
EUROGRAPHICS 2004 / M.-P. Cani and M. Slater

(Guest Editors)

Volume 23 (2004), Number 3

Way-Finder: guided tours

through complex walkthrough models

C. Andújar, P. Vázquez, and M. Fairén

Dept. LSI, Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract

The exploration of complex walkthrough models is often a difficult task due to the presence of densely occluded

regions which pose a serious challenge to online navigation. In this paper we address the problem of algorithmic

generation of exploration paths for complex walkthrough models. We present a characterization of suitable proper-

ties for camera paths and we discuss an efficient algorithm for computing them with little or no user intervention.

Our approach is based on identifying the free-space structure of the scene (represented by a cell and portal graph)

and an entropy-based measure of the relevance of a view-point. This metric is key for deciding which cells have to

be visited and for computing critical way-points inside each cell. Several results on different model categories are

presented and discussed.

1. Introduction

Advances in modeling and acquisition technologies allow

the creation of very complex walkthrough models including

large ships, industrial plants and architectural models repre-

senting large buildings or even whole cities.

These often densely-occluded models present a number

of problems related to wayfinding. On one hand, some in-

teresting objects might be visible only from inside a partic-

ular bounded region and therefore they might be difficult to

reach. On the other hand, walls and other occluding parts

keep the user from gathering enough reference points to fig-

ure out his location during interactive navigation. This prob-

lem becomes more apparent in indoor scenes which often in-

clude closed, self-similar regions such as corridors. Finally,

architectural and furniture elements can become barriers in

collision-free navigation systems. For instance, smooth nav-

igation through turning staircases or narrow passages might

require advanced navigation skills.

As a consequence of the above problems, the user may

wander aimlessly when attempting to find a certain place in

the model, or may fail in finding again places recently vis-

ited. Sometimes the user is also unable to explore the whole

model or misses relevant places.

One obvious solution to these problems is to provide the

user with different navigation aids such as maps showing a

sketch of the scene along with the current camera position.

This solution alleviates the problem of disorientation, but

still the user can miss important parts. Moreover, automat-

ically generating illustrative maps is not an easy task. Other

useful navigation aids such as somehow marking already-

visited places are not enough for guaranteeing a profitable

exploration.

Another solution is to explore the model following a pre-

computed path or a selection of precomputed viewpoints.

This path can be provided by the model creator or by an ex-

perienced user who already knows the interesting regions of

the scene, but this is not always feasible. Moreover, this can

also become a disadvantage if we cannot express properly

which are the regions that are important for us to visit. In

any case, this solution also requires a noticeable user effort

during the path definition.

In this paper we present an algorithm for the automatic

construction of exploration paths. Given an arbitrary geo-

metric model and a starting position, the algorithm computes

a collision-free path represented by a sequence of nodes,

each node having a viewpoint, a camera target and a time

stamp. The algorithm proceeds through three main steps.

First, a cell-and-portal detection method identifies the over-

all structure of the scene; second, a measurement algorithm

c© The Eurographics Association and Blackwell Publishing 2004. Published by Blackwell

Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,

MA 02148, USA.

C. Andújar, P. Vázquez & M. Fairén / Way-Finder

is used to determine which cells are worth visiting, and fi-

nally, a path is built which traverses all the relevant cells.

The rest of the paper is organized as follows. Section 2

reviews previous work on automatic path generation and

cell-and-portal detection. Section 3 presents a characteriza-

tion of the properties that we consider suitable for a cam-

era path. Section 4 gives an overview of our approach. Sec-

tion 5 presents our algorithm for the automatic generation of

cells and portals and Sections 6 and 7 explain how the more

relevant cells are determined and how the exploration path

is built respectively. We present some results in Section 8

and conclude our work pointing some lines of future work

in Section 9.

2. Previous Work

Motion planning has been extensively studied in robotics,

computational geometry and related areas for a long time.

However, it is still considered to be a difficult problem to

solve in its most basic form, e.g., to generate a collision-free

path for a movable object among static obstacles. As stated

by Canny [1], the best known complete algorithm for com-

puting a collision-free path has complexity exponential in

the number of degrees of freedom of the robot or the moving

object. Good surveys can be found in [2] and [3].

