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Abstract

With the advent of increasingly complex hardware in real-
time embedded systems (processors with performance en-
hancing features such as pipelines, cache hierarchy, multi-
ple cores), many processors now have a set-associative L2
cache. Thus, there is a need for considering cache hierar-
chies when validating the temporal behavior of real-time sys-
tems, in particular when estimating tasks’ worst-case execu-
tion times (WCETs). In this paper, we propose a safe static in-
struction cache analysis method for multi-level non-inclusive
caches. The proposed method is experimented on medium-size
and large programs. We show that the method is reasonably
tight. We further show that in all cases WCET estimations are
much tighter when considering the cache hierarchy than when
considering only the L1 cache. An evaluation of the analy-
sis time is conducted, demonstrating that analyzing the cache
hierarchy has a reasonable computation time.

1. Introduction

Cache memories are introduced to decrease the access
time to the information due to the increasing gap between
fast micro-processors and relatively slower main memories.
Caches are very efficient at reducing average-case memory
latencies for applications with good spatial and temporal lo-
cality. Architectures with caches are now commonly used in
embedded real-time systems due to the increasing demand for
computing power of many embedded applications.

In real-time systems it is crucial to prove that the execu-
tion of a task meets its deadline in all execution situations,
including the worst-case. This proof needs an estimation of
the worst-case execution time (WCET) of any sequential task
in the system. WCET estimates have to be safe (larger than
or equal to any possible execution time). Moreover, it has to
be tight (as close as possible to the actual worst-case execu-
tion time) to correctly dimension the resources required bythe
system.

The presence of caches in real-time systems makes the es-
timation of both safe and tight WCET bounds difficult due to
the dynamic behavior of caches. Safely estimating WCET on
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architectures with caches requires a knowledge of all possible
cache contents in every execution context, and requires some
knowledge of the cache replacement policy.

During the last decade, much research has been undertaken
to predict WCET in architectures equipped with caches. Re-
garding instruction caches, static cache analysis methodshave
been designed, based on the so-calledstatic cache simulation
[9, 11] orabstract interpretation[17, 5]. Approaches for static
data cache analysis have also been proposed [16]. Other ap-
proaches like cache locking have been suggested when the re-
placement policy is hard to predict precisely [13] or for data
caches [18]. The impact of multi-tasking has also been con-
sidered by approaches aiming at statically determining cache
related preemption delays [12].

To the best of our knowledge, only [10] deals with cache
hierarchies. However, we show that this method can be unsafe
for some cache structures and reference streams.

The contribution of this paper is the proposal of a new
safe cache analysis method for multi-level non-inclusive set-
associative caches. Our approach can be applied to caches
with different replacement policies thanks to the reuse of an
existing single-level cache analysis method. The safety ofthe
proposed method relies on the introduced concept ofcache
access classification(CAC), defining which references are
used for the analysis of every cache level, in conjunction with
the more traditional cache hit/miss classification. This paper
presents experimental results showing that in most cases the
analysis is tight. Furthermore, in all cases WCET estimations
are much tighter when considering the cache hierarchy than
when considering the L1 cache only. An evaluation of the
analysis time is also presented, demonstrating that analyzing
the cache hierarchy has a reasonable computation time.

The rest of the paper is organized as follows. Related work
is surveyed in Section 2. Section 3 presents the types of caches
to which our analysis applies. Section 4 presents a coun-
terexample showing that the approach presented in [10] may
produce underestimated WCET estimates when analyzing set-
associative caches. Section 5 then details our proposal. Ex-
perimental results are given in Section 6. Finally, Section7
concludes with a summary of the contributions of this paper,
and gives directions for future work.



2. Related work

Caches in real-time systems raise timing predictability is-
sues due to their dynamic behavior and their replacement pol-
icy. Many static analysis methods have been proposed in order
to produce a safe WCET estimate on architectures with caches.
To be safe, existing static cache analysis methods determine
everypossible cache contents at every point in the execution,
considering all execution paths altogether. Possible cache con-
tents can be represented as sets ofconcrete cache states[12] or
by a more compact representation calledabstract cache states
(ACS)[17, 5, 10, 11].

Two main classes of approaches [17, 11] exist for static
WCET analysis on architectures with L1 caches. In [17] the
approach is based onabstract interpretation[4] and uses ACS.
In this approach, three different analyses are applied which use
fixpoint computation to determine: if a memory block isal-
wayspresent in the cache (Mustanalysis), if a memory block
maybe present in the cache (May analysis), or if a memory
block will not be evicted after it has been first loaded (Per-
sistenceanalysis). Acache categorization(e.g. always-hit,
first-miss) can then be assigned to every instruction based on
the results of the three analyses. This approach originallyde-
signed for LRU set-associative caches has been extended for
different cache replacement policies in [6]. To our knowledge,
this approach has not been extended to analyze multiple lev-
els of caches. Our multi-level non-inclusive cache analysis
will be defined using [17], mainly because of the theoretical
results applicable when using abstract interpretation. In[9],
static cache simulationis used to determine every possible
content of the cache before each instruction. Static cache sim-
ulation computes abstract cache states using dataflow analy-
sis. A cache categorization(always-hit, always-miss, first-hit
andfirst-miss) is used to classify the worst-case behavior of
the cache for a given instruction. The base approach, initially
designed for direct-mapped caches, was later extended to set-
associative caches in [11].

