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Abstract

Many embedded systems feature processors coupled with
a small and fast scratchpad memory. To the difference with
caches, allocation of data to scratchpad memory must be
handled by software. The major gain is to enhance the pre-
dictability of memory accesses latencies. A compile-time dy-
namic allocation approach enables eviction and placement
of data to the scratchpad memory at runtime.

Previous dynamic scratchpad memory allocation ap-
proaches aimed to reduce average-case program execution
time or the energy consumption due to memory accesses.
For real-time systems, worst-case execution time is the main
metric to optimize.

In this paper, we propose a WCET-directed algorithm to
dynamically allocate static data and stack data of a pro-
gram to scratchpad memory. The granularity of placement
of memory transfers (e.g. on function, basic block bound-
aries) is discussed from the perspective of its computation
complexity and the quality of allocation.

1. Introduction

Worst-case execution time (WCET) of a program is the
maximum time this program may take to execute on a spe-
cific hardware platform [14, 25, 28]. Knowing program’s
WCET is of prime importance for hard real-time systems to
guarantee computations will complete before their deadline.

Direct-addressed scratchpad memories are being used
as an alternative to processor caches as they consume less
area and less power. Approaches for static [2] and dy-
namic [15, 26, 27] allocations have been designed to auto-
matically place code and data on scratchpad memories. So
far, many studies have been led on allocation of code and
data on scratchpad memory for average execution time [2]
or energy reduction [27]. A study [28] has demonstrated
the superiority of scratchpad memory placement on some
cache modeling techniques for execution time predictability
of hard real-time systems. Recently, algorithms for static
data allocation on scratchpad memories in [25], and for dy-
namic code allocation in [21] have been specially designed
for WCET optimization. As far as we know, no dynamic
scratchpad memory data allocation methods for WCET op-
timization have been proposed. In this paper, we present an
approach to allocate program data to scratchpad memory for
WCET reduction.

Our approach determines at compile-time the possible
program locations where data will be transferred on and off

the scratchpad memory at runtime in a two-steps method.
First, memory accesses to data along the worst-case execu-
tion path of the program are analyzed. Second, a 0/1 integer
linear program (ILP) problem is formulated to select these
data for dynamic scratchpad memory allocation. However,
the worst-case execution path of the program may change
after a data allocation. Consequently, the ILP problem is
greedily refined to compute a WCET-directed allocation.

The two steps of the method are described in Section [2]
and[3] In Section[2] we propose a compiler technique to de-
termine potential targets of any data memory accesses of a
program. These information are employed to estimate the
profit for a data allocation. Section [3|describes the approach
for dynamic scratchpad memory allocation. Section [4] pro-
vides some results and studies the performance improve-
ments of our proposal over previous scratchpad memory al-
location techniques. Section[5]overviews related work while
Section[@l describes future work and concludes.

2. Determination of load-store instructions tar-
gets

On many programs, a large amount of data accesses
are dynamic; the target address of load-store instructions
may change for each execution. Table [I] gives a two-
dimensional classification of data storage and load-store ac-
cesses from [18]. The storage type defines the location of a
given data. Static data, stack data and heap data are respec-
tively stored in global, heap and stack sections of the pro-
gram memory space layout. Literals are compiler-generated
constants stored in the code section; these data are used to
reduce the size of the program code.

Storage type Description
Static Global and static structures.
Stack Function stack frame, spilled temporaries and

stack allocated structures.
Heap Dynamically allocated structures on the heap.
Literals Constants stored in program code section.

Access type Explanation

Scalar Only one element.

Regular Array accessed by regular, stride accesses.
Irregular Non-regular but still input data independent.

Input dependent  Reference directly depends on input data

Table 1. Data structure classification based
on storage type (upper table) and access type
(lower table) [18].



The access type defines the way a data is accessed. Scalar
access types are accesses to a unique data address for statics
and to a relative address to stack frame base addresses for
stack data. The access type of a load-store instruction is reg-
ular if this instruction is accessing to multiple elements of a
unique array with a constant stride (classified as linear ad-
dress sequence accesses in [20]). Irregular accesses include
accesses to (possibly multiple) data through pointers and are
still independent to the input data. Lastly, input dependent
accesses include any accesses with addresses computed at
runtime from unknown input data (mentioned as indirect ad-
dress sequence accesses in [20]).

In the next section, we will motivate the need for a
method to analyze any data memory accesses of programs.

2.1. Quantitative study of data memory accesses by
types

Table [2] gives the impact of data by access types and
storage types on the worst-case execution path of pro-
grams. Benchmark programs are individually described
later in Section [] and these programs don’t access heap
data. Programs are compiled for the StrongARM-110 [22]
with loop-related optimizations (loop unrolling, etc) dis-
abled. WCET analyses of programs are performed with the
Heptane WCET timing analyser [6].