Some approaches for motion planning present algorithms

formulated in the configuration space of a robot. The con-

figuration space (also known as C-space) is the set of all

possible configurations of a mobile object. Isto presents two

approaches, the first one [4] computes a decomposition of

the C-space and searches the graph connecting collision-free

areas of the decomposition for a correct path. The second

one [5] divides the search algorithm in two levels: a global

search and a local search.

Other sorts of algorithms are based on randomized mo-

tion planning. Li et al. [6, 7] take input from the user and

predict the location where the avatar should move to. How-

ever, this approach has only been used for navigation in

simple environments due to its high running time. Salomon

et al. [8] present an interactive navigation system that uses

path planing. The path is precomputed using a randomized

motion planning with a reachability-based analysis. It com-

putes a collision-free path at runtime between two specified

locations. However, their system still needs more than one

hour to compute a roadmap for relatively simple models (ten

thousand polygons) and sometimes the results are unnatu-

ral paths. Kallmann et al. [9] present a new method that use

motion planing algorithms to control human-like characters

manipulating objects which allow up to 22 degrees of free-

dom.

In our approach, the configuration space depends on the

spatial structure of the scene and we want to explore it by

means of cells and portals, so the graph we need is com-

pletely different, we need a cell-and-portal graph.

A cell-and-portal graph (CPG) is a structure that encodes

the visibility of the scene, where nodes are cells, usually

rooms, and edges are portals which represent the openings

(doors or windows) that connect the cells. The construc-

tion of a CPG is commonly done by hand, so it is a very

time consuming task as the models become more and more

large and complex. The automatic generation of portals and

cells is therefore a very important issue. There are few pa-

pers that refer to the automatic determination of portal-and-

cell graphs, and most of them work under important re-

strictions. Teller and Séquin [10] have developed a visibility

preprocessing suitable for axis-aligned architectural models.

Hong et al. [11] take advantage of the tubular nature of the

colon to automatically build a cell graph by using a sim-

ple subdivision method based on the center-line (or skele-

ton) of the colon. To determine the center-line, they use the

distance field from the colonic surface. Haumont et al. [12]

present a method that adapts the 3D watershed transform,

computed on a distance-to-geometry sampled field. How-

ever, their method only works on cells free of objects, and

therefore these have to be removed previously by hand.

3. Camera path characterization

Given a geometric model, there is an infinite number of

paths exploring it. In order to compute paths algorithmi-

cally we have to identify which are the properties that dis-

tinguish a suitable path from non-useful ones. The following

list presents the main properties users might expect from a

camera path.

• Collision-free

Ideally, a camera path should be free from collisions with

scene objects. However, this is not always feasible since

the input scene might contain interesting parts bounded by

closed surfaces which will be impossible to reach using

this criterion strictly. Therefore we require our paths to

not cross any wall unless it is the only way to enter a cell

bounded by a closed surface.

• Relevant

A good path must show the user the most relevant parts

of the model while skipping non relevant or repetitive

parts. Relevance is a subjective quality that depends on

user interests, but requiring the user to identify and mark

relevant objects would compromise the scalability of our

approach. As a consequence, a metric for estimating rele-

vance is required. One contribution of this paper is the use

of entropy-based measurements for quantifying the rele-

vance of a given viewpoint.

• Non-redundant

Ideally, a camera following the path should visit each

place only once. Again, this is often not possible e.g.

traversing the same corridor many times can be the only

way to visit all relevant rooms. We therefore require our

algorithm to avoid already visited places whenever possi-

ble.

c© The Eurographics Association and Blackwell Publishing 2004.

C. Andújar, P. Vázquez & M. Fairén / Way-Finder

(a) (b) (c)

(d) (e) (f)

Figure 1: Overview of our approach. (a) Input scene (furniture and ceiling not shown); (b) Distance-to-geometry field computed

over the 3D grid (only one slice is shown); (c) Cells detected with random color (note that corridors are also identified as cells);

(d) Cell-and-portal graph embedded in the model space; cells are labeled according to relevance measure; (e) High-level path

computed as a sequence of cells; visited cells is a superset of relevant ones; (f) Final path after smoothing (camera target not

shown).

• Uncoupled target

In most online navigation systems, the camera target is

defined in accordance with the forward direction of the

viewpoint as this facilitates the camera control. However,

precomputed paths do not benefit from this limitation. Un-

coupling the camera target from the advance direction is

often desirable because it allows the user e.g. to watch the

paintings on the ceiling of a room while crossing it.

