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Abstract architectures with caches requires a knowledge of all ptessi
cache contents in every execution context, and requireg som
With the advent of increasingly complex hardware in reaknowledge of the cache replacement policy.

time embedded systems (processors with performance en-
hancing features such as pipe”nesi cache hierarchy' multi During the last decade, much research has been undertaken
ple cores), many processors now have a set-associativet@®redict WCET in architectures equipped with caches. Re-
cache. Thus, there is a need for considering cache hier&arding instruction caches, static cache analysis methads
chies when validating the temporal behavior of real-timg-syPeen designed, based on the so-cadiedic cache simulation
tems, in particular when estimating tasks’ worst-case exed9, 11] orabstract interpretatior17, 5]. Approaches for static
tion times (WCETSs). In this paper, we propose a safe static fata cache analysis have also been proposed [16]. Other ap-
struction cache analysis method for multi-level non-isole Proaches like cache locking have been suggested when the re-
caches. The proposed method is experimented on medium#gigeement policy is hard to predict precisely [13] or foradat
and large programs. We show that the method is reasonaBfches [18]. The impact of multi-tasking has also been con-
tight. We further show that in all cases WCET estimations atilered by approaches aiming at statically determinineac
much tighter when considering the cache hierarchy than wheg{ated preemption delays [12].
considering only the L1 cache. An evaluation of the analy-
sis time is conducted, demonstrating that analyzing thdaea%_
hierarchy has a reasonable computation time. !

To the best of our knowledge, only [10] deals with cache
erarchies. However, we show that this method can be unsafe
for some cache structures and reference streams.

1. Introduction The contribution of this paper is the proposal of a new
safe cache analysis method for multi-level non-inclusie s

Cache memories are introduced to decrease the ac@s ociative caches. Our approach can be applied to caches

time to the information due to the increasing gap betwedf) _d|ffer_ent replacement poI|C|e_s thanks to the reuserof a
fast micro-processors and relatively slower main memorieeg(IStIng single-level cgche analy§|s methad. The safetiierf
Caches are very efficient at reducing average-case me rr%posed me.thod.relles on thg |_ntroduc;ed concepiashe
latencies for applications with good spatial and tempaal jaccess classificatiolfCAC), defining which references are

cality. Architectures with caches are now commonly used ed for the analysis of every cache level, in conjunctidh wi

embedded real-time systems due to the increasing demanc} Gemore tradmpnal cache hit/miss glaSS|f|cqt|on. Thipara
computing power of many embedded applications. presents experimental results showing that in most cases th

In real-time systems it is crucial to prove that the execfialysis is tight. Furthermore, in all cases WCET estinmestio

tion of a task meets its deadline in all execution situation re much tighter when considering the cache hierarchy than

including the worst-case. This proof needs an estimationvéﬂ?en considering the L1 cache only. An evaluation of the

the worst-case execution time (WCET) of any sequential t Qa::y;;:T:izr'zrgLsohz;ezergfgéni%rlgogjgaﬂ?agﬂ?ﬁir‘?r']';glyz
in the system. WCET estimates have to be safe (larger t a5 y P '

or equal to any possible execution time). Moreover, it Nas 10 1pg rest of the paper is organized as follows. Related work
be tight (as close as possible to the actual worst-case €xgey, reyed in Section 2. Section 3 presents the types oesach
tion time) to correctly dimension the resources requirethey , \vhich our analysis applies. Section 4 presents a coun-

system. terexample showing that the approach presented in [10] may

_ The presence of caches in real-time systems makes the 8y ,,ce underestimated WCET estimates when analyzing set-
timation of both safe and tight WCET bounds difficult due t9¢qqcjative caches. Section 5 then details our proposal. Ex

the dynamic behavior of caches. Safely estimating WCET QRyimental results are given in Section 6. Finally, Secfion

*This study was partially supported by the french Nationakdech ConC“_"deS V_Vith a summary of the contributions of this paper,
Agency project Mascotte (ANR-05-PDIT-018-01) and gives directions for future work.




2. Related work 3. Assumptions

We consider a hierarchy d¥f levels of instruction caches,

Caches in real-time systems raise timing predictability i¥vell representing the internal cache (L1 cache). Every cache
sues due to their dynamic behavior and their replacement gélset-associative. Although both our examples and our per-
icy. Many static analysis methods have been proposed i ortfgmance evaluation apply to caches with a Least Recently
to produce a safe WCET estimate on architectures with cacHésed (LRU) replacement policy, the proposed multi-levei-no
To be safe, existing static cache analysis methods deterniiiflusive cache analysis is not tied to a specific cache cepla
everypossible cache contents at every point in the executigiént policy. There are no constraints on the cache line sizes
considering all execution paths altogether. Possibleeach- for the different cache levels. It is further assumed that th
tents can be represented as setsooicrete cache stat¢s2] or  following three properties hold:

by a more compact representation caldxbtract cache states . . L .
y b P P1. A piece of information is searched for in the cache of

(AC9)[17, 5, 10, 11]. ) X .
level L if and only if a cache miss occurred when search-
Two main classes of approaches [17, 11] exist for static ing it in the cache of level. — 1. Cache of levell is

WCET analysis on architectures with L1 caches. In [17] the always accessed.
approach is based @astract interpretatiofid] and uses ACS. p2. Everytime a cache miss occurs at cache IBy#e entire

