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ABSTRACT
This paper describes techniques to estimate the worst case
execution time of executable code on architectures with data
caches. The underlying mechanism is Abstract Interpreta-
tion, which is used for the dual purposes of tracking ad-
dress computations and cache behavior. A simultaneous nu-
meric and pointer analysis using an abstraction for discrete
sets of values computes safe approximations of access ad-
dresses which are then used to predict cache behavior using
Must Analysis. A heuristic is also proposed which generates
likely worst case estimates. It can be used in soft real time
systems and also for reasoning about the tightness of the
safe estimate. The analysis methods can handle programs
with non-affine access patterns, for which conventional Pres-
burger Arithmetic formulations or Cache Miss Equations do
not apply. The precision of the estimates is user-controlled
and can be traded off against analysis time. Executables
are analyzed directly, which, apart from enhancing preci-
sion, renders the method language independent.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal Methods; D.2.8 [Software Engineering]:
Metrics—Performance Measures; F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages—
Program Analysis

General Terms
Performance, Verification

1. INTRODUCTION
Estimation of worst case execution time of programs is

extremely important in the context of real time systems
where the correctness of the system depends not only on
the computations performed, but also on the timing of such
computations. For task scheduling on such systems, it is
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necessary to know whether the task can execute to comple-
tion within a predetermined time interval. Thus, given a
program and a target architecture, the WCET problem is
to estimate a bound on the maximum execution time taken
by the program for any input data set. A related problem is
the determination of worst case energy consumption by the
program to ensure that the battery does not drain out be-
fore the completion of the task. WCET estimation is again
a central problem to be solved in this context.

A simple approach could be to assume worst case latency
for every instruction, determine the maximum execution
time of each basic block and maximize the execution time
over all paths. This approach, although valid, may over-
estimate the WCET by a large amount as it fails to recog-
nize the presence of performance enhancing features such as
caches and pipelines in the architecture. Our techniques are
directed towards improving the estimates in the presence
of data caches and can easily be integrated with analyses
targeting other features.

In the context of hard real time systems, the WCET esti-
mate of a program must be safe, that is, it cannot exceed the
actual execution time for any input data set. It is also de-
sired that the estimate be tight to reduce resource allocation
costs. The stringent requirement of safety may be relaxed
in the case of soft real time systems where deadlines may
occasionally be missed without having a significant impact
on the quality of service offered. In this work, we explore a
static analysis technique that gives safe estimates for WCET
and a slight modification that results in most likely values
for WCET. The safe and probable estimates can be used for
hard and soft real time systems respectively.

Our techniques are based on the analysis of executable
code. Analysis techniques that are based purely on source
code may not be very reliable as compiler transformations
may have radically changed the underlying code structure.
At the very least, some variables may be allocated to regis-
ters and may not cause a memory access when used, while
others might be retrieved from memory, used and possibly
stored back again. Additionally, there can be memory spills
at unknown points which can collide in the cache with other
memory accesses.

2. RELATED WORK
A significant amount of research has been made in esti-

mating data cache behavior in the presence of memory ac-
cesses which are affine in the loop induction variables. Two
major techniques are the use of Cache Miss Equations(CME)
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[9] and Presburger Arithmetic formulations [5]. The CME
approach has been used in [11] for analyzing worst case data
cache behavior with enhancements to the original frame-
work. The Presburger Arithmetic method is exact, but the
analysis time can be super-exponential in the length of the
formulae in the worst case. Both of these approaches are
limited by their dependence on affine access patterns. The
techniques cannot be applied in the presence of data depen-
dent conditionals and indirection even if the array indices are
affine in the loop induction variables. Further, it is not clear
how how they integrate with analyses that target other ar-
chitectural features such as pipelines and instruction caches.

The work in [14] uses information from the compiler and
successive substitution to calculate relative addresses of mem-
ory accesses. Control flow information is then used to con-
vert these addresses to virtual addresses. Next, static cache
simulation is performed to produce access categorizations.
The approach is similar to an interprocedural data flow anal-
ysis. The algorithm is quite complex and it may be difficult
to check for safety.