Static Stack

Benchmark | Scal. Irreg. Scal. Irreg. Literals

or or input | or or input

reg. dep. reg. dep.
Adpcm 17.0% | 60.0% 9.1% - 13.0%
Engine 16.9% | - 67.3% | 3.0% 12.9%
G721 28.5% | 8.6% 39.1% | - 23.7%
Histogram | 99.9% | - 0.1% - -
Lpc 96.1% | - 0.5% - 3.4%
Pocsag 62.4% | 0.4% 13.9% | - 23.3%
Spectral 31.7% | 24.5% 37.8% | - 6.1%
Statemate 60.4% | - 6.1% - 33.5%

Table 2. Impact ratio of load-store instructions
by storage types and access types.

Table 2| presents the ratio of accesses to static data,
stack data and literals along the worst-case execution
path. To illustrate the partition between accesses with or
without pointers, we have respectively merged results for
scalar/regular and irregular/input dependent accesses into
two sub-categories for static and stack data.

The ratio of load-store instructions to literals is up to
33.5% and is important for most programs of the bench-
marks set. On the one hand, most programs have a large
amount (between 16.9%-99.9%) of data accesses to statics.
On the other hand, stack data represent a large part of data
accesses for three of the eight benchmarks (between 33.2%-
69.8%).

All programs, except Histogram, make use of irregu-
lar/input dependent accesses (e.g. memory accesses through
pointers). Moreover, two benchmarks programs make inten-
sive (24.5% and 60.0%) use of such accesses. As a conclu-
sion, any accesses to static data and stack data are important.

We have to propose a method to calculate the targets for any
access types of memory accesses found in programs.

2.2. Calculation of targets of data memory accesses

In programming languages such as C or C++, programs
typically employ pointers to arrays elements, dynamic data
structures (e.g. linked lists) and procedures parameters. As
shown in the previous section, irregular and input dependent
accesses types represent a large part of load-store instruc-
tions.

Traditionally, pointer analysis has been used in compilers
to build aliasing information [4, 11]. In this paper, we pro-
pose to reuse existing pointer analysis methods of the com-
piler to determine possible data accessed by any load-store
instructions of a program. In order to exhaustively associate
any memory access to (possibly-multiple) data target(s), we
have to apply pointer analysis to (i) all pointers definitions
of the program interprocedurally, and to (ii) the text of the
whole-program [11] with its related libraries.

Program sources
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Figure 1. Pointer analysis in compilation pro-
cess.

As shown on the Figure [T a compiler infrastructure
typically contains a collection of intermediate representa-
tions [10]. A set of code transformations is applied iter-
atively on intermediate representations. Pointer analyses
must be processed on early phases of program transforma-
tions; these information are brought through the rest of op-
timizations phases as annotations to the intermediate repre-
sentations. Then, the code generation backend phase trans-
lates a low-level intermediate representation (similar to [12])
to the output assembly file.

GCC 4.1[1 supports whole-program compilation and it
currently provides an intraprocedural pointer analysis [4]:
targets of pointers passed on procedures parameters are not
computed. For the aim of this paper’s study, we have slightly
modified the compiler infrastructure to apply the pointer
analysis interprocedurally ; the compiler keeps results of

!GCC - GNU C Compiler: http://gcc.gnu.org,
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pointer analyses during the whole compilation lifetime. We
have also modified the ARM backend to produce the set of
possible pointers targets for each generated load-store in-
struction in the output assembly file.

The pointer analysis applied in this paper supports static
and stack storage types. None of our real-time benchmarks
make use of dynamic heap allocation. In our study, we don’t
make the differentiation between individual elements of ar-
rays and between the fields of data structures (whereas such
information is computed in the current pointer analysis im-
plementation of the compiler [4]). Moreover, stack data of
the whole stack frame of each function are managed as an
individual data structure instance.

2.3. Related work on determination of load-store
instructions targets

Some approaches have previously succeeded to generate
information on some access types. Disassembly of binary
files enables extraction of scalar accesses to static data; some
dataflow analyses techniques have been applied on assembly
code to extend scalar access detection to stack data [3,9,13].
Data dependence analyses techniques and loop induction
analyses have been applied on the low-level representation
of VPO [19] to determine regular accesses in [29].

[24] uses a processor simulator to generate program
memory profile. The profile contains the trace of all memory
addresses accessed. The trace must cover all instructions of
the program and directly associates an observed target data
address for each load-store instruction. This approach en-
ables analysis of any scalar memory accesses. Non-scalar
accesses calculation is possible by checking the inclusion
of the caught address to any known data’s range addresses.
This approach guarantee to detect the target of any memory
accesses to a unique data.

An external module, based on abstract interpretation
techniques [5], has been employed on the intermediate rep-
resentation of the SUIF compiler [30] for pointer analysis.
The results of this analysis are re-associated after code gen-
eration to the output assembly within the execution of Sim-
pleScalar simulator. Their approach is the most similar to
ours. The aim of their study is the impact of memory access
aliasing information for scheduling of processor memory re-
quest queue [5].

3. Dynamic scratchpad memory allocation

The previous section has presented a complete program
analysis framework to determine the targets of load-store in-
structions of a program. In this section, we employ these
information to define at compile-time a data allocation in
a single scratchpad memory device. First, we describe the
program flowgraph representation considered (Section [3.1).
Second, a 0/1 integer linear program (ILP) formulation is
given for the allocation of static data (Section [3.2)) based on
initial knowledge of frequencies along worst-case execution
path. We apply this formulation on the considered flowgraph
to generate an ILP problem. One solution to this ILP prob-
lem provides the location of memory transfer operations on

the considered flowgraph. The formulation is later extended
to handle stack data (Section [3.2.3). Finally, we describe
an iterative algorithm to tackle instability of worst-case ex-
ecution path of a program. This algorithm incrementally
generates the ILP problem for a better WCET optimization.