The cache analysis method presented in [9] has also been
extended to cache hierarchies in [10]. A separate analysis of
each memory level is performed by first analyzing the behav-
ior of the L1 cache. The result of the analysis of the L1 cache is
consequently used as an input to the analysis of L2 cache, and
so on. The approach considers an access to the next level of the
memory hierarchy (e.g. L2 cache) if the access is not classified
asalways-hitin the current level (e.g. L1 cache). As shown in
Section 4, this filtering of memory accesses, although looking
correct at the first glance, is unsafe for set-associative caches.
Our work is based on the same principles as [10] (cache anal-
ysis for every level of the memory hierarchy, filtering of mem-
ory accesses), except that the unsafe behavior present in [10] is
removed thanks to the introduction of the concept ofcache ac-
cess classification(CAC), defining which references are used
for the analysis of every cache level.

3. Assumptions

We consider a hierarchy ofN levels of instruction caches,
level1 representing the internal cache (L1 cache). Every cache
is set-associative. Although both our examples and our per-
formance evaluation apply to caches with a Least Recently
Used (LRU) replacement policy, the proposed multi-level non-
inclusive cache analysis is not tied to a specific cache replace-
ment policy. There are no constraints on the cache line sizes
for the different cache levels. It is further assumed that the
following three properties hold:

P1. A piece of information is searched for in the cache of
levelL if and only if a cache miss occurred when search-
ing it in the cache of levelL − 1. Cache of level1 is
always accessed.

P2. Every time a cache miss occurs at cache levelL, the entire
cache line containing the missing piece of information is
always loaded into the cache of levelL.

P3. There are no actions on the cache contents (i.e.
lookups/modifications) other than the ones mentioned
above.

Property P1 rules out architectures where cache levels are
accessed in parallel to speed up the search for a piece of in-
formation. Property P2 rules out architectures with exclusive
caches. Finally, property P3 implies that there are no actions
like the invalidation of a cache line or the update of the age at a
given level of the cache hierarchy to provide inclusive caches.
Our method thus applies to non-inclusive caches.

Remark that when only P2 and P3 hold and P1 is relaxed
(i.e. every access is always propagated to all cache levels),
the different cache levels are then independent. Consequently,
there is no need to define any specific cache analysis tech-
nique; existing single-level static cache analysis like [17, 9]
can be applied to each level in isolation.

Although not explicitly mentioned in [10], their multi-level
analysis relies on properties P1, P2 and P3 and thus does not
apply to inclusive caches. Property P1 is assumed because
in [10] the different levels of caches are analyzed sequentially,
with a filtering of hits between the successive cache levels.
Property P2 is assumed because all non-filtered references re-
sult in a modification of the cache state of the next cache level,
due to the use ofstatic cache simulation. Finally, property P3
holds because there is no mention of any action on the cache
contents other than the ones considered in properties P1 and
P2. This is not enough, as shown in [1] to ensure cache inclu-
sion.

4. Limitation of multi-level cache analysis [10]

The static cache simulation method presented in [11] is de-
fined for a single level of cache. It computes abstract cache
states (ACS) using dataflow analysis. The output of the analy-
sis is a classification of each memory references asfirst-miss,
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Figure 1. Example of limitation for 2-way L1 and L2 non-inclu sive caches

first-hit, always-miss, or always-hit. An always-hitmeans that
the reference is guaranteed to be in the cache and analways-
miss is used when a reference is not guaranteed to be in the
cache (but may be in the cache for some execution paths). Cat-
egoriesfirst-hit andfirst-missare used for references enclosed
in loops1. To classify a referencer as analways-hit, the single-
level cache analysis method of [11] uses ACS anddominator
cache state(DCS). The ACS is used to determine the number
of references in conflict withr in a set. DCS is used to deter-
mine if referencer mustbe cached due to an earlier reference
in all the possible execution paths. If the number of references
in conflict with r is strictly lower than the degree of associa-
tivity andr is present in the DCS, the access is classified as an
always-hit.

In [10], this approach is extended to a multi-level cache hi-
erarchy. The analysis performs a separate and sequential anal-
ysis for each level in the memory hierarchy. The output of the
analysis for levelL is the classification of each memory refer-
ences, subsequently used as an input for the analysis of level
L + 1. All references are considered when analyzing level
L + 1 except those classified asalways-hitat levelL (or at a
previous level). The implicit assumption behind this filtering
of memory accesses is that when it cannot be guaranteed that
a reference is a hit at levelL, the worst-case situation occurs
when a cache access to levelL + 1 is performed. Unfortu-
nately, this assumption is not safe as soon as the degree of
associativity is greater than or equal to two, as shown on the
counterexample depicted in Figure 1.

