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Abstract In this paper a unified motion control strat-

egy dedicated for the waypoint following task realized

by a differentially driven robot is presented. It is

assumed that the vehicle moves with limited veloci-

ties and accelerations in order to reduce excessive slip

and skid effects. In order to include operational con-

straints, a motion planner is combined with a universal

stabilizer taking advantage of transverse functions.

To improve tracking precision translated transverse

functions are deployed and a new adaptive tech-

nique for the controller tuning is proposed. During the

motion planning stage an auxiliary trajectory connect-

ing points in the configuration space and satisfying

assumed phase constraints is generated. The resulting

motion execution system has been implemented on

a laboratory-scale skid-steering mobile robot, which

served as platform for experimental validation of pre-

sented algorithms.
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1 Introduction

Motion control constitutes one of fundamental prob-

lems encountered in robotics. In particular, this issue

is challenging when a robot subject to nonintegrable

differential constraints is taken into account. In such

a case there are restrictions imposed on its velocities

and accelerations which hinder to change the robot

configuration in an arbitrarily way.

A well known example of such systems are differ-

entially driven wheeled robots equipped with two or

more fixed wheels. In particular, the vehicles with the

skid-steering locomotion can be seen as robust and

universal platforms well suited for many applications,

[24]. Such vehicles are governed by a highly uncer-

tain dynamics describing a wheels-ground interaction

phenomenon. In robotics literature various attempts

to model similar systems have been presented. Most

formal methods based on explicit description of inter-

action forces can be effectively used for simulation

and open-loop control, [25]. Alternatively, a combina-

tion between kinematic and dynamic models can be

investigated, [4, 10, 24]. Another approach is based

on kinematic approximation of nonitegrable velocity

constraints, [3, 9, 18].

In this paper we consider a local kinematic model

of a skid-steering vehicle assuming that extensive slip

is an undesirable phenomenon which can be regarded

as a non significant perturbation when the vehicle
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moves with relatively low velocities and accelerations.

The main control task discussed here is practically

oriented. It is assumed that the robot moves through

the prescribed way-points defined in a configuration

space, [11]. In order to solve this problem we propose

to combine a motion planner with a universal feed-

back tracking controller. Such a solution allows one to

define a suitable reference motion taking into account

desired velocity profiles, path curvatures, slip limita-

tions, etc. Moreover, by decreasing of initial config-

uration errors a transient response of a closed-loop

controller can be reduced significantly.

The motion controller proposed here is based on

transverse functions (TFs) introduced by Morin and

Samson [12]. The unique property of this control

paradigm is to ensure practically stable tracking with

non zero error of any (smooth enough) reference tra-

jectory defined in a configuration space. Basically,

a controller using TFs can be conveniently designed

for systems on Lie group [13]. Then a nonholonomic

system can be linearised approximately in a global

domain. In [14] and [17] it is shown that in some cases

asymptotic stability can be achieved when generalized

transverse functions are used.

So far not many papers address implementation and

practical issues of this control method. In fact only few

results have been reported [2, 7, 18]. In [20] selected

properties of a controller taking advantage of TFs are

thoroughly investigated.

In this paper, motivated by ideas presented in [14,

17, 20], we are focused on control solution for asymp-

totic tracking and regulation in a quite uniform way.

Basically, we extend preliminary results considered

in [19] where it is shown that generalized TFs pro-

vide much better performance of the controller dur-

ing execution of typical motion tasks. We investigate

conditions of asymptotic convergence for the track-

ing case and introduce a new adaptation method to

decrease size of a transverse function without violat-

ing the transversality condition. The formal stability

proof of the proposed methods are given. Moreover, it

is shown how to improve convergent rate by increasing

the size of convergence set.

The motion planner used in the proposed con-

trol architecture is based on polynomial segments to

connect subsequent way-points. Recently, a similar

approach taking advantage of Bézier curves has been

studied in [23]. In order to ensure continuous transi-

tions between path segments, tangent and curvature

conditions at waypoints are investigated. Then, using

time scaling, an almost admissible trajectory is calcu-

lated assuming the desired bounds imposed on linear

and angular velocities.

Summarizing, the main purposes of this paper can

be itemized as follows:

– presentation of the motion controller using a

translated transverse function with an adaptation

law (a stability proof is given),

– illustration of the control system designed for

motion control of a differentially driven wheeled

vehicle (possibly using the skid-steering locomo-

tion) in a practical application,

– experimental verification of the controller robust-

ness to limited skid/slip effects and other unmod-

elled dynamics.

The paper is organized as follows. In Section II

the control paradigm taking advantage of transverse

functions is recalled. The structure of the decoupling

controller is shown and possibility of asymptotic sta-

bilization is discussed. A method of stabilizing of

augmented dynamics is proposed. Next section is

focused on design of control solution for a differ-

entially driven robot. The approximated kinematic

model of this robot is outlined. Then the controller

using transverse functions for the given system is pre-

sented in details. The stability analysis is formally

given for the selected control tasks. Next, a motion

planner taking advantage of a path planning algorithm

and design of velocity profile is presented. In Section

IV implementation of the control system is given and

results of experiments are shown. Section V concludes

the paper.

2 Decoupling of Nonholonomic Systems on Lie

Group Using Transverse Functions

2.1 Preliminary and notation

Assume that G denotes a Lie group with group opera-

tion gh ∈ G, where g, h ∈ G. The inverse element of

g, denoted by g−1 ∈ G, satisfies gg−1 = g−1g = e,

with e being neutral (identity) element of group G.

The fundamental group diffeomorphisms include: left

translation lg : G → G, h → gh, right translation rg :

G → G, h → hg and conjugation φg : G → G, h →

lg(rg−1(h)) = rg−1(lg(h)) = ghg−1. Differentials
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of these maps are defined by: dlg(h) := d
dh

lg(h),

drg(h) := d
dh

rg(h) and dφg(h) := d
dh

ghg−1, respec-

tively.

For the given Lie group G associated Lie alge-

bra g can be defined. It consists of vector fields

V1, V2, . . . , Vi, . . . on G which are left-invariant

under left translation, namely

∀g, h ∈ G, dlg(h)Vi(h) = Vi(gh). (1)

Assume that a basis of g is constituted by n inde-

pendent vector fields X1, X2, . . ., Xn ∈ g, where

n = dim G. Applying vector-matrix notation this basis

can be defined by X := [X1 X2 . . . Xn] ∈ R
n×n.

Accordingly, one can express any vector field V ∈ g

evaluated at g ∈ G in the Lie algebra basis as: V =
∑n

i=1 Xi (g) νi = X (g) ν, where ν = [ν1 . . . νn]⊤ ∈

R
n. Noticing that each vector field in basis X is left

invariant, from Eq. 1 follows that

∀g, h ∈ G, dlg(h)X(h) = X(gh). (2)

The other important differential operator is the

adjoint operator Ad : G × g → g defined by

Ad (g) V := dφg(e)V , where V ∈ g. To simplify

notation the following conjugation of Ad can be used:

AdX(g) = X(e)−1Ad(g)X(e).

2.2 Control System on Lie Group

Consider m input small-time locally controllable

(STLC) system defined on G

ġ =

m
∑

i=1

Xi(g)ui, (3)

where g ∈ G denotes configuration, X1, X2, . . . ,

Xm ∈ g are left-invariant control vector fields and

u1, u2, . . . , um denote inputs. Since the given system

is STLC one can define the following basis of g

X := [X1 X2 . . . Xm Xm+1 . . . Xn], (4)

where Xm+1, . . . , Xn are properly chosen (first and

higher order) Lie brackets of control vector fields

X1, X2 . . . , Xm. Equivalently, using Eq. 4 one can

rewrite Eq. 3 as follows (cf. [17])

ġ = X(g)Cu, (5)

where C := [I 0]⊤ ∈ R
n×m, with I ∈ R

m×m being

identity matrix, and u = [u1 u2 . . . um]⊤ ∈ R
m.

Additionally, we consider a perturbed structure of

control system (5) given by

ġ = X(g) (Cu + d) , (6)

where d ∈ R
n is a bounded function. Here, we recall

that if d is the exogenous term independent on input

u and system (3) is STLC it is possible to compensate

d, at least approximately, by applying an appropri-

ate sequence of control input u. The quality of this

approximation can be made arbitrary high assuming

unbounded frequency of u.

2.3 Transverse Function

Now we recall definition of a transverse function

determined on a torus and consider its translation on a

Lie group.

Definition 1 (cf. [13]) Let f : T
p → G, where p ≥

n − m be a smooth function defined on p dimensional

torus satisfying

∀α ∈ T
p, rankM(α) = n (7)

while

M(α) :=

[

X1(f (α)) X2(f (α)) . . . Xm(f (α))−
∂f (α)

∂α

]

∈R
n×(m+p)

(8)

and

∀α ∈ T
p, f (α) ∈ Bε(e), (9)

where Bε(e) denotes the n-dimensional ball with

radius ε and centre e. This function is transversal

to control vector fields Xm+1, . . . , Xn and is called

transverse function (TF) for system (3).