In this approach, three different analyses are appliediwise cache line containing the missing piece of information is

fixpoint computation to determine: if a memory blockaik always loaded into the cache of level

wayspresent in the caché/ustanalysis), if a memory block p3. There are no actions on the cache contents (i.e.
maybe present in the cachdl@y analysis), or if a memory lookups/modifications) other than the ones mentioned
block will not be evicted after it has been first loadé®i- above.

sistenceanalysis). Acache categorizatioffe.g. always-hit
first-misg can then be assigned to every instruction based onProperty P1 rules out architectures where cache levels are
the results of the three analyses. This approach origiday accessed in parallel to speed up the search for a piece of in-
signed for LRU set-associative caches has been extendeddgmation. Property P2 rules out architectures with exckis
different cache replacement policies in [6]. To our knowgjed caches. Finally, property P3 implies that there are no astio
this approach has not been extended to analyze multiple léke the invalidation of a cache line or the update of the age a
els of caches. Our multi-level non-inclusive cache analygliven level of the cache hierarchy to provide inclusive esch
will be defined using [17], mainly because of the theoretic@lur method thus applies to non-inclusive caches.
results applicable when using abstract interpretation[9)n ~ Remark that when only P2 and P3 hold and P1 is relaxed
static cache simulatios used to determine every possibléi.e. every access is always propagated to all cache lgvels)
content of the cache before each instruction. Static cdate sthe different cache levels are then independent. Conséguen
ulation computes abstract cache states using dataflow-antligre is no need to define any specific cache analysis tech-
sis. Acache categorizatiotalways-hit always-missfirst-hit nique; existing single-level static cache analysis liké, [9]
andfirst-misg is used to classify the worst-case behavior @¢fan be applied to each level in isolation.
the cache for a given instruction. The base approach, ligitia  Although not explicitly mentioned in [10], their multi-le¥
designed for direct-mapped caches, was later extended-to 8salysis relies on properties P1, P2 and P3 and thus does not
associative caches in [11]. apply to inclusive caches. Property P1 is assumed because

The cache analysis method presented in [9] has also biene 10] the d_ifferent Igvels of caches are analyzed seqaii

. o -with a filtering of hits between the successive cache levels.

extended to cache hierarchies in [10]. A separate analtts%o

each memorv level is performed by first analvzing the behav[operty P2 is assumed because all non-filtered refereaces r
y P y yzing sult in a modification of the cache state of the next cachd,leve

ior of the L1 cache. The result of the analysis of the L1 cashe : : i
. . to the use dftatic cache simulatiarFinally, property P3
consequently used as an input to the analysis of L2 cache, : . .
%ds because there is no mention of any action on the cache

so on. The approach considers an access to the next level o . : .

: . : contents other than the ones considered in properties P1 and
memory hierarchy (e.g. L2 cache) if the access is not clasisif g ) .

" .P2. This is not enough, as shown in [1] to ensure cache inclu-

asalways-hitin the current level (e.g. L1 cache). As shown in.
Section 4, this filtering of memory accesses, although logki '
correct at the first glance, is unsafe for set-associatichas T . .
Our work is based on the same principles as [10] (cache an‘]'érl—l-'m'tat'on of multi-level cache analysis [10]
ysis for every level of the memory hierarchy, filtering of mem
ory accesses), except that the unsafe behavior prese®iis[1  The static cache simulation method presented in [11] is de-
removed thanks to the introduction of the conceptadthe ac- fined for a single level of cache. It computes abstract cache
cess classificatio@CAC), defining which references are usegtates (ACS) using dataflow analysis. The output of the analy
for the analysis of every cache level. sis is a classification of each memory referencefirsismiss



Mueller's ACS Mueller's Concrete caches Behavior for L1
for L1 and L2 reference  |contents for L1 and L2 edalill20r OL
caches classification along the WCEP ~ @nd Lz caches
11| {b}{a,x X L1 X X
pl {b} } L1 always—miss “- L1 hit
X mapping interference L2{{a} |{x} L2 always-hit | L2 n L2 no access
b and d map onto: p2 t {b} L1 alm(/:ays—mis t L1 fniss
- samesetas xin L1 . E )
‘ . L2 {x} fa L2 always-missL2 X L2 miss
- different set than x in U { fa} u-
u[{e} ta B d
a and ¢ map onto: p3 L1 always-misf L1 miss
- same setas xin L1 L2 {X} L2 always-miss 2 L2 miss
- same setas x in L2
X
P4 {C} L1 always-miss -t Ll);niss
2[{c} [{x} L2 always-hit | |, n L2 miss
Outcomes pi: miss in L1 + hitin L2 pl: hitin L1 + no access in L2
Memory references of a00eSS4Sp4: miss in L1 + hitin L2 p4: miss in L1 + miss in L2
between | Total: . X . |Total: . L L
pl and p4 2 misses in L1 + 2 hits in |2 1 hit+ 1 missin L1 + 1 miss in

Figure 1. Example of limitation for 2-way L1 and L2 non-inclu sive caches

first-hit, always-missor always-hit An always-hitmeans that performed inside a function. Referenaeg9, ¢, andd do not

the reference is guaranteed to be in the cache aradveays- cause any safety problem (they cause misses in the L1 and L2
missis used when a reference is not guaranteed to be in dwth at analysis time and at run-time); they are introducdy o
cache (but may be in the cache for some execution paths). Gattlustrate the safety problem on referencelet us assume
egoriedirst-hit andfirst-missare used for references enclosethat:

inloops. To classify a referenceas aralways-hit the single-

level cache analysis method of [11] uses ACS dothinator ~— b andd map onto the same set asn the L1 cache and
cache stat¢DCS). The ACS is used to determine the number map onto a different set than in the L2 cache. This

of references in conflict with in a set. DCS is used to deter-  case is likely to occur because the size of the L1 cache is
mine if reference mustbe cached due to an earlier reference  smaller than the size of the L2 cache.