The figure represents possible streams of memory refer-
ences on a system with a L1 2-way associative cache and a L2
2-way associative cache, both with a LRU replacement policy.
The safety problem is observed on referencex, assumed to be

1These categories will not be detailed because they are not required to
highlight the safety issue of [10].

performed inside a function. Referencesa, b, c, andd do not
cause any safety problem (they cause misses in the L1 and L2
both at analysis time and at run-time); they are introduced only
to illustrate the safety problem on referencex. Let us assume
that:

− b andd map onto the same set asx in the L1 cache and
map onto a different set thanx in the L2 cache. This
case is likely to occur because the size of the L1 cache is
smaller than the size of the L2 cache.

− a andc map onto the same set asx in the L1 cache and in
the L2 cache.

The left part of the figure presents the contents of the ACS
at pointsp1, p2, p3 andp4 in the reference stream. For the sake
of conciseness, only the set of the ACS where referencex is
mapped is shown, as well as the the resulting classification.In

the figure, {u} | {v, w} represents the possible contents of
the two cache lines of the set at each point, the left cache line
has an age lower than the right one;{v, w} means that bothv
andw may be in the cache line. The right part of the figure
presents the concrete cache contents at the same points when
the worst-case execution path (WCEP), which takes the right
path in the conditional construct, is followed.

The ACS of the L2 cache atp1 is {a}, {x}. This due to the
filtering of referencex along the right path of the conditional
(x is classified as analways-hitin the L1 cache and thus is not
propagated to the L2 cache). The access tox at p1 produces
an always-missin the L1 cache (the number of references in
conflict with x is equal to the degree of associativity). Conse-
quently, this access is propagated to the L2 cache. With this
process, referencex is present in the DCS of the L2 cache
at pointp4 and the number of references in conflict withx is
then strictly lower than the degree of associativity. So, the x

reference atp4 is classified as analways-hitin the L2 cache.



From the classification of referencex, the analysis outcome
betweenp1 andp4 is 2 misses in the L1 cache + 2 hits in the L2
cache. In contrast, executing the worst-case reference stream
results in 1 hit in the L1 cache + 1 miss in the L1 cache + 1 miss
in the L2 cache. Assuming an architecture where a miss is the
worst-case and2 ∗ ThitL2 < TmissL2, the contribution to
the WCET of the cache accesses tox when executing the code
is larger than the one considered in the analysis, which is not
safe. This counterexample has been coded, in order to check
that this counter-intuitive behavior actually occurs in practice.
The safety problem is due to the combination of several fac-
tors: (i) the reference stream characteristics,(ii) considering
uncertain accesses as misses,(iii) considering an access to the
next level in such cases.

To further explain the reasons of the safety problem, let
us define, assuming a LRU replacement policy, theset reuse
distancebetween two references to the same memory block
for a cache levelL as the position in the set (equivalent to its
way) of the memory block when the second reference occurs.
If the memory block is not present when the block is refer-
enced for the second time then the set reuse distance is greater
than the number of ways. For instance, the set reuse distance
of x on Figure 1 at pointp4 for analysis [10] is3 in the L1
cache (greater than the number of L1 ways) and2 in the L2
cache (present in the second way). In contrast for the possible
concrete cache this value is3 (not present in L1 cache) and3
(not present in L2 cache). In [10], uncertain accesses areal-
wayspropagated to the next cache level and the analysis may
thus underestimate the set reuse distance. This underestima-
tion then results in more hits in the next level in the analysis
than in a worst-case execution. Our approach fixes the prob-
lem by enumerating the two possible behaviors of every un-
certain access (i.e. considering that the access may occur or
not).

5. WCET analysis of multi-level non-inclusive
caches

After a brief overview of the structure of our multi-level
non-inclusive cache analysis framework (§ 5.1), we define in
this section the classification of memory accesses (§ 5.2), and
detail the analysis and prove its termination (§ 5.3). The use of
the cache analysis outputs for WCET computation is presented
in § 5.4.

5.1. Overview

Our static multi-level non-inclusive set-associative instruc-
tion cache analysis is applied to each level of the cache hier-
archy separately. The approach analyzes the first cache level
(L1 cache) to classify every reference according to its worst-
case cache behavior (always-hit, always-miss, first-hit, first-
missandnot classified, see§ 5.2). However, this cache hit/miss
classification (CHMC) is not sufficient to know if an access
to a memory block may occur at the next cache level (L2).

Thus, acache access classification (CAC)(Always, Neverand
Uncertain, see§ 5.2) is introduced to capture if it can be guar-
anteed that the next cache level will be accessed or not.

The combination of the CHMC and the CAC at a given
level is used as an input of the analysis of the next cache level
in the memory hierarchy. Once all the cache levels have been
analyzed, the cache classification of each level is used to esti-
mate the WCET. This framework is illustrated in Figure 2.
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Figure 2. Multi-level non-inclusive cache analy-
sis framework

5.2. Cache classification

Cache hit/miss classification. Due to the semantic varia-
tion of the cache classification between static cache simula-
tion [11] and abstract interpretation [17] approaches, we detail
the cache hit/miss classification (CHMC) used in our analysis,
similar to the one used in [17]:

− always-hit (AH): the reference is guaranteed to be in
cache,

− always-miss(AM): the reference is guaranteed not to be
in cache,

− first-hit (FH): the reference is guaranteed to be in cache
the first time it is accessed, but is not guaranteed after-
wards,

− first-miss(FM): the reference is not guaranteed to be in
cache the first time it is accessed, but is guaranteed after-
wards,

− not-classified(NC): the reference is not guaranteed to be
in cache and is not guaranteed not to be in cache.