• Ordered

This property is closely related to the non-redundancy cri-

terion. The path should not leave a room unless all the

relevant details it contains have been visited.

• Self-adjusting speed

In addition to let the user modify the camera speed during

the reproduction of the path, it is also convenient to define

the path so that the speed is defined in accordance with

the relevance of the part of scene being seen. This implies

that the speed increases while traversing open spaces with

distant details or when walking through already visited

places. Similarly, the speed decreases while approaching

relevant objects.

• Smooth

The path creator should try to avoid abrupt changes in

speed, camera position and camera target.

4. Algorithm overview

Our algorithm receives as input an arbitrary walkthrough

model and a starting camera position and computes a

collision-free path represented by a sequence of nodes, each

node having a viewpoint, a camera target and a time stamp.

The algorithm proceeds through three main steps (see Fig-

ure 1).

First, we identify the free-space structure of the scene by

computing a cell and portal graph G = (V,E) over a grid

decomposition (Section 5). Our cell and portal graph differs

from the ones used for visibility computation in that we do

not need to classify the scene geometry against the cells nor

c© The Eurographics Association and Blackwell Publishing 2004.

C. Andújar, P. Vázquez & M. Fairén / Way-Finder

do we need to compute the exact shape of the portals. In fact,

our cells are simply represented by a collection of voxels and

for each portal we just need a single way-point. This cell de-

composition allows the algorithm to produce paths with min-

imum redundancy where cells are visited in a natural way,

the portals being suitable waypoints.

In a second step (Section 6) we use an entropy-based mea-

surement algorithm to identify the cells in V that are worth

visiting (relevant cells). This step filters out non-interesting

cells and also ensures the robustness of the algorithm against

an over-decomposition of the scene into cells due to geomet-

ric noise.

The last step builds a camera path which traverses all the

relevant cells and visits the more interesting places inside

each cell (Section 7). This task is accomplished at two lev-

els. We first decide in which order the relevant cells should

be visited by computing a path H over the cell-and-portal

graph. We call H the high-level path, which is just an ordered

sequence of cell identifiers and portals connecting adjacent

cells. For this task the algorithm must find the shortest path

traversing all the relevant cells while minimizing the traver-

sal of non relevant cells and repeating cells. At this point

our path contains only a few waypoints which correspond to

the portals connecting adjacent cells on the high-level path.

The next task is to decide how to refine the path inside each

cell. This is accomplished by computing a sequence of way-

points for visiting each cell from an entry-point to an exit-

point. Again the entropy-based measure is used for deciding

both the waypoints and the best camera target at each view-

point. Note that both entry and exit points are just the center

of the portals connecting the current cell with the previous

cell and the next cell respectively. Finally, a simple postpro-

cess smoothes the path and adjusts the speed in accordance

to the precomputed relevance of the viewpoints.

5. Automatic portal and cell detection

The creation of the cell-and-portal graph pursues two aims.

On the one hand, the cell decomposition provides a high-

level unit for evaluating the relevance of a region and for

deciding whether this region should be visited or not. More-

over, this decomposition allows for solving the problem of

finding collision-free paths considering only one cell at a

time. On the other hand, the portal detection provides a first

insight into the final path because portals are natural way-

points.

Our approach for computing the cell-and-portal graph

is based on conquering quasi-monotonically decreasing re-

gions on a distance field computed on a grid. The cell de-

tection is organized in successive stages explained in de-

tail below. First, we build a binary grid separating empty

voxels from non-empty ones. Next we approximate the dis-

tance field using a matrix-based distance transform. Then we

start an iterative conquering process starting from the voxel

having the maximum distance among the remaining voxels.

During this process, all conquered voxels are assigned the

same cell ID. A final merge step eliminates small cells pro-

duced by geometric noise. Finally, faces shared by voxels

with different cell ID’s are detected and portals are created

at their centers.

5.1. Distance field computation

The first step converts the input model into a voxel represen-

tation encoded as a 3D array of real values. Voxels traversed

by the boundary of the scene objects are assigned a zero

value whereas empty voxels are assigned a +∞ value. This

conversion can be achieved either by a 3D rasterization of

the input model or by a simultaneous space subdivision and

clipping process supported by an intermediate octree [13].