in all the possible execution paths. If the number of references @ andc map onto the same setasn the L1 cache and in

in conflict with  is strictly lower than the degree of associa-  the L2 cache.

tivity and r is present in the DCS, the access is classified as an )
always-hit The left part of the figure presents the contents of the ACS

it pointspl, p2, p3 andp4 in the reference stream. For the sake

erarchy. The analysis performs a separate and sequersdilal a?'! conciseness, only the set of the ACS V\(here refgrenge
ysis for each level in the memory hierarchy. The output of tﬁgapped is shown, as well as the the resultmg classificaftion.
analysis for level. is the classification of each memory referthe figure, {u} | {v,w} | represents the possible contents of
ences, subsequently used as an input for the analysis df I¢he two cache lines of the set at each point, the left cacke lin
L + 1. All references are considered when analyzing levieas an age lower than the right ofe; w} means that both
L + 1 except those classified abvays-hitat level L (or at a andw may be in the cache line. The right part of the figure
previous level). The implicit assumption behind this filblgr presents the concrete cache contents at the same points when
of memory accesses is that when it cannot be guaranteed thatworst-case execution path (WCEP), which takes the right
a reference is a hit at levél, the worst-case situation occurgath in the conditional construct, is followed.
when a cache access to levek- 1 is performed. Unfortu-  The ACS of the L2 cache afl is {a}, {}. This due to the
nately, this assumption is not safe as soon as the degrediltsiring of referencer along the right path of the conditional
associativity is greater than or equal to two, as shown on tfeis classified as aalways-hitin the L1 cache and thus is not
counterexample depicted in Figure 1. propagated to the L2 cache). The access &ipl produces
The figure represents possible streams of memory refépalways-missn the L1 cache (the number of references in
ences on a system with a L1 2-way associative cache and &cepflict with z is equal to the degree of associativity). Conse-
2-way associative cache, both with a LRU replacement poliéjently, this access is propagated to the L2 cache. With this
The safety problem is observed on referemcassumed to be Process, reference is present in the DCS of the L2 cache
at pointp4 and the number of references in conflict withs

1These categories will not be detailed because they are gatreel to  then strictly |0\_Ner tha_n_ the degree of a§$00iatiVitY- Se,ith
highlight the safety issue of [10]. reference ap4 is classified as aalways-hitin the L2 cache.

In [10], this approach is extended to a multi-level cache




From the classification of referenggethe analysis outcome Thus, acache access classification (CA@)ways Neverand
betweerpl andp4 is 2 misses in the L1 cache + 2 hits in the L2ncertain see§ 5.2) is introduced to capture if it can be guar-
cache. In contrast, executing the worst-case referenearstr anteed that the next cache level will be accessed or not.
resultsin 1 hitinthe L1 cache + 1 missinthe L1 cache + 1 miss The combination of the CHMC and the CAC at a given
in the L2 cache. Assuming an architecture where a miss is tgel is used as an input of the analysis of the next caché leve
worst-case and * Thitzs < T'missrz, the contribution to in the memory hierarchy. Once all the cache levels have been
the WCET of the cache accesses:twhen executing the codeanalyzed, the cache classification of each level is usedito es

is larger than the one considered in the analysis, whichtis mgate the WCET. This framework is illustrated in Figure 2.
safe. This counterexample has been coded, in order to check

that this counter-intuitive behavior actually occurs iagtice. Memory Cache access
The safety problem is due to the combination of several fac- references classiication
tors: () the reference stream characteristigs) considering

uncertain accesses as misgéas, considering an access to the ‘

next level in such cases.
To further explain the reasons of the safety problem, let Cache hithmis ®

us define, assuming a LRU replacement policy, sbereuse classification_

distancebetween two references to the same memory block

for a cache level as the position in the set (equivalent to its

way) of the memory block when the second reference occurs.

If the memory block is not present when the block is refer- ggg*s‘fﬁfaﬁfgjs
enced for the second time then the set reuse distance iggreat LevelL+1 -
than the number of ways. For instance, the set reuse distance Cache analysis

of = on Figure 1 at poinp4 for analysis [10] is3 in the L1

cache (greater than the number of L1 ways) arid the L2

cache (present in the second way). In contrast for the pessib Cache .hit/(niss/;eg

concrete cache this valuedgnot present in L1 cache) arid classification

(not present in L2 cache). In [10], uncertain accesseslare Cache access
. classification

wayspropagated to the next cache level and the analysis may Level L+2

thus underestimate the set reuse distance. This undeaestim Figure 2. Multi-level non-inclusive cache analy-
tion then results in more hits in the next level in the analysi _.
. ) ' sis framework
than in a worst-case execution. Our approach fixes the prob-
lem by enumerating the two possible behaviors of every un-
certain access (i.e. considering that the access may occur o
nov). 5.2. Cache classification

5. WCET analysis of multi-level non-inclusive

caches Cache hit/miss classification. Due to the semantic varia-

tion of the cache classification between static cache simula
tion [11] and abstract interpretation [17] approaches, etaitl

