
Waypoint Models for Instruction-guided

Navigation in Continuous Environments

Jacob Krantz1* Aaron Gokaslan2,3 Dhruv Batra2,4 Stefan Lee1 Oleksandr Maksymets2

1Oregon State University 2Facebook AI Research 3Cornell University
4Georgia Institute of Technology

Project Webpage: https://jacobkrantz.github.io/waypoint-vlnce

Abstract

Little inquiry has explicitly addressed the role of ac-

tion spaces in language-guided visual navigation – either

in terms of its effect on navigation success or the efficiency

with which a robotic agent could execute the resulting tra-

jectory. Building on the recently released VLN-CE [24] set-

ting for instruction following in continuous environments,

we develop a class of language-conditioned waypoint pre-

diction networks to examine this question. We vary the ex-

pressivity of these models to explore a spectrum between

low-level actions and continuous waypoint prediction. We

measure task performance and estimated execution time on

a profiled LoCoBot [1] robot. We find more expressive

models result in simpler, faster to execute trajectories, but

lower-level actions can achieve better navigation metrics

by approximating shortest paths better. Further, our models

outperform prior work in VLN-CE and set a new state-of-

the-art on the public leaderboard – increasing success rate

by 4% with our best model on this challenging task.

1. Introduction

A long-term goal of instruction-guided visual navigation

research is to develop AI for robotic agents that can reliably

follow paths described by natural language navigation in-

structions in new environments. Much of the existing work

in this domain is robot-agnostic and has focused on highly-

abstract simulators where agents navigate by choosing be-

tween a small, fixed set of nearby locations that the agent

then transitions to deterministically [4, 15, 22, 25] – es-

sentially assuming some underlying robot-specific control

system can perform navigation. The Vision-and-Language

Navigation (VLN) [4] task is representative of this class of

problem settings.

In sim-to-real experiments, Anderson et al. [3] demon-

strate that a major performance bottleneck for transferring

*Work done during an internship at Facebook AI Research.

Correspondence: krantzja@oregonstate.edu

Figure 1. Our approach decomposes the task of following nav-

igation instructions in continuous environments into language-

conditioned waypoint prediction and low-level navigation.

VLN agents trained in high-level simulators to real robotic

systems is producing appropriate sets of nearby locations

(or waypoints) to choose from; however, it is infeasible to

study waypoint prediction in the discrete, highly-abstract

simulator as the agent can only occupy predefined locations.

Recently, Krantz et al. [24] introduced a variant of VLN

instantiated in continuous simulated environments (denoted

VLN-CE) such that agents can move to arbitrary positions.

In contrast to the highly-abstract action space in VLN,

agents in [24] navigate by executing a sequence of low-

level actions such as moving forward 0.25 meters or turn-

ing by 15 degree increments. This end-to-end, instruction-

to-low-level-control design choice has implications both in

simulation and for potential sim-to-real transfer to a robotic

platform. During training, these policies must jointly learn

15162

navigation and language grounding over long sequences of

actions (∼55 per episode). As a result, [24] shows that mod-

els mirroring successful VLN agents perform substantially

worse in VLN-CE.

On a real robot, the frequent stop, starts, and turns in-

duced by this action space can be slow to execute (requiring

frequent changes in velocity and calls to a planner), result in

state estimation error, and strain hardware [23, 19]. Further,

executing the deep policy network to predict actions at each

time step can put extra demand on robot power supplies.

This work explores a spectrum of action spaces between

these two extremes – studying instruction-guided naviga-

tors that predict relative waypoints with varied expressivity.

At one end, our agents are free to predict relative waypoints

as continuous points within some maximum range. On the

other, the action space is reduced to taking a fixed step in

a direction chosen from a small, finite set of angles – mim-

icking [24] but collapsing consecutive turns. In between,

we experiment with mixing discrete and continuous com-

ponents to parameterize waypoint predictions.

To do this, we develop an attention-based waypoint pre-

diction network for instruction following. Given a naviga-

tion instruction and a panoramic RGBD observation at the

current position, our agents predict a distribution over rela-

tive waypoints in polar coordinates (consisting of a heading

angle θ and a distance r). A low-level continuous navigator

is then executed to move in a straight line towards the way-

point – leaving concerns about obstacle avoidance to the

waypoint predictor. We train our agents as model-free con-

trol policies using large-scale reinforcement learning [37]

on the VLN-CE dataset. We evaluate our agents using stan-

dard metrics for VLN-CE as well as the estimated execution

time for resulting trajectories on a LoCoBot [1] robot.

We find that more expressive waypoint prediction net-

works result in simpler paths that are faster to execute;

however, more constrained action spaces can achieve better

performance by more closely approximating shortest paths.

Our waypoint models paired with continuous low-level nav-

igators reduce the average estimated time to execute a tra-

jectory by 2.2 times compared to low-level turn/forward

models. When paired with discrete low-level navigators to

match VLN-CE’s action space, our models improve naviga-

tion success rate by 1-4% over prior work on the VLN-CE

leaderboard1– a max relative improvement of 14%.

Contributions. We summarize our contributions as:

– Developing a class of language-conditioned waypoint

prediction networks for the VLN-CE task,

– Providing empirical analysis of waypoint prediction ex-

pressivity’s effect on navigation success and estimated

time to execute trajectories on a representative robot,

– Demonstrating that our models paired with low-level

navigators set a new state-of-the-art on the VLN-CE test

1eval.ai/web/challenges/challenge-page/719

leaderboard by an absolute 4% success rate.

We provide open-source code and pre-trained models at

https://github.com/jacobkrantz/VLN-CE.

