystals appear, which
at an even lower temperature (pour point) develop a strong tendency to aggregate forming a gel structure.
Obviously, this feature influences rheology in a quite significant way (see the review paper [4]).

Besides rheological complications another relevant process taking place when radial thermal gradients
are present in the pipeline (a typical situation for submarine ducts) is the growth of a solid wax deposit
at the wall due to molecular diffusion. This has to be predicted with some accuracy for planning periodic
removal of the deposit. This delicate question has been considered in the recent paper [3] for the case
of turbulent flux. We refer to it also for some bibliographical references. The main physical parameters
of a WCO that have to be known to predict the deposit growth rate are the diffusivity of dissolved wax
and the solubility (i.e. that saturation concentration as a function of temperature). An experimental
apparatus used to obtain diffusivity (but also solubility) through measures of the wax deposit growth
rate is the so-called cold finger.

This device is designed to measure the mass deposit from oil samples, occurred over given time
intervals under controlled temperature gradients.

The aim of this paper is to write down predictive formulas for the wax deposit in a cold finger device
and to show how to use them to deduce the values of the desired parameters from deposit measurements.
In particular we will point out how to obtain the maximum amount of information from the available
experimental data and we will discuss with some care the range of applicability of the cold finger devices.
The case considered here is the the one in which the sample is not stirred (static device).

Our main scope is to provide insight of the basic mechanism determining wax deposition on cold
walls. Since our claim is that the relevant physical factor in the phenomenon is thermal gradient (see
[1] for an extensive discussion), we will write a mathematical model in which other effects are neglected
not because they are absent but because their presence is not crucial for the correct interpretation of the
experiments. In particular, kinetics of wax crystallization and dissolution are considered to be very fast
in comparison with mass transport (this assumption is implicitly done in all the previous literature on
this topic).

Moreover, we will consider wax as formed by a single component and we assume that oil and wax
(both in the segregated and dissolved phase) have the same density ρ, so that no gravity settling nor
volume changes occur because of crystallization or deposition.

∗EniTecnologie, Via F. Maritano, 20097, San Donato Milanese, Milano, Italia.
†I2T3 - c/o: Dipartimento di Matematica “U.Dini”, Universitá di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italia.
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Figure 1: Sketch of the cold finger

Making use of the experimental results reported in [2] we will deduceshow how to evaluate wax
diffusivity from various oils, reaching the conclusion that in the static device only the contribution of the
light fraction of wax is visible.

2 Description of the apparatus

The apparatus consists in a cylindrical container (typical radius ≈ 12 cm) whose lateral wall can be kept
at a selected temperature, and of another thermally controllable cylinder (the cold finger, radius ≈ 5
cm), inserted along the same axis and destined to collect the deposit (see Fig. 1). Other configurations
have also been used (see [10]).

The oil sample is initially placed in a thermostatic bath and then warmed to 30 ÷ 40oK over its
WAT, in order to homogenize the material and to erase its “thermal” and “mechanical” history. After a
sufficiently long time (usually a few hours), the sample is cooled to the temperature Te that will be kept
constant at the external wall during the experiment. At this point the cold finger (a metallic cylinder
which is kept at constant temperature Ti < Te) is immersed in the sample so that an axially symmetric
thermal field through the sample is produced.

Due to the large difference between thermal and (expected) mass diffusion (from the literature thermal
diffusivity is of the order of 10−6 m2/s while wax diffusivity is of the order of 10−9 m2/s), the thermal
transient is neglected and a steady-state profile is assumed for the temperature.

We denote by Cs(T ) the wax saturation concentration at the temperature T , i.e. the maximum mass
of wax that can be dissolved in a unit volume of the given oil. Cs(T ) is an increasing function. When
total wax concentration ctot exceeds Cs a segregated phase will appear (in form of suspended crystals)
and the solution is saturated. The corresponding concentration of the segregated phase will be denoted
by G = ctot − Cs. Let c∗tot be the initial concentration of wax in the sample. If the temperature of the
cold finger is above Tcloud no segregated phase will appear (the solution is unsaturated throughout the
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sample at these temperatures) and the concentration of the dissolved wax will remain constant and equal
to c∗tot.

On the contrary if the temperature of the outer surface is below Tcloud, all the solution will be initially
saturated and the concentration of the dissolved wax will be determined by the temperature profile within
the sample. Excess wax will be present as crystallized segregated phase.

In the intermediate case, Ti < Tcloud < Te, there will be a surface separating the unsaturated region
(close to the outer cylinder) and the saturated region (in the vicinity of the cold finger).