Af_ter a _brief overview Of_ the structure of our mul_ti-le_velthe cache hit/miss classification (CHMC) used in our anajysi
non-inclusive cache analysis framewofk3(1), we define in g ilar to the one used in [17]:

this section the classification of memory acces§és?), and
detail the analysis and prove its terminatigrb(3). The use of _ ) ) )
the cache analysis outputs for WCET computation is predente— always-hit(AH): the reference is guaranteed to be in

in § 5.4. cache, _
— always-misgAM): the reference is guaranteed not to be
5.1. Overview in cache,
— first-hit (FH): the reference is guaranteed to be in cache
Our static multi-level non-inclusive set-associativetios- the first time it is accessed, but is not guaranteed after-

tion cache analysis is applied to each level of the cache hier wards,

archy separately. The approach analyzes the first cachie leve first-miss(FM): the reference is not guaranteed to be in
(L1 cache) to classify every reference according to its wors ~ cache the first time it is accessed, but is guaranteed after-
case cache behavioalfvays-hit, always-miss, first-hit, first- wards,

missandnot classifiedsee 5.2). However, this cache hit/miss — not-classifiedNC): the reference is not guaranteed to be
classification ¢'H M C) is not sufficient to know if an access ~ in cache and is not guaranteed not to be in cache.

to a memory block may occur at the next cache level (L2).



Cache access classification.In order to know if an access5.3. Multi-level analysis

to a memory block may occur at a given cache level, we in-

troduce acache access classificatig@AC). It is used as an  The proposed multi-level analysis is based on a well known
input of the cache analysis of each level to decide if thelblogingle-level cache analysis method [17]. The analysis pre-
has to be considered by the analysis or not. The cache acgesfied in [17] is used due to the theoretical results of abistr
category for a referenceat a cache level is defined as fol- interpretation [4], and the support for multiple replacame
lows: policies [17, 6] (LRU, Pseudo-LRU, Pseudo-Round-Robin).

Nevertheless, our analysis can also be integrated intddkie s
— N (Never): the access tois never performed at cachecache simulation method [11].

level L, The method detailed in [17] is based on three separate fix-
- IA (Allways): the access tois always performed at cachepoint analyses applied on the program control flow graph:
evel L,
— U (Uncertain): it cannot be guaranteed that the access te- a Mustanalysis determines if a memory block is always
r is always performed or is never performed at lelvel present in the cache at a given point: if so, the block
CHMC isalways-hit
The cache access classification for a referenaea cache — aMay analysis determines if a memory block may be in

level L depends on the results of the cache analysis of the ref- the cache at a given point: if not, the block CHMC is
erencer at the levelL — 1 (cache hit/miss classification, and  always-miss Otherwise, if present neither in the Must
cache access classification). T@elC for a reference: at analysis nor in the Persistence analysis the block CHMC
level L is N (never) when the cache hit/miss classification for  is not classified

r at a previous level imlways-hit(i.e. it is guaranteed that — aPersistencanalysis determines if a memory block will

accessing will never require an access to cache legl On not be evicted after it has been loaded; the CHMC of such
the other side, the CAC for a referencat levelL is A for the blocks isfirst-miss

first level of the cache hierarchy, or when CHMC and CAC at

level L — 1 are respectivelglways-missand A (i.e. it is guar- Abstract cache states are computed at every basic block.

anteed that accessing will always require an access to catie functions on the abstract domain, namé&gdate, and

level L). The CAC for reference at level L is U in all the Join are defined for each analysis:

other cases, expressing the uncertainty that the cachlelleve

is accessed. As later detailedib.3, the cache analysis for

accesses explores the two cases wheaxecesses cache level : - :

L or not, to identify the worst-case. ory reference._Th|s function cons_lders both the ca_lche re-
Table 1 shows all the possible cases of cache access clas- placement policy and the semantics of the analysis.

sifications for cache level. depending on the results of the Function Join is used to_merge two different abstract .
analysis of level, — 1 (CACs and CHMCs). cache states when a basic block has two predecessors in

the control flow graph, like for example at the end of a
conditional construct.

— FunctionUpdate is called for every memory reference on
an ACS to compute the new ACS resulting from the mem-

CAC, 11 CHMCrn—1 | am | AH | FH | EM | NC _ _ .
L X x N T 0T U ¥ Figure 3 gives an example of th&in (3.a) andUpdate
U U TN T U U U (3.b) functions for theMust analysis for a 2-way set-
N N N | N[N N associative cache with LRU replacement policy. As in this
context sets are independent from each other, only one set is
Table 1. Cache access classification for level L depicted. A concept aigeis associated with the cache block
(CAC, 1) of the same set. The smaller the block age the more recent

the access to the block. For tMustanalysis, memory block
The contents of the table motivates the need of the cacheads stored only once in the ACS, with its maximum age. It
cess classification. Indeed, in case ofewways-missat level means that its actual age at run-time will always be lowen tha
L — 1, determining if a reference should be considered ator equal to its age in the ACS. Th&in and Update func-
level L requires more knowledge than the CHMC can providgons are defined as follows for thdust analysis with LRU
if ~ is always referenced at levél— 1 (CAC, _; = A), it replacement (see Figure 3):
should also be considered at levelsimilarly, if it is unsure

thatr is referenced at level — 1 (CAC,.;_, = U), the ref-  — TheJoin function applied to two ACS results in an ACS
erence is still unsure at levél. containing only the references present in the two input
It also has to be noted that in the case ofaraccess, the ACS and with theimaximalage.