Notice that when p = n − m the transversality

condition given by Eq. 7 can be written in a more con-

venient way using basis X. Correspondingly, it can be

assumed that

∂f (α)

∂α
:= X(f (α))A (α) (10)

where A (α) := [A⊤
1 A⊤

2 ]⊤ ∈ R
n×(n−m) is the matrix

composed of columns being derivative of f expressed

in X, while A1 ∈ R
m×(n−m) and A2 ∈ R

(n−m)×(n−m).
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Using Eq. 10 and recalling definition of C allows one

to rewrite matrix M as follows

M(α) = X(f (α))C̄(α), (11)

where C̄(α) := [C − A(α)] ∈ R
n×n. Since X is the

full rank matrix and p = n−m, the condition given by

Eq. 7 is ensured when C̄(α) is invertible. Next, com-

puting determinant of C̄ one has: det C̄ = det A2. As

a result for p = n − m the transversality condition is

given by

∀α ∈ T
n−m, det A2(α) �= 0. (12)

Formula (12) can be used explicitly to verify if f is

a transverse function for the chosen set of parameters,

[20].

Selection of a transverse function for the given

driftless affine system is not unique. On a Lie group

one can find a family of transverse function using the

left translation.

Proposition 1 (Family of transverse functions on

Lie group) Assume that f̄ ∈ G satisfies transversal-

ity condition, expressed by Eqs. 9 and 12, and h is an

arbitrary element on G. Then

f := hf̄ (13)

is also the transverse function. Correspondingly, one

can say that f is the translated transverse function.

Proof Taking time derivative of Eq. 13 yields in

ḟ = dlh(f̄ ) ˙̄f + drf̄ (h)ḣ. (14)

Since ˙̄f = X(f̄ )A(α)α̇, Eq. 14 becomes

ḟ = dlh(f̄ )X(f̄ )A(α)α̇ + drf̄ (h)ḣ. (15)

Then taking advantage of left invariance of vec-

tor fields in basis X and applying Eq. 13 we have:

dlh(f̄ )X(f̄ ) = X(hf̄ ) = X(f ). As a result we get

ḟ = X(f )A(α)α̇ + drf̄ (h)ḣ. (16)

Following Eq. 16 one can easily conclude that

∂f

∂α
= X(f )A(α). (17)

Since A is such that Eq. 12 is satisfied from

assumption and f = hf̄ is bounded for any bounded

h ∈ G it follows that f is the transverse function.

Remark 1 The considered construction of transverse

function f gives possibility to freely translate the pro-

totype of transverse function f̄ (typically centered

at neutral element e, [16]) on a Lie group without

affecting the transversality condition. Additionally, in

particular cases one can also employ another method

based on dilation to shape the transverse function in

order to adjust radius of neighborhood where this

function evolves. However, the latter approach is ded-

icated for affine systems with homogenous vector

fields including the chained form (which can be seen

as an approximation of many practically motivated

nonholonomic kinematics) – see also [6, 13, 20].

Now investigate derivative (15) assuming that

ḣ = X(h)νh, (18)

where νh ∈ R
n and rewrite formula (16) as follows

(see Appendix A.2 – Eq. 103)

ḟ = X(f )
(

A(α)α̇ + AdX(f̄ −1)νh

)

. (19)

The following result is motivated by proposition of

generalized transverse functions (GTFs) introduced in

[17]. Let us assume that f̄r(αr ) : Tn−m → G is an ele-

ment on Lie group and let h = f̄ −1
r (αr) ∈ G. In such

a case the translated transverse function (13) becomes

f = f̄r(αr )
−1f̄ (α). (20)

It is assumed that time derivative of f̄r satisfies

˙̄fr =
∂f̄r

∂αr

α̇r = X(f̄r(αr ))Ar(αr)α̇r , (21)

where Ar ∈ R
n×(n−m). Correspondingly, ḟ can be

computed as follows (the details can be found in

Appendix A.2 – Eq. 106)

ḟ = X(f )
(

A(α)α̇ − AdX(f −1)Ar(αr)α̇r

)

. (22)

2.4 Companion System and Tracking Control

The fundamental property of the control method tak-

ing advantage of the transverse functions approach is

based on the STLC concept. Basically, it is possible

to decouple approximately a STLC system in spite of

kinematic constraints and an additive drift. In the con-

sidered case one can apply this technique to recover

an almost linear system.

Assume that z ∈ G denotes auxiliary configura-

tion and suppose that for t > 0, z(t) and configuration
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g(t) evolve in similar way, such that g(t) ∈ Bε(z(t)),

where Br(p) = {g ∈ G : dist(g, p) < r}. Let the dis-

tance between elements, z and g, be determined by

transverse function f . Then defining an error on Lie

group G one can write: z−1g := f . Alternatively, it

can be found that

z = gf −1. (23)

Taking time derivative of z and following analysis

presented in [17] (see also Appendix A.3 for details –

Eq. 112) we consider the companion system defined as

ż=X(z)AdX(f )
(

C̄(α)ū+d+AdX(f −1)Ar(αr )α̇r

)

,

(24)

where ū := [u⊤ α̇⊤]⊤ ∈ R
n is the extended input.

Since X(z)AdX(f )C̄(α) ∈ R
n×n is the invertible

matrix one concludes that z can be controlled arbitrar-

ily using bounded input ū. Thus, Eq. 24 becomes an

unconstrained system evolving on G. Consequently, a

motion control problem considered for system (6) can

be solved indirectly by applying an appropriate control

solution defined for Eq. 24.

Following this idea, one can consider a bounded

continuous reference trajectory gr ∈ G for Eq. 24

which satisfies

ġr = X(gr )ur , (25)

where ur ∈ R
n is a bounded reference input. Notice

that components ur1, . . . , urm correspond to admissi-

ble inputs, while urm+1, . . . , urn are extended inputs

with respect to system (5). To quantify tracking error

on Lie group G one can define

z̃ := g−1
r z. (26)

Taking time derivative of Eq. 26 and using Eq. 24

the following open-loop dynamics can be developed

(cf. Appendix A.4 – Eq. 117)

˙̃z = X(z̃)AdX(f )
(

C̄ū + d − AdX(g̃−1)ur

+AdX(f −1)Ar(αr)α̇r

)

, (27)

where g̃ := g−1
r g is the tracking error expressed with

respect to configuration g.

The controller which linearises system (27) can be

formulated as follows.

Proposition 2 (Decoupling controller) Applying the

following control law

ū = C̄−1AdX(f −1)
(

X(z̃)−1w + AdX(z̃)ur

−AdX(f )d − Ar(αr)α̇r

)

, (28)

where w ∈ R
n is a new input, to Eq. 24 gives

fundamental decoupled linear system

˙̃z = w. (29)

Using Eq. 28 with an appropriative stabilizing feed-

back w = ζ(z̃) one can ensure that limt→∞ z̃(t) = e.

For example one can select w := −Kz̃, where K ∈

R
n×n denotes a positive definite gain matrix.

2.5 Augmented Dynamics

Application of TFs for control purposes introduces an

additional dynamics governing evolution of extended

state variable α. To be more specific, we take into

account that

C̄−1 =

[

I −A1A
−1
2

0 −A−1
2

]

(30)

and define

�α (α, αr ) := A−1
2 (α)AdX

n−m(f −1 (α, αr)), (31)

where

AdX
n−m(f −1 (α, αr)) := [0 I ] AdX(f −1 (α, αr))

(32)

denotes last n−m rows of matrix AdX. Recalling def-

inition of ū, using Eqs. 30 and 32 one can rewrite part

of Eq. 28 defining the augmented dynamics as follows

α̇ = −�α (α, αr)
(

X(z̃)−1w + AdX(z̃)ur

−AdX(f (α, αr ))d − Ar(αr )α̇r

)

. (33)

Time evolution and stability of Eq. 33 is essen-

tial for control. In particular, it determines the way

how instantaneous directions in the phase space are

approximated by kinematics (6). We consider this

issue more thoroughly by investigating dynamics (33)

when auxiliary tracking error z̃ becomes negligible.

Then, noticing that w = 0 and AdX(z̃)|z̃=e = I one

can consider the following zero dynamics on manifold

z̃ = e

α̇ = −�α (α, αr) (ur − AdX(f )d − Ar(αr)α̇r ) (34)
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It can be concluded that when system (24) evolves

along with kinematic constraints imposed on Eq. 6 the

motion approximation is no longer necessary. In such

a case it should be expected that zero dynamics (34)

tends to an equilibrium. However, such a possibility is

conditional and it is dependent on terms ur , d, α̇r and

the assumed form of transverse function f .

Latter on, in order to simplify considerations, we

investigate the nominal condition assuming that drift d

is negligible and the reference trajectory is admissible,

namely uri ≡ 0 for i = m + 1, . . . , n. Next, trans-

verse function f is defined by Eq. 20, such that ∀α ∈

T
n−m, f̄ (α) = f̄ (αr )|αr=α . Accordingly, defining

α̃ := αr − α (35)

one concludes that

(α̃ → 0) ⇒ (f → e). (36)

Computing time derivative of Eq. 35 and using

Eq. 34 with d = 0 allows one to define the following

dynamics

˙̃α = �α(α, αr )ur + (I − �α(α, αr )Ar(αr))α̇r . (37)

In order to investigate (37) in a neighbourhood of

α̃ = 0 one computes

lim
α̃→0

�α(α, αr)
(31)
= lim

α̃→0
A−1

2 (αr − α̃)

×AdX
n−m(f −1 (αr − α̃, αr))

(36)
= A−1

2 (αr)AdX
n−m(e)

(32)
= A−1

2 (αr)[0 I ]AdX(e)

= A−1
2 (αr)[0 I ]. (38)

Further, taking into account (38) it can be shown

that

I − �α(α, αr )Ar(αr )|α̃=0 = 0. (39)

Similarly, recalling that ur is the reference

input defining an admissible trajectory one gets:

�α(α, αr )Ar(αr)|α̃=0 ur = 0. Consequently, α̃ = 0 is

the equilibrium point of dynamics (37).