Abstract Interpretation [6] is a well established technique
for static analysis of programs. A major advantage with
Abstract Interpretation is that it guarantees safety. Static
estimation of cache behavior for scalar accesses has been ex-
tensively studied in [8] using Abstract Interpretation with
abstract cache domains. An extension has been proposed
in [7] for data caches. However, two critical subproblems –
address computation and access sequencing have not been
discussed. Performance numbers are also not known. Simul-
taneous numeric and pointer analysis for tracking memory
accesses in executable code for x86 has been studied in [4]
using Abstract Interpretation with Reduced Interval Con-
gruences. Contents of registers and statically known mem-
ory partitions are tracked.

Our approach combines automatic executable analysis for
address determination and Must Analysis for predicting cache
behavior, both using Abstract Interpretation. The abstract
domain in [4] has been extended to support finite width com-
putations and a wide range of operations, thereby allowing
a larger set of programs that can be analyzed. The origi-
nal Must Analysis is extended to support sets of memory
addresses instead of singleton sets. Partial access sequenc-
ing is an integral part of our analysis. We also propose a
heuristic that gives tighter estimates but may not be safe.
It can be useful in the context of soft real time systems and
also for reasoning about the tightness of the safe estimate.
Programs with both affine and non-affine access patterns are
analyzable by our tool.

Our analysis is flow sensitive, context insensitive. CFGs
for individual procedures are linked together at call and re-
turn points to form a SuperGraph before analysis starts.

3. FOUR SUBPROBLEMS
In our view, the WCET problem for data caches can be

decomposed into four main parts – address analysis, cache
analysis, access sequencing and worstcase path analysis. We
adopt a modular approach and separate the concerns from
each other. This enables each of these to independently
evolve using increasingly sophisticated methods.
(a)Address Analysis: This subproblem is concerned with
determining the set of memory locations that are accessed at
any point in the program. This information will be used to
determine the cache effect (hit/miss) and the cache state up-

date due to the corresponding memory accesses. For imme-
diate addressing, address determination is straightforward.
However, in most cases, addresses are computed by the pro-
gram instructions before the access is made.

We use Abstract Interpretation to compute a safe approxi-
mation of the set of memory addresses being accessed by any
memory reference. We apply the technique of simultaneous
numeric and pointer analyses as developed in [4]. The ab-
stract domain that we use is more compact in representation
and have their semantics defined for a very wide range of op-
erations. The domain is further described in §5.
(b)Cache Analysis: This subproblem is concerned with
determining the cache behavior (hit/miss) for any access
and the subsequent cache state update.

We use Abstract Interpretation to compute a safe approx-
imation of the cache state at a given program point using
the information computed by Address Analysis. We reuse
and extend techniques developed in [8] to support access
streams where the memory access at each point may be
over-approximated by a set of addresses instead of a sin-
gle address. §6 details the analysis.
(c)Access Sequencing: This subproblem is concerned with
determining frequency and ordering of accesses to distinct
memory locations generated by memory references during
execution. This information is very important in determin-
ing the existence of spatial and temporal reuse. For example,
consider a direct mapped cache and a memory reference ac-
cessing the locations x, y, z during execution. Assume that
x and y conflict in cache and that z lies in the same block
as x. The access order (x, y, z) results in all misses whereas
(x, z, y) results in a hit. In both cases, the set of locations
accessed is {x, y, z} but the results are different due to ac-
cess order. Similar observations hold for address set {x, y}
and access sequences x, x, x, y and x, y, x, y.

We deal with this sequencing problem through both par-
tial physical and virtual unrolling of loops. Partial physical
unrolling of the outer loop partitions the iteration space into
regions with sequencing across regions. We alternately se-
lect a region to be analyzed in either expansion or summary
mode. The expansion mode can be visualized as a virtual
unrolling of the loop nest over the region and performing the
analysis over this virtually unrolled code. It is different from
simulation since at any point it takes into account all possi-
ble scenarios whereas simulation is concerned only with the
current input data set. Expansion mode maintains sequenc-
ing within the region. Additionally, it also helps to prime
the abstract cache. The summary mode performs analysis
over the region without unrolling it. It does not consider se-
quencing within the region but is faster. Selection between
these two modes is governed by a tradeoff between tightness
of analysis and analysis time and can be controlled by the
user. Section 7 deals with this process.
(c)Worstcase Path Analysis: This subproblem is con-
cerned with determining the path corresponding to the worst
execution time.