The next step involves the computation of a distance field

(Figure 1-b). The distance field of an object is a 3D array

of values, each value being the minimum distance to the

encoded object [14]. Distance fields have been used suc-

cessfully in generating cell-and-portal graph decompositions

[12]. The distance field we consider here is unsigned. Dis-

tance fields can be computed in a variety of ways (for a

survey see [14]). We approximate the distance field using

a distance transform. Distance transforms can be imple-

mented through successive dilations of the non-empty vox-

els and more efficiently by a two-pass process. The Chamfer

distance transform [14] performs two passes through each

voxel in a certain order and direction according to a dis-

tance matrix. The local distance is propagated by the ad-

dition of known neighborhood values provided by the dis-

tance matrix. In our implementation we use the 5x5x5 quasi-

euclidean chamfer distance matrix discussed in [14]. Indeed,

our experiments show that computing the distance field on

a horizontal slice of the voxelization (using the central 5x5

submatrix) leads to better cell decompositions as it limits the

influence of the floor and ceiling and it is less sensitive to ge-

ometric noise caused e.g. by furniture. Note that the maxima

of the distance transform (white voxels in Figure 1-b) can be

seen as an approximation of the Medial-Axis Transform.

5.2. Cell generation

The cell decomposition algorithm visits each voxel of the

distance field and replaces its unsigned distance value by a

cell ID. We use negative values for cell ID’s to distinguish

visited voxels from unvisited ones. The order in which vox-

els are visited is key as it completely determines the shape

and location of the resulting cells.

The order we propose for labeling cells relies on a con-

quering process starting from the voxel having the maximum

distance among the remaining unvisited voxels. This local

maximum initiates a new cell whose ID is propagated using

a breadth-first traversal according to the following propaga-

tion rule. Let v be the voxel being visited, and let Dv be the

c© The Eurographics Association and Blackwell Publishing 2004.

C. Andújar, P. Vázquez & M. Fairén / Way-Finder

procedure cell_decomposition

cellID = -1

S = sort_voxels()

while not_empty(S) do

(i,j,k) = pop_maximum(S)

if grid[i,j,k]>0 then

expand_voxel(i,j,k,cellID)

end

cellID = cellID - 1

end

end

Figure 2: Cell decomposition algorithm

distance value at voxel v. The current cell ID is propagated

from v to a face-connected neighbor v′ if 0 < Dv′ ≤ Dv, i.e.

the distance value at v′ is positive but less or equal than the

distance at v. The propagation of the cell ID continues un-

til the whole cell is bounded by voxels having either nega-

tive distance (meaning already visited voxels), zero distance

(non-empty voxels) or positive distance greater than the vox-

els at the cell boundary. Then, a new unvisited maximum is

computed and the previous steps are repeated until all non-

zero voxels have been assigned to some cell (Figure 2).

Furniture and other scene objects might exert a strong in-

fluence on the distance field, causing many local maxima to

appear and therefore producing an over-segmentation of the

cell decomposition. A straightforward solution could be to

remove by hand all furniture elements before the model is

converted into a voxelization, which is the solution adopted

in [12]. The solution we propose is to relax the propaga-

tion process by including a decreasing tolerance value in

the propagation rule: the ID is propagated from v to v′ if

0 < Dv′ ≤ Dv +ε, where ε vanishes to zero as the cell grows.

The consequence of this aging tolerance is that small varia-

tions of the distance field near the cell origin do not impact

their propagation. This variation is less sensitive to noise

than a watershed transform considering simultaneously all

local maxima [12]. The connectivity used during the propa-

gation process is 4-connectivity in 2D and 6-connectivity in

3D. A two-dimensional propagation suffices e.g. when the

camera height (with respect to the floor) remains constant

during the path.

5.3. Cell merging and portal detection

A cell merging process further improves the cell decomposi-

tion by merging uninteresting cells. Let |A| be the size of cell

A, measured as the number of voxels, and let Portal(A,B) be

the number of voxels shared by cells A and B. We use the

following merging rules: (a) if |A| is smaller than a given

minimum size then the cell is merged with the cell sharing

the large number of boundary faces with A; if no such a cell

exist (i.e. A is bounded by 0-distance voxels) then the cell

A is removed; (b) if Portal(A,B) is greater than a maximum

portal size, then cells A and B are merged into a single cell.

The results shown in Section 8 have been computed using

only the first rule.