To simplify analysis, it is assumed that ur is a slow

time-varying function and α̇r = 0. Next, we consider

the Taylor’s linear approximation of Eq. 37 with α̇r =

0 and postulate that there exists α∗ ∈ T
n−m such that

�̄α(ur ) =
∂

∂α̃
�α(αr − α̃, αr )ur

∣

∣

∣

∣

α̃=0,αr=α∗

∈ R
(n−m)×(n−m) (40)

becomes the Hurwitz matrix. This guarantees that

dynamics (37) with α̇r = 0 is locally asymptotically

stable at α̃ = 0. Following the concept discussed in

[17] we propose to chose αr = α∗ based on reference

signal ur . In order to ensure a continuous transition

of αr the following simple adaptation rule can be

formulated

α̇r = −kα1
(αr − α∗), (41)

where kα1
> 0 and α∗ is dependent on ur . In the

case when α∗ is constant one can easily show that αr

exponentially converges to α∗ with convergence rate

dependent on kα1
. Taking into account result (39) and

noticing that α̇r → 0 one concludes that the second

term in Eq. 37 can be regarded as a vanishing perturba-

tion. As a result α̃ tends to 0, at least locally. Recalling

Eq. 40 one can find that eigenvalues of �̄α are linearly

scaled by input ur . Hence, the convergence rate of α̃

is dependent on reference motion (cf. [17]).

In the case when ur ≡ 0, namely the point stabi-

lization is considered, the reference trajectory cannot

be used to maintain asymptotic stability of dynam-

ics (37). To be more specific, this dynamics is then

reduced as follows

˙̃α = (I − �α(α, αr )Ar(αr))α̇r . (42)

In order to stabilize (42) using auxiliary input α̇r

one can consider the following preliminary proposi-

tion.

Proposition 3 (Basic stabilizer of augmented

dynamics) Applying the following rule

α̇r = −kα2
(I − �α(α, αr)Ar(αr))

⊤ α̃ (43)

with kα2
> 0 being a positive constant, to dynam-

ics (42) ensures that α̃ asymptotically converges to the

following set

Ŵα =
{

α̃ ∈ T
n−m : (I −�α(αr −α̃, αr)Ar(αr))α̃=0

}

.

(44)

Proof Consider the following positive definite func-

tion Vα = 1
2
α̃⊤α̃. Using Eq. 43 in Eq. 42 gives

˙̃α = −kαP(αr , α̃)P ⊤(αr , α̃)α̃, (45)

where

P(αr , α̃) := I − �α (αr − α̃, αr) Ar(αr ). (46)
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Next, computing time derivative of V and taking

advantage of Eq. 45 one obtains

V̇ = −kαα̃⊤P(αr , α̃)P ⊤(αr , α̃)α̃. (47)

Since P(αr , α̃)P ⊤(αr , α̃) is the positive semi-

definite matrix it follows that V̇α ≤ 0. Hence Vα tends

to critical points such that V̇α = 0. Clearly, from

Eq. 47 one has: V̇α = 0 for α̃ ∈ Ŵα .

Remark 2 The considered proposition can be seen as

a preliminary idea which could be modified for a par-

ticular system. Specifically, it is not guaranteed that α̃

converges do zero as a result of critical points which

are dependent on matrix P(αr , α̃). One of possible

solutions is to relax asymptotic stability requirement

and to select a transverse function to ensure that

P(αr , α̃) is the full rank matrix. Another proposi-

tion of asymptotic stabilization can be formulated for

chained systems, [14].

Remark 3 It is worth noting that in the case of tracking

of an admissible trajectory the adaptation algorithm

based on Proposition 3 does not ensure that αr goes to

α∗. As a result the dynamics (37) may become locally

unstable when ur �= 0. To overcome this issue, one

can combine two approaches assuming that kα1
goes

to zero when ur → 0, while kα2
→ 0 for a higher ref-

erence input. Introducing a continuous non-decreasing

switching function ρ such that: ∀ξ ∈ [0, ξ1), ρ(ξ) =

0, ∀ξ ∈ [ξ2, ∞), ρ(ξ) = 1, and ∀ξ ≥ 0,
dρ
dξ

≥ 0,

while 0 < ξ1 < ξ2, one can consider the following

proposition:

α̇r = −ρ(‖ur‖)kα1
(αr − α∗)

−(1 − ρ(‖ur‖)kα2
P(αr , α̃)α̃. (48)

Using this adaptation law one can continuously

(or even smoothly) switch stabilization strategies

specifically defined for the regulation and track-

ing case. Simultaneously, it is guaranteed that error

z̃ is not affected. Since z̃ = g̃f −1 it follows

that tracking (regulation) error g̃ is bounded even

if the augmented dynamics is not asymptotically

stable. Concurrently, when α̃ → 0 it follows

that g̃ → e.

3 Control Design for a Differentially Driven Robot

3.1 Vehicle Kinematics

Consider a planar robot equipped with a differentially

drive mechanism illustrated in Fig. 1. It is assumed

that wheels on left- and right-hand side of the vehicle

are mechanically coupled and their angular veloci-

ties, ωL and ωR , respectively, are controlled by two

independent motorized servos. Consequently, uω :=

[ωR ωL]⊤ ∈ R
2 can be regarded as a kinematic input

of the system.

Let g := [x y θ]⊤ ∈ R
2 × S

1 be configuration of

the vehicle body, where x, y stand for position coordi-

nates and θ denotes the vehicle orientation determined

in the inertial frame. Assume that v =
[

vx vy

]⊤
∈ R

2

and ω ∈ R are linear and angular velocities, respec-

tively, expressed in the local frame fixed to the robot

body. It is well known that for a wheeled skid-steering

locomotion velocity transmission between wheels and

a moving platform can be significantly affected by slip

phenomena. In order to cope with this issue, firstly

we introduce a nominal kinematic drive model based

on the symmetric two-wheeled nonholonomic robot,

which is defined by u := [vx ω]⊤ = Wuω, where W ∈

R
2×2 is a matrix with constant coefficients dependent

geometric parameters (wheels radius and the distance

between the wheels). Secondly, we introduce auxiliary

functions σω and σv determining slip quantities and

consider the following skid-steering drive kinematics

u = H(σv, σω)Wuω, (49)

Fig. 1 Kinematics of differentially driven skid-steering robot
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where H(σv, σω) := diag {σv, σω} ∈ R
2×2.

It is important to note that lateral velocity vy is

related to a skid phenomenon which cannot be mod-

elled explicitly based on a pure kinematic description.

The similar remark concerns also slip functions σv

and σω which are governed by the vehicle dynamics

including wheel-ground interaction forces. Following

this property, it can be stated that a skid-steering kine-

matics cannot be globally defined without modelling

of a slip/skid dynamics, [8, 18].

However, in spite of this issue, one can consider

an approximated kinematic model of such a vehicle

assuming that the slip dynamics is neglected. This

model is local by nature and it can be justified when

the following conditions are met (cf. [3]): mass dis-

tribution of the vehicle is uniform, the local frame

is fixed at centre of mass of the vehicle (cf. Fig. 1)

and the vehicle moves with relatively low velocities

and limited accelerations (the latter assumption can

be interpreted as the condition of stable and almost

stationary motion). Following this simplification, it is

assumed that:

– slip functions σv and σω are known and bounded,

– lateral slip effect is small – as a result

∀t, supt

∣

∣vy (t)
∣

∣ ≤ Vy , where Vy is a positive

small constant.

The kinematics of the considered vehicle can be

written in standard form (6) with n = 3 and m = 2,

where

X(g) = [X1 X2 X3](g) =

⎡

⎣

cos θ 0 sin θ

sin θ 0 − cos θ

0 1 0

⎤

⎦ ,

(50)

u = [vx ω]⊤ ∈ R
2 denotes input and

d = [0 0 − 1]⊤vy (51)

is the drift term which is considered as an exoge-

nous disturbance (notice that vy is a response of the

robot lateral dynamics for the given velocities vx and

ω, and constrained forces exerted by the wheels). It

is well known that the considered kinematics can be

described on Lie group G ∼= SE(2) with neutral ele-

ment e = [0 0 0]⊤ and group operation given by

gh := g +

[

R (θ) 0

0 1

]

h, (52)

where R (θ) ∈ SO (2) is the planar rotation matrix and

g, h ∈ G. The inverse element of g ∈ G satisfies

g−1 = −

[

R⊤ (θ) 0

0 1

]

g. (53)

Further, operator AdX(g) can be computed as fol-

lows:

AdX(g) =

⎡

⎣

cos θ y sin θ

0 1 0

− sin θ x cos θ

⎤

⎦ . (54)

Next, using Eq. 49 in Eq. 6 one obtains the follow-

ing equivalent control system

ġ = X(g)(CH(σv, σω)Wuω + d). (55)

From Eq. 55 it can be concluded that kinematics

of differentially driven robot in the presence of lim-

ited slip/skid phenomena robot can be treated as a

perturbed kinematics of the nominal symmetric two-

wheeled nonholonomic vehicle. We take advantage of

this assumption for the controller design.