Excluding the first case Ti > Tcloud, since Cs is an increasing function of temperature and since we
have created a thermal gradient in the sample, a gradient in the concentration of the dissolved wax
will exist. Hence the latter diffuses towards the cold wall. Once the transported material comes in
touch with the cold wall it adheres to the surface, thus forming a solid layer which does not appreciably
modify geometry of the system, since its thickness is usually much smaller than the cold finger radius.
This mechanism of mass transport through a WCO is known as molecular diffusion. Other deposition
mechanisms may contribute to the formation of deposits, like shear dispersion, Brownian diffusion and
gravity settling. However there is a general agreement in considering molecular diffusion to be dominant
in the present conditions (see [7]). This is the reason why, in our analysis, we focus on this mechanism
only.

The aim of the experiment is to measure, for a given oil, the amount of deposit at different times and
for different temperature gradients.

In our analysis we shall consider the situation in which the oil is immobile1. The system goes through
several stages. If initially it is completely saturated, the mass current in the solution which leaves the
warm wall to reach the cold finger is fed by the segregated phase (as long as the concentration of the latter
stays positive) in order to keep thermodynamical equilibrium between dissolved and segregated phase.
This stage is followed by progressive desaturation with depletion of the segregated phase and eventually
the system becomes totally desaturated. The wax concentration tends asymptotically to the saturation
concentration corresponding to the cold finger temperature.

We will discuss possible sources of errors and we will also suggest a standard procedure to extrapolate
the long time behavior of the device (not always experimentally available) from measures taken in the
stages preceding total desaturation. Since in many cases attaining the asymptotic behavior requires a
too long time, the above information is of practical interest.

3 Temperature, Concentrations, solubility and diffusivity

Temperature will be considered independent of time, since, as mentioned in the introduction, it reaches
its steady state before any significant mass transfer occurs. The thermal profile will not change since the
change of enthalpy occurring during segregation/dissolution with respect to the heat flux determined by
the two thermostats is negligible (see [3]). We denote by r the radial coordinate and by Ri and Re the
radius of the cold finger and of the outer wall. We have

T (r) = Ti +
(Te − Ti)

ln

(
Re

Ri

) ln

(
r

Ri

)

, (3.1)

where we recall Te > Ti represent the constant temperatures at the outer (warm) and at the inner (cold)
walls.

We suppose that all concentrations and temperature do not depend on the axial coordinate and we
introduce:

• ctot(r, t) total wax concentration,

• ctot(r, 0) = c∗tot initial total wax concentration,

1We neglect convective motions possibly induced within the inhomogeneous thermal field, although such disturbances

may have some influence on the computed value of wax diffusivity.

3



• c(r, t) dissolved wax concentration,

• G(r, t) segregated wax concentration,

• Cs(T (r)) saturation concentration (solubility).

By definition
G(r, t) = [ctot(r, t) − Cs(T (r, t))]

+
, (3.2)

where [..]+ denotes the positive part and is equal to zero when the quantity in brackets is negative,

ctot(r, t) = G(r, t) + c(r, t), (3.3)

c(r, t) = min{ctot(r, t), Cs(T (r, t))}. (3.4)

The dependence of solubility Cs on temperature could be theoretically inferred from the thermodynamics
of mixtures.

By assuming an ideal behaviour of the bicomponent mixture (see [9]) we have

Cs(T ) = Cs(Tcloud) exp

{

−
λ

R

(
1

T
−

1

Tcloud

)}

, (3.5)

where λ is the wax latent heat and R is the gas constant. Applying Taylor’s expansion around the cloud
point we get

Cs(T ) = Cs(Tcloud)

{

1 +
λ

RT 2
cloud

(T − Tcloud) +
λ

RT 3
cloud

[
λ

2RTcloud
− 1

]

(T − Tcloud)
2 + ....

}

. (3.6)

The ratio between the quadratic and the linear term in expression (3.6) is

Ψ =
1

Tcloud

[
λ

2RTcloud
− 1

]

(T − Tcloud). (3.7)

Using typical values λ = 5.4 cal/g, R = 1.9 cal/Mole ·o K, Tcloud = 300oK, a molecular weight MW =
410 g/mol and a maximum |T − Tcloud| = 30oK (the range of temperatures we will consider), we have

|Ψ| = 9.5 · 10−2. (3.8)

Thus a linear approximation is justified and we will write

Cs(T ) = Cs(Ti) + bw(T − Ti). (3.9)

We use this argument as a theoretical basis for (3.9), but we will determine the constant bw from exper-
iments.