Cache access classification.In order to know if an access
to a memory block may occur at a given cache level, we in-
troduce acache access classification(CAC). It is used as an
input of the cache analysis of each level to decide if the block
has to be considered by the analysis or not. The cache access
category for a referencer at a cache levelL is defined as fol-
lows:

− N (Never): the access tor is never performed at cache
levelL,

− A (Always): the access tor is always performed at cache
levelL,

− U (Uncertain): it cannot be guaranteed that the access to
r is always performed or is never performed at levelL.

The cache access classification for a referencer at a cache
levelL depends on the results of the cache analysis of the ref-
erencer at the levelL − 1 (cache hit/miss classification, and
cache access classification). TheCAC for a referencer at
levelL is N (never) when the cache hit/miss classification for
r at a previous level isalways-hit(i.e. it is guaranteed that
accessingr will never require an access to cache levelL). On
the other side, the CAC for a referencer at levelL is A for the
first level of the cache hierarchy, or when CHMC and CAC at
levelL − 1 are respectivelyalways-missandA (i.e. it is guar-
anteed that accessing will always require an access to cache
level L). The CAC for referencer at levelL is U in all the
other cases, expressing the uncertainty that the cache level L

is accessed. As later detailed in§ 5.3, the cache analysis forU

accesses explores the two cases wherer accesses cache level
L or not, to identify the worst-case.

Table 1 shows all the possible cases of cache access clas-
sifications for cache levelL depending on the results of the
analysis of levelL − 1 (CACs and CHMCs).

h
h

h
h

h
h

h
h

h
h

hh

CACr,L−1

CHMCr,L−1 AM AH FH FM NC

A A N U U U
U U N U U U
N N N N N N

Table 1. Cache access classification for level L
(CACr,L)

The contents of the table motivates the need of the cache ac-
cess classification. Indeed, in case of analways-missat level
L − 1, determining if a referencer should be considered at
levelL requires more knowledge than the CHMC can provide:
if r is always referenced at levelL − 1 (CACr,L−1 = A), it
should also be considered at levelL; similarly, if it is unsure
thatr is referenced at levelL − 1 (CACr,L−1 = U ), the ref-
erence is still unsure at levelL.

It also has to be noted that in the case of anN access, the
cache hit/miss classification can be disregarded because the
value will be ignored during the WCET computation step for
the considered level.

5.3. Multi-level analysis

The proposed multi-level analysis is based on a well known
single-level cache analysis method [17]. The analysis pre-
sented in [17] is used due to the theoretical results of abstract
interpretation [4], and the support for multiple replacement
policies [17, 6] (LRU, Pseudo-LRU, Pseudo-Round-Robin).
Nevertheless, our analysis can also be integrated into the static
cache simulation method [11].

The method detailed in [17] is based on three separate fix-
point analyses applied on the program control flow graph:

− a Must analysis determines if a memory block is always
present in the cache at a given point: if so, the block
CHMC is always-hit;

− a May analysis determines if a memory block may be in
the cache at a given point: if not, the block CHMC is
always-miss. Otherwise, if present neither in the Must
analysis nor in the Persistence analysis the block CHMC
is not classified;

− aPersistenceanalysis determines if a memory block will
not be evicted after it has been loaded; the CHMC of such
blocks isfirst-miss.

Abstract cache states are computed at every basic block.
Two functions on the abstract domain, namedUpdate, and
Join are defined for each analysis:

− FunctionUpdate is called for every memory reference on
an ACS to compute the new ACS resulting from the mem-
ory reference. This function considers both the cache re-
placement policy and the semantics of the analysis.

− FunctionJoin is used to merge two different abstract
cache states when a basic block has two predecessors in
the control flow graph, like for example at the end of a
conditional construct.

Figure 3 gives an example of theJoin (3.a) andUpdate

(3.b) functions for theMust analysis for a 2-way set-
associative cache with LRU replacement policy. As in this
context sets are independent from each other, only one set is
depicted. A concept ofageis associated with the cache block
of the same set. The smaller the block age the more recent
the access to the block. For theMustanalysis, memory block
a is stored only once in the ACS, with its maximum age. It
means that its actual age at run-time will always be lower than
or equal to its age in the ACS. TheJoin andUpdate func-
tions are defined as follows for theMust analysis with LRU
replacement (see Figure 3):

− TheJoin function applied to two ACS results in an ACS
containing only the references present in the two input
ACS and with theirmaximalage.

− The Update function performs an access to a memory
referencec using an input abstract cache stateACSin

(the abstract cache state before the memory access) and
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Figure 3. Join and Update functions for the Must analysis with LRU replacement

produces an output abstract cache stateACSout (the ab-
stract cache state after the memory access). TheUpdate

function mapsc onto itsACSout set with the younger age
and increases the age of the other memory blocks present
in the same set inACSin. When the age of a memory
block is higher than the number of ways, the memory
block is evicted fromACSout.