3.2 Task Description

In the sequel, we will develop motion control and

planning algorithms dedicated for the waypoint fol-

lowing motion task. It is assumed that the sequence

of prescribed waypoint configurations to be realized

by the robot is generated by a high level planner

or human operator. We are focused on a feedback

control strategy driving the robot through subsequent

waypoints.

We propose a two-stage algorithm composed of a

universal closed-loop stabilizer and a trajectory plan-

ner utilizing of polynomial splines. At the feedback

control level tracking and stabilization problems must

be considered while issues of acceleration/velocity

constraints and skid/slip limiting are considered dur-

ing the trajectory planning stage. Additionally, we

take into account infeasible reference segments taking

advantage the motion controller using TFs.

3.3 Motion Controller

3.3.1 Transverse Function and Augmented Dynamics

The tracking controller is designed based on proposi-

tion discussed in Section 2.4. The transverse function
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for system (5) with basis (50) can be selected as

follows (cf. [13])

f̄ (α) =
[

ε1 sin α 1
4
ε1ε2 sin 2α ε2 cos α

]⊤
∈ G

(56)

with ε1 ∈ R+ and ε2 ∈ (0, π). Simultaneously we

define a similar component

f̄r(αr )=
[

εr1 sin αr
1
4
ε1rε2r sin 2αr ε2r cos αr

]⊤
∈G,

(57)

where εr1 and εr2 ∈ R. To simplify notation we intro-

duce coefficients κε1
and κε2

∈ R such that εr1 =

κε1
ε1 and εr2 = κε2

ε2.

The basic terms associated with derivatives of f̄ (α)

and f̄r(αr ), respectively, are given as follows

A(α) =
[

cos f̄θ
∂f̄x

∂α
+ sin f̄θ

∂f̄y

∂α
∂f̄θ

∂α

sin f̄θ
∂f̄x

∂α
− cos f̄θ

∂f̄y

∂α

]⊤

, (58)

Ar(αr) =
[

cos f̄rθ
∂f̄rx

∂αr
+ sin f̄rθ

∂f̄ry

∂αr

∂f̄rθ

∂αr

sin f̄rθ
∂f̄rx

∂αr
− cos f̄rθ

∂f̄ry

∂αr

]⊤

. (59)

Next, computing the translated transverse function

f =
[

fx fy fθ

]⊤
using components (56)–(57) and

formula (20) with Eqs. 52 and 53 one obtains

fx(α, αr ) = ε1

(

cos(κε2
ε2 cos αr )(sin α − κε1

sin αr )

+ 1
4
ε2 sin(κε2

ε2 cos αr )(sin 2α − κε1
κε2

sin 2αr )
)

,

(60)

fy(α, αr ) = ε1

(

− sin(κε2
ε2 cos αr )(sin α − κε1

sin αr )

+ 1
4
ε2 cos(κε2

ε2 cos αr )(sin 2α − κε1
κε2

sin 2αr )
)

,

(61)

fθ (α, αr ) = ε2

(

cos α − κε2
cos αr

)

. (62)

Remark 4 The transverse function described by

Eqs. 60–62 is well defined even for large values of ε2

(recalling that this parameter linearly scales compo-

nent fθ ∈ S
1 in practice it is not expected to select

ε2 higher than π ). However, when parameters ε2 < ε̄,

where ε̄ > 0 is a positive constant, is made small

enough, based on Eqs. 56 and 57 one can conclude

that selected nonlinear terms can be approximated as

follows

∀α ∈ S
1, cos f̄θ

(56)
= cos(ε2 cos α) ≈ 1 and sin f̄θ

(56)
= sin(ε2 cos α) ≈ ε2

cos α = f̄θ . (63)

Similarly, since κε2
< 1 one has

∀αr ∈ S
1, cos f̄rθ ≈ 1 and sin f̄rθ ≈ f̄rθ . (64)

Using these approximations in Eqs. 58, 59, and 60–

62 allows one to simplify considerably formal analysis

of properties of the tracking controller defined by

Eq. 28.

3.3.2 Stability of Augmented Dynamics

Now we investigate asymptotic stabilization along

admissible persistently exciting reference trajectories.

In order to do this we assume that κε1
= κε2

= 1 and

consider �̄α given by Eq. 40. �̄α ∈ R. We search for

a feasible selection of α∗ for which dynamics (37) is

locally asymptotically stable. Making detailed analy-

sis (cf. Appendix B.1 – Eq. 126) one can show that

when ε2 is small enough �̄α becomes

�̄α ≈
2

ε1ε2
(ur1ε2 sin αr + ur2ε1 cos αr)

= −
2

√

u2
r1ε

2
2 + u2

r2ε
2
1

ε1ε2
cos(αr − ϕ), (65)

where ϕ := atan2(−ε2ur1, −ε1ur2) while atan2 (·, ·)

stands for the four-quadrant inverse tangent function.

From Eq. 65 it follows that �̄α < 0 for αr = α∗

selected such that cos(α∗ − ϕ) > 0. Moreover, one

can introduce optimal value of α∗ computed in order

to minimize �̄α . Clearly, �̄α|αr achieves minimum at

αr = α∗
opt , where

α∗
opt = atan2(−ε2ur1, −ε1ur2). (66)

In order to illustrate a feasible selection of α∗

in a more general case (without assumption that ε2

is small) a numerical analysis has been conducted

assuming that ur1 = cos β and ur2 = sin β, where

β ∈ (−π, π ]. The results presented in Fig. 2 con-

firms that the simplified formula (66) can be applied

even for a relatively high value of ε2. In such a case

the feasible set of parameter α∗ is reduced when β
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Fig. 2 Interpretation of

local stability of dynamics

(37). Selected ratio ε1/ε2:

0.1 (the left column), 1 (the

middle column), 10 (the

right column). Gray areas:

feasible sets of parameter

α∗, thick blue line: α∗
opt

computed from Eqs. 66,

thick dashed red line: α∗
opt

computed numerically
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approaches ±π
2

(namely, for the reference motion

with almost zero longitudinal velocity, ur1 ≈ 0).

Next, we consider stability of dynamics (37) for the

regulation case when ur = 0. Based on Proposition

3 we design a stabilizing feedback in order to atten-

uate regulation error g̃ without decreasing values of

parameters ε1 and ε2 of the transverse function.

Proposition 4 Let

α̇r = −kα2
α̃, (67)

where kα2
> 0 is a positive coefficient, be the adapta-

tion rule. Applying Eq. 67 to Eq. 37 for the considered

unicycle-like system ensures that α̃ = 0 is locally

stable equilibrium point for ur = 0.

Proof Recalling Eq. 42 in the considered case and

substituting Eq. 67 yields in

˙̃α = −kα1
P(αr , α̃)α̃, (68)

where P(αr , α̃) = (1 − �α(αr − α̃, αr)Ar(αr)) ∈ R.

In order to determine stability of dynamics (67) one

can consider sign of P in some vicinity of α̃ = 0.

From Eq. 36 it is clear that when translated transverse

function f is chosen in a typical way, namely κε1
=

κε2
= 1, it converges to neutral element when α̃ → 0.

In such a case it is not sufficient to apply linear tools

to analyse dynamics (67).

However, assuming that at least one coefficient

κεi
(i = 1, 2) is different from 1, P can converge

to non-zero value at α̃ = 0. Recalling Eqs. 31

and 32 in the considered case one gets: P(αr , 0) =

1 − A−1
2 (αr)AdX

1 (f −1|α̃=0)Ar(αr). Correspondingly,

it can be proved (the details are given in Appendix B.2

– Eq. 134) that for ε2 < ε̄, where ε̄ > 0 is a positive

constant, κεi
∈ [0, 1] and κε1

κε2
< 1 the following

relation is met

∀αr ∈ S
1, P (αr , 0) > 0. (69)

Thus one easily concludes that dynamics (68) is

locally exponentially stable at α̃ = 0.

A more complicated case is found when κεi
= 1

(i = 1, 2) and P(αr , 0) = 0. Then a higher order

approximation of term P(αr , α̃) at neighbourhood of

α̃ = 0 can be studied. Recalling that for ε2 < ε̄, A2 ≈
1
2
ε1ε2 – cf. Eq. 120 – one can write

P(αr , α̃)|α̃=0 = 1 − 2
ε1ε2

(

AdX
1 (f −1)|α̃=0

+ ∂
∂α̃

AdX
1 (f −1)|α̃=0 α̃

+ 1
2

∂2

∂α̃2 AdX
1 (f −1)|α̃=0 α̃2

)

×Ar(αr) + O(α̃3) (70)
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Computing terms in Eq. 70 thoroughly (cf.