We assume that the initial concentration c∗tot > 0 is constant and we suppose Cs(Ti) < c∗tot, that
ensures that near the cold wall the solution is saturated. In this region a radial gradient of dissolved
wax is formed and the latter is transported to the cold wall by molecular diffusion and sticks to the cold
finger (see (3.13)). The system will evolve through three stages

• STAGE 1 - Saturation through the whole sample

• STAGE 2 - Partial saturation

• STAGE 3 - Complete desaturation

Of course Stage 1 only exists if c∗tot > Cs(Te). Otherwise the evolution starts from Stage 2. During stages
1 and 2 the deposit growth rate is constant (mass grows linearly with time), while in stage 3 it tends
asymptotically to 0.
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3.1 Determining solubility and diffusivity from deposition measures

It is known that the deposit is formed by wax and entrapped oil. In the static device wax crystals tend
to form a rather thin structure so that the oil fraction in the deposit is usually quite large.

We denote by φ the mass fraction of wax in the deposit and we define m∞(Ti) to be the asymptotic
value (i.e. measured at time when the deposit growth rate is no longer appreciable) of the mass (per unit
surface) deposited on the cold wall kept at temperature Ti . We have

m∞(Ti) = m∞w(Ti) + m∞o(Ti), (3.10)

where
m∞w(Ti) =: φm∞(Ti),

m∞o(Ti) =: (1 − φ)m∞(Ti),

represent the asymptotic mass of wax and oil in the deposit. The wax fraction φ can be rather small
(becoming an important source of errors) and will be considered constant in the range of temperatures
of the experiment. We also have

m∞w(Ti) = (c∗tot − Cs(Ti)) ·
(R2

e − R2
i )

2Ri
, (3.11)

hence, when solubility is approximated by (3.9) and T 1
i , T 2

i denote two different temperatures of the cold
finger, we have

bw =
(m∞w(T 1

i ) − m∞w(T 2
i ))2Ri

(R2
e − R2

i )(T
2
i − T 1

i )
= φ

[
m∞(T 1

i ) − m∞(T 2
i )

(T 2
i − T 1

i )

]

︸ ︷︷ ︸

=b

·
2Ri

(R2
e − R2

i )
=

φb2Ri

(R2
e − R2

i )
. (3.12)

Thus the solubility curve (3.9) can be determined once we know φ and two measures of the total deposited
mass for two different temperatures of the cold finger. We notice that the measure of c∗tot does not enter
(3.12).

Let us denote by m(t) the total deposited mass per unit surface at time t. Once more mw(t) = φm(t)
and mo = (1−φ)m(t) are the wax and oil deposited mass respectively. According to the assumption that
molecular diffusion is the only driving mechanism for wax migration to the wall, the deposition rate ṁw

(rate at which wax deposits per unit surface) is given by

ṁw = φṁ = Dw
∂c

∂r
(r, t)

∣
∣
∣
∣
r=Ri

, (3.13)

where ṁ = dm/dt, and Dw is wax diffusivity. When the solution is saturated in the vicinity of the cold
finger c has to be replaced by Cs and (3.13) becomes

ṁw = Dwbw
dT

dr

∣
∣
∣
∣
r=Ri

= Dwbw
(Te − Ti)

ln(
Re

Ri
)

1

Ri
. (3.14)

As long as the region near the cold finger remains saturated mass grows linearly with time. From (3.14) it
is clear the importance of knowing the product Dwbw for predicting the amount of deposit or vice-versa,
how to estimate Dw from the deposition rate.

If we know the amount of deposit per unit surface m∗ =: φ−1m∗

w for a fixed time t∗ during the linear
growth regime, then we can determine the diffusivity coefficient Dw using

Dw =
m∗

w

t∗
1

bwTr(Ri)
=

m∗

t∗
1

bTr(Ri)
. (3.15)
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where b (or bw) is obtained by means of the procedure previously explained. It is important to remark
that only b and m∗ (i.e. the total deposited mass) determine Dw, making it independent of the value of
φ as well as of c∗tot. Moreover, since Tcloud is defined to be such that

Cs(Tcloud) = c∗tot, (3.16)

then from (3.11)

Tcloud = Ti +
m∞w(Ti)

bw
·

2Ri

(R2
e − R2

i )
= Ti +

m∞(Ti)

b
·

2Ri

(R2
e − R2

i )
, (3.17)

In [2] experimental data are given referring to six samples of different oils A, B, C, D, E, F and
measures of mass deposited are displayed in function of time and for assigned temperatures.