For the other analyses (MayandPersistence), the approach
is similar and theJoin function is defined as follows:

− Mayanalysis: union of references present in the ACS and
with theirminimalage;

− Persistenceanalysis: union of references present in the
ACS and with theirmaximalage.

For more details see [17] and for the other replacement poli-
cies see [6].

Extending the single-analysis of [17] to multi-level non-
inclusive caches requires a re-definition of the base function
Update to take into account the uncertainty of some refer-
ences at a given cache level, expressed by the cache access
classifications (CAC). FunctionJoin needs not to be modi-
fied. FunctionUpdate (named hereafterUpdatem to distin-
guish our function from the original one) is defined as follows,
depending on the CAC of the currently analyzed referencer:

• A (Always) access.In the case of anA access the original
Update function is used.

ACSout = Update(ACSin, r) ; Updatem ⇔ Update

• N (Never) access.In the case of anN access, the analysis
does not consider this access at the current cache level, so
the abstract cache state stays unchanged.

ACSout = ACSin ; Updatem ⇔ identity

• U (Uncertain) access.In the case of aU access, the anal-
ysis deals with the uncertainty of the access by consider-
ing the two possible alternative sub-cases (see Figure 4
for an illustration):

− the access is performed. The result is then the same
as anA access;

− the access is not performed. The result is then the
same as aN access.

To obtain theACSout produced by aU access, we merge
this two different abstract cache states by theJoin func-
tion.

ACSout = Join(Update(ACSin, r),ACSin)

Updatem(ACSin, r) = Join(Update(ACSin, r),ACSin)

U
in

ACS inUpdate(ACS  ,r)inJoin( ),

ACSout

inACS

A access to r N access to r

Join function

inUpdate(ACS  ,r)access
to r

ACS

Figure 4. Updatem function for U access

The original functionsJoin and Update produce a safe
hit/miss classification of the memory references. In our case,
this validity is kept for theA accesses and is obvious for the
N accesses. As for theU accesses, which are the key to en-
sure safety, the analyses have to keep the semantics of each
analysis. For theMustandPersistenceanalyses, theUpdatem

function maintains the maximal age of each memory reference
by the originalJoin function applied to the two ACS (access
occurs or not). Similarly, for theMay analysis, the minimal
age is kept by theUpdatem function. So the semantic of each
analysis is maintained by theUpdatem function.

Termination of the analysis. It is demonstrated in [17] that
the domain of abstract cache states is finite and, moreover, that
theJoin andUpdate functions are monotonic. So, using as-
cending chains (every ascending chain is finite) proves the ter-
mination of the fixpoint computation.

In our case, the only modification to [17] is theUpdate

function. Thus, to prove the termination of our analysis we
have to prove that the modified functionUpdatem is mono-
tonic for each type of cache access.

Proof: for an A access,Updatem is identical toUpdate,
so it is monotonic. For anN accessUpdatem is the identity
function, so it is monotonic. Finally, for aU access,Updatem
is a composition ofUpdate andJoin. As the composition



of monotonic functions is monotonic,Updatem is then also
monotonic. This guarantees the termination of our analysis
for each type of cache access and thus for the whole analysis.

⊓⊔
It is important to note that our analysis terminates for any

monotonicUpdate/Join functions. Thus, allUpdate/Join

functions defined in [17, 6] to model different replacement
policies can be directly reused.

5.4. WCET computation

The result of the multi-level analysis gives the worst-case
access time of each memory reference to the memory hierar-
chy. In other words, this analysis produces the contribution to
the WCET of each memory reference, which can be included
in well-known WCET computation methods [15, 14].

In the formulae given below, the contribution to the WCET
of a NC reference at level L is the latency of an access to level
L+1, which is safe for architectures without timing anoma-
lies caused by interactions between caches and pipelines, as
defined in [8]. For architectures with such timing anomalies
(e.g. architectures with out-of-order pipelines), more complex
methods such as [7] have to be used to cope with the complex
interactions between caches and pipelines.

We define the following notations: constantThitℓ repre-
sents the cost in cycles of a hit at levelℓ (accesses to the main
memory are always hits),first andnext to distinguish the
first and the successive execution in loops, the binary vari-
ablesfirst presentℓ(r) andnext presentℓ(r) represent that
an access to referencer occurs (1) or not (0) at levelℓ. Finally,
the sum of variablesCOST first(r) and COST next(r)
give the contribution to the WCET of a referencer at a given
point in the program, that can be used to compute the WCET.
COST first(r) and COST next(r) are computed as fol-
lows:

COST first(r) =

n
X

ℓ=1

Thitℓ ∗ first presentℓ(r)

COST next(r) =

n
X

ℓ=1

Thitℓ ∗ next presentℓ(r)

first presentℓ(r) and next presentℓ(r) are defined as
follows:

first presentℓ =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1 if ℓ = 1
1 if first presentℓ−1 = 1

∧ (CHMCℓ−1 = AM

∨ CHMCℓ−1 = FM

∨ CHMCℓ−1 = NC)
0 otherwise

next presentℓ =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1 if ℓ = 1
1 if next presentℓ−1 = 1

∧ (CHMCℓ−1 = AM

∨ CHMCℓ−1 = FH

∨ CHMCℓ−1 = NC)
0 otherwise

6. Experimental results

In this section, we evaluate the tightness of our static multi-
level non-inclusive cache analysis comparatively to the exe-
cution in a worst-case scenario. We also evaluate the extra
computation time caused by the analysis of the cache hierar-
chy. We first describe the experimental conditions and then we
give and analyze experimental results for 2-level and 3-level
cache hierarchies.