2. Related Work

Instruction-Guided Navigation. Many works have ex-

amined instruction-guided navigation. Task descriptions

vary across a number of axes, including instruction source

(templated [22], natural language [4]), instruction language

(monolingual, multilingual [25]), environment setting (in-

door, outdoor [15, 22]), environment realism (synthetic sim-

ulation [28], realistic simulation [4], real-world [8, 3]), nav-

igation affordance (sparse navigation graphs [4], continuous

space [24, 8]), and agent (ground-based, quadcopters [6]).

One popular task is Vision-and-Language Navigation

(VLN) [4]. VLN has natural language instructions and

uses indoor, photo-realistic environments from the Matter-

port3D dataset [10]. A ground-based agent acts on a sparse

navigation-graph. In this work, we consider the recently re-

leased Vision-and-Language Navigation in Continuous En-

vironments (VLN-CE) [24], a task that lifts VLN to contin-

uous 3D environments. We explore waypoint models that

leverage more abstract action spaces in VLN-CE.

Hierarchical Visual Navigation. Waypoint-based models

can be considered a type of hierarchical agent, which has

been proposed for many tasks relating to visual navigation.

Beyond an intuitive problem decomposition, these are com-

monly motivated by a desire to carve out self-contained

sub-tasks solvable with existing approaches [5], circum-

vent challenges faced by reinforcement learning (RL) al-

gorithms (e.g. credit assignment and exploration over long

time horizons) [12, 38], or to introduce interpretable rep-

resentations [16]. However, these works address embodied

navigation tasks that do not condition on language.

More related to our work are those that predict waypoints

directly [5, 13, 14]. Chaplot et al. [13] address the image-

goal navigation task with a topological agent that updates a

graph with candidate “ghost nodes”, selects a node to navi-

gate to, and performs low-level navigation. Our waypoint-

based model differs in that we combine the waypoint pre-

diction and selection steps and condition both with the task

goal. Chen et al. [14] take a similar approach to ours for

audio-visual navigation – predicting waypoints conditioned

on audio goals (e.g. a teapot whistling) while building a

metric map. Our approach predicts waypoints directly from

language instructions without a metric map.

Several hierarchical models have been developed for

instruction-guided navigation tasks. For an outdoor envi-

ronment, Misra et al. [28] decompose the task into goal pre-

diction and action generation. While effective in (nearly)

fully-observable environments, this method does not read-

ily transfer to novel environments with partial observability.

Likewise, Blukis et al. [7] develop a network that predicts

15163

and updates a position-visitation distribution en route to the

goal. This approach leverages assumptions of an aerial ve-

hicle operating in outdoor environments, namely, nearly full

observability compared to an indoor ground-based agent

and rare obstacle collisions afforded by aerial free-space.

Recent sim2real transfer work in VLN has considered

adding a software harness that emulates an ‘online’ navi-

gation graph by predicting candidate waypoints [3]. This

mechanism is not conditioned on instructions and just uses

local visual / lidar observations. VLN agents trained in

topological simulators can then navigate on this graph by

invoking a classical navigation stack in the real world.

However, these models were found to perform significantly

worse than when given a known navigation graph – sug-

gesting that waypoint prediction remains a bottleneck for

VLN transfer. Instead of a two-stage process, we present an

alternative – developing a language-conditioned waypoint

prediction network in a continuous simulator.

Training Instruction Followers. Many instruction-guided

navigation works learn policies via imitation learning [4,

18, 6, 36, 34, 24, 26]. Behavior cloning can result in expo-

sure bias. Methods like student forcing and dataset aggre-

gation reduce this but require a queriable expert policy and

discourage exploration [4, 32]. Some works train agents

with a combination of imitation learning and reinforcement

learning (RL) [8, 25]. In this work, we learn linguistically-

motivated waypoint predictions purely from RL.

3. Task Description

We consider the episodic task of instruction-guided vi-

sual navigation in previously-unseen environments. An

agent must navigate a path specified by natural language

instructions and stop at a goal location. The agent has ego-

centric RGBD perception. The environment is continuous,

requiring the agent to navigate freely about the 3D space

and contend with obstacles and occlusion.

VLN-CE Task. We set our work in the context of the

Vision-and-Language Navigation in Continuous Environ-

ments (VLN-CE) task [24]. VLN-CE is based on the Room-

to-Room dataset used in the original VLN task [4]. VLN

has agents navigate on a pre-defined graph of viewpoints

with scenes from the Matterport3D dataset [10]. VLN-

CE replaces the viewpoint topology with full Matterport3D

scene reconstructions, lifting the VLN task to more realis-

tic navigation in continuous space. We conduct our exper-

iments in VLN-CE because it enables our study of agents

that predict arbitrary relative waypoints. We adopt the task

settings of VLN-CE with specific extensions detailed below.

Observation Space. The agent observes RGB and depth

images. For both modalities, we extend the 90◦ HFOV

of VLN-CE to panoramic 360◦ HFOV. Each panorama is

captured as twelve frames angled in 30◦ increments, where

each frame has a 90◦ HFOV at a resolution of 256 x

256. Panoramic vision is common in related visual navi-

gation tasks like VLN and PointGoal navigation [18, 13]

and panoramic sensors could be used in real applications.

Action Space. Waypoint-based agents can operate inde-

pendently of the low-level action space used to reach the

predicted waypoints. We experiment with two action spaces

that operate in discrete time. Specifically, we train and eval-

uate our agent with continuous-space actions that specify

real-valued turn angles and straight-line distances. Such ac-

tions can be accomplished by zero-turn-radius robots such

as Locobot [20]. Like VLN-CE, we assume perfect actua-

tion to keep results comparable. We also evaluate our agent

with the VLN-CE’s discrete action space to enable direct

comparison with past work (forward 0.25m, left 15

degrees, right 15 degrees, and stop). Actions specify-

ing velocities or accelerations are beyond the scope of this

work, but are compatible with waypoint-based agents [5].