We use these data to get the asymptotic values m∞(Ti), making use, when needed, of the extrapolation
technique described in Appendix 2. Then we compute bw and Tcloud for the six oils using (3.12) and
(3.17), respectively. The corresponding results are displayed in Table 1 together with the experimental
values of c∗tot, Tcloud given in [2]. Comparison of values in columns 2 and 3 shows that our approximation
is reasonable.

We note that formula (3.17) uses the ratio m∞(Ti)/b and thus the derived value of Tcloud refers in
practice just to the fraction of wax that has actually reached the cold finger. This explains why (3.17)
gives values of Tcloud slightly lower than the ones obtained by direct measures (see Table 1).

Oil c∗tot from [2] (Kg/m3) WAT from [2] (oK) WAT using (3.17)(oK) bw (Kg/m3/oK)

A 20.25 303 299 0.006

B 34.02 306 305 0.011

C 58.30 315 312 0.021

D 62.37 312 310 0.0035

E 90.72 308 307 0.0058

F 97.20 323 322 0.0014

Table 1

In fig. 3 of [8] solubility as a function of temperature is plotted for a crude oil with physical prop-
erties similar to oil A of [2], confirming that, in the range of temperature of our experiments, a linear
approximation for Cs is reasonable. Further if we compute the average slope we obtain a value of bw in
the same range as the ones reported in Table 1.

Actually a better fitting may be obtained with a quadratic polynomial (and this could be done in
analytical treatment and numerical simulation). However we have already outlined the spirit of this paper
in the introduction: to describe the simplest model incorporating the minimum number of parameters
and mechanisms apt to explain the phenomenon under consideration, also taking into account that an
error of 10 % on data is an optimistic expectation of their accuracy.

The most natural way of determining Dw is to use measurements of deposited mass during the early
stage of the phenomenon (stages 1 and 2) when the deposit rate is constant. Using the values of bw

obtained in Table 1 we compute the values of Dw resulting from the different experiments, obtaining the
following table:
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Oil (Te − Ti)
oK Ti

oK Te
oK starting stage Wax Diffusivity m2/s

A 10 278 288 1 3.20 × 10−7

A 15 278 293 1 3.20 × 10−7

A 10 298 308 2 3.51 × 10−8

B 25 288 313 2 8.67 × 10−8

B 20 293 313 2 3.21 × 10−8

C 30 288 318 2 10.24 × 10−8

C 25 293 318 2 6.80 × 10−8

D 25 290 315 2 1.35 × 10−7

D 20 295 315 2 8.48 × 10−8

E 24 289 313 2 1.30 × 10−7

E 19 294 313 2 5.70 × 10−8

F 15 313 328 2 8.12 × 10−8

F 10 318 328 2 8.10 × 10−8

Table 2

where the initial stage is also reported. The computed wax diffusivity for oil A in case Ti = 298o K and
Te − Ti = 10oK is not significant, since the difference Tcloud − Ti is very small (1 o K), meaning that the
duration of the stage of linear growth is too short to be identified. Of course we refer to the value Tcloud

consistent with the model. This implies that the first mass measure (the one taken after 4 hours) is taken
when the system has reached or is approaching the asymptotic stage (stage 3) and thus not usable for
evaluating Dw (the computed value is in fact smaller than the one from experiments 1 and 2).

We note that the diffusivity values in Table 2 are systematically greater than the values usually
assumed in field calculations. In particular it emerges that Dw is a decreasing function of Ti. Below a
table showing the decrease of Dw due to an increase of the cold wall temperature is reported.

Oil Decrease of Dw (per oK) Oil Decrease of Dw (per oK)

A – D 8%

B 9% E 10%

C 7% F 2%

Table 4

The dependence of Dw on Ti is due to the fact that at lower temperatures the fraction of lighter wax
components contributing to the phenomenon is larger. Since Dw expresses an overall property, this
explains its (otherwise unexpected) behaviour. This fact has been already explained in [2]. We remark
anyway that in our analysis the variation of Dw with Ti is much more restrained than in [2]. In appendix
3 we show how to get a priori bounds for Dw.
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4 The Mathematical model

Here we formulate the mathematical model assuming that the system evolves from stage 1, i.e. Te <
Tcloud. The thickness of the deposit layer is neglected and at any time the deposition front is given by
r = Ri.