6.1. Experimental setup

Cache analysis and WCET estimation. The experiments
were conducted on MIPS R2000/R3000 binary code compiled
with gcc 4.1 with no optimization. The WCETs of tasks are
computed by the Heptane2 timing analyzer [3], more precisely
its Implicit Path Enumeration Technique (IPET3). TheMust,
May andPersistenceanalyses are conducted sequentially on
every level of the cache hierarchy, all caches implementing
a LRU replacement policy. The analysis is context sensitive
(function are analyzed in each different calling context).

To separate the effect of the caches from those of the parts
of the processor micro-architecture, WCET estimation only
takes into account the contribution of caches to the WCET
as presented in Section 5.4. The effects of other architec-
tural features are not considered. In particular, we do not take
into account timing anomalies caused by interactions between
caches and pipelines, as defined in [8]. The cache classifica-
tion not-classifiedis thus assumed to have the same worst-case
behavior asalways-missduring the WCET computation in our
experiments. The cache analysis starts with an empty cache
state.

The computation time measurement is realized on an Intel
Pentium 4 3.6 GHz with 2 GB of RAM.

Measurement environment. The measure of the cache ac-
tivities on a worst-case execution scenario uses the Nachos
educational operating system4, running on top of a simulated
MIPS processor. We have extended Nachos with a three-level
cache hierarchy with a LRU replacement policy at each level.

Benchmarks. The experiments were conducted on five
small benchmarks and two tasks from a larger real appli-
cation (see Table 2 for the application characteristics). All
small benchmarks are benchmarks maintained by Mälardalen
WCET research group5. The real tasks are part of the case
study provided by the automotive industrial partner of the
Mascotte ANR project6 to the project partners.

2Heptane is an open-source static WCET analysis tool available at
http://www.irisa.fr/aces/software/software.html.

3So-called IPET methods estimate WCET by solving linear equations gen-
erated from the program control flow graph [19].

4Nachos web site, http://www.cs.washington.edu/homes/tom/nachos/
5http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
6http://www.projet-mascotte.org/



Name Description Code size
(bytes)

matmult Multiplication of two 50x50 integer
matrices

1200

ns Search in a multi-dimensional array 600
bs Binary search for the array of 15 integer

elements
336

minver Inversion of floating point 3x3 matrix 4408
jfdctint Integer implementation of the forward

DCT (Discrete Cosine Transform)
3040

adpcm Adaptive pulse code modulation algo-
rithm

7740

task1 Confidential 12711
task2 Confidential 12395

Table 2. Benchmark characteristics

6.2. Results for a 2-level hierarchy

Precision of the multi-level analysis. In order to determine
the tightness of the multi-level analysis, static analysisresults
are compared with those obtained by executing the programs
in their worse-case scenario. Due to the difficulty in iden-
tifying the input data that results in the worst-case situation
in complex programs, we only use the simplest benchmarks
(matmult, ns, bs, minver, jfdctint) to evaluate the precision of
the analysis. All benchmarks butbsare single-path programs,
andbsis simple enough to make the identification of its worst-
case input data obvious.

Small L1 and L2 instruction caches are used in this part of
the performance evaluation in order that the code of most of
the benchmarks (exceptnsandbs) do not fit into the caches.
The L1 cache is 1KB large, 4-way associative with 32B lines.
We use two different L2 caches configurations of 2KB 8-way
associative: one with 64B lines and another one with 32B
lines.

To evaluate the precision of our approach, the comparison
of the hit ratio at the L2 level between static analysis and mea-
surement is not appropriate. Indeed, the inherent pessimism
of the static cache analysis at the L1 level introduces some ac-
cesses at the L2 level that never happen at run-time. Instead,
the results are given in Table 3 using two classes of metrics,
given for each benchmark in separate rows. For each cache
configuration, the values of these metrics are given both for
predicted values (left column) and measured values (right col-
umn).

− The number of references and the number of misses at
every level of the memory hierarchy (top row) to show the
behavior of the multi-level non-inclusive cache analysis.

− The contribution of the memory accesses to the WCET
(bottom row). Two predicted values are given: one con-
sidering a cache hierarchy (L1+L2) and one when ignor-
ing the L2 cache (L1 only) to demonstrate the usefulness
of the multi-level analysis. To compute it, we use a L1
hit cost of 1 cycle, a L2 hit cost of 10 cycles and a mem-
ory latency of 100 cycles. When considering only one

cache level, the memory latency is 110 cycles. A single
measured value is given in the right column for a cache
configuration with both a L1 and a L2 cache.