4. Method

We describe our implementation of a waypoint-based

instruction-following agent. A waypoint prediction network

(WPN) predicts navigation waypoints or a STOP action di-

rectly from pixels and natural language. Waypoints are

passed to a lower-level navigator in relative polar coordi-

nates. We employ a simple two-step navigator that turns in

the direction of the waypoint then moves forward the pre-

dicted distance. This navigator does no direct language pro-

cessing, separating the task between two agent components.

4.1. Waypoint Prediction Network (WPN)

An overview of our network is shown in Fig. 2. At each

time step, our agent observes the world through a panoramic

RGBD sensor represented by 12 RGBD observations cap-

tured at regular angular intervals (θ = 0, 15, 30, ..., 330).

Our agent predicts the next navigation waypoint in relative

coordinates by selecting one of these discrete observations

as a coarse heading θ̂D and then predicting an angular offset

θ̂offset and distance r̂ such that the waypoint is specified by

the polar coordinates (r̂, θ̂D + θ̂offset). We base our model

architecture on the cross-modal attention network of Krantz

et al. [24], adapting the single-modality visual encoders to

panoramas, adding attention over panorama frames, and de-

veloping action generation layers for waypoint prediction.

Visual Encoding. Our network encodes RGB and depth

observations separately. Each RGB frame is encoded with

a ResNet-18 [21] pre-trained on ImageNet, collectively pro-

ducing features Vt ∈ R
12×i×j for 12 frames containing

i feature map channels of flattened spatial dimensions j.

Similarly, each depth frame is encoded with a ResNet-50

pre-trained on a PointGoal navigation task [37], collectively

producing features Dt ∈ R
12×k×l. We provide static pose

features P ∈ R
12×2 consisting of the sine and cosine of

the camera angle. These features disambiguate the rela-

15164

Figure 2. We develop a waypoint prediction network (WPN) that predicts relative waypoints directly from natural language instructions and

panoramic vision. Our WPN uses two levels of cross-modal attention and prediction refinement to align visual observations with actions.

tive angle between frames and are commonly used by VLN

panorama agents to encode previous actions [18].

The difference between an agent’s visual observations

at time t vs. t − 1 can be more substantial with waypoint-

based navigation than with a lower-level action space, e.g.,

when a waypoint is predicted through a doorway. We pro-

vide this visual context explicitly by including a subset of

visual features from the previous time step. Specifically,

we include features for the panorama frame facing nearest

the heading of the last waypoint prediction: V
(i)
t−1 and D

(i)
t−1

where i = θ̂Dt−1. These features are mean-pooled across

their spatial dimension, resulting in a visual context vector

C̄ = [V̄
(i)
t−1, D̄

(i)
t−1], where [·] denotes concatenation.

Instruction Encoding. We use the same instruction encod-

ing as Krantz et al. [24]. The natural language instruction

Oinst. is a lightly-tokenized sequence of words observed at

each time step. We map Oinst. to a sequence of GloVE [31]

embeddings w1, w2, ..., wN for an instruction of length N

words. A bi-directional LSTM then produces hidden states

S = {s1, s2, ..., sN} = BiLSTM(w1, w2, ..., wN). (1)

Previous Action Encoding. Our network observes the pre-

dicted waypoint from the previous time step as a vector

at−1 = [r̂t−1, sin(θ̂Dt−1), cos(θ̂Dt−1), θ̂
offset
t−1].

Visual History. We use a dedicated recurrent network to

track visual history like Krantz et al. [24], including inputs

of RGB features Vt, the previous action at−1, and the ad-

ditional visual context C̄. We mean-pool Vt across both the

spatial and frame dimensions, resulting in vector V̄t. Our

visual history is then encoded as

h
(vis.)
t = GRU

(

[

V̄t, C̄, at−1

]

, h
(vis.)
t−1

)

. (2)

Cross-Modal Attention. We use scaled dot-product atten-

tion (Attn) for all attention mechanisms in our network [35].

The output of the visual history module h
(vis.)
t attends to the

recurrent instruction features S:

Ŝ = Attn
(

S, h
(vis.)
t

)

. (3)

These attended instruction features are then used to perform

spatial attention on each RGB and depth frame i:

V̂
(i)
t = Attn

(

V̄
(i)
t , Ŝ

)

D̂
(i)
t = Attn

(

D̄
(i)
t , Ŝ

)

(4)

which is shown in Fig. 2 as Spatial Attn. The resulting

features are concatenated with pose features P , resulting in

instruction-conditioned and heading-aware RGBD features

for each panorama frame:

Ît =
[

V̂t, D̂t,P
]

. (5)

The attended instruction features are used again to attend

across panorama frames (Pano Attn in Fig. 2) prior to a

final recurrent block:

X̂ = Attn
(

Ît, Ŝ
)

(6)

h
(a)
t = GRU

([

X̂ , Ŝ, h
(vis.)
t , at−1

]

, h
(a)
t−1

)

. (7)

Action Prediction. We use the final recurrent state h
(a)
t

and the frame-specific features Ît to predict a waypoint in

relative polar coordinates. Our waypoint prediction begins

as a coarse heading prediction sampled from a distribution

over the 12 frames and a STOP action: θ̂D ∼ Pano. The

logits of Pano are the dot product between h
(a)
t and Ît:

Pano = softmax
([

Ît · h
(a)
t ,Wsh

(a)
t + bs

])

. (8)

For each frame heading i in Pano, we predict distri-

butions over a heading offset refinement and a distance as

shown in Fig. 2. In Sec. 5.2, we explore how the expres-

sivity of the waypoint action space affects performance. To

support those experiments, our offset and distance distribu-

tions are either continuous, discrete, or constant. We use the

15165

truncated Gaussian distribution [9] for fixed-range continu-

ous predictions and parameterize it by predicting the mean

and variance of the underlying Gaussian:

Offset(i) = tanh
(

Wo

[

Î
(i)
t , h

(a)
t

]

+ bo

)

and (9)

Dist(i) = sigmoid
(

Wd

[

Î
(i)
t , h

(a)
t

]

+ bd

)

(10)

where the range of Offset(i) is [−15◦, 15◦] and the range

of Dist(i) is [0.25m, 4.0m]. For discrete distributions,

we replace the tanh and sigmoid activation functions with

a softmax for an offset domain of {−15◦,−10◦, , ..., 15◦}
and a distance domain of {0.25m, 0.75m, ..., 2.75m}. For

constant predictions, the offset is 0◦ and the distance is

0.25m, corresponding to the forward step size of the stan-

dard VLN-CE action space.

We sample a heading offset θ̂offset ∼ Offset(θ̂D) and

a distance r̂ ∼ Dist(θ̂D) conditioned on the chosen coarse

heading θ̂D. This produces a polar waypoint prediction

(r̂, θ̂D + θ̂offset). We visualize a set of possible waypoint

action spaces in Tab. 1.

4.2. Training the Waypoint Prediction Network

Existing work on the VLN-CE task trains agents with

imitation learning [24]. Motivated by recent advancements

in embodied navigation, we instead train our waypoint

prediction network with decentralized distributed proximal

policy optimization (DDPPO) [37]. DDPPO is a scaled ver-

sion of the proximal policy optimization (PPO) algorithm

with an actor-critic policy structure [33]. We consider the

loss function used in [37] for PointGoal navigation. It em-

ploys the clipped PPO objective Laction, a clipped critic loss

Lvalue, and an entropy bonus LS to encourage exploration:

Lstandard = Laction + cvLvalue − ceLS . (11)

Let θ-parameterized policy πθ be the waypoint prediction

network. For Laction, we compute the probability πθ(At)

of an action At = (θ̂D, θ̂offset, r̂) for a panorama frame

selection θ̂D, a heading offset θ̂offset, and a distance r̂ as:

Pano(θ̂D) ∗ Offset(θ̂D)(θ̂offset) ∗ Dist(θ̂D)(r̂). (12)

Accordingly, we define the entropy term LS as:

LS = cpS (Pano) + coS (Offset) + cdS (Dist) (13)

to control the amount of exploration within specific action

components. For Lvalue, we predict a state-value estimate

from the final hidden state h
(a)
t as v̂ = linear(h

(a)
t).

We expand this loss function with an additional zero-

trending regularization term Loffset =
∣

∣

∣
θ̂offset

∣

∣

∣
, which

we found empirically led to better exploration of the joint

Pano-Offset heading space. Together, this yields our to-

tal loss function:

Ltotal = Lstandard + crLoffset. (14)

Reward Function. Our reward function is informed by the

extrinsic reward structure of Wang et al. [36] and the time

penalty (or slack reward) from Savva et al. [27]. We include

a success reward rsuccess, the change in distance to target

∆dist to target and a slack reward rslack:

r(s, t) = rsuccess −∆dist to target + rslack, (15)

where rsuccess = 2.5 once a stop action is called within

3m of the target location (otherwise equal to 0) and

∆dist to target = D(st)−D(st−1) is progress towards the goal

in terms of geodesic distance. The slack reward as defined

by [27] is constant and applied at every time step. A way-

point predictor that maximizes this reward term would pre-

dict the furthest navigable waypoint toward the goal. This is

undesirable for instruction-following where agents need to

consider intermediate navigation decisions in light of par-

tial observability. In the instruction “go into the bedroom”,

an agent must first decide to continue past other similar-

looking doorways (such as a bathroom) before choosing

to enter the bedroom. We mitigate this training bias to-

ward distant waypoints by scaling the slack reward based

on waypoint distance instead of time. Specifically, we scale

slack based on distance predicted: rslack = −0.05·
dpredicted

0.25m
which additionally penalizes unreachable waypoints.

5. Experiments

In this section, our main experiments address the following

questions within the context of the VLN-CE task:

1) How does the expressivity of waypoint predictions af-

fect performance? On one end of the expressivity spec-

trum, an agent may select waypoints from a small set of

discrete candidates, and on the other end, an agent may con-

sider any continuous location within some range. We exam-

ine the impact of different levels of expressivity in Sec. 5.2.

Generally, we find that less expressive action spaces lead to

minor improvements in standard metrics over more expres-

sive versions but result in trajectories that would be slower

to execute on real agents due to frequent stops and turns.

2) How do our waypoint-based models compare to prior

work in low-level action spaces? Compared to existing

work on VLN-CE [24], our base models are trained with

additional sensors (forward-facing vs. panoramic cameras)

and continuous navigators with arbitrary turn angles and

step distances. While we argue these observation and navi-

gator action spaces are more reflective of real robotic agents,

we ablate these in Sec. 5.3 to compare with prior work. We

find that our models result in significant improvements over

prior work on the public VLN-CE leaderboard.