Appendix B.3) one obtains relations Eqs. 137 and 138.

Hence, formula (70) can be simplified as follows

P(αr , α̃)|α̃=0 = − 1
ε1ε2

∂2

∂α̃2 AdX
1 (f −1)|α̃=0Ar (αr )α̃

2

(138)
=

(

1− 1
2
ε2

2(2 sin4 αr +sin2 αr −1)
)

α̃2. (71)

Using Eq. 71 in Eq. 68 gives

˙̃α = −kα1

(

1 − 1
2
ε2

2(2 sin4 αr + sin2 αr − 1)
)

α̃3,

(72)

It can be shown that for ε2 < 1, ∀αr ∈ S
1, 1 −

1
2
ε2

2(2 sin4 αr + sin2 αr − 1) > 0. Thus, it yields that

α̃ = 0 is the locally asymptotically stable equilibrium

point.

Remark 5 The convergence rate ensured by the sta-

bilizer formulated in Proposition 4 is dependent on

selection of parameters κε1
and κε2

. In the case when

asymptotic stabilization is considered, namely κε1
=

κε2
= 1, the convergence rate is polynomial. Thus

one has to expect that regulation errors tend to zero

slowly. Otherwise, at least locally, the convergence

is exponential and regulation time can be reduced

significantly.

Remark 6 In order to obtain the proper stabilization of

the augmented dynamics in the regulation and tracking

cases one can consider the hybrid tuning outlined in

Remark 3. To be more specific formula (48) can be

rewritten as follows

α̇r = −ρ(‖ur‖)kα1
(αr−α∗)−(1−ρ(‖ur‖)kα2

α̃, (73)

with ρ being the continuous switching function dis-

cussed formerly.

3.4 Motion Planning Algorithm

The considered universal controller is designed to

solve the tracking problem for any bounded reference

trajectory with continuous input ur . However, in the

given application it is assumed that efficient and nat-

ural motions are first employed. Hence, purely non

admissible reference path/trajectory segments can be

used conditionally when a specific kind of motion is

required.

For simplicity’s sake, we consider the trajectory

planner assuming that the reference lateral skid is zero,

namely the reference motion is defined by Eq. 25 with

ur3 ≡ 0. Then, any slip affecting the vehicle motion

is treated as a bounded disturbance which should be

partially compensated by the closed-loop controller as

well as by imposing bounds on desired velocities.

To generate an admissible trajectory while reducing

the initial tracking error a simple local planner, which

utilizes polynomial splines and takes into account pre-

scribed velocity and acceleration bounds is proposed.

The planning process consists of executing the same

procedure for every subsequent pair of waypoints,

beginning from the initial robot configuration, which

is treated as the zeroth waypoint. This procedure is

now described.

Assume that subsequent waypoint configurations

are denoted by gd(k−1) and gd(k) ∈ G, while Tk is

the planned time of reaching kth waypoint. Trajectory

gr (t) ∈ G must be planned to satisfy the following

conditions:

A1 connectivity: gr (0) = qd(k−1), gr (Tk) = qd(k),

where Tk < ∞ is a bounded time period

A2 admissibility: ∀t ∈ [0, Tk] , gr (t) is a solution

of Eq. 25 with ur3 = 0

A3 boundedness of reference input ur : it is assumed

that ∀t ≥ 0, |vrx | < U1 and |ωr | < U2, where

U1 and U2 are positive bounds

A4 continuity of reference input: ∀t ∈ [0, Tk] , ur1

and ur2 ∈ C1

In order to satisfy above conditions trajectory gr (t)

is designed in two stages. Firstly, a suitable path

qd (s) taking into account assumptions A1 and A2 is

found. Secondly, a time scaling procedure is used to

determine path parametrization s (t) ∈ [0, 1].

3.4.1 Path Design

Let ḡd be an auxiliary configuration on the Lie group

G considered between two points:

g̃d = g−1
d(k)gd(k−1). (74)

Next, define a path g̃d (s) parametrized by s ∈

[0, 1] such that

g̃d (0) = q̄d and q̃d (1) = e. (75)

Then

gd (s) = gd(k)g̃d (s) . (76)
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connects subsequent points gd(k−1) and gd(k).

To simplify the notation we define

g̃d (s) :=
[

p̃⊤
d (s) θ̃d (s)

]⊤
, (77)

where p̃d (s) :=
[

x̃d (s) ỹd (s)
]⊤

denotes position

variables.

Path connecting subsequent waypoints is con-

structed base on a 5th-order polynomial γ (s, a) =
∑5

i=0 ais
i , where a = [a0 a1 . . . a5]⊤ ∈ R

6 denotes

coefficients determining its shape. The first and sec-

ond order derivatives of γ (s, a) are denoted by

γ ′ (s, a) and γ ′′ (s, a), respectively. In the considered

planning method it is assumed that the position path

satisfies: p̃d (s) :=
[

γ (s, ax) γ (s, ay)
]⊤

, where ax

and ay ∈ R
6 are parameters, which can be computed

for a given set of boundary conditions. As a result of

Eq. 75 and assumption A1 we have:

p̃d (0) = [x̄d ȳd ]⊤ and p̃d (1) = 0. (78)

Considering assumption A2 and Fig. 3 one can con-

clude that a vector tangent to the path p̃d (s) at s = 0

and s = 1 should be properly oriented in order to meet

the following tangent conditions

p̃′
d (0) =

[

v0 cos θ̄d v0 sin θ̄d

]⊤
and p̃′

d (1) =
[

vf 0
]⊤

,

(79)

with v0 and vf being positive tuning parameters.

In order to guarantee continuity of the reference

angular velocity, the path curvature should be prop-

erly shaped. In order to facilitate construction of a

complex path consisting with more than one seg-

ment it is assumed that the curvature of a local path

Fig. 3 A path segment

connecting two waypoints

defined in the local

coordinate frame

segment tends to zero at waypoint configurations. This

assumption can be represented as follows:

p̃′′
d (0) = p̃′′

d (1) = 0. (80)

Taking into account (78)–(80) one can compute

polynomial parameters as follows:
[

a⊤
x a⊤

y

]⊤
=

S−1Y , where S ∈ R
12×12 is the constant invert-

ible regression matrix, while Y :=
[

p̃⊤
d

(

0
)

p̃⊤
d

(

1
)

p̃⊤
d

(

0
)

p̃⊤
d

(

1
)

0
]⊤

∈ R
12. Having polynomial

parameters one can obtain p̃d (s) for s ∈ [0, 1] and

compute other path-related variables.

Recalling admissibility condition for the path, the

orientation variable and auxiliary inputs values along

the path can be computed using differential flatness.

Consequently, the orientation satisfies

θ̃d (s) = atan2
(

μỹ′
d (s) , μx̃′

d (s)
)

, (81)

where μ ∈ {−1, 1} is a parameter defining motion

strategy (forward μ := 1 or backward μ := −1).

Tangent velocity along the path is given as

vd (s) =
∥

∥p̃′
d (s)

∥

∥ , (82)

while nominal angular velocity satisfies

ωd (s) =
(

ỹ′′
d (s) x̃′

d (s) − x̃′′
d (s) ỹ′

d (s)
)

/v2
n (s), (83)

where vn �= 0.

The path planning process ends by computing path

coordinates in the given inertial frame referring to

Eq. 76.

3.4.2 Time Parametrization

The velocity profile is designed taking into account

tangent velocity on the path p̃d (s). It is assumed

that nominal velocity vn changes monotonically in the

assumed time horizon τ > 0 and satisfies

t ∈ [0, τ ] vn (t) :=
vn (τ ) − vn (0)

2

(

1 − cos
(π

τ
t
))

+vn (0) , (84)

where vn (0) ≤ U1 and vn (τ ) ≤ U1 are desired pos-

itive values – cf. Fig. 4. Integrating Eq. 84 one can

calculate the following distance

lτ =

∫ τ

0

vn (t) dt = τ

(

vn (τ ) + vn (0)

2

)

. (85)

Equation 85 can be used to find time τ for the assumed

path length. It gives possibility to recognize path
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Fig. 4 Velocity profile

proposed for trajectory

planning

fragments where the reference vehicle should start or

stop gradually. From Eq. 85 one has

τ =
2lτ

vn (τ ) + vn (0)
.

Let ts ≥ 0 be an increasing function such that dts
dt

>

0. In order to calculate s (ts) we compare nominal

velocity (84) with tangent velocity (82) and introduce

the following scaling function ξ1 (ts) :=
vn(ts )

vd (s(ts ))
. For

the given vn (ts) we scale value of angular velocity

given by Eq. 83 and check if the following inequality

holds (cf. assumption A4): ξ1(ts) |ωd (s (ts))| ≤ U2.

Correspondingly, we define

ξ2(ts) := ξ1(ts)
|ωd(s(ts))|

U2
. (86)

In order to ensure a velocity saturation in a smooth

way we introduce the following formula

ξ3(ts) := ξ2(ts)/ tanh(ξ2(ts)). (87)

and calculate ts(t) =
∫ t

0 ξ−1
3 (ζ ) dζ , and s (ts) =

∫ ts
0

ξ1(ζ )
ξ3(ζ )

dζ . Finally, the reference configuration is

given by gr(t) := gd(s(ts(t))) while the reference

velocities become

vr (t) = μ
vn (ts(t))

ξ3 (ts(t))
, (88)

and

ωr (t) =
ξ1 (ts(t)) ωd (s (ts(t)))

ξ3 (ts(t))
.