Two types of behaviors can be observed depending on the
application structure:

− The first type of situations is when the number of L1
misses computed statically is very close to the measured
value (benchmarkjfdctint). In this benchmark, the base
cache analysis applied to the L1 cache is very tight due
to the application structure (presence of big basic blocks
and a small number of control structures). As a conse-
quence, the reference stream considered during the anal-
ysis of the L2 cache is very close to the accesses actu-
ally performed at run-time. Thus, the number of misses
in the L2 is also very close to the number of L2 misses
occurring during execution and the overestimation of the
computed cache contribution to the WCET is2%7. In
this case, the overall difference between static analysis
and execution is mainly due to the pessimism introduced
by considering the cache hierarchy (classification asU of
every access that cannot be guaranteed to be or not to be
in the L1).

− The second type of situations occurs when the static
cache analysis at L1 level is slightly less tight (smaller
basic blocks and a larger number of control structures).
Then, this behavior is also present at the L2 level and it
is increased by the introduction of theU accesses. In this
case, the multi-level analysis is still reasonably tight:8%
in average usingminver, matmultandns. The only case
where the analysis is not tight occurs withbs(71%). This
is due to the classification asfirst-missof the accesses
performed inside the application loop, combined with the
low number of iterations of the loop (4). This behavior
highlights the pessimism of the single-level cache analy-
sis for some applications.
Nevertheless, it turns out that a lot of accesses, not de-
tected as hits by the L1 analysis, can be detected as hits
by the L2 analysis. The resulting WCET is thus much
smaller than if only one level of cache was considered.

Finally, we do not distinguish different behaviors when the
applications fit into the L1 cache (ns), does not fit into the L2
cache (minver) or fits in the L2 cache but not in the L1 cache
(matmult).

For the largest codes (adpcm, task1, task2), only results of
static cache analysis are given (measurements are not realized
due to the difficulties to execute these tasks in their worst-case
execution scenario). Since the code size of these three tasks is
larger than the one of the simple benchmarks, the cache size
is chosen larger and more realistic than the one considered be-

7The overestimation is an average of the two considered cachecon-
figurations, the overestimation for a configuration being defined as:
(StaticCacheContribution L1+L2

MeasuredCacheContribution
− 1) ∗ 100



Benchmark Metrics Static Analysis Measurement Static Analysis Measurement
32B lines for L1 32B lines for L1 32B lines for L1 32B lines for L1
64B lines for L2 64B lines for L2 32B lines for L2 32B lines for L2

jfdctint nb of L1 accesses 8039 8039 8039 8039
nb of L1 misses 725 723 725 723
nb of L2 misses 54 49 101 96

cache contribution to WCET
L1+L2, cycles 20689

20169
25389

24869
L1 only, cycles 87789 87789

bs nb of L1 accesses 196 196 196 196
nb of L1 misses 16 11 16 11
nb of L2 misses 15 6 16 11

cache contribution to WCET
L1+L2, cycles 1856

906
1956

1406
L1 only, cycles 1956 1956

minver nb of L1 accesses 4146 4146 4146 4146
nb of L1 misses 150 140 150 140
nb of L2 misses 108 71 150 140

cache contribution to WCET
L1+L2, cycles 16446

12646
20646

19546
L1 only, cycles 20646 20646

ns nb of L1 accesses 26428 26411 26428 26411
nb of L1 misses 23 13 23 13
nb of L2 misses 20 7 23 13

cache contribution to WCET
L1+L2, cycles 28658

27241
28958

27841
L1 only, cycles 28958 28958

matmult nb of L1 accesses 525894 525894 525894 525894
nb of L1 misses 51 41 51 41
nb of L2 misses 49 19 51 38

cache contribution to WCET
L1+L2, cycles 531304

528204
531504

530104
L1 only, cycles 531504 531504

Benchmark Metrics Static Analysis Static Analysis
32B lines for L1 32B lines for L1
64B lines for L2 32B lines for L2

adpcm nb of L1 accesses 187312 187312
nb of L1 misses 2891 2891
nb of L2 misses 289 297

cache contribution to WCET
L1+L2, cycles 245122 245922
L1 only, cycles 505322 505322

task1 nb of L1 accesses 1872522 1872522
nb of L1 misses 678 678
nb of L2 misses 662 678

cache contribution to WCET
L1+L2, cycles 1945502 1947102
L1 only, cycles 1947102 1947102

task2 nb of L1 accesses 6783 6493
nb of L1 misses 792 796
nb of L2 misses 718 796

cache contribution to WCET
L1+L2, cycles 86503 94053
L1 only, cycles 93903 94053

Table 3. Precision of the static multi-level n-way analysis (4-way L1 cache, 8-way L2 cache. Cache
sizes of 1KB (resp. 2KB) for L1 (resp. L2) in top table, 8KB (re sp. 64KB) for L1 (resp. L2) in bottom
table).
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Figure 5. Computation time with a 64KB and a 128KB L2 cache

fore. We use a 8KB large L1 cache and a 64KB large L2 cache
with the same cache line size and associativity as before.

We can notice the rather low number of cache hits in the
L2 cache in the configuration with 32B L2 cache lines. This
is explained by the size of loops in the applications as com-
pared to the L1 cache size. In all tasks, the code of the loops
entirely fits into the L1 cache and thus there is no reuse once a
piece of code gets loaded into the L2 cache. When the cache
line size in the L2 cache is larger, the number of hits in the
L2 cache increases significantly, due to the spatial locality of
applications.