cache hit/miss classification can be disregarded becaese thr The Update function performs an access to a memory

value will be ignored during the WCET computation step for ~ referencec using an input abstract cache stat€’S;,
the considered level. (the abstract cache state before the memory access) and



age 4+ age +
—_— —_—

bstract he d bstract he sdt
gz o ] s

LRU rep_lacemen\ /intersection LRU replacement l [c]
policy + maximal age policy

a. Join function of Must analysis b. Update function of Must analysi

Figure 3. Join and Update functions for the Must analysis with LRU replacement

produces an output abstract cache stafés,,,; (the ab- To obtain theAC'S,,,; produced by &/ access, we merge
stract cache state after the memory access).U&ite this two different abstract cache states by flaén func-

function mapg: onto itsAC'S,,,.; set with the younger age tion.
and increases the age of the other memory blocks present )
in the same set inlC'S,,,. When the age of a memory ACSout = Join(Update(ACSin, ), ACSin)
block is higher than the number of ways, the memor{/Pdatem(ACSin,r) = Join(Update(ACSin, ), ACSin)

block is evicted fromAC'S,,,;.
ACS;,

For the other analyseM@y andPersistenck the approach
is similar and theJoin function is defined as follows: / \
{ A access IO} { N access ﬂo r

. . . U
- Vnci?g?hn;illry;:i.i;r;:(;gg references presentin the ACS and acees Update(ACS, 1) aCs,
! tor
— Persistenceaanalysis: union of references present in the Nl
ACS and with theimaximalage. Join(Upg;\r:e(Kggnl,?)lCS,n )
\
For more details see [17] and for the other replacement poli- ACvSmn
cies see [6]. ) )
Extending the single-analysis of [17] to multi-level non- Figure 4. Update,, function for U access

inclusive caches requires a re-definition of the base fancti
Update to take into account the uncertainty of some refer- The original functions/oin and Update produce a safe
ences at a given cache level, expressed by the cache achighniss classification of the memory references. In ouecas
classifications (CAC). Functiotioin needs not to be modi- this validity is kept for thed accesses and is obvious for the
fied. FunctionUpdate (named hereaftet/pdate,, to distin- N accesses. As for th€ accesses, which are the key to en-
guish our function from the original one) is defined as fokbpwsure safety, the analyses have to keep the semantics of each
depending on the CAC of the currently analyzed reference analysis. For thélustandPersistencanalyses, th& pdate,,
function maintains the maximal age of each memory reference
 A(Always) accessin the case of arl access the original py the originalJoin function applied to the two ACS (access
Update function is used. occurs or not). Similarly, for théay analysis, the minimal
ACS,yt = Update(ACS;y,r) ; Update,, < Update — age is kept by thé/pdate,, function. So the semantic of each
analysis is maintained by tHépdate,, function.
e N (Never) accessln the case of afV access, the analysis
does not consider this access at the current cache levelJgonination of the analysis. It is demonstrated in [17] that
the abstract cache state stays unchanged. the domain of abstract cache states is finite and, moretagr, t
ACSyus = ACSin ; Update,, < identity the Join and_ Update functions_are mo_nqtoni(_:. So, using as-
' cending chains (every ascending chain is finite) proveshe t

e U (Uncertain) accessln the case of & access, the anal—m'Tatlon ofthe f|>r<1p0|ntlcomp5|_;§1tlo_n. 171 J
ysis deals with the uncertainty of the access by considgr— n our case, the only modification to [17] is tHépdate

ing the two possible alternative sub-cases (see Figur upction. Thus, to prove thg_termmat_mn of our_analy5|s we
for an illustration): ave to prove that the modified functidfpdate,, is mono-

tonic for each type of cache access.
— the access is performed. The result is then the sameProof: for an A access,Update,, is identical to Update,
as anA access; so it is monotonic. For aiV accessUpdate,, is the identity
— the access is not performed. The result is then thenction, so it is monotonic. Finally, for &8 accessUpdate,,
same as & access. is a composition ofUpdate and Join. As the composition



of monotonic functions is monotonid/pdate,, is then also 6. Experimental results

monotonic. This guarantees the termination of our analysis

for each type of cache access and thus for the whole analysisyp, this section, we evaluate the tightness of our staticimult

o ) ) level non-inclusive cache analysis comparatively to the-ex

Itis important to note that our analysis terminates for aytion in a worst-case scenario. We also evaluate the extra

monotonicUpdatel Join functions. Thus, allipdatelJoin  computation time caused by the analysis of the cache hierar-

functions defined in [17, 6] to model different replacement,, \we first describe the experimental conditions and then w

policies can be directly reused. give and analyze experimental results for 2-level and &ilev

5.4. WCET computation cache hierarchies.

. o 6.1. Experimental setup
The result of the multi-level analysis gives the worst-case

access time of each memory reference to the memory hie@L:ne analysis and WCET estimation. The experiments
chy. In other words, this analysis produces the contrilLito \ere conducted on MIPS R2000/R3000 binary code compiled
the WCET of each memory reference, which can be includggl, gcc 4.1 with no optimization. The WCETs of tasks are
in well-known WCET computation meth(_)ds _[15’ 14]. computed by the Heptah&ming analyzer [3], more precisely
In the formulae given belqw, the contribution to the WCET Implicit Path Enumeration Technique (IPETThe Must

of aNC reference at level L is the latency of an access to leyghy 504 persistenceanalyses are conducted sequentially on
L+1, which is safe for architectures without timing anomas ery |evel of the cache hierarchy, all caches implementing
lies caused by interactions between caches and pipelises, @ Ry replacement policy. The analysis is context sensitive
defined in [8]. For a_rch|tectures Wlth.SU(?h timing anomal'?ﬁ.mction are analyzed in each different calling context).
(e.gh a(rjchltecrt]ures;/v ':]h out—ogorderg)melmes), mhor?ptex To separate the effect of the caches from those of the parts
metho §sucb as [7] avehto egsg tlc_) cope with the complgxe nrocessor micro-architecture, WCET estimation only
mtt\a/(lacgo?s ert]wefelr; caches and p|p§ INEs. i takes into account the contribution of caches to the WCET