3.1. Flowgraphs and computation of worst-case ex-
ecution path information

We have multiple choices for placement of memory
transfers operations (e.g. on functions entry-exit, on basic
blocks boundaries, etc). We propose to introduce a generic
graph representation of the program flow. The chosen rep-
resentation level of the generated program flowgraph may
lead to different placements of memory transfer operations.

In Figures[2]and[3] the (right-side) flowgraph is generated
from the (left-side) original graph representation. The edges
in the generated flowgraph are required to describe any pos-
sible flows of execution of the program.

main()

=

eg
[proc_D(ﬂ [proc_A()] ﬁaroc_B ()]

Figure 2. Call graph transformation to a
(coarse-grain) flowgraph.

For example, one can build a flowgraph from the original
call graph of an application (see Figure[2). There is one node
in the flowgraph for each function in the call graph. We can
also build a flowgraph from the interprocedural control flow
graph of the application (see Figure [3). Here, there is one
node in the flowgraph for each basic block in the interpro-
cedural control flow graph. Other levels of representation
are possible; one may balance between coarseness and size
of the resulting flowgraph. The size of the flowgraph has a
practical incidence on the complexity of the future memory
allocation problem as shown later in experimental results in
Section 421

Previous approaches for dynamic scratchpad alloca-
tion [15,26,27] have focused on the optimization of the av-
erage case. Data accesses statistics are typically computed
from the execution profiling with a train input. In order to
reduce the WCET of a real-time application, we rely on in-
formation of data memory accesses on the worst-case exe-
cution path of the program using WCET analysis. Conse-
quently, we apply static timing analysis as an initial step to
determine the information as proposed in [21,25]. Heptane
produces information on frequencies of execution of indi-
vidual basic blocks on the worst-case execution path. Since
we are able to compute the set of targets for each load-store
instruction (see Section @]), we can determine the impact
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Figure 3. Control flow graph transformation to
a (fine-grain) flowgraph.

of any data for each basic blocks of the worst-case execu-
tion path. Moreover, we are able determine if this data is
©moD (modified) or usE (used) on the execution of this ba-
sic block. The outgoing edges of the generated flowgraph
associated with these basic blocks are annotated with these
information.
More  formally, the flowgraph is a di-
rected graph  with the following  definitions:
N = Number of nodes in flowgraph;
E = Number of edges in flowgraph;
e; = jthedge of flowgraph, j € [1, E];
Estimated contribution to WCET re-

Ce;(v) = duction for data v scratchpad-allocated
on edge e;;
Uev) = Type of usage of data » on edge e;
e; (v =

where U, (v) € {MOD,USE}.

Some real-time applications are designed to be activated
from multiple entry points. We have added the «start« node
to the flowgraph to represent these flows of execution. Some
edges are added to link the sstart+ node with any possible
program entry. «startx node is artificially acting as a single
entry point for the program. In the same way, all program
exits are linked to this sstartx node.

3.2. Formulation for static data

We are considering an initial problem formulation to al-
locate static data only with the following definitions:

M = Size of scratchpad memory;
G = Number of static data in application;
v; = ith static data, i € [1,G];
S(v;) = Size of variable v; in bytes;
Time to transfer variable »; between
Xeopy(vi) =

main memory and scratchpad in cycles;

The optimization problem is formulated as a 0/1 integer
linear programming problem. We define the following set of
binary variables, vi € [1,G],Vj € [1, E]:

1 if data v; is transferred to scratchpad

loadg! = memory at the beginning of edge e;,
o otherwise.
1 if data v, is transferred back to main
storegt = memory at the end of edge e,

o otherwise.

loadg;_ , =1

ej_1 alloc_7'UJ§§71 =1
ej allocﬁrw};jv =1
storez; =
Figure 4. Figure 5.

1 if mutable data v, is allocated on
scratchpad memory on edge ¢;,
o otherwise.
1 if read-only data v; is allocated on
scratchpad memory on edge e;,
o otherwise.

F
alloc_rwg' =
J

v
alloc_ro,' =
J

Variables loadg! and storeg! determine where data v; are
to be respectively loaded and stored on scratchpad memory.
Variables alloc_rwe' /alloc_mZ;l give the state modified/not
modified of the scratchpad-allocated data v»;. A modified
data »; must be transferred back to the main memory on end
of allocation.

The objective function to maximize is the sum of contri-
butions to the WCET of all memory accesses to allocated
static data in the application minus the cost of transfer oper-
ations of data between main memory and scratchpad mem-
ory.