4.1 Stage 1

We suppose that at time t = 0 the solution is everywhere saturated by wax, that is G(r, 0) > 0 in [Ri, Re].
The balance equations are

∂G

∂t
− DG

(
∂2G

∂r2
+

1

r

∂G

∂r

)

= Q, (4.1)

−Dw

(
∂2Cs

∂r2
+

1

r

∂Cs

∂r

)

= −Q, (4.2)

where Q is the transition rate from dissolved to segregated phase per unit volume and DG is diffusivity
of the segregated phase. From (3.1), (3.9) and from (4.2) we obtain

(
∂2Cs

∂r2
+

1

r

∂Cs

∂r

)

= C
′

s

(
∂2T

∂r2
+

1

r

dT

dr

)

= 0, (4.3)

where C
′

s = dCs/dT = bw. From (4.3) we get Q = 0. Thus during stage 1 G satisfies the parabolic
equation

∂G

∂t
− DG

(
∂2G

∂r2
+

1

r

∂G

∂r

)

= 0, (4.4)

with initial data
0 < G(r, 0) = c∗tot − Cs(T (r)) < ρ. (4.5)

The boundary condition on r = Re expresses mass balance

DG
∂G

∂r
(Re, t) = −Dwbw

dT

dr
(Re) = −

Dwbw

Re

(Te − Ti)

ln(Re/Ri)
< 0. (4.6)

For r = Ri we simply have
∂G

∂r
(Ri, t) = 0, (4.7)

meaning that all the solute incoming mass enters the deposit at the cold finger with no “recirculation”.
Stage 1 ends at time t1 when G(Re, t1) = 0. During this stage the wax deposition rate is given by (3.14)
(we recall that the total deposition rate is obtained dividing wax deposition rate by φ). With reference
to Table 1 and 2 we note that stage 1 is present only in the first two experiments performed with oil A.

4.2 Stage 2

At time t1 > 0 a desaturation front r = s(t), starting from the warm wall s(t1) = Re and moving towards
the cold wall, is generated. The function s(t) is unknown. When s(t) reaches r = Ri stage 2 ends and
the solution is everywhere unsaturated. During stage 2 we must solve the equations for the saturated
and unsaturated phase, that is

∂G

∂t
− DG

(
∂2G

∂r2
+

1

r

∂G

∂r

)

= 0, Ri < r < s(t), t1 < t < t2, (4.8)

∂c

∂t
− Dw

(
∂2c

∂r2
+

1

r

∂c

∂r

)

= 0, s(t) < r < Re, t1 < t < t2. (4.9)
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For t = t1 the function G is obtained from stage 1, i.e. G(r, t1). The boundary conditions are given
imposing the absence of flux at the walls

∂c

∂r
(Re, t) = 0,

∂G

∂r
(Ri, t) = 0. (4.10)

On the moving boundary r = s(t) we have

G(s, t) = 0, (4.11)

Dw
∂c

∂r
(s, t) − Dwbw

dT

dr
(s) = DG

∂G

∂r
(s, t), (4.12)

where (4.11) and (4.12) express the absence of segregated phase and the continuity of total flux on the
desaturation front, respectively. The end of stage 2 is marked by the time t2 > t1 such that s(t2) = Ri.
Also during this stage the deposition rate is given by (3.14).

4.3 Stage 3

Stage 3 is characterized by complete desaturation. The initial condition for the solute concentration
comes from stage 2, i.e. c(r, t2). The equation to be solved is the one of the unsaturated phase

∂c

∂t
− Dw

(
∂2c

∂r2
+

1

r

∂c

∂r

)

= 0, Ri < r < Re, t > t2, (4.13)

with boundary conditions
∂c

∂r
(Re, t) = 0, c(Ri) = Cs(Ti). (4.14)

During stage 3 wax (and also total) deposition rate ṁw tends asymptotically to 0 and it is expressed by

ṁw = Dw
∂c

∂r
(Ri, t). (4.15)

Differently from previous stages it is now impossible to write down an explicit expression for wax depo-
sition rate, but we can solve the problem numerically.

Remark 1 The knowledge of wax deposition rate during all stages is necessary to study the growth of
the deposit layer. The amount of deposited wax per unit surface and per unit time is

Dw
∂c

∂r
(Ri, t) (4.16)

where c is given by Cs(T ) during the first two stages and by the solution of (4.13)-(4.14) during the
third. Assuming that the solution is initially everywhere saturated (the system evolves from stage 1) the
deposited mass per unit surface m is given, for any t > t2 (i.e. during stage 3), by

mw = Dwbw
(Te − Ti)

ln

(
Re

Ri

)
1

Ri
t2 +

∫ t

t2

Dw
∂c

∂r
(Ri, τ)dτ. (4.17)

In case the system evolves from stage 2 time t2 in (4.17) indicates the duration of stage 2 only. Of course
the total deposit is given by m = mw/φ.