¢ define t. € following nqtauons. constanibit, repre- s presented in Section 5.4. The effects of other architec-
sents the cost in cycIe; of a hitat Ie\fe(hccesgeg to t_he MaiNy,ral features are not considered. In particular, we doalat t
;.nemorﬁ at:e always hits)'irst and n.exf to d'St'hngl;'.Sh the it account timing anomalies caused by interactions betwe
Irst and the successive execution in loops, the binary Vatli g and pipelines, as defined in [8]. The cache classifica-
ablesfirst_present,(r) andnext_presenty(r) represgnt that tion not-classifieds thus assumed to have the same worst-case
an access to referenc@ccurs (1) or not (0) at levél Finally, behavior aglways-missluring the WCET computation in our

the sum of variable€’OST_first(r) and COST next(r) experiments. The cache analysis starts with an empty cache
give the contribution to the WCET of a referencat a given state

point in the program, that can be used to compute the WCET'The com N . .
. putation time measurement is realized on an Intel
COST_first(r) and COST _next(r) are computed as fol- Pentium 4 3.6 GHz with 2 GB of RAM.

lows:
COST_first(r) =Y Thit, % first_present,(r) Measurement environment. The measure of the cache ac-
=1 tivities on a worst-case execution scenario uses the Nachos
n educational operating systémrunning on top of a simulated
COST next(r) =Y Thits  next_present(r) MIPS processor. We have extended Nachos with a three-level
=1 cache hierarchy with a LRU replacement policy at each level.
first_present,(r) and next_present,(r) are defined as
follows: Benchmarks. The experiments were conducted on five
1if ¢=1 small benchmarks and two tasks from a larger real appli-
1if  first_presente_1 =1 cation (see Table 2 for the application characteristics)l A
First_present, — N (CHMCy—1 =AM small benchmarks are benchmarks maintained by Malardalen
VCHMCy—1 = FM WCET research grodp The real tasks are part of the case
VCHMCy— = NC) study provided by the automotive industrial partner of the
0 otherwise

Mascotte ANR projeétto the project partners.

’Heptane is an open-source static WCET analysis tool aveilab

1 !f €=1 http://www.irisa.fr/aces/software/software.html
Lif  nextpresent;—y =1 3So0-called IPET methods estimate WCET by solving linear tonsigen-
next_present; = AN (CHMCey = AM erated from the program control flow graph [19].
VCHMCy—1 =FH 4Nachos web site, http://www.cs.washington.edu/homesftachos/
VCHMC;—1 = NC) Shttp://www.mrtc. mdh.se/projects/wcet/benchmarkslhtm

0 otherwise Bhttp://www.projet-mascotte.org/



Name Description Code size
(bytes)

matmult | Multiplication of two 50x50 integer| 1200
matrices

ns Search in a multi-dimensional array | 600

bs Binary search for the array of 15 integer336
elements

minver | Inversion of floating point 3x3 matrix | 4408

jfdctint | Integer implementation of the forwargd 3040
DCT (Discrete Cosine Transform)

adpcm | Adaptive pulse code modulation algg-7740
rithm

taskl Confidential 12711

task2 Confidential 12395

Table 2. Benchmark characteristics

6.2. Results for a 2-level hierarchy

Precision of the multi-level analysis. In order to determine
the tightness of the multi-level analysis, static analys@ults

are compared with those obtained by executing the programs
in their worse-case scenario. Due to the difficulty in iden-

tifying the input data that results in the worst-case situmat

in complex programs, we only use the simplest benchmarks

(matmult, ns, bs, minver, jfdctinto evaluate the precision of
the analysis. All benchmarks bosare single-path programs,

andbsis simple enough to make the identification of its worst-

case input data obvious.

Small L1 and L2 instruction caches are used in this part of
the performance evaluation in order that the code of most of

the benchmarks (exceps andbs) do not fit into the caches.

The L1 cache is 1KB large, 4-way associative with 32B lines.
We use two different L2 caches configurations of 2KB 8-way
associative: one with 64B lines and another one with 32B

lines.

To evaluate the precision of our approach, the comparison
of the hit ratio at the L2 level between static analysis andime
surement is not appropriate. Indeed, the inherent pessimis
of the static cache analysis at the L1 level introduces same a

cache level, the memory latency is 110 cycles. A single
measured value is given in the right column for a cache
configuration with both a L1 and a L2 cache.

Two types of behaviors can be observed depending on the
application structure:

— The first type of situations is when the number of L1

misses computed statically is very close to the measured
value (benchmarifdctint). In this benchmark, the base
cache analysis applied to the L1 cache is very tight due
to the application structure (presence of big basic blocks
and a small number of control structures). As a conse-
quence, the reference stream considered during the anal-
ysis of the L2 cache is very close to the accesses actu-
ally performed at run-time. Thus, the number of misses
in the L2 is also very close to the number of L2 misses
occurring during execution and the overestimation of the
computed cache contribution to the WCET2%’. In

this case, the overall difference between static analysis
and execution is mainly due to the pessimism introduced
by considering the cache hierarchy (classificatiofy ax
every access that cannot be guaranteed to be or not to be
in the L1).