The graph nodes in V correspond to the identified cells

and the graph edges in E correspond to links between adja-

cent cells. Besides the graph connectivity, each cell is rep-

resented by a collection of face-connected empty voxels and

a graph edge connecting two cells is represented by the col-

lection of portals shared by the two cells. Portal detection is

straightforward and requires a single traversal of the voxels

identifying faces shared by voxels with different IDs. Por-

tals correspond to connected components of shared voxels.

Each portal is assigned a single point that can be computed

as the portal center. An alternative which works better for

non-planar portals consists in keeping the distance field val-

ues during the cell generation process (instead of re-using

these values for storing the cell IDs) and compute the por-

tal representant as the voxel with the highest value on the

distance field (i.e. the point on the portal farthest from the

nearby geometry). These points are candidates for waypoints

in case the path has to cross the portal for going from one cell

to another.

6. Identifying relevant cells

Once we have determined the graph of portals and cells, the

following step is to determine which are the cells that are

worth visiting in the model.

The data structure built to determine the cell-and-portal

graph is also useful to give a set of points inside each cell.

Given this set of points, we can determine if the cell is rel-

evant by measuring the amount of information that can be

seen from each point of the set. In order to compute the

amount of information we use an entropy-based measure,

dubbed viewpoint entropy, which has been successfully ap-

plied to determine the best view of objects and scenes [15].

We measure and store the point of maximum entropy for

each cell and then choose those cells that have a higher rel-

evance. These selected cells will be the relevant cells to be

visited.

6.1. Viewpoint Entropy

Viewpoint entropy is a measure based on Shannon en-

tropy [16]. It uses the projected areas of the visible faces on

a bounding sphere of the viewpoint to evaluate how much of

the visible information can be seen from the point. For a sin-

gle view, we only need to render the scene into an item buffer

from the viewpoint. Then, the buffer is read back and we sum

the area of each visible polygon (actually as we should ren-

der to a sphere, we weigh each pixel by its subtended solid

angle, to calculate entropy properly). Then, the relevance is

computed using the following formula:

c© The Eurographics Association and Blackwell Publishing 2004.

C. Andújar, P. Vázquez & M. Fairén / Way-Finder

Hp(X) = −
N f

∑
i=0

Ai

At
log

Ai

At
,

where N f is the number of faces of the scene, Ai is the pro-

jected area of face i, At is the total area covered over the

sphere, and A0 represents the projected area of background

in open scenes. In a closed scene, or if the point does not see

the background, the whole sphere is covered by the projected

areas and consequently A0 = 0. The maximum entropy is ob-

tained when a certain point can see all the visible faces with

the same relative projected area Ai/At . To cover all the sur-

rounding space we need six projections (similarly to the cube

map construction process).

6.2. Relevance cell determination

To detect the important cells, we select a set of viewpoints

inside each cell. The candidate points are given by the cell

detection algorithm (for example one per voxel if voxel size

is small enough). The viewpoint entropy of each candidate

point is evaluated and stored in order to select the best one,

whose entropy will indicate the relevance of the cell. Usu-

ally, the cells detected in the first step will be relatively free

of objects, and large occluders will naturally determine new

portals and cells. Throughout the process of determination

of the relevance of a cell, we can store the visible projected

areas of each face for each evaluated viewpoint. Then, we

can determine the best set of views by iteratively selecting

the best one, marking the already visited faces, and recom-

puting the entropy values for the rest of the views only taking

into account the not yet visited faces [15]. If almost all the

visible faces were visible from the best view, this means that

there are no large occluders in our cell. Otherwise we select

more than one important point in the cell for a future visit.

Note that the example in Section 8 only yields one viewpoint

per cell, as the selected points are placed relatively close to

the center and therefore they capture much information. No-

tice that if the discretization is roughly the same, the camera

will be attracted by regions of high number of polygons.

Otherwise, we can set an importance value to the polygons

we consider interesting (such as the ones belonging to stat-

ues). In the examples presented here we have not considered

texturing, but this can be addressed using a region growing

segmentation and posterior color coding of the regions to in-

clude the resulting texture in our measure as different poly-

gons, as detailed in Vázquez et al. [15]. Viewpoint entropy

has also been used for automatic interactive navigation in

indoor scenes [17]. Unfortunately, the lacking of knowledge

of the general structure of the model makes it difficult to en-

sure that the camera will pass through all the relevant cells.

An entropy-based measure has also been presented and used

to automatically place light sources [18].