E

G
Z Z ( alloc_rwg; x Ce;(v;) + alloc_ro:;: x Ce, (v;)
i=1j=1 ’ ’

,loadz; X Xcopy(vi) — sto’r’ez; X Xcopy (vl))

Preliminary constraints have to be added to prevent in-
consistencies on binary variables. Data »; is allocated on
scratchpad memory with alloc_rw¢i Or alloc_rogi exclusively.
Vi € [1,G],Vj € [1, E]:

alloc_rw:;’ + alloc_rog; <1 (1)

The mop and USE annotations of the edges of the flow-
graph have a direct incidence on the problem formulation.
We have to unset alloc_ro variables for edges that may up-
date this data:

alloc_rozji_ =0 if Ue; (vi) = MOD; 2)

3.2.1. Flow constraints

Figure [ illustrates the need and objective of flow con-
straints. Let us consider data »; allocated on scratchpad
memory on adjacent and connected edges e;_; and ¢;. On
this example, this data is loaded on the execution of e;_;
and stored back in main memory on the end of ¢;’s execu-
tion. vi € [1,G],Y(j — 1,5) € ([1,E],[1, E]), where e;_; is an
incoming edge of e;:

Vi Vi
alloc_rwej — alloc_rw6;'_l
— Vi — L a—
alloc_r()e]_71 loadej = 0 (3)
v Vi Vg —
alloc_rwej71 — alloc_rwej —storegr | = 0 @)

alloc_role);: - alloc_rog;_l — loadZ; = 0 (5)



Constraint [3] enables scratchpad-allocation of data v; on
edge e; if this data was already scratchpad-allocated on the
incoming edge e;_1, or if this data is loaded on edge ¢;. Con-
straintE]ensures that data v;, updated on edge e;_;, must be
stored and transferred to main memory or alloc_rw On next
edge ¢;. Constraint [5] ensures that data v;, read-only allo-
cated on edge ¢;, must be loaded on this edge e; or alloc_ro
on incoming edge e;_;.

Figure [ illustrates a node with multiples outgoing
edges. Constraint [6] guarantees consistent values for vari-
ables of outgoing edges of a node in the flowgraph. vi ¢
[1,G],v(5",5") € (11, E], [1, E]) where edges e;, and ¢, are out-
going edges of the same node:

alloc_er;, + alloc_rozj?l — alloc_rwlt  — alloc_V'oezfi =0 (6)

€ i

Finally, Constraint [/| specifies the upper bound on the
sum of the size of all allocated data on each edge, vi ¢
(1,Gl,vj € [1, E].

M

Z (alloc_rwz;' x S(v;) + alloc_ro:; X S(vi)) <M (7
i=1 ’ '

3.2.2. Optional support of dynamically scheduled archi-
tectures

WCET analysis requires the complete knowledge of instruc-
tions executions times. In dynamically scheduled archi-
tectures [17], pipeline modeling should take into account
all possible timings for each varying timing instruction, in-
creasing the complexity of the WCET analysis [16]. For
example, load-store instructions may have multiple execu-
tions latencies if possible data targets are stored in different
memories with heterogeneous latencies.

In order to reduce the complexity of WCET analysis, we
would like to guarantee unique timing for each load-store
instruction. Therefore, we have to express allocation of any
targets data of this load-store instruction to the same level of
the memory hierarchy (here, the scratchpad memory or the
main memory).

Constraint (8| enforces removal of timing anomalies due
to data memory accesses. Vj € [1, E],V(i1,i2) € ([1,G],[1,G])
where v;, and v;, are possibly accessed on e; by the same
load-store instruction:

v Vg v v
alloc_rwej1 + alloc_roe7.1 — alloc_r'wej2 — alloc_roej2 =0 (8)

The impact of Constraint [§ may directly depend on the
number of possible targets of the pointers in programs.
However, the StrongARM-110 [22] is a statically scheduled
architecture and does not enable an evaluation of this con-
straint in the experiments of this paper.

3.2.3. Memory data address assignment

Our formulation provides an optimistic solution to data allo-
cation (variables alloc_rw O alloc_rw) on the edges of the
flowgraph. Optimistic in the sense not all data selected
by the ILP problem resolution necessary fit on scratchpad
memory due to fragmentation.

An address assignment algorithm has been proposed
in [27] to place data on scratchpad memory at compile-time.

If no free place is found for one data, this data is simply left
in main memory. In their approach, each data can be trans-
ferred multiple times between main memory and scratchpad
memory; however, each data must have only one address in
the scratchpad memory for the whole program execution.

We propose an improvement to the address assignment
algorithm of [27] with the detection of individual data re-
gion. Our proposal, detailed in Algorithm [I} may decrease
placement conflicts of data on scratchpad memory. A data
region is defined by a subgraph of connected edges of the
flowgraph where data «; is scratchpad-allocated. Algo-
rithm [I] enables the assignment of a different address on
scratchpad memory for each data region.