— The second type of situations occurs when the static

cache analysis at L1 level is slightly less tight (smaller
basic blocks and a larger number of control structures).
Then, this behavior is also present at the L2 level and it
is increased by the introduction of theaccesses. In this
case, the multi-level analysis is still reasonably tigt¥

in average usingninver, matmultandns The only case
where the analysis is not tight occurs whth(71%). This

is due to the classification dsst-missof the accesses
performed inside the application loop, combined with the
low number of iterations of the loop (4). This behavior
highlights the pessimism of the single-level cache analy-
sis for some applications.

Nevertheless, it turns out that a lot of accesses, not de-
tected as hits by the L1 analysis, can be detected as hits

cesses at the L2 level that never happen at run-time. Instead by the L2 analysis. The resulting WCET is thus much

the results are given in Table 3 using two classes of metrics,
given for each benchmark in separate rows. For each cache

confilguration, the values of these metrics are given both forFinaIIy, we do not distinguish different behaviors when the
predicted values (left column) and measured values (right Capplications fit into the L1 cacheg), does not fit into the L2

umn). cache fninver) or fits in the L2 cache but not in the L1 cache

— The number of references and the number of misses(@atmul.
every level of the memory hierarchy (top row) to showthe For the largest codesipcm, taskl, task2only results of
behavior of the multi-level non-inclusive cache analysitatic cache analysis are given (measurements are nateeali

— The contribution of the memory accesses to the WCEde to the difficulties to execute these tasks in their woase
(bottom row). Two predicted values are given: one coXecution scenario). Since the code size of these threg sk
sidering a cache hierarchy (L1+L2) and one when igndarger than the one of the simple benchmarks, the cache size
ing the L2 cache (L1 only) to demonstrate the usefulnd§<chosen larger and more realistic than the one considered b
of the multi-level analy5|s. To compute it, we use a L1 "The overestimation is an average of the two considered caohe

hit cost of 1 cycle, a L2 hit cost of 10 Cy(_:les_and a MEMjgurations, the overestimation for a configuration beingfingel as:
ory latency of 100 cycles. When considering only ongitaticCacheContribution.L1+L2 _ 1y, 1

MeasuredCacheContribution

smaller than if only one level of cache was considered.




Benchmark Metrics Static Analysis Measurement Static Analysis Measurement
32B lines for L1 | 32B lines for L1 || 32B lines for L1 | 32B lines for L1
64B lines for L2 | 64B lines for L2 || 32B lines for L2 | 32B lines for L2

jfdctint nb of L1 accesses 8039 8039 8039 8039
nb of L1 misses 725 723 725 723
nb of L2 misses 54 49 101 96
cache contribution to WCET,
L1+L2, cycles 20689 25389
L1 only, cycles 87789 20169 87789 24869
bs nb of L1 accesses 196 196 196 196
nb of L1 misses 16 11 16 11
nb of L2 misses 15 6 16 11
cache contribution to WCET|
L1+L2, cycles 1856 1956
L1 only, cycles 1956 906 1956 1406
minver nb of L1 accesses 4146 4146 4146 4146
nb of L1 misses 150 140 150 140
nb of L2 misses 108 71 150 140
cache contribution to WCET|
L1+L2, cycles 16446 20646
L1 only, cycles 20646 12646 20646 19546
ns nb of L1 accesses 26428 26411 26428 26411
nb of L1 misses 23 13 23 13
nb of L2 misses 20 7 23 13
cache contribution to WCET,
L1+L2, cycles 28658 28958
L1 only, cycles 28958 21241 28958 27841
matmult nb of L1 accesses 525894 525894 525894 525894
nb of L1 misses 51 41 51 41
nb of L2 misses 49 19 51 38
cache contribution to WCET|
L1+L2, cycles 531304 531504
L1 only, cycles 531504 528204 531504 530104
Benchmark Metrics Static Analysis | Static Analysis
32B lines for L1 | 32B lines for L1
64B lines for L2 | 32B lines for L2
adpcm nb of L1 accesses 187312 187312
nb of L1 misses 2891 2891
nb of L2 misses 289 297
cache contribution to WCET]|
L1+L2, cycles 245122 245922
L1 only, cycles 505322 505322
taskl nb of L1 accesses 1872522 1872522
nb of L1 misses 678 678
nb of L2 misses 662 678
cache contribution to WCET|
L1+L2, cycles 1945502 1947102
L1 only, cycles 1947102 1947102
task2 nb of L1 accesses 6783 6493
nb of L1 misses 792 796
nb of L2 misses 718 796
cache contribution to WCET]|
L1+L2, cycles 86503 94053
L1 only, cycles 93903 94053

(4-way L1 cache, 8-way L2 cache. Cache

Table 3. Precision of the static multi-level n-way analysis
sp. 64KB) for L1 (resp. L2) in bottom

sizes of 1KB (resp. 2KB) for L1 (resp. L2) in top table, 8KB (re
table).
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Figure 5. Computation time with a 64KB and a 128KB L2 cache

fore. We use a 8KB large L1 cache and a 64KB large L2 cacsis to the cache size. However, the computation time inereas
with the same cache line size and associativity as before. is not always monotonic, like for instance for benchmagk

We can notice the rather low number of cache hits in tlpem This non-monotonic behavior comes from a variation of
L2 cache in the configuration with 32B L2 cache lines. Thifie number of iterations in the fixpoint computation present
is explained by the size of loops in the applications as cothe single-level cache analysis. In contrast, the anatirais
pared to the L1 cache size. In all tasks, the code of the loagghe L2 cache decreases when the L1 cache is increased: as
entirely fits into the L1 cache and thus there is no reuse oncthea L1 cache filters more and more memory references, the
piece of code gets loaded into the L2 cache. When the cacluenber of accesses to the L2 cache considered in the analysis
line size in the L2 cache is larger, the number of hits in the reduced (more and more accesses becbnaecess).