7. Path construction

With the information collected from the previous two steps,

we can build a minimal length path through the graph that

visits all relevant cells. Our objective is not only to determine

the path that covers all interesting cells but to determine at

each moment which is the suitable camera position in order

to see the highest amount of information of the scene.

7.1. High-level path

The first step on the path construction is to decide in which

order the path will visit the relevant cells. We compute a

high-level path H over the cell-and-portal graph which is the

shortest path traversing all the relevant cells from the initial

point given by the user.

Given the set of relevant cells to visit and the initial cell,

the problem of finding the shortest path traversing all the rel-

evant cells is similar, but not equal, to the traveling salesman

problem (TSP) which is an NP-complete problem [19]. We

use a backtracking algorithm optimized by discarding par-

tial solutions when they are longer than an already found

solution. When the search is finished, we have a group of

solutions that are minimal on its length (number of nodes

traversed), and we choose the one with minimal node repeti-

tion. The cost of this algorithm is not enlarging the total cost

of the approach much since the models usually don’t have

more than 50 cells. Nevertheless the cell merging process in

phase 1 can be adjusted to limit the number of cells.

7.2. Low-level path

The low-level path can be computed just after the high-level

path generation. Once we know which cells have to be vis-

ited and which is the ordering, we get an entrance and an ex-

itance point for each cell. This, together with the best view-

point (or viewpoints) of each cell allows us to build a smooth

path. To build this path we perform two steps:

1. Path detection

2. Path approximation

As we do not know in advance which is the geometry of

the cell and we only get a set of points inside it, the deter-

mination of a free-from-obstacles path must be done accu-

rately. Given the set of points corresponding to voxels in-

side a cell, we build a graph where the nodes are the points

and the edges the connectivity of the points to the neigh-

bors. This can be carried out very fast. Then, we apply an

A* algorithm [20] to search the best path from the entrance

point to the best point of the cell, and we apply it again to

reach the exit from the best point. For complex cells (i.e. the

cells that generate more than one best points) this is applied

iteratively until reaching the exit. In these cases, the itera-

tion is also applied from the exit point to the entrance point,

generating an alternative path which could be shorter than

c© The Eurographics Association and Blackwell Publishing 2004.

C. Andújar, P. Vázquez & M. Fairén / Way-Finder

the previous one. If this backwards path is shorter, we will

choose it reverting the point order.

The generated path is a polyline that is not necessarily

smooth. To avoid sharp moves through the exploration pro-

cess, we relax the path by using an interpolation based on

Hermite curves [21]. We set a control point every two points

of the path and build a smooth path that goes from the en-

trance to the exit. At each control point we use as tangent

direction the vector joining the current point with the next

path point. Note that it is better not to enforce C1 continuity

on the path at the best view point. The best point is sup-

posed to show a high amount of interesting information, so

the walkthrough will stop there and the camera will rotate to

allow the user to see all the important information. In Fig-

ure 3 we can see an example of a path inside a cell. As the

set of camera positions is very dense, we have only drawn

one out of five camera positions. The yellow line indicates

the orientation of the camera at these positions.

Figure 3: An example path inside a cell. Camera positions

are shown in red and the orientations appear as yellow lines.

7.3. Complete Walkthrough

After the construction of the path, we want to determine

which are the camera orientations that better show the scene

during the navigation.

In a similar process than the one that determines the best

point inside each cell, we place a camera at each point of the

path and, for each point, we evaluate the amount of informa-

tion that can be seen at different orientations and choose the

orientations that will yield better results. This is computed

almost interactively. We set some reasonable constrains to

camera moves in order to build a smooth path.

• Limited rotation: The camera must be oriented forward,

we do not allow rotations of more than 30-40 degrees

from the walking direction in order to maintain a normal

movement sensation during the walkthrough. If the cam-

era were allowed to point backwards, the user could feel

uncomfortable.

• Correct orientation at endpoint. People usually look for-

ward when traversing a portal. We simulate this by lim-

iting the rotation of the camera when it is reaching the

exit point. When the camera is close to the way out, it

smoothly starts turning back to the walking direction, and

we ensure that it is at the correct orientation before cross-

ing the portal.

For each cell the path is built in the following way. We

place the camera at the entrance point of the cell and pointing

towards inside the cell. Then, the best new camera orienta-

tion is computed by evaluating the possible new orientations

(these measures are calculated on the back buffer), we allow

only small rotations in order to make the movements smooth.