15166

Dist. Offset

Val-Seen Val-Unseen

Model TL NE ↓ OS ↑ SR ↑ SPL ↑ TL NE ↓ OS ↑ SR ↑ SPL ↑ EET SCT ↑

1

Waypoint Pred.

Network (WPN)

C C 10.29 6.05 51 40 35 10.38 6.90 41 34 29 186 20

2 D C 10.51 6.12 49 38 33 10.62 6.62 43 36 30 153 23

3 D D 9.11 6.57 44 35 32 8.23 7.48 35 28 26 93 20

4 D - 9.06 6.45 46 39 35 8.16 7.20 38 31 28 90 22

5 Heading Pred.

Network (HPN)

- C 8.71 5.17 53 47 45 7.71 6.02 42 38 36 297 11

6 - - 8.63 5.44 51 44 42 7.72 6.21 38 34 32 308 11

Table 1. Results of our waypoint model on Val-Seen and Val-Unseen splits using the continuous navigator to reach waypoints. We

demonstrate the influence of our action space components by successively constraining the waypoint action space. We find that the least-

constrained heading prediction network performs the best according to conventional VLN metrics across both validation splits.

5.1. Experimental Setup

VLN-CE Dataset. We use the VLN-CE dataset [24] which

consists of 16, 844 path-instruction pairs (5,611 unique

paths) across 90 scenes. The dataset is split into train

(Train), seen validation (Val-Seen), unseen validation (Val-

Unseen), and test (Test). Both Val-Unseen and Test contain

scenes the agent has not been exposed to during training.

Metrics. We evaluate our agent using established metrics

from VLN-CE [24]. Specifically, we report the metrics used

by the VLN-CE Challenge leaderboard which include tra-

jectory length (TL), navigation error (NE), oracle success

rate (OS), success rate (SR), and success weighted by in-

verse path length (SPL). Note that success occurs when an

agent invokes the stop action within 3m of the goal. Please

see [2, 4] for a detailed description of these metrics.

Implementation Details. We implement our agents in Py-

Torch [30] and use the Habitat Simulator [27]. We extend

Habitat’s DDPPO [37] training implementation to the VLN-

CE task and add components for training waypoint predic-

tion agents. We distribute training across 64 GPUs, collect-

ing around 200M steps of experience to reach peak perfor-

mance (5 days on average). We use the same set of hyper-

parameters for each experiment and include those values in

the supplementary. We use early stopping during the train-

ing process and select the checkpoint with the highest SPL

on Val-Unseen for all models. During the evaluation, the

waypoint prediction network takes the mode of each action

distribution which leads to deterministic results.

5.2. Impact of Waypoint Expressivity

To study the effect of waypoint expressivity, we consider

a spectrum of prediction domains for our model’s distance

and offset components. In Tab. 1, we consider predicting

continuous values (C), choosing between a set of discrete

values (D), or not predicting at all and using a fixed value

(-). These combinations result in decision spaces visual-

ized in the figure on the left of Tab. 1 where blue-shaded

regions reflect possible waypoints under various C/D/- set-

tings of offset and distance prediction. The labels at the

top-left of each graph match the corresponding row(s) of

the table.

WPN. Row 1 is our fully continuous waypoint prediction

network (WPN) which can select any point within a toroid

around the agent bounded by 0.25 and 4m. In row 2, we

consider discrete distance prediction over six choices rang-

ing from 0.25m to 2.75m in increments of 0.5m – resulting

in a decision space of six continuous rings. In row 3, we ad-

ditionally constrain the offset to seven choices ranging from

−15◦ to 15◦ in increments of 5◦ – further segmenting the

rings into a dense set of discrete points. In row 4, we fix the

offset prediction to 0, resulting in a sparse ‘wagon-wheel’

of 36 possible waypoints. This progresses from fully con-

tinuous to highly constrained subspaces.

We observe the most significant differences in perfor-

mance from changes to the offset prediction space. Contin-

uous offsets outperform their discrete or fixed counterparts

by 3-8% success (rows 1 & 2 vs. 3 & 4). Intuitively, continu-

ous offset prediction enables more position control at longer

distances (compare the outer edge of plot 1 with 4). Surpris-

ingly the dense discrete setting (row 3) under-performed no

offsets (row 3 vs. 4) by 3% success. We suspect this is due

to differences in training dynamics – we observe rapid train-

ing convergence for this model which could lead to relative

under-exploration of the action space.

HPN. In rows 5 & 6 we ablate distance prediction entirely,

moving a fixed 0.25m in the chosen heading. To reflect this,

we refer to these ablations as Heading Prediction Networks

(HPNs). For a continuous offset (row 5), this allows a way-

point to be predicted in a single ring of radius 0.25m. Row

6 further ablates the offset prediction, resulting in a “pick-

pano” model that effectively mimics the existing VLN-CE

action space Forward-Left-Right with collapsed turn

actions (e.g. reducing any consecutive sequence of turns fol-

lowed by a forward step into a single action). As before, we

observe continuous offsets lead to improvements.

Counter-intuitively, we find these fixed-distance models

generally outperform their WPN counterparts in terms of

success by 2-3% (e.g. rows 1/2 vs. 5 and row 3 vs. 6).

15167

Navigator Ckpt

Val-Seen Val-Unseen

Model TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑ TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑

1 WPN,
discrete
distance

CN 222 10.51 6.12 49 38 33 10.62 6.62 43 36 30

2 DN 222 9.64 6.33 43 34 30 9.54 6.85 40 33 28

3 DN 89 9.52 6.23 45 37 33 9.86 6.93 40 33 29

4 WPN,
continuous
distance

CN 137 10.29 6.05 51 40 35 10.38 6.90 41 34 29

5 DN 137 10.14 5.99 52 42 36 9.60 6.87 39 32 28

6 DN 185 10.73 5.99 52 41 36 10.61 7.07 42 33 28

Table 2. Validation performance of our waypoint prediction network (WPN) paired with different navigators. Despite training with a

continuous navigator (CN), our WPN drops only 1-2 SPL in Val-Unseen using a discrete navigator (DN).