L2 cache increases significantly, due to the spatial locafit ~ The proposed multi-level non-inclusive cache analysis in-
applications. troduced an extra computation cost téraccesses to explore

In summary, the overall tightness of the multi-level northe two possible behavior of uncertain accesses. It can be ob
inclusive cache analysis is strongly dependent on thealnitserved that this extra cost is not visible because it is nthske
cache analysis of [17]. In all the casés) the extra pessimism by the filtering of accesses.
caused by our multi-level analysis for the sake of safety (in When the L2 cache size is 128 KB the slope of the L2 curve
troduction ofU accesses) is reasonab(é,) considering the is lower than for a 64 KB cache. This is due to the incom-
cache hierarchy generally results in much lower WCETSs comressible time needed for single-level cache analysisel th
paratively to considering only one cache level and an adcessache, dependent on the L2 cache size, which masks the filter-
main memory for each miss. ing effect of the L1 cache. Nevertheless even in this case the

computation time is reasonable.
Computation time evaluation. The analysis time is eval- To conclude, the computation time required for the multi-
uated on a two-level cache hierarchy, using the three largesel set-associative non-inclusive cache (L1 + L2) analigs
codes &dpcmtask], andtaskd and the same cache structuresignificant but stays reasonable on the case study applicati
as before.

What we wish to evaluate is the extra-cost for analyzirfiy3. Results for a 3-level hierarchy
the second level of cache comparatively to a traditionaheac
analysis of only one level. The extra-analysis time maidy d We now evaluate the precision of our analysis with a 3-level
pends on the number of references considered when analyziaghe hierarchy. The benchmark used for this experimentati
the L2 cache, which itself depends on the size of the L1 cadeean enclosing concatenation of the small benchmarks into a
(the larger the L1, the higher the number of references tlstedoop with a number of iterations of two. This concatenation
as hits in the L1 and thus the lower the number of referenagggregates the different types of code structures thateelis
considered in the analysis of the L2). Thus, we vary the dizetbe small benchmarks (control code with small basic blocks,
the L1 (4-way and cache lines of 32B) from 1KB to L2 cacheomputation-intensive code with larger basic blocks) i@
size. same benchmark.

Figure 5 details the results for 64 KB (32B and 64B line) The L3 cache is a 16-way associative with 32B lines and
and 128 KB (32B and 64B line) L2 caches respectively. Tlelatency of 30 cycles. The analysis is experimented on two
X axis gives the L1 cache size in KB. The Y axis reports thszes of L3 caches: 4KB and 16KB such that the benchmark
computation time in seconds. fits into the L3 cache in its largest configuration and notsn it

The shape of the curves are very similar for each usechallest one.
benchmark and each L2 cache size tested. The computatioffhe results are presented in Table 4. The outer loop of this
time for analyzing the L1 cache increases with the size H@nchmark has a code larger than the L2 cache size which de-
cause of the inherent dependency of single-level cachg-anateases the precision of the persistence analysis of thad.1 a



Size of Metrics Static Analysis Measurement
32B lines for L1 32B lines for L1

cache 32B lines for L2,L3 | 32B lines for L2, L3
4 KB # L1 accesseq 1129430 1129425

# L1 misses 8669 1852

# L2 misses 5236 608

# L3 misses 1217 599
16 KB # L1 accesses 1129430 1129425

# L1 misses 8669 1852

# L2 misses 5236 608

# L3 misses 348 298

Table 4. Precision of the static multi-level anal-
ysis (1KB 4-way L1 cache, 2KB 8-way L2 cache
and 16-way L3 cache).

(3]

(4

—_

(5]

(6]

[7]
L2 caches due to the presence of deeply nested loops. This

effect was identified and solved by a multi-loop-level persi

tence analysis in [2]. Nevertheless, the precision of the L38]
cache analysis has a behavior similar to the second case iden
tified in Section 6.2 (small basic blocks and a large number 0{9]

control structures).

7. Conclusion

[10]

In this paper, we have proposed a solution to produce saté]

WCET estimates of a hierarchy of set-associative instucti
caches, whatever the degree of associativity and the caehe'r

[12]

placement policy. The safety of the proposed method relies
on the introduction of the concept of a cache access classifi-

cation in conjunction with a cache hit/miss classificativve

have proven the termination of the analysis. Moreover, fhe €13]
perimental results show that this method is precise in many

cases, generally tighter than considering only one cactet le

and has a reasonable computation time on the case study.[lfH
future research we will consider data caches and unified L2

caches, by using for instance partitioning techniques pa-se [15

rate instruction from data in the L2 cache. We will also egten

this approach to analyze cache hierarchies of multicordsi-arc

tectures, or to other configurations of cache hierarchigs (e[16]

exclusive caches).
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