Recall that parameter μ in Eq. 88 is used to deter-

mine the sign of linear velocity.

Remark 7 As a result of the smooth saturation intro-

duced by Eq. 87 variable ξ3 > 1 for any ξ2 > 0. Thus

recalling (88) the given scaling procedure provides

that |vr | is less than vd for any non zero angular

velocity ωr . Consequently |vr | can achieve vd only

on a straight segment. This algorithm provides a more

conservative generation of vr than in the case of a

typical non-smooth scaling used for example in [19].

Simultaneously, it guarantees a smoother transition of

reference signals.

3.4.3 Extension to Non-Admissible Case

In spite of preferring almost admissible reference seg-

ments there are motions tasks where approximation of

non-feasible directions could be applied with a higher

priority. Thus, the considered motion planner should

be able to generate also infeasible segments. For sim-

plicity reasons, we investigate a linear interpolation

between the successive waypoints in terms of posi-

tion and orientation. Then it is assumed that velocity

vr computed on the given path is profiled in order

to avoid rapid transition between the segments. This

velocity is propagated on directions defined by a refer-

ence frame which are not subjected to nonholonomic

constraints. As a result the planner generates indepen-

dent components vrx , vry and ωr which are used to

determine input ur .

4 Experimental Studies

The presented control system has been imple-

mented in C++ language using KSISframework and

ROS Hydro middlewares. The skid-steering platform

RoKSIS used in experiments is presented in Fig. 5.

The robot is driven by two Maxon motors governed

by EPOS2 drivers connected to the on-board PC via

Fig. 5 Experimental four-wheeled SSMR robot RoKSIS with

wheelbase width of 0.405 m and axes within 0.52 m
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CAN bus. The vehicle is localized using the high

accuracy vision system Optitrack consisting of ten

cameras Prime 13W, [1]. To improve robustness of

the localization system and overcome wireless com-

munication drop-outs a sensory fusion between data

provided by cameras and an internal predictor sup-

ported by a gyroscope is realized. The whole system

was integrated using ROS complemented by a special-

ized KSIS software framework providing: automati-

cally verified system composition, building blocks for

motion control/planning algorithm implementations

and push-based low-latency communication between

critical controller components (see [5] for details).

Kinematic model (49) has been identified experi-

mentally. Vehicle motion has been analysed in station-

ary conditions (assuming that wheels velocities are

described by slow time-varying functions) along trajec-

tories with various curvatures. Based on this analysis

it was noticed that the slip functions are almost con-

stant parameters given by: σv = 1.1 and σω = 0.66.

Moreover, for considered paths lateral velocity vy

approaches zero which indicates that the disturbance

term in Eq. 51 is not significant. The given kinematic

slip model and measurement data from the gyroscope

sensor are used to update input matrix H present in

model (49). Then is possible to partially compensate

disturbances coming from non extensive longitudinal

slip and to control the robot at kinematics level.

To investigate performance of the presented algo-

rithm experimental tests were conducted extensively.

In this section only selected results are presented.

The task studied in experiments E1 and E2 well

corresponds to a typical motion scenario, namely the

robot is supposed to move through a set of eight way-

points along with almost admissible segments com-

puted by the local planner. The detailed parameters

of the nominal motion plan is collected in Table 1.

The reference motion on each segment is described

by parameters Vd and Vm corresponding to nominal

velocity at the given waypoint and nominal velocity in

the middle of the preceding segment, respectively. At

the beginning of each segment the reference motion is

re-planned based on current state of the vehicle includ-

ing its posture and linear velocity. Parameters v0 and

vf of the planner are selected based on Euclidean dis-

tance between successive waypoints as follows: v0 =

vf = 1.5‖p̃d(0)‖, where p̃d is defined by Eq. 77.

The upper bound of the angular reference velocity is

limited to 0.6 rad/s.

Gains of the motion controller Eq. 28 with Eq. 73

have been chosen as follows: K = −I , ε1 = 0.3,

ε2 = 0.3, κε1
= κε2

= 1, kα1
= 2, kα2

= 1 and α∗

is computed based on relation (66). Frequency of the

control loop has been set to fs = 100 Hz.

In experiment E1 only forward reference motion

is planned while in experiment E2 there are two

segments with backward motion imposed. Reference

and obtained position paths together with waypoints

are presented in Figs. 6a and 7a. The vehicle starts

from initial waypoint marked by P0. Additionally,

in brackets time of reaching the corresponding way-

point is given. Basically, it can be observed that the

robot path resembles the reference path closely espe-

cially when the reference motion is properly planned

(in the sense that reference velocities are properly

selected to the given path curvature). It turns out that

the most difficult segment is planned between way-

points P4 and P5 where the reference linear velocity is

increased significantly along the curve. It can be seen

that in both experiments there is a noticeable devi-

ation from a reference motion along the considered

segment.

Table 1 Motion nominal

scenario considered in

experiments E1 and E2

Waypoint xd [m] yd [m] θd [rad] Vd Vm Motion strategy μ

P1 0 0 0 0 0.2 Ex. 1: +, Ex. 2: +

P2 1 0 π/2 0.4 0.4 Ex. 1: +, Ex. 2: −

P3 2.5 0 π/2 0 0.2 Ex. 1: +, Ex. 2: −

P4 2 0.5 3/4π 0.4 0.4 Ex. 1: +, Ex. 2: +

P5 1 1 π 0.8 0.8 Ex. 1: +, Ex. 2: +

P6 2 0.5 π 0.4 0.4 Ex. 1: +, Ex. 2: +

P7 2 0.5 π 0.4 0.4 Ex. 1: +, Ex. 2: +

P8 2 0.5 π/2 0.4 0.4 Ex. 1: +, Ex. 2: +
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Fig. 6 Results of

experiment E1

(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

From Figs. 6b, c and 7b, c it follows that the posi-

tion tracking errors do not exceed 60 mm while the

orientation tracking error becomes less than 8.6 deg.

Clearly, there is a correspondence between the track-

ing errors and velocities presented in Figs. 6e–g and

7e-g. In particular, a rapid change of the errors can be

noticed when lateral velocity increases. This issue can

be interpreted as a response of the closed-loop system

to a significant kinematic disturbance from the skid

dynamics. It can be observed that during execution of

segment P4 − P5 first the robot starts skidding and

then orientation error increasing. The similar effect is

not seen along segment P7 − P8 as a result of smaller

value of the reference linear velocity imposed in the

planning phase.

Taking into account Figs. 6f-g and 7f-g one can

observe a continuous transition of the reference veloc-

ities between the successive segments. These signals
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Fig. 7 Results of

experiment E2

(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

are profiled in order to satisfy the assumed con-

straints. In particular, it can be noticed that value

of linear velocity decreases when value of angular

becomes significant. This is due to the continuous

scaling introduced by Eq. 88. Analysing Figs. 6h-

i and 7h-i it can be concluded that velocities of

the robot, estimated based on the posture measure-

ments, correspond to reference values that confirms

an acceptable tracking precision and show that the

impact of longitudinal and angular slips is properly

compensated (at least when the motion conditions

are in the safe region, when there slip-skid dynamics

is stable).

Basically, the performance of the controller is

not dependent on selected motion strategy (for-

ward/backward) assuming a continuous transition
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between segments. It is worth noting that this prop-

erty is not obvious when a controller based on TFs

is used. This is due to augmented dynamics and its

stability which is investigated in Section 3.3.2. How-

ever, in the given experiments the desired value of αr

is computed based on reference signals using formula

(67). As a result the augmented dynamics evolves

near asymptotically stable equilibrium point. Actually,

from Figs. 6d and 7d it can be observed that α̃ ≈ 0

while αr changes its value according to the desired

motion. Consequently, no oscillatory response of the

controller is observed and the considered motion task

is realized with a quite high precision and robustness

(notice that the selected values of parameters ε1 and ε2

are not small – anyway norm of f approaches zero as

a result of the stability of the augmented dynamics).

In order to illustrate performance of the controller

in a neighbourhood of the constant point the kine-

matic controller is not switched-off at stop waypoint

P8. It can be seen from Fig. 6b, c that at the final

control stage when reference signal ur generated by

the planner goes to zero some residual configuration

error exists. As indicated from Fig. 8a, b the proposed

adaptation rule attenuates this error asymptotically.

However, the convergence rate is only polynomial

which makes regulation time to be significant. It can

be noticed from Fig. 8d that the closed-loop system

evolves on the zero dynamics defined at z̃ = e. Aux-

iliary error α̃ tends to zero while αr is increasing

function generated by the integral adaptive rule (67).

In such a case the steady state cannot be achieved in

practice. The robot makes slight manoeuvres at the

desired point (see control inputs depicted in Fig. 8e,

f) similarly as it can be seen for others asymptotic

smooth stabilizers, cf. [14, 21, 22].