In Appendix 1 the complete formulation of the mathematical model in its non dimensional form during
the three stages is given.
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Figure 2: Numerical simulation. Experimental data refers to Oil A

4.4 Numerical simulations

At this point it may be useful to briefly consider an example of numerical simulation based on the
mathematical model of the evolution of the process, whose complete formulation is presented in Appendix
1. The result of this simulation is shown in Fig. 2, where the physical parameters are taken from the
second experiment of oil A (see [2]), that is

Te = 293oK, Ti = 278oK, Ri = 0.05 m,

Re = 0.12 m, Cs(Ti) = 20.1
Kg

m3
, c∗tot = 20.25

Kg

m3
.

bw = 0.006
Kg

m3 ·o K
, Dw = 3.20 × 10−7

m2

s
, DG = 1.4 × 10−8

m2

s
,

where DG is the segregated wax diffusivity.
In Fig. 2 the mass deposited per unit surface (rescaled by Cs(Ti)Ri ≈ 1Kg/m2) is shown as a function

of time (rescaled by R2
i /Dw ≈ 2.2h). Crosses represent the experimental data, while the solid line is the

result of simulation. Experimental data correspond to 4, 6 and 19 hours. In Fig. 2 we can identify stages
1 and 2 (characterized by linear growth) and stage 3, where the growth rate tends asymptotically to 0.
In this example the system evolves from stage 1, since the difference c∗tot − Cs(T ) is positive both at the
cold and at the warm wall.

Another (and simpler) method to predict the amount of deposit for a specific oil can be the one based
on the extrapolation procedure described in Appendix 2. This method essentially permits to predict the
asymptotic behaviour from the linear growth phase by approximating the curve describing the deposit
with an exponential branch. This procedure has shown to fit well the experimental data also for oil A
where asymptotic mass measures are available.
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Figure 3: Extrapolation of asymptotic mass from the stage of linear regime (Appendix 2).

The plot (based on the extrapolation procedure of Appendix 2) describing the mass deposit growth
for oil A is shown in Fig. 3.

5 Conclusions and perspectives

We have studied the static cold finger apparatus with the aim of using the experimental data (deposited
wax as a function of time) in order to derive the coefficient Dw of molecular diffusion of the dissolved
wax. We have shown that a simple model incorporating the basic phenomena can be set up such that

• It explains that mw grows linearly in a time interval (0, t2), then it tends asymptotically to a value
mw∞.

• From the values mw∞ corresponding to two different cold wall temperatures the solubility curve of
wax in oil can be linearly interpolated (see equation (3.12)).

• From the knowledge of mw(t) in the time interval of linear growth (0, t2) and from the above
mentioned interpolation, the value of Dw can be calculated (see eq. (3.15)).

• The values obtained for Dw are systematically larger than expected. This seems to indicate that
in the static device only the most mobile fraction of wax migrates during the measurements time.
Moreover the presence of possible convective motions increases the temperature gradient at the
cold wall implying that Dw is overestimated. The discussion performed in Appendix 3 confirms
this interpretation on the basis of a completely different argument.
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We have seen that it always exists a stage in which a desaturation front moves inwards and separates
an inner zone where segregated wax exists from an outer zone where the wax only exists in a dissolved
phase. We have described a method for deducing the asymptotic deposited mass from the analysis of the
stage of linear growth of the deposit.

A suggestion for further experiments is to analyze by physical/chemical methods the composition of
the deposit. In this way a model including classes of wax components could be formulated. An alternative
procedure would be to operate with an artificial mono-component migrating species in a mono-component
solvent.

Appendix 1

Here we formulate the complete mathematical model for the cold finger without stirring in its non
dimensional form. We rescale T , r and t in the following way

T = T̂ Ti, r = r̂Ri, t = t̂
R2

i

Dw
, (5.1)

and we rescale all the concentrations by Cs(Ti). We set γ = DG/Dw. For simplicity of notation we write
T, r, t, c instead of T̂ , r̂, t̂, ĉ. The problem in the three stages becomes

• Stage 1







∂G

∂t
− γ

(
∂2G

∂r2
+

1

r

∂G

∂r

)

= 0 1 < r < 1 + δ, 0 < t < t1

G(r, 0) = c∗ − Cs(T (r)) = c∗ − [1 + β(T − 1)] 1 < r < 1 + δ

∂G

∂r
(1, t) = 0 0 < t < t1

∂G

∂r
(1 + δ, t) = −

β

γ

dT

dr
(1 + δ) 0 < t < t1

(5.2)

where δ = Re/Ri − 1, c∗ = c∗tot/Cs(Ti),

β =
bwTi

Cs(Ti)
=

[

T
d

dT
ln

(
Cs(T )

ρ

)]

T=Ti

, (5.3)

and where t1 is the finite time when G vanishes. Obviously non dimensional solubility now is

Cs(T ) = 1 + β(T − 1). (5.4)

Remark 2 In the specific case of problem (5.2), following the procedures illustrated in [5], [6], it

can be proved that
∂G

∂r
< 0 during stage 1 in the interval (1, 1 + δ). As a consequence G becomes

zero for the first time on the warm wall, from which the desaturation front will proceed.