Algorithm 1 Address assignment algorithm with detection
of data regions

1: data_regions «— extract data regions from computed allocation

2: sort data_regions list on their impacting order on WCET

3: for all individual region (data, edge_set) from data_regions list
do

4: if data fits in free memory space on edges of edge_set then
select free placement for data on edges of edge_set with first-
fit policy

else
remove the unallocatable data region

end if

: end for

. return data_regions

W

@YX

—_—

First, Algorithm [I] reads the optimistic allocation com-
puted from the ILP problem, a list of data regions is gener-
ated (line[I). This step requires an analysis of the connected
components of the flowgraph for each allocated data. This
list is then sorted from the impact on the program WCET
of individual data region (line [2). We must try to assign a
concrete address to each data region. For all edges covered
by a data region, find a valid slot to assign the data (lines 3}
[9). If a data region can not be loaded on scratchpad memory,
we ignore this data region and we simply remove all transfer
operations for this data in this region.

3.3. Extension for stack data

We are now considering an extension to our previous for-
mulation to support the limited lifetime of stack data. These
data do not require initialization nor content backup to the
main memory at the end of their lifetime. Similarly to static
data, the flowgraph is annotated with moD or UsE for any
usage of stack data. The pEF attribute is now defined on
function entry and on function exit for stack data associated
with the function life span. The DEAD is an attribute set
on flowgraph edges to avoid memory transfers for non-live

stack data.
Number of stack data in the applica-

F = .
tion;
f; = ithstack data, i € [1, FJ;
Type of wusage of variable ;
Ugj(m = on edge ¢; where Ugj(fi) IS

{DEF,MOD,USE, DEADY;
S(f3)s Ce;(£i)s Xcopy(f;) and the variables alioc_rw,
alloc_ro, load and store are similarly defined for stack data.



The general flow Constraints [3] ] [5]and [6] for static data are
directly applicable to stack data.

The objective function to maximize is the contribution for
WCET reduction of all accesses to the static data and to the
stack data in the application minus all the dynamic transfers
of data between main memory and scratchpad memory:

G E
Z Z (alloc_rwz; X Ce; (v;) + alloc_rozji x Ce; (v;)
i=1j=1

—load:’; X Xcopy(v;) — storeZ;_ X Xcopy (vz))
F
+ Z Z (alloc_rwef;/ X Ce,; (f3r) + alloc_rogj./ X Ce; (f3r)
i'=14=1
—loadé’.' X Xecopy (fir) — storeéc;:/ X Xcopy(fi/))
Stack data are created and destroyed on function entry
and on function exit (where Ue,(fi) = DEF). Consequently
these data don’t require memory transfer operations (Con-
straints [9]and [T0). On such edges, stack data are initialized
with default values and Constraint [11| forbids read-only al-
location. Moreover, we enforce (Constraint@ 0-coSt mem-
ory transfer operations to scratchpad before and after the
stack data lifetime, vi € [1, F],Vj € [1, E]:

load{:; =0 iful (f;)=DEF 9)
storegj_ =0 iful (f;)=DEF (10)
auoc_mg’; =0 iful (f;)=DEF (11)
Xeopy(fi) =0 if UL (f;) = DEAD (12)

As described in [2], stack data may have disjoint life-
times. The program call graph is analyzed to provide infor-

mation on lifetime of stack data:
£ = The set of all leaf nodes in the call graph;

Total number of unique paths to the ith
leaf node in the call graph, i € [1, 2J;
The set of stack data definitions on the
tth unique path to ith leaf node in the call
graph, ¢ € [1, NP(1)].

P(1) set computes any possible stack data combinations
that are simultaneously alive. The size constraint should be
formulated as, vj € [1, E], VI € £,Vt € [1, NP(])]:

NP(l) =

P(l) =

G
Z (alloc_rwé}]i, x S(v;) + alloc_rog; X S(vi))
i=1

(alloc_rngi./ x S(v;) + alloc_roéc;,l X S(le)) <M (13)

P>
VfieP(l)
An additional extension would be to support heap allo-
cated data as proposed in [8]. DEF machinery is an ideal at-
tribute to define a limited-lifetime data and may be the basis
for such an extension of our formulation to heap data. Cur-
rently, real-time programs benchmarks rarely employ dy-
namic heap allocation and won’t enable us to lead a com-
plete study on dynamic allocated data.

3.4. Support for instability of the worst-case execu-
tion path

For many programs, the worst-case execution path of
the program may change after some data allocations. Con-
sequently, it may be needed to evaluate all possible com-
binations of data allocations to find the optimal reduction

of WCET of the program. However, an exhaustive eval-
uation of all possible combinations would be too time-
consuming [25]. A greedy heuristic has been proposed
for WCET-centric scratchpad memory static allocation that
greatly enhances the quality of allocation in [25]. The
method outline is to iteratively allocate one data on scratch-
pad memory and to (re)-estimate data frequencies informa-
tion at every iterations.