Val-Seen Val-Unseen Test

Model TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑ TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑ TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑

1 HPN + DN (ours) 8.54 5.48 53 46 43 7.62 6.31 40 36 34 8.02 6.65 37 32 30

2 WPN + DN (ours) 9.52 6.23 45 37 33 9.86 6.93 40 33 29 9.68 7.49 36 29 25

3 CMA+PM+DA+Aug [24] 9.06 7.21 44 34 32 8.27 7.60 36 29 27 8.85 7.91 36 28 25

Table 3. Results on the VLN-CE Challenge leaderboard. Both of our model submissions outperform existing state of the art on Test, with

our heading prediction network (HPN) showing the highest success rate (SR) with the lowest trajectory length (TL).

However, these agents take approximately 4x the actions

per trajectory (row 2 at 8.41 and row 5 at 33.41)– result-

ing in paths with significantly more starts, stops, and turns.

Consequently, these high action-rate paths more closely ap-

proximate the ground truth path and achieve higher path

efficiency as shown in SPL. In contrast, the WPN models

break the path down into straight-line segments of 1.6 me-

ters on average – reducing time to execute on real systems.

Given the variance associated with RL training methods,

we repeat the experiment in row 2 of Tab. 1 twice under dif-

ferent random seeds. Both achieve a 29 SPL in Val-Unseen

(1 point lower than row 2), suggesting that performance dif-

ferences of 1 SPL may not be significant.

Path Efficiency under a LoCoBot Motion Model. De-

pending on a robot’s abilities, shorter-length paths with

many fine-grained actions may take considerably longer to

execute than simpler-but-longer ones. We profile a Lo-

CoBot [20] robot controlled via PyRobot [29]. We choose

LoCoBot because it is a common platform for sim2real ex-

periments in embodied tasks [23, 17, 11]. We derive func-

tions for the time to turn by a specified angle or move for-

ward by a specified distance from empirical measurements.

Using these, we can estimate the time a LoCoBot would

take for any path. For more details, see the supplementary.

We call this metric the estimated execution time (EET)

and present results for each model in unseen environments

in Tab. 1. We report EET in seconds. Intuitively, we find

that models that predict travel distance (rows 1-4) have a

lower EET than models that step in fixed 0.25m increments

(rows 5-6). In particular, our best WPN (row 2) has a lower

EET than our best HPN (row 5) by 144 seconds—nearly a

2x reduction. Digging into this further, we can compare the

estimated average speed during a trajectory by normalizing

trajectory length by EET (TL/EET). Our best WPN averages

6.9 cm/s, a 2.7x increase over our best HPN at just 2.6 cm/s.

We additionally present success weighted by completion

time (SCT) [39] which scales the agent’s success by the rel-

ative time to complete the trajectory. We adapt SCT to our

agent’s dynamics by using EET for completion times. De-

tails are in the supplementary. We find that our best WPN

model has over a 2x improvement in SCT over our best HPN

model (23 vs. 11) despite WPN having a lower SPL. These

results demonstrate the practical benefit of using waypoint

models for real-world execution.

5.3. Comparison with Discrete Action Models

Our agents are trained with continuous navigators that

can turn to arbitrary angles and move forward by arbitrary

distances – matching realistic zero-turn radius robots. In

contrast, VLN-CE assumes turns of 15 degree increments

and forward steps of 0.25m. To compare with prior work,

we implement a discrete navigator (DN) that uses this low-

level action space to reach waypoints approximately. Our

DN assumes free space and selects actions that greedily

minimize distance to the waypoint. We assume no explicit

localization. Tab. 2 shows our WPN model using contin-

uous vs. discrete navigators at inference. As shown in the

figure (left), the discrete navigator approximates the path of

the continuous version. We find our models are somewhat

robust to this change in navigator but drop 1-3% success. In

rows 3 & 6 we re-evaluate all model checkpoints using the

discrete navigator, finding that while different checkpoints

maximize SPL, the performance is similar to rows 2 & 5.

In Tab. 3, we compare our models using a discrete nav-

15168

Figure 3. A qualitative example of our best waypoint agent (WPN+CN) successfully navigating to the goal in an unseen environment.

igator (DN) with prior work on the VLN-CE leaderboard.

We submit both our best performing waypoint prediction

network (WPN) and heading prediction network (HPN)

variants based on Val-Unseen SPL. The existing state-of-

the-art belongs to a cross-modal attention model trained by

dataset aggregation (DAgger) and aided by progress mon-

itor and data augmentation (CMA+PM+DA+Aug) [24].

Both WPN+DN and HPN+DN surpass the performance of

existing work, with HPN+DN setting the new state of the

art on the VLN-CE task by 4 SR (14% relative) and 5 SPL

(20% relative). This is despite evaluating our networks with

a navigator they were not exposed to during training.