For a given point and camera orientation, five different views

are inspected, as depicted in Figure 4.

Figure 4: The possible changes of orientation of the camera

at each step

To decide which of the orientations is the best, we take

into account the amount of information visible from each

camera configuration, as well as the history of the visited re-

gions. This can lead to a problem when there is a very com-

plex region in a cell, because the camera would be always

pointing there. In order to avoid this, we keep track of the

visited faces. For each view, when we analyze the amount

of visible information we only take into account the faces

that have not been visited yet. However, as the path will con-

tain one or two hundred different positions at each cell, this

could be a problem if we considered a polygon as visited

if it had appeared in a single view, because it could cause

the camera to change the orientation continuously. As we

want the user to be able to see the environment properly, we

have implemented a pseudo aging policy. We only consider

a face visited when it has been seen at least in 20 different

views, then it is marked and it will not be considered again.

This strategy ensures that the regions of higher information

will be visited and that the user will be able to stare at them

calmly.

c© The Eurographics Association and Blackwell Publishing 2004.

C. Andújar, P. Vázquez & M. Fairén / Way-Finder

(a) (b) (c)

(d) (e) (f)

Figure 5: Results in the church model. (a) Top view of the original model. (b) Computed distance field on a 128x128x128 grid.

(c) Final cells detected after the merging process. (d) Ordered cells based on their entropy. (e) High level path through the 5

most interesting cells. (f) Computed low-level path for the most interesting cell.

8. Results

We have presented a complete approach for automatically

generating guided tours through complex walkthrough mod-

els. In contrast to other approaches, our method is com-

pletely automatic, the only input really required is an initial

point.

Images of the whole process appear in Figure 5. In Fig-

ure 5-a we show the plan of the original model. The compu-

tation of the distance field map appears in Figure 5-b. After

the distance field computation, the cell and portal genera-

tion detects a set of cells that are then refined through the

merge process. The result of the merge for this example is

shown in Figure 5-c. With this information we can proceed

to compute the relevance of each cell. This generates an or-

dering between the cells that is depicted in Figure 5-d. After

the cell evaluation, we choose a subset of cells with high en-

tropy. In this case the threshold chosen selects cells 1 to 5,

and the starting point of the path is at cell 4, the entrance

of the church. Then, a high level path is calculated using

the backtracking method explained in Section 7.1. The com-

puted high level path is shown in Figure 5-e. For each cell,

a low level path is computed from the entrance point to the

best view of the model. As an example, we show the path

c© The Eurographics Association and Blackwell Publishing 2004.

C. Andújar, P. Vázquez & M. Fairén / Way-Finder

corresponding to the most important cell in Figure 5-f. Note

that the generated path has almost 200 camera positions, so

we have only shown one out of 5 camera positions (with

their corresponding orientations) for the sake of clarity. As

we have commented, we do not force continuity on the best

viewpoint, as at this point, the camera rotates to show the

information all around that was not already seen during the

previous walkthrough positions.

The total computation time was 10 minutes and 40 sec-

onds on a 2GHz PIV with a GeForce Ti graphics card and

512Mb of memory with a model (the church model) of

63312 polygons. The bottleneck is the cell relevance evalua-

tion process and the low-level path calculation because both

require rendering the scene multiple times, which could ben-

efit from the portal-and-cell graph if we used this for portal

culling. More results can be found in http://www.lsi.upc.es/

˜ virtual/EG2004.html

In our current implementation the output of our algorithm

can be used in several ways. The full-auto mode consists in

the reproduction of the path by letting the camera follow the

precomputed viewpoints and targets. The guided-tour varia-

tion would let the user look around during the navigation by

allowing him or her to control the target but not the view-

point. Finally, in the free mode the path nodes are rendered

as arrows oriented along the direction of the next waypoint.

9. Conclusions and Future Work

We have presented a fully automatic system for the gener-

ation of walkthroughs inside closed environments that can

be segmented using a cell-and-portal approach. The method

can be useful as a way to automatically create visits of

monuments or presentations of buildings, and can also be

a good tool in the context of interactive systems as a first

constrained path to help the interactive user navigate an en-

vironment.

As future work we want to introduce a hierarchical struc-

ture, concretely an octree representation to optimize the cell

detection process. Moreover, we would like to further limit

the effects of the furniture in the cell detection algorithm.