• Stage 2

We set

u(r, t) =







G(r, t), 1 < r < s(t), t1 < t < t2,

c(r, t) − Cs(T (r)), s(t) < r < 1 + δ, t1 < t < t2,

(5.5)

K(u) =







DG/Dw = γ, u > 0,

1, u < 0,

(5.6)
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that is

K(u) = 1 + H(u)

(
DG

Dw
− 1

)

. (5.7)

where H(u) is the Heaviside function. The problem to be solved is now a free boundary problem
and can be written using generalized derivatives







∂u

∂t
− div [K(u)∇u] = 0 1 < r < 1 + δ, t1 < t < t2,

u(r, t1) = G(r, t1) 1 < r < 1 + δ,

∂u

∂r
(1, t) = 0 t1 < t < t2,

∂u

∂r
(1 + δ, t) = −β

∂T

∂r
(1 + δ) t1 < t < t2.

(5.8)

t2 is the extinction time of the segregated phase, i.e. u(Ri, t2) = 0.

• Stage 3







∂c

∂t
−

(
∂2c

∂r2
+

1

r

∂c

∂r

)

= 0 1 < r < 1 + δ, t > t2,

c(r, t2) = u(r, t2) + Cs(T (r)) 1 < r < 1 + δ,

c(1, t) = 1 t > t2,

∂c

∂r
(1 + δ, t) = 0 t > t2.

(5.9)

Remark 3 The nondimensional version of (4.17) is

m =

[
β(Te − Ti)

Ti ln (1 + δ)

]

t2 +

∫ t

t2

∂c

∂r
(1, τ)dτ. (5.10)

We can pass from (5.10) to (4.17) multiplying by the mass rescaling factor Cs(Ti)Ri, where Cs(Ti) is the
dimensional solubility at the cold wall.

The parameters entering the problem are Cs(Ti), bw, Ri, Re, DG, Dw, c∗tot, Te and Ti. Well posedness of
problems (5.2), (5.8) and (5.9) has been proved in [5], [6].

Appendix 2

Here we give a procedure to determine the parameter bw in the absence of experimental data for asymp-
totic masses. This procedure is the one we have used to derive the values of parameter bw in Table 1
for oils B, C, D, F, E of [2]. The procedure is tested for oil A (fig. 3) with excellent agreement. To
determine the parameter bw we use a method that extrapolates the evolution of mw(t) during stage 3 on
the basis of the data acquired during the phase of linear growth (stages 1 and 2). Among the solutions
of the diffusion equation

∂c

∂t
− Dwdiv(∇c) = 0
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satisfying conditions

c(Ri, t) = Cs(Ti),
∂c

∂r

∣
∣
∣
∣
r=Re

= 0,

we seek those that can be written as the product of a function of time t and a function of r. Referring
to nondimensional variables t̂ = t(Dw/R2

i ), r̂ = r/Ri, ĉ = (c − Cs(Ti))/Cs(Ti) the equation becomes

∂ĉ

∂t̂
−

1

r̂

∂

∂r̂

(

r̂
∂ĉ

∂r̂

)

= 0

and we look for solutions of type ĉ = Θ(t̂)F (r̂) such that

ĉ(1) = 0,
∂ĉ

∂r̂

∣
∣
∣
∣
r̂=Re/Ri

= 0.

We get
ĉ(r̂, t̂) = Û(r̂) exp{−α2(t̂ − t̂2)},

with Û(r̂) solution of the Bessel equation

d2Û

dr̂2
+

1

r̂

dÛ

dr̂
+ α2Û = 0, Û(1) = 0,

dÛ

dr̂

(
Re

Ri

)

= 0.

Therefore
Û(r̂) = Yo(α)Jo(r̂α) − Jo(α)Yo(r̂α)

where Jo and Yo are the zero order Bessel functions of first and second kind. The parameter α is obtained
solving the eigenvalues problem

Yo(α)J
′

o(
Re

Ri
α) − Jo(α)Y

′

o (
Re

Ri
α) = 0.

Clearly, being interested in the asymptotic phase, we will consider only the dominant eigenvalue αo,
which is the smallest. With Re/Ri = 2.4 we get αo = 0.94. Going back to the original variables, the
attenuation factor is

exp{−α2
o

Dw

R2
i

(t − t2)}.