Looking closely at the differences between prior work

and our HPN+DN model, our agent has access to panoramic

observations, has a more abstract heading-based action

space, and is trained with RL. To ablate these differences,

we start from our “pick-pano” HPN model (Tab. 1 row 6)

and ablate panoramic observation to a single forward-facing

camera. In Val-Unseen, this model surpasses row 6 by 2 SR

(achieving a 36/32 SR/SPL). This agent has a lower seen-

to-unseen gap than row 6 by 4 SR and 5 SPL (Val-Seen:

40/37 SR/SPL). This suggests that the reduced visual infor-

mation of this model leads to less overfitting of the training

environments. We further ablate the high-level action space

of this model, matching the observation and action spaces

of prior work. We find that this agent is unable to train to

convergence after 300M steps of experience and identify the

longer time horizon as a challenge requiring deeper study.

5.4. Qualitative Example

We present a qualitative example of our best waypoint

agent navigating an unseen environment (Fig. 3). In Step

1, the agent traverses a large room by predicting a way-

point 2.25m away. In Step 4, the waypoint prediction is

shorter at 1.25m, directly in front of the end table referenced

in the instruction. Together, these predictions demonstrate

the agent’s ability to implicitly reason about scene geom-

etry and predict language-grounded waypoints. Each step

in this example can be aligned with an abstract semantic

sub-goal, e.g. “continue through the hallway” (Step 2) and

“go to the end table” (Step 4). Agents that directly pre-

dict actions from the VLN-CE action space need to make

10+ decisions to execute each sub-goal – an unintuitive and

time-inefficient exercise. We provide additional navigation

examples in the supplementary.

5.5. Waypoint Prediction Analysis

We analyze characteristics of the waypoints predicted by

our best WPN model (Tab. 1 row 2). In both Val-Seen and

Val-Unseen, the mean distance prediction is 1.6m with a

standard deviation of 0.8m. We find that waypoint distances

decrease with time, such that that predictions in the first

25% of an episode average 2.3m, predictions in the middle

50% average 1.6m, and predictions in the final 25% aver-

age 0.76m. This behavior is reasonable in the context of

instruction-following – commonly, the beginning of a path

is described as taking macro actions (e.g. “Exit the bed-

room...”), while the end of a path can be described more

particularly (e.g. “...and wait between the two chairs.”).

6. Discussion

In this work, we present a model class that predicts nav-

igation waypoints directly from language and vision. In ex-

ploring the expressivity of the waypoint action space, we

find that more expressive models have favorable real-world

execution properties, including a 2x reduction in expected

execution time and a modular architecture that abstracts in-

teraction with robot-specific navigation stacks. On the other

hand, less expressive action spaces lead to higher traditional

VLN metrics. Our best submission to the VLN-CE leader-

board demonstrates this through a 4% improvement in suc-

cess (14% relative) and a 5 point improvement in SPL (20%

relative) over prior work. We recognize that a significant

gap still remains between topological VLN and continuous

VLN-CE. Addressing this gap and the related sim2real gap

[3] will require developing an effective interface between

language understanding and robotic control.

Acknowledgements We would like to thank Naoki Yokoyama for

helping adapt SCT and Joanne Truong for help with physical Lo-

CoBot profiling. This work is funded in part by DARPA MCS.

15169

References

[1] Locobot: an open source low cost robot. 2019. 1, 2

[2] Peter Anderson, Angel Chang, Devendra Singh Chaplot,

Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana

Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,

et al. On evaluation of embodied navigation agents. arXiv

preprint arXiv:1807.06757, 2018. 6

[3] Peter Anderson, Ayush Shrivastava, Joanne Truong, Arjun

Majumdar, Devi Parikh, Dhruv Batra, and Stefan Lee. Sim-

to-real transfer for vision-and-language navigation. In CoRL,

2020. 1, 2, 3, 8

[4] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark

Johnson, Niko Sünderhauf, Ian Reid, Stephen Gould, and

Anton van den Hengel. Vision-and-language navigation: In-

terpreting visually-grounded navigation instructions in real

environments. In CVPR, 2018. 1, 2, 3, 6

[5] Somil Bansal, Varun Tolani, Saurabh Gupta, Jitendra Malik,

and Claire Tomlin. Combining optimal control and learning

for visual navigation in novel environments. In CoRL, pages

420–429, 2020. 2, 3

[6] Valts Blukis, Nataly Brukhim, Andrew Bennett, Ross A

Knepper, and Yoav Artzi. Following high-level navigation

instructions on a simulated quadcopter with imitation learn-

ing. In RSS, 2018. 2, 3

[7] Valts Blukis, Dipendra Misra, Ross A Knepper, and Yoav

Artzi. Mapping navigation instructions to continuous control

actions with position-visitation prediction. In CoRL, 2018. 2

[8] Valts Blukis, Yannick Terme, Eyvind Niklasson, Ross A

Knepper, and Yoav Artzi. Learning to map natural language

instructions to physical quadcopter control using simulated

flight. In CoRL, pages 1415–1438, 2020. 2, 3

[9] John Burkardt. The truncated normal distribution. Depart-

ment of Scientific Computing Website, Florida State Univer-

sity, pages 1–35, 2014. 5

[10] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-

ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy

Zeng, and Yinda Zhang. Matterport3d: learning from rgb-d

data in indoor environments. In 3DV, 2017. MatterPort3D

dataset license available at: http://kaldir.vc.in.

tum.de/matterport/MP_TOS.pdf. 2, 3

[11] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta,

Abhinav Gupta, and Ruslan Salakhutdinov. Learning to ex-

plore using active neural slam. In ICLR, 2020. 7

[12] Devendra Singh Chaplot, Dhiraj Prakashchand Gandhi, Ab-

hinav Gupta, and Russ R Salakhutdinov. Object goal nav-

igation using goal-oriented semantic exploration. NeurIPS,

2020. 2

[13] Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav

Gupta, and Saurabh Gupta. Neural topological slam for vi-

sual navigation. In CVPR, pages 12875–12884, 2020. 2, 3

[14] Changan Chen, Sagnik Majumder, Al-Halah Ziad, Ruohan

Gao, Santhosh Kumar Ramakrishnan, and Kristen Grauman.