We propose to adapt their approach to the ILP problem-
based scratchpad memory dynamic allocation schemes in
Algorithm 2]

Algorithm 2 Iterative dynamic allocation algorithm

1: allocations «— empty
2: repeat
change «— false
perform WCET estimation
extract information on worst-case execution path
generate dynamic allocation ILP problem
generate additionnal Constraints for allocations
new_allocations « call solver on ILP problem
if new_allocations # empty then
change «— true
allocations <« allocations U most impacting allocation
from new_allocations
12: end if
13: until change = false
14: return allocations

(98]
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The main idea behind Algorithm [2] is to incrementally
refine the ILP problem formulation to support greedy allo-
cation of most impacting data. Initially, the worst-case exe-
cution path of the application is determined (line[d) and data
accesses information are computed (line [5). An initial ILP
problem (line [6) is generated and the problem solver com-
putes a list of data to allocate (line E]) On next iterations,
WCET estimation is performed again and Constraint [14]is
added to the problem formulation (line[/)) to enforce alloca-
tion of selected data. vi € [1,G],V; € [1, E] Where v; has been
selected for allocation on e;:

alloc_rwz; + alloc_roé’; = 1 (14)

The algorithm selects and allocates the most (non-already
allocated) impacting data to the scratchpad memory
(line [TI). This process is applied iteratively until no more
allocation can reduce the WCET of the application.

Similarly, we have modified the ILP problem formula-
tion of [2] to obtain an iterative static memory allocation
algorithm. This algorithm is used in the experiments of this
paper. Lines of Algorithm [2] are modified (1) to gener-
ate the static allocation’s ILP problem [2] and (2) to generate
additional constraints that enforce allocation of selected data
on next iterations. We won’t describe in this paper these ad-
ditional constraints applied to [2]’s ILP problem (line due
to the lack of space.

4. Results

The evaluation of the approach for dynamic scratchpad
memory allocation is performed for the StrongARM-110
processor [22]. Benchmark programs are compiled using



Benchmark | Source Lines of code | Static data size | Max. stack size | Load-store inst. ratio | Description

Adpcm WCET B. 870 2020 bytes 116 bytes 39% Speech coding

Engine Powerstone | 380 585 bytes 116 bytes 6% Engine control

G721 Powerstone | 1180 730 bytes 284 bytes 16% Voice compression

Histogram UTDSP 80 67584 bytes 20 bytes 39% Image enhancing application
Lpc UTDSP 450 7388 bytes 72 bytes 22% Speech coding

Pocsag Powerstone | 1150 1060 bytes 112 bytes 22% Communication protocol
Spectral UTDSP 250 2032 bytes 116 bytes 44% Speech power spectral estimation
Statemate WCET B. 1290 227 bytes 132 bytes 60% Car window lift control

Table 3. Informations on benchmarks programs.

a modified GCC 4.1 compiler (see Section [2.2]for the mod-
ifications applied to the compiler to compute load-store in-
structions targets). The compiler generates two files: the
output program and an additional file for load-store instruc-
tions targets annotations. Second, the Heptane timing an-
alyzer reads the annotation file with load-store’s targets in-
structions to model the complete memory behavior of the
program. The program binary is read. The maximum iter-
ations for each program loops are given as annotations to
enable determination of possible execution paths in the pro-
gram.

This study reports results on optimized code with loop-
related optimizations disabled. The Heptane timing analyser
supports the pipelined execution and the instruction cache of
the StrongARM-110. The latency of a word access to main
memory is 11 cycles [22]. The latency for accesses to data
allocated on the scratchpad memory is 1 cycle. A penalty
model for scratchpad memory transfers operations are in-
tegrated to the timing analysis of Heptane. We applied a
penalty latency of 12 cycles per word of data to transfer.
The commercial ILP solver CPLEX 7.1 is configured to
stop on the first valid solution found. The proposed tech-
nique is evaluated on an assorted set of benchmarks from
WCET benchmarkg’] Powerstone [23] and UTDSH}

4.1. Scratchpad allocation results

We have undertaken a comparison of the impact of our
iterative dynamic scheme over non-iterative static scratch-
pad memory allocation [2] on programs WCET. In this
study, (fine-grained) flowgraphs are generated from the in-
terprocedural control flow graph of benchmarks programs.
This gives the maximum latitude for placement of mem-
ory transfers in programs. Figure [6] gives the improve-
ment ratio of iterative dynamic scratchpad memory allo-
cation over non-iterative static allocation (y-axis) for a

range of scratchpad memory sizes (x-axis) computed b
#cycles reduction from iterative dynamic allocation Fi

; S ; ——. Figure
#cycles reduction from non-iterative static allocation
gives in addition the improvement of iterative static alloca-
tion over non-iterative static allocation, providing insight on

stability of programs worst-case execution paths.

2ILOG CPLEX - High-performance software for mathematical pro-
gramming and optimization: http://www.ilog.com/products/
cplex/

SWCET benchmarks: http://www.mrtc.mdh.se/projects/
wcet /benchmarks.html

*“UTDSP — DSP Benchmark Suite: http://www.eecg.toronto.
edu/~corinna/DSP/infrastructure/UTDSP.html

For five out of eight benchmarks, we can remark iterative
static allocation may improve non-iterative static scratch-
pad memory allocation up to 30%, particularly for programs
with a large amount of control flow (Engine, Pocsag, State-
mate).

Histogram is a typical example of the benefit of the
dynamic capability of our scratchpad memory allocation
method. This program contains two frequently used arrays
of 1024 bytes separately used in two program phases. Static
allocation succeeds to place one of these two arrays in a
1024 bytes scratchpad memory. Dynamic allocation moves
these two arrays alternatively in the scratchpad memory unit
for an improvement of 47% of the original performance
enhancement due to a static scratchpad allocation. On a
scratchpad memory larger than 2048 bytes, there is enough
room to statically place the two arrays. Both schemes yield
to identical WCET value.