An interesting issue would be to be able to compute cells in

outdoor sparse scenes.

Acknowledgements

This work has been partially funded by the Spanish Ministry

of Science and Technology under grants TIC2001-2226 and

TIC2001-2416.

References

[1] John F. Canny. The complexity of robot motion plan-

ning. MIT Press, 1988. 2

[2] J. C. Latombe. Robot Motion Planning. Kluwer Aca-

demic Publishers, 1991. 2

[3] Y. K. Hwang and N. Ahuja. Gross motion planning

– a survey. ACM Computing Surveys, 24(3):219–291,

September 1992. 2

[4] P. Isto. Path planning by multiheuristic search via sub-

goals. In Proceedings of the 27th International Sympo-

sium on Industrial Robots, pages 721–726, 1996. 2

[5] P. Isto. A two-level search algorithm for motion plan-

ning. In Proc. IEEE International Conference on

Robotics, pages 2025–2031, Aut 1997. 2

[6] T. Y. Li, J. M. Lien, S. Y. Chiu, and T. H. Yu. Auto-

matically generating virtual guided tours. In Proc. of

Computer Animation, pages 99–106, 1999. 2

[7] T. Y. Li and H. K. Ting. An inteligent user interface

with motion planning with 3d navigation. In Proc.

IEEE VR, 2000. 2

[8] Brian Salomon, Maxim Garber, Ming C. Lin, and Di-

nesh Manocha. Interactive navigation in complex en-

vironments using path planning. In Proceedings of

the 2003 symposium on Interactive 3D graphics, pages

41–50. ACM Press, 2003. 2

[9] Marcelo Kallmann, Amaury Aubel, Tolga Abaci, and

Daniel Thalmann. Planning collision-free reaching

motions for interactive object manipulation and grasp-

ing. Computer Graphics Forum, 22(3), 2003. 2

[10] Seth J. Teller and Carlo H. Séquin. Visibility pre-

processing for interactive walkthroughs. Computer

Graphics, 25(4):61–68, 1991. 2

[11] Lichan Hong, Shigeru Muraki, Arie Kaufman, Dirk

Bartz, and Taosong He. Virtual voyage: Interactive

navigation in the human colon. Computer Graphics,

31(Annual Conference Series):27–34, 1997. 2

[12] Denis Haumont, Olivier Debeir, and François Sil-

lion. Volumetric cell-and-portal generation. Computer

Graphics Forum, 22(3):303–312, September 2003. 2,

4, 5

[13] Carlos Andujar, Pere Brunet, and Dolors Ayala.

Topology-reducing surface simplification using a dis-

crete solid representation. ACM Transactions on

Graphics, 21(2):88–105, 2002. 4

[14] M. Jones and R. Satherley. Using distance fields for

object representation and rendering. In Proc. of the

19th annual Conference of Eurographics (UK chap-

ter), London, pages 37–44, 2001. 4

[15] P.-P. Vázquez, M.Feixas, M.Sbert, and W.Heidrich.

Automatic view selection using viewpoint entropy and

its application to image-based modeling. Computer

Graphics Forum, 22(4):689–700, Dec 2003. 5, 6

[16] E.C. Shannon. A mathematical theory of communi-

cation. The Bell System Technical Journal, 27:379–

423,623–656, July-October 1948. 5

c© The Eurographics Association and Blackwell Publishing 2004.

C. Andújar, P. Vázquez & M. Fairén / Way-Finder

[17] P.-P. Vázquez and M. Sbert. Automatic indoor scene

exploration. In International Conference on Artificial

Intelligence and Computer Graphics, 3IA, Limoges,

May 2003. 6

[18] S. Gumhold. Maximum entropy light source place-

ment. In Proceedings of the Visualization 2002 Confer-

ence, pages 275–282. IEEE Computer Society Press,

October 2002. 6

[19] K. Thulasiraman and M. N. S. Swamy. Graphs: theory

and algorithms. John Wiley & Sons, Inc., 1992. 6

[20] Steve Rabin. "AI Game Programming Wisdom".

Charles River Media, March 2002. 6

[21] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes.

Computer Graphics. Principles and Practice. Second

Edition. Addison-Wesley, 1990. 7

c© The Eurographics Association and Blackwell Publishing 2004.