In the next experiment, E3, non admissible refer-

ence path is designed from initial waypoint P0 to final

waypoint P1. It is assumed that maximum velocity on

the path is restricted to 0.1 m/s. In this case the param-

eter κε1
is changed from 1 to 2/3, hence no asymptotic

stability is ensured. Other parameters of the controller

are selected as in experiments E1 and E2. Taking into

account results presented in Fig. 9 one can notice that

the robot motion along the reference linear segment

is executed employing an approximation of infeasible

directions (mainly in the lateral direction). The track-

ing errors – cf. Fig. 9a, b – are bounded according to

the assumed parameters of the transverse function. It

is interesting to analyse evolution of α̃ and αr illus-

trated in Fig. 9d. It can be seen that when the reference

motion stops α̃ converges to zero. Simultaneously ori-

entation error approaches zero that well corresponds

to the given stability proof (recall that ε2 = ε2r which

indicates that fθ = 0 for α̃ = 0). However, recalling

Fig. 8 Results of

experiment E1 – the

stabilization phase

(a) (b)

(c) (d)

(e) (f)
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Fig. 9 Results of

experiment E3

(a)

(b) (c)

(d) (e)

(f) (g)

that ε2 = π/3 one cannot longer assume that formu-

las (63) and (64) are justified. In such a case it is not

guaranteed that P(αr , 0) in Eq. 70 is positive for any

αr . Correspondingly, α̃ = 0 may be no asymptotically

stable equilibrium point for any αr . This case is met

in the given experiment – it can be observed that α̃

increases at 80th sec and after that it converges to zero

while αr tends to some constant. Surprisingly, position

errors are also well attenuated – cf. Fig. 9, however

this effect results from a very specific case but not a

general property (notice that for κε1
< 1 one cannot

guarantee that fx and fy → 0).

Comparing the stabilization phases in E1 and E3 it

is clear that practical stabilization at the constant point

using the same adaptation method allows one to obtain

the steady state stage. Hence, the regulation time is

limited considerably.

5 Conclusions

In this paper the control solution for the waypoint

following problem is designed for the differentially

driven vehicle (including the skid-steering structure).

In order to cope with constraints imposed on robot

velocities and accelerations the considered method

takes advantage of the motion planner and the closed-

loop universal stabilizer.



J Intell Robot Syst (2017) 85:553–575 571

The motion controller is based on the transverse

functions approach and is responsible for control of

the vehicle in the presence of nonholonomic con-

straints. In comparison to previous works in this paper

much importance is attached to asymptotic track-

ing and stabilization which are required for an effi-

cient execution of typical motion tasks (cf. [19]).

The asymptotic convergence in the nominal (unper-

turbed) case is ensured by a proper selection of inter-

nal variable in order to stabilize the zero dynamics.

The given proposition of adaptation rules are for-

mally proved. It is shown that the proposed translated

TFs allow one to freely tune the controller which

increases a design flexibility. Basically, it is possi-

ble to come from practical to asymptotic stabilization

without violating structure of the controller or the

transverse function. Additionally, the controller is able

to generate oscillatory manoeuvres which can be use-

ful for example to execute the parallel parking task

while ensuring the desired posture precision at the

end.

The given control structure defined at kinematic

level can be effectively implemented in practice. In

spite of simplifications which are made to describe

the vehicle model using the wheeled skid-steering

locomotion, based on experimental results it can be

stated that the proposed kinematic control approach

is justified for motion control in a limited range

of velocities when the reference motion is properly

designed. Simultaneously, for the given application

the proposed integration of a real time planner with

a closed-loop controller seems to be crucial. This

structure allows one to include additional operational

constraints induced from the vehicle dynamics which

are not formally covered by the feedback motion

controller.

The conducted experiments once more indicate

that a good performance of motion control requires

a suitable precise and low-latency measurement sys-

tem supported by estimation techniques. This is an

in important issue in mobile robotics in comparison

to manipulation robotics where motion in the task

space can be typically estimated based on internal

configuration variables. It is worth mentioning that

currently new set of sensors like Optitrack vision sys-

tem give possibility to improve control quality notice-

ably. Additionally, the considered control strategy is

scalable in the sense that the controller can be specifi-

cally adjusted in order to relax accuracy requirement.

It allows one to apply this method also when lower

precise localization measurements are available (cf.

results reported in [19]).

In future one can consider application of the pro-

posed control method for car-like robots. In such a

case the possibility of approximation of infeasible

motions is even more important property than for

unicycle-like vehicles since it can facilitate move-

ments in a cluttered environment considerably. Simi-

larly, the issue of asymptotic stabilization (or almost

asymptotic stabilization from a practical point of

view) can be addressed further in order to improve the

regulation time.
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Appendix A: Computations for a General Case

A.1 Selected Differential Relations on Lie Groups

(cf. [15])

Assume that g1, g2, g3 ∈ G and ġ1 = X(g)ν1.

dlg1g2
(g3) = dlg1

(g2g3)dlg2
(g3), (89)

drg1g2
(g3) = drg2

(g3g1)drg1
(g3), (90)

(dlg1
(g2))

−1 = dl
g−1

1
(g1g2), (91)

(drg1
(g2))

−1 = dr
g−1

1
(g2g1), (92)

dr
g−1

1
(g1) = Ad(g1)dl

g−1
1

(g1), (93)

dr
g−1

1
(e) = dl

g−1
1

(e)Ad(g1), (94)

Ad(g1) = dlg1
(g−1

1 )dr
g−1

1
(e)

= dr
g−1

1
(g1)dlg1

(e), (95)

Ad(g1)Ad(g2) = Ad(g1g2), (96)

Ad(g1)X(e) = X(e)AdX(g1), (97)

d

dt
g1

−1 = −X(g−1
1 )AdX(g1)ν1 (98)

Another useful relationship

drg1g2
(g−1

1 )X(g−1
1 ) = X(g2)AdX((g1g2)

−1) (99)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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can be proved as follows

drg1g2
(g−1

1 )X(g−1
1 )

(90)
= drg2

(e)drg1
(g−1

1 )X(g−1
1 )

(93)
= drg2

(e)Ad(g−1
1 )

×dlg1
(g−1

1 )X(g−1
1 )

(2)
= drg2

(e)Ad(g−1
1 )X(e)

(94)
= dlg2

(e)Ad(g−1
2 )Ad(g−1

1 )X(e)

(96)
= dlg2

(e)Ad((g1g2)
−1)X(e)

(97)
= dlg2

(e)X(e)AdX((g1g2)
−1)

(2)
= X(g2)AdX((g1g2)

−1).

(100)

A.2 Derivative of a Translated Transverse Function

Substituting relation Eq. 18 to Eq. 16 one obtains

ḟ = X(f )A(α)α̇ + drf̄ (h)X(h)νh. (101)

Computing the second term in Eq. 101 yields in

drf̄ (h)X(h)νh
(13)
= drh−1f (h)X(h)νh

(99)
= X(f )AdX(f̄ −1)νh. (102)

Using Eq. 102 in Eq. 101 gives

ḟ = X(f )A(α)α̇ + X(f )AdX(f̄ −1)νh. (103)

Now assuming that h = f̄ −1
r and recalling time

derivative of h one has

ḣ = X(h)νh =
d

dt
f̄ −1

r

(98)
= −X(f̄ −1

r )AdX(f̄r)Ar α̇r .

(104)

Comparing terms in Eq. 104 gives

νh = −AdX(f̄r)Ar α̇r . (105)

Using this result in Eq. 103 one has

ḟ = X(f )
(

A(α)α̇ − AdX(f̄ −1)AdX(f̄r)Ar(α)α̇r

)

.

(106)

Next, taking into account (96) and recalling (20)

one obtains dynamics (22).

A.3 Derivation of the Companion System

Taking time derivative of Eq. 23 yields in

ż = dlg(f
−1)

d

dt
f −1 + drf −1(g)ġ. (107)

Considering the first term in Eq. 107 and recalling

Eq. 19 one has

dlg(f
−1)

d

dt
f −1 (98)

= −dlg(f
−1)X(f −1)AdX(f )

×
(

A(α)α̇ + AdX(f̄ −1)νh

)

(2),(23)
= −X(z)AdX(f )

×
(

A(α)α̇ +AdX(f̄ −1)νh

)

.

(108)

Next, using definition of control system (6) in the

first term in Eq. 107 yields in

drf −1(g)ġ
(6)
= drf −1(g)X(g) (Cu + d)

(23)
= drg−1z(g)X(g) (Cu + d)

(99)
= X(z)AdX(f ) (Cu + d) . (109)

Combining Eqs. 108 and 109 in Eq. 107 gives

ż = X(z)AdX(f )
(

Cu+d−A(α)α̇−AdX(f̄ −1)νh

)

.

(110)

Next, recalling definitions of the extended input ū

and the square matrix C̄ given in Eq. 11, one has

ż = X(z)AdX(f )
(

C̄(α)ū + d − AdX(f̄ −1)νh

)

.

(111)

In the case when h = f̄ −1
r and νh is given by

Eq. 105, Eq. 111 can be rewritten as follows

ż = X(z)AdX(f )

×
(

C̄(α)ū + d + AdX(f̄ −1)AdX(f̄r)Ar α̇r

)

.

(112)

Next, recalling Eqs. 96 and 20 one obtains dynam-

ics (24).