Major benefits for dynamic scratchpad allocation are
achieved for small ratios of scratchpad memory sizes over
the whole program data working set. For example, dynamic
scratchpad allocation is valuable for scratchpad sizes ratios
lower than 10% of the working set for the programs Adpcm,
Engine and G721. On these ranges, the method outperforms
the static allocation from 12% to 85%. The approach is no-
tably profitable to systems with a scratchpad memory shared
among several real-time tasks.

Due to the support of stack data (typically smaller than 32
bytes), our method takes advantage of very small scratchpad
memory sizes except programs Histogram, LPC and Spec-
tral. These benchmarks have very few stack data instances
(see Figure [d) or few accesses to stack data (see Figure[2).

We have conducted some preliminary evaluations of ad-
dress assignment algorithms described in Section [3.2.3] In
the experiments of [27], the address assignment algorithm
is shown to be fairly close to the optimal address assign-
ment. In our experiments, the algorithm with detection of
data regions gives marginal performance improvements over
the address assignment algorithm of [27]. The iterative al-
location algorithm selects data in their performance impact
order. Consequently, data with high performance impact
have higher chance to get a valid address assignment. Pro-
grams Adpcm, G721 and Lpc get a relative performance in-
crease of 3%-7% when the detection of data regions is en-
abled. Gains are observed for small (less than 300 bytes)
scratchpad memories. The scratchpad memory usage is high
for such configurations and many data are transferred on
scratchpad memory multiple times.


http://www.ilog.com/products/cplex/
http://www.ilog.com/products/cplex/
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.eecg.toronto.edu/~corinna/ DSP/infrastructure/UTDSP.html
http://www.eecg.toronto.edu/~corinna/ DSP/infrastructure/UTDSP.html
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Figure 6. Improvement (in percent) of iterative dynamic and iterative static allocations over non-

iterative static allocation.

4.2. Solver execution time

Allocation solving time tightly depends on the number
of variables of the ILP problem. The number of variables
for static allocation problem is o(D) where D is the num-
ber of static data and stack data in the programs. In our
experiments, there is implicitly one stack data instance for
each defined function. The count of static data and functions
in programs of the benchmark set are given in the Table [4]
The number of variables for dynamic allocation problem is
O(D x E) where E is the number of edges in the flowgraph.
The number of edges depends on the representation level of
the flowgraph. Table @] delivers the number of functions and
the number of basic blocks (BBs) of the programs. In this
table, the number of functions of a program gives an idea of
the size of the (coarse-grain) flowgraph generated from its
call graph. In the same way, the number of basic blocks of
a program gives an idea of the size of the (fine-grain) flow-
graph generated from its interprocedural control flow graph.

In our experiments, we have observed CPLEX running
time is the worst for scratchpad memory size configura-
tions where dynamic scratchpad memory allocation gives
the best improvement over static scratchpad memory allo-
cation. Table ] compares maximum observed running time
for CPLEX solver to produce a solution for (4) static alloca-
tion problem, (B) dynamic allocation problem (coarse-grain)
flowgraph (¢) with (fine-grain) flowgraph.

Consequently, for the same program, B has less number
of possible placements for memory transfer operations and
it gives lower quality allocation than c¢. The final column of
Table [4] gives the relative allocation quality reduction £=4.
A value of 100% means B allocation is as efficient as ¢ and
0% means allocation provides results as low as 4 static al-
location. This ratio is computed for the scratchpad memory
size where ¢ does its best over 4 static allocation.

First of all, the running time of the ILP solver is typi-
cally not an issue for any static scratchpad memory alloca-
tion problems. Second, programs (Adpcm, G711, Pocsag,
Statemate) with an important number of data and a large
generated (fine-grain) flowgraph may have huge solver run-
ning time. Applying our method to much more benchmarks
programs may enable us to draw general conclusions of the
number of ILP variables on solver’s running time. Unsur-
prisingly, B dynamic allocation at function granularity pro-
duces lower quality results than ¢ dynamic allocation on
basic-blocks granularity for most programs. One can re-
mark B is as efficient as ¢ for two of eight benchmarks (En-
gine, Statemate): even though their respective solving time
is shorter. Conversely, Histogram contains only one function
and B allocation is strictly equivalent to A static allocation.

The major conclusion of this study is two-fold. First,
the practical limitation of our method is the running time
to solve ILP problems, which is problematic for the largest
benchmarks studied in this paper. Second, approaches exist
to scale up the applicability of our method to larger pro-
grams. A coarse flowgraph induces smaller ILP problems,
potentially leading to a lower allocation quality. An or-
thogonal approach may be to apply the method to regions
of program (i.e. program subgraphs), to generate smaller
ILP sub-problems. Moreover, it must be profitable to ig-
nore some non-profitable data within a region in the gener-
ated sub-problem, reducing the number of data considered
in generated sub-problems.