In summary, the overall tightness of the multi-level non-
inclusive cache analysis is strongly dependent on the initial
cache analysis of [17]. In all the cases:(i) the extra pessimism
caused by our multi-level analysis for the sake of safety (in-
troduction ofU accesses) is reasonable,(ii) considering the
cache hierarchy generally results in much lower WCETs com-
paratively to considering only one cache level and an accessto
main memory for each miss.

Computation time evaluation. The analysis time is eval-
uated on a two-level cache hierarchy, using the three largest
codes (adpcm, task1, andtask2) and the same cache structures
as before.

What we wish to evaluate is the extra-cost for analyzing
the second level of cache comparatively to a traditional cache
analysis of only one level. The extra-analysis time mainly de-
pends on the number of references considered when analyzing
the L2 cache, which itself depends on the size of the L1 cache
(the larger the L1, the higher the number of references detected
as hits in the L1 and thus the lower the number of references
considered in the analysis of the L2). Thus, we vary the size of
the L1 (4-way and cache lines of 32B) from 1KB to L2 cache
size.

Figure 5 details the results for 64 KB (32B and 64B line)
and 128 KB (32B and 64B line) L2 caches respectively. The
X axis gives the L1 cache size in KB. The Y axis reports the
computation time in seconds.

The shape of the curves are very similar for each used
benchmark and each L2 cache size tested. The computation
time for analyzing the L1 cache increases with the size be-
cause of the inherent dependency of single-level cache analy-

sis to the cache size. However, the computation time increase
is not always monotonic, like for instance for benchmarkad-
pcm. This non-monotonic behavior comes from a variation of
the number of iterations in the fixpoint computation presentin
the single-level cache analysis. In contrast, the analysistime
of the L2 cache decreases when the L1 cache is increased: as
the L1 cache filters more and more memory references, the
number of accesses to the L2 cache considered in the analysis
is reduced (more and more accesses becomeN access).

The proposed multi-level non-inclusive cache analysis in-
troduced an extra computation cost forU accesses to explore
the two possible behavior of uncertain accesses. It can be ob-
served that this extra cost is not visible because it is masked
by the filtering of accesses.

When the L2 cache size is 128 KB the slope of the L2 curve
is lower than for a 64 KB cache. This is due to the incom-
pressible time needed for single-level cache analysis of the L2
cache, dependent on the L2 cache size, which masks the filter-
ing effect of the L1 cache. Nevertheless even in this case the
computation time is reasonable.

To conclude, the computation time required for the multi-
level set-associative non-inclusive cache (L1 + L2) analysis is
significant but stays reasonable on the case study application.

6.3. Results for a 3-level hierarchy

We now evaluate the precision of our analysis with a 3-level
cache hierarchy. The benchmark used for this experimentation
is an enclosing concatenation of the small benchmarks into a
loop with a number of iterations of two. This concatenation
aggregates the different types of code structures that existed in
the small benchmarks (control code with small basic blocks,
computation-intensive code with larger basic blocks) intothe
same benchmark.

The L3 cache is a 16-way associative with 32B lines and
a latency of 30 cycles. The analysis is experimented on two
sizes of L3 caches: 4KB and 16KB such that the benchmark
fits into the L3 cache in its largest configuration and not in its
smallest one.

The results are presented in Table 4. The outer loop of this
benchmark has a code larger than the L2 cache size which de-
creases the precision of the persistence analysis of the L1 and



Size of Metrics Static Analysis Measurement
L3 32B lines for L1 32B lines for L1
cache 32B lines for L2,L3 32B lines for L2, L3
4 KB # L1 accesses 1129430 1129425

# L1 misses 8669 1852
# L2 misses 5236 608
# L3 misses 1217 599

16 KB # L1 accesses 1129430 1129425
# L1 misses 8669 1852
# L2 misses 5236 608
# L3 misses 348 298

Table 4. Precision of the static multi-level anal-
ysis (1KB 4-way L1 cache, 2KB 8-way L2 cache
and 16-way L3 cache).

L2 caches due to the presence of deeply nested loops. This
effect was identified and solved by a multi-loop-level persis-
tence analysis in [2]. Nevertheless, the precision of the L3
cache analysis has a behavior similar to the second case iden-
tified in Section 6.2 (small basic blocks and a large number of
control structures).

7. Conclusion

In this paper, we have proposed a solution to produce safe
WCET estimates of a hierarchy of set-associative instruction
caches, whatever the degree of associativity and the cache re-
placement policy. The safety of the proposed method relies
on the introduction of the concept of a cache access classifi-
cation in conjunction with a cache hit/miss classification.We
have proven the termination of the analysis. Moreover, the ex-
perimental results show that this method is precise in many
cases, generally tighter than considering only one cache level,
and has a reasonable computation time on the case study. In
future research we will consider data caches and unified L2
caches, by using for instance partitioning techniques to sepa-
rate instruction from data in the L2 cache. We will also extend
this approach to analyze cache hierarchies of multicore archi-
tectures, or to other configurations of cache hierarchies (e.g.
exclusive caches).
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