A.4 Tracking Dynamics

Taking time derivative of Eq. 26 one has

˙̃z = dl
g−1
r

ż + drz(g
−1
r )

d

dt
g−1

r (113)



J Intell Robot Syst (2017) 85:553–575 573

The first term in Eq. 113 becomes

dl
g−1
r

ż
(111)
= dl

g−1
r

X(z)AdX(f )

×
(

C̄ū + d − AdX(f̄ −1)νh

)

=

(2),(26)
= X(z̃)AdX(f )

×
(

C̄ū + d − AdX(f̄ −1)νh

)

(114)

while the second term satisfies

drz(g
−1
r )

d

dt
g−1

r

(98)
= −drz(g

−1
r )X(g−1

r )AdX(gr)ur

(26)
= −drgr z̃(g

−1
r )X(g−1

r )AdX(gr)ur

(99)
= −X(z̃)AdX(z−1)AdX(gr)ur

(96)(26)
= −X(z̃)AdX(z̃−1)ur . (115)

Applying Eqs. 114 and 115 to Eq. 113 yields in

˙̃z = X(z̃)AdX(f )
(

C̄ū + d − AdX(f̄ −1)νh

)

−X(z̃)AdX(z̃−1)ur . (116)

Next, assuming that Eqs. 20 and 105 hold one

concludes that

˙̃z = X(z̃)AdX(f )
(

C̄ū + d + AdX(f −1)Ar α̇r

)

−X(z̃)AdX(z̃−1)ur . (117)

Appendix B: Computations for the Controller

Designed for a Unicycle-Like Kinematics in the

Nominal Condition (Case Study)

B.1 Analysis of Augmented Dynamics for

Asymptotic Tracking

Computing derivative of �αur and recalling (31) one

has

∂�α

∂α̃
ur =

(

∂

∂α̃
A−1

2 (αr − α̃)

)

AdX
1 (f −1(α, αr ))ur

+A−1
2 (α)

(

∂

∂α̃
AdX

1 (f −1(α, αr ))

)

ur

(118)

Latter on, in order to simplify computations, it is

assumed that ε2 is a small coefficient and relations

Eqs. 63 and 64 are justified. Then term A(α) in Eq. 58

can be approximated as follows

A(α) ≈

⎡

⎢

⎢

⎣

∂f̄x

∂α
+ f̄θ

∂f̄y

∂α
∂f̄θ

∂α
∂f̄x

∂α
f̄θ −

∂f̄y

∂α

⎤

⎥

⎥

⎦

. (119)

Moreover, the last element in A becomes

A2 =
∂f̄x

∂α
f̄θ −

∂f̄y

∂α

(56)
= ε1ε2

(

cos2 α − 1
2

cos 2α
)

=
1

2
ε1ε2. (120)

Term AdX
1 (f −1) can be computed based on Eqs. 54

and 53 as follows

AdX
1 (f −1)=

[

sin fθ −fx cos fθ −fy sin fθ cos fθ

]

.

(121)

Taking into account derivative of AdX
1 one obtains

∂

∂α̃
AdX

1 (f −1(αr − α̃, αr)

(121)
=

[

∂fθ

∂α̃
cos fθ κ1 −sin fθ

∂fθ

∂α̃

]

, (122)

where κ1(α̃, αr) := −
(

∂fx

∂α̃
cos fθ +

∂fy

∂α̃
sin fθ

+
(

−fx sin fθ + fy cos θ
) ∂fθ

∂α̃

)

. Recalling that

derivative ∂�α

∂α̃
ur has to be evaluated at α̃ = 0

one can further simplify calculations. Basically, at

α̃ = 0 transverse function f = e (for the given

parametrization). Hence

∂

∂α̃
AdX

1 (f −1(αr − α̃, αr))

∣

∣

∣

∣

α̃=0

=
[

∂fθ

∂α̃
−

∂fx

∂α̃
0

]

,

(123)

Since
∂f
∂α̃

∣

∣

∣

α̃=0

35
= −

∂f
∂α

∣

∣

∣

α=αr

from Eq. 17 one con-

cludes that
∂f
∂α̃

∣

∣

∣

α̃=0
= −X(e)A(α). Consequently,

using Eqs. 50 and 119 gives

∂fx

∂α̃

∣

∣

∣

∣

α̃=0

= −
∂f̄x

∂α
− f̄θ

∂f̄y

∂α
and

∂fθ

∂α̃

∣

∣

∣

∣

α̃=0

= −
∂f̄θ

∂α
.

(124)
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Recalling that ∂A2

∂α̃
= 0, using Eqs. 123 and 124 in

Eq. 118 and evaluating ∂�α

∂α̃
ur at α̃ = 0 allows one to

write

�̄α =
∂�α

∂α̃

∣

∣

∣

∣

α̃=0

ur = A−1
2

(

−
∂f̄θ

∂α
ur1 +

(

∂f̄x

∂α
+ f̄θ

∂f̄y

∂α

)

ur2

)

.

(125)

Computing derivative
∂f̄
∂α̃

and substituting its com-

ponents to Eq. 125 and recalling that αr = α + α̃ ≈ α

one obtains

�̄α =A−1
2 (ur1ε2 sin αr+ur2ε1 cos αr(1+

1
2
ε2

2 cos 2αr)).

(126)

Recalling that ε2 is small, it follows that ∀αr ∈

S
1, 1 + 1

2
ε2

2 cos 2αr ≈ 1. Additionally using Eq. 120

one can define relation (65).

B.2 Analysis of the Augmented Dynamics for the

Regulation Case and Non Asymptotic Convergence

Consider the following approximation of transverse

function (60)–(62) at α̃ = 0 assuming that ε2 is a small

coefficient and using relations Eqs. 63 and 64

fx |α̃=0 = ε1

(

(1 − κε1
) sin αr +

ε2
2
4

κε2
(1 − κε1

κε2
) cos αr sin 2αr

)

= ε1(1 − κε1
) sin αr + 1

4
ε1ε

2
2κε2

(1 − κε1
κε2

) cos αr sin 2αr (127)

fy |α̃=0 = ε1ε2

(

−κε2
(1 − κε1

) cos αr sin αr + 1
4
(1 − κε1

κε2
) sin 2αr

)

= 1
4
ε1ε2

(

1 − 2κε2
+ κε1

κε2

)

sin 2αr , (128)

fθ |α̃=0 = ε2(1 − κε2
) cos αr . (129)

Recalling Eq. 59 and computing
∂f̄r

∂αr
from Eq. 57

one can obtain

Ar(αr) ≈

⎡

⎣

κε1
ε1 cos αr

−κε2
ε2 sin αr

1
2
κε1

κε2
ε1ε2

⎤

⎦ . (130)

Recalling Eq. 129 it follows that for a small

ε2 one can assume that sin fθ |α̃=0 ≈ fθ |α̃=0 and

cos fθ |α̃=0 ≈ 1. Thus AdX
1 (f −1) given by Eq. 121

can be approximated as follows

AdX
1 (f −1) ≈

[

fθ −(fx + fyfθ ) 1
]

. (131)

Using Eqs. 128 and 129 one can easily obtain

(fyfθ )|α̃=0 = 1
4
ε1ε

2
2(1 − κε2

)
(

1 − 2κε2
+ κε1

κε2

)

× sin 2αr cos αr . (132)

Next, computing AdX
1 (f −1|α̃=0)Ar(αr ) one has

AdX
1 (f −1|α̃=0)Ar(αr) = ε1ε2

(

κε1
(1 − κε2

) cos2 αr + κε2
(1 − κε1

) sin2 αr

)

+ 1
8
ε1ε

3
2κε2

(

1 + 2κ2
ε2

(1 − κε1
) + κε2

(κε1
− 2)

)

sin2 2αr + 1
2
κε1

κε2
ε1ε2

= ε1ε2

(

κε1
cos2 αr + κε2

sin2 αr − 1
2
κε1

κε2

)

+ O(ε3
2). (133)

Assuming that κε1
and κε2

∈ [0, 1] and κε1
κε2

< 1

it follows that κε1
cos2 αr + κε2

sin2 αr − 1
2
κε1

κε2
∈

[0, 1
2
). Thus one concludes that at α̃ = 0

AdX
1 (f −1|α̃=0)Ar(αr) < 1

2
ε1ε2 = A2. As a result

∀αr ∈ S
1, P (αr , 0) =1− A2(αr −α̃)−1AdX

1 (f −1)Ar (αr )

∣

∣

∣

α̃=0
> 0. (134)

B.3 Analysis of the Augmented Dynamics for the

Regulation Case and Asymptotic Convergence

Here, it is assumed that κε1
= κε2

= 1. Firstly, we

compute first and second derivative of Eq. 131 and

evaluate them at α̃ = 0 as follows
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Secondly, performing detailed computation using a

symbolic solver one obtains:

∂

∂α̃
AdX

1 (f −1)

∣

∣

∣

α̃=0
Ar(αr) = 0, (137)

∂2

∂α̃2
AdX

1 (f −1)

∣

∣

∣

α̃=0
Ar(αr)

= − 1
2
ε1ε2

(

2 − ε2
2(2 sin4 αr + sin2 αr − 1)

)

. (138)
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