5. Related work

A main issue for dynamic scratchpad memory allocation
is the preliminary selection of possible placements for mem-
ory transfer operations. [15] and [27] are considering place-
ment of memory transfer operations at the level of basic



Allocation

problem solving time | Allocation quality

Benchmark | Data | Functions | BBs (static) A B C improv. ratio
Adpcm 82 11 82 <l1s 10s 179s 59.2%
Engine 34 7 81 <1s <1s 35s 100.0%
G721 34 19 203 <l1s 9s 42s 14.3%
Histogram 4 1 15 <1s <1s <1s 0.0%
Lpc 19 4 85 <l1s <1s 20s 68.8%
Pocsag 26 11 126 <1s 2s Sls 47.0%
Spectral 10 3 48 <1s <1s 2s 39.8%
Statemate 106 8 263 <1s 7s 8367s 100.0%

Table 4. Programs sizes vs. problems solving time.

blocks. [26] proposes to restrict memory transfer operations
to interesting program points, such as functions, condition-
als or loops entries/exits with high execution frequencies in
a flexible way. Moreover, [26] associates execution time-
stamps to program points in order to capture program exe-
cution context. Data accesses statistics are recorded using
these timestamps on a profiled execution.

The manageable granularity of the flowgraph enables
flexible selection of possible places for memory transfer op-
erations. Moreover, the support of program execution order
in our flowgraph seems possible through the replication of
subgraphs of the generated flowgraph. However, it is unclear
how WCET analysers could generate useful data accesses
information in association with execution timestamps.

Formulation for dynamic scratchpad memory allocation
introduced in Section [3.2]is an adaptation of [27] to manage
read-only and modified data. The main benefit is to avoid
useless store memory transfer operations from scratchpad to
the reference copy in main memory for non-modified data.

The support of stack data described in Section[3.3]is sim-
ilar to the work for static memory allocation in [2] applied to
our formulation for dynamic memory allocation. [7] studies
allocation of spilled data on a small and fast direct addressed
memory. Our formulation for dynamic scratchpad memory
allocation supports stack data and it supersedes this original
work.

[2] contains an interesting study on granularity of allo-
cation of whole stack frame (as applied in this paper’s ex-
periments) or individual stack data. Each stack data can be
allocated in different memories; hence, the program must
have to manage multiple program stack pointers on its ex-
ecution. Their study concludes individual stack data allo-
cations gives marginal performance increase against whole
stack frame allocation due to increased cost of a multiple
stack management.

[25] propose an algorithm for greedy static allocation
on scratchpad memory. Their algorithm iteratively (i) eval-
uates the worst-case execution path of the application, (ii)
selects and allocates the most impacting (non-already allo-
cated) data to the scratchpad memory then apply (i) and (ii)
until no more allocation on free memory space is possible.
Our approach differs because the solver is iteratively called
on a refined ILP problem and it supports allocation of stack
data. Moreover, our approach is portable to both static and
dynamic scratchpad memory allocation ILP problems.

In Section [3.2.3] due to scratchpad memory fragmenta-
tion, we have proposed to leave unallocatable data in main
memory. Memory compaction is an interesting alternative to

rearrange data on scratchpad memory. [26] has shown that
such a mechanism has a minor impact on program perfor-
mance. [26] also addresses major implementations issues on
static data and stack data relocation for dynamic scratchpad
memory allocation.

Fixed-sized scratchpad memory are unable to allocate too
large data and are unable to take benefit of temporal locality
on access of such data, to the difference with data caches.
As studied in [15], program transformations such as tiling
of big arrays enable better scratchpad memory usage and
increase global effectiveness of the allocation.

6. Conclusion and future work

The main contributions of this paper are two-fold. First,
we have described an approach to calculate targets of load-
store instructions. Our approach is based on a common
compiler infrastructure and relies on the presence of an in-
terprocedural pointer analysis. Exhaustive knowledge of
load-store instructions targets in a program requires a whole-
program analysis mode, available in our compiler infrastruc-
ture.

Second, we have proposed a dynamic scratchpad mem-
ory allocation algorithm to support both static data and stack
data. Our approach attempts to reduce WCET of real-time
programs with the allocation of most impacting data on their
worst-case execution paths. Due to the variability of the
worst-case execution paths in programs [25], we have ap-
plied an iterative scheme for data allocation. This scheme
requires multiple iterations of WCET program analysis and
it has demonstrated improved results [25].

Our experiments have shown the increasing computa-
tional complexity of allocation problem solving with pro-
gram size. To tackle this issue, we have proposed to limit
data transfers to entry and exit of functions, reducing allo-
cation problem size and leading to an absolute decrease of
allocation quality.

Scratchpad memory allocation of data provides a fully
predictable latency of load-store instructions [1]. Fur-
thermore, some compiler optimizations (e.g. instruction
scheduling) could make profit of such information for better
code generation.

[28] have compared static scratchpad memory allocation
with some instruction cache WCET analyzes. We plan to
compare our approach for dynamic scratchpad memory al-
location with data cache analyses.

In this paper, we have considered a system with only one
scratchpad memory device. The optimal static memory al-



location [2] supports multiple scratchpad memory devices.
This may increase drastically the number of variables of the
generated allocation problem. We leave such an extension
for dynamic memory allocation as future work.
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