Learning to set waypoints for audio-visual navigation. In

ICLR, 2021. 2

[15] Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely,

and Yoav Artzi. Touchdown: Natural language navigation

and spatial reasoning in visual street environments. In CVPR,

2019. 1, 2

[16] Abhishek Das, Georgia Gkioxari, Stefan Lee, Devi Parikh,

and Dhruv Batra. Neural modular control for embodied

question answering. In CoRL, 2018. 2

[17] Matt Deitke, Winson Han, Alvaro Herrasti, Aniruddha

Kembhavi, Eric Kolve, Roozbeh Mottaghi, Jordi Salvador,

Dustin Schwenk, Eli VanderBilt, Matthew Wallingford, et al.

Robothor: an open simulation-to-real embodied ai platform.

In CVPR, pages 3164–3174, 2020. 7

[18] Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach,

Jacob Andreas, Louis-Philippe Morency, Taylor Berg-

Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell.

Speaker-follower models for vision-and-language naviga-

tion. In NeurIPS, 2018. 3, 4

[19] David González, Joshué Pérez, Vicente Milanés, and Fawzi

Nashashibi. A review of motion planning techniques for au-

tomated vehicles. IEEE T-ITS, 17(4):1135–1145, 2015. 2

[20] Abhinav Gupta, Adithyavairavan Murali, Dhiraj Prakashc-

hand Gandhi, and Lerrel Pinto. Robot learning in homes: im-

proving generalization and reducing dataset bias. NeurIPS,

pages 9094–9104, 2018. 3, 7

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 3

[22] Karl Moritz Hermann, Mateusz Malinowski, Piotr Mirowski,

Andras Banki-Horvath, Keith Anderson, and Raia Hadsell.

Learning to follow directions in street view. AAAI, 2020. 1,

2

[23] Abhishek Kadian, Joanne Truong, Aaron Gokaslan, Alexan-

der Clegg, Erik Wijmans, Stefan Lee, Manolis Savva, Sonia

Chernova, and Dhruv Batra. Are we making real progress

in simulated environments? measuring the sim2real gap in

embodied visual navigation. In IROS, 2020. 2, 7

[24] Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Ba-

tra, and Stefan Lee. Beyond the nav-graph: Vision-and-

language navigation in continuous environments. In ECCV,

pages 104–120, 2020. 1, 2, 3, 4, 5, 6, 7, 8

[25] Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and

Jason Baldridge. Room-across-room: multilingual vision-

and-language navigation with dense spatiotemporal ground-

ing. In EMNLP, pages 4392–4412, 2020. 1, 2, 3

[26] Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter An-

derson, Devi Parikh, and Dhruv Batra. Improving vision-

and-language navigation with image-text pairs from the web.

In ECCV, pages 259–274, 2020. 3

[27] Manolis Savva*, Abhishek Kadian*, Oleksandr

Maksymets*, Yili Zhao, Erik Wijmans, Bhavana Jain,

Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi

Parikh, and Dhruv Batra. Habitat: a platform for embodied

ai research. ICCV, 2019. 5, 6

[28] Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind

Niklasson, Max Shatkhin, and Yoav Artzi. Mapping instruc-

tions to actions in 3d environments with visual goal predic-

tion. In EMNLP, 2018. 2

[29] Adithyavairavan Murali, Tao Chen, Kalyan Vasudev Alwala,

Dhiraj Gandhi, Lerrel Pinto, Saurabh Gupta, and Abhinav

15170

Gupta. Pyrobot: An open-source robotics framework for re-

search and benchmarking. arXiv preprint arXiv:1906.08236,

2019. 7

[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An

imperative style, high-performance deep learning library. In

NeurIPS, 2019. 6

[31] Jeffrey Pennington, Richard Socher, and Christopher D.

Manning. Glove: global vectors for word representation. In

EMNLP, 2014. 4

[32] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A re-

duction of imitation learning and structured prediction to no-

regret online learning. In AISTATS, 2011. 3

[33] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-

ford, and Oleg Klimov. Proximal policy optimization algo-

rithms. arXiv preprint arXiv:1707.06347, 2017. 5

[34] Hao Tan, Licheng Yu, and Mohit Bansal. Learning to nav-

igate unseen environments: Back translation with environ-

mental dropout. In NAACL HLT, 2019. 3

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NeurIPS, 2017. 4

[36] Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao,

Dinghan Shen, Yuan-Fang Wang, William Yang Wang, and

Lei Zhang. Reinforced cross-modal matching and self-

supervised imitation learning for vision-language navigation.

In CVPR, 2019. 3, 5

[37] Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Ir-

fan Essa, Devi Parikh, Manolis Savva, and Dhruv Batra. DD-

PPO: learning near-perfect pointgoal navigators from 2.5 bil-

lion frames. In ICLR, 2020. 2, 3, 5, 6

[38] Fei Xia, Chengshu Li, Roberto Martı́n-Martı́n, Or Litany,

Alexander Toshev, and Silvio Savarese. Relmogen: leverag-

ing motion generation in reinforcement learning for mobile

manipulation. arXiv preprint arXiv:2008.07792, 2020. 2

[39] Naoki Yokoyama, Sehoon Ha, and Dhruv Batra. Suc-

cess weighted by completion time: A dynamics-aware eval-

uation criteria for embodied navigation. arXiv preprint

arXiv:2103.08022, 2021. 7

15171