Now we look for a match between the linear part of mw(t) and the asymptotic value in the form

mw(t) = mw(t2) + τγ

[

1 − exp

(

−
t − t2

τ

)]

, (5.11)

where mw(t) is the deposited wax per unit surface, t2 is the final time of stage 2 (i.e. the desaturation
time) and

τ =
R2

i

Dwα2
o

, γ = ṁw(t2).

The asymptotic deposited wax per unit surface then is given by

m∞w = mw(t2) + ṁw(t2)
R2

i

Dwα2
o

and recalling that (see 3.14))

ṁw(t2) = Dwbw
(Te − Ti)

ln

(
Re

Ri

)
1

Ri
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we get

m∞w = mw(t2) + bw
(Te − Ti)

ln

(
Re

Ri

)
Ri

α2
o

.

The unknown Dw does not appear in the expression for m∞w. Using two different temperatures at the
cold finger To > T1 we get

bw =







R2
e − R2

i

2Ri
−

Ri

ln

(
Re

Ri

)

α2
o







−1

·
mwT1

− mwTo

To − T1

=: χ ·
mwT1

− mwTo

To − T1

(5.12)

where χ is just a geometric factor - in our case χ = 18.40 m−1 - and mwTo
and mwT1

represent the
deposited wax per unit surface at the desaturation time for the experiments with temperatures To and
T1. Finally we can deduce Dw from the measures of ṁw and plot the asymptotic part of mw(t) on the
basis of the data of the linear part.

It is very important to observe that this procedure reproduces the evolution of mw(t) in a satisfactory
way in particular for the only case (oil A) in which asymptotic measures of the deposit are really available.

Appendix 3

Here we present a procedure for determining an upper bound for wax diffusivity Dw. Performing the
overall mass balance of G during stage 1 (i.e. integrating (4.4) over Ri < r < Re, 0 < t < t1, and using
the initial and boundary conditions (4.5)-(4.7) we obtain

Re∫

Ri

rG(r, t1)dr =

Re∫

Ri

rGo(r)dr −
Dwbw(Te − Ti)

ln

(
Re

Ri

) t1. (5.13)

Passing to stage 2, we integrate (4.8) over Ri < r < s(t), t1 < t < t2, using (4.10)-(4.12). We get

Re∫

Ri

rG(r, t1)dr = −

t2∫

t1

DGs
∂G

∂r
(s, t)dt. (5.14)

From (4.12), recalling that
∂c

∂r
(s, t) > 0, we deduce that

−DGs
∂G

∂r
(s, t) < Dwbws

dT

dr
(s) =

Dwbw(Te − Ti)

ln

(
Re

Ri

) . (5.15)

Combining (5.13), (5.14), (5.15) we have the inequality

Dw >
1

t2

ln

(
Re

Ri

)

bw(Te − Ti)

Re∫

Ri

rGo(r)dr, (5.16)

where, from (4.5),

Re∫

Ri

rGo(r)dr =
R2

e − R2
i

2







c∗tot − Cs(Ti) +
1

2

bw(Te − Ti)

ln

(
Re

Ri

)






−

R2
e

2
bw(Te − Ti). (5.17)

15



Using the parameters of oil A, namely

Te = 293oK, Ti = 278oK, Ri = 0.05 m,

Re = 0.12 m, Cs(Ti) = 20.1
Kg

m3
, bw = 0.006

Kg

m3 ·o K
,

c∗tot = 20.25
Kg

m3
, t2 ≈ 5 × 3600 s

we obtain the estimate

Dw > 2.90 × 10−7 m2

s
. (5.18)

It has to be remarked that this estimate is based just on one experimental information, that is desaturation
time, a quantity that can be read on figure 3 with reasonable accuracy.

To obtain an upper bound for Dw we observe that the deposited mass (per unit surface) at time t2
must be smaller than the total amount of wax in the system at time t = 0. Thus

2Dwbw(Te − Ti)t2

ln

(
Re

Ri

) < c∗tot(R
2
e − R2

i ) (5.19)

leading to inequality

Dw <

c∗tot(R
2
e − R2

i ) ln

(
Re

Ri

)

2bwt2(Te − Ti)
(5.20)

With the same values introduced above we obtain

Dw < 6.5 × 10−5 m2

s
(5.21)

The a priori estimate obtained for Dw (in particular the lower estimate (5.18), which is very close to the
value shown in Table 2 seems to confirm that in the static device deposition is produced by the migration
of a lighter, more mobile fraction of wax.
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