We handle this by first computing worst case costs for each
basic block and then solving an integer linear program (ILP)
to maximize the overall execution cost subject to structural
constraints. Use of ILP to determine the worstcase path and
hence the WCET is an established technique. As our anal-
ysis is context insensitive, interprocedural constraints need
to be added to avoid unbounded cyclic constraints in the
SuperGraph due to false paths. §9 describes this method.
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Figure 1: (a)CLP visualization (b)Set union

4. ASSUMPTIONS
We assume that the input executables have reducible flow

graphs and that all loops are counter-based with the loop
continuation condition being a comparison between the con-
tents of a register/memory location and an expression that
evaluates to a constant after constant propagation. Any
two loops are either disjoint or one is contained in the other.
Any loop has a single entry point but can have multiple exit
points. Currently we do not handle recursion, either self
or mutual, and the call graph is assumed to be acyclic. We
also assume that the target architecture employs an in-order
execution model. An underlying assumption in our analy-
sis is that misses correspond to worst case scenarios. The
WCET problem for data caches then reduces to estimating
a lower bound on the number of hits. The assumption may
not hold for architectures employing out-of-order execution
semantics [10]. Further, we assume that caches are virtually
addressed and the replacement policy is perfect LRU.

5. ADDRESS ANALYSIS
The objective is to compute a safe approximation of the

set of memory locations that can be accessed by any mem-
ory reference. The approach is similar to that in [4], but the
abstract domain is enhanced to support finite width com-
putations and composability for a wide range of operations.
Our domain is extensively described in [13].

CLP Abstract Domain: We model discrete value sets
as circular linear progressions (CLPs) of values. CLPs fit a
first degree polynomial to the possible set of concrete val-
ues. This model is an exact fit for induction variables and
linear computations. Each CLP is represented as a 3-tuple
(l, u, δ), where l, u ∈ Z(n), δ ∈ N(n) ∪ {0}, and the param-
eter n denotes n-bit representation. The components de-
note the starting point, ending point and positive step in-
crement respectively. Each CLP requires 3n bits for repre-
sentation. Let MAX P = 2(n−1) − 1, MAX N = −2(n−1),
MAX D = 2n − 1. Since we are considering finite represen-
tation using n bits, the set of all CLPs is finite.

The finite set of values abstracted by the CLP C(l, u, δ)
is computed by the concretization function

conc(C) = {ai = l +n iδ|0 ≤ i ≤ s, i ∈ Z and s is the
smallest non-negative integer such that as = u}

+n denotes addition in n-bits, which is addition modulo 2n.
We can visualize this computation by considering a circular
disc as in Figure 1(a) marked in sequence with 0...MAX P ,
MAX N, ...0. Mark the points l and u on this disc. Then
proceed from l along the periphery in a clockwise direc-
tion, reading off values in increments of δ till the point u
is reached. The set of values chosen is precisely the set of
values abstracted by this CLP. The top element, �, is char-
acterized by the constraints: �.l = �.u + 1,�.δ = 1.

Static Objects: Our analysis tracks contents in registers
and statically identifiable memory partitions, each of which
is represented by a static object. Two copies (IN,OUT)
of the abstract state per object are maintained per basic
block. Memory partitions are determined by scanning the
global data section and program code for numeric offsets
and stack operations. A unique identifier is associated with
each partition based on the address range [start,end] and
defining procedure; M : A × A × P → N defines this map,
where A and P denote respectively the address space and
set of procedures. A special value for P is assumed for global
data. Static objects corresponding to registers are atomic,
but this is not the case with those corresponding to memory
partitions. This is because in case of memory, the partition
size may be larger than the smallest access size allowed by
the processor. Additionally, non-aligned accesses may stride
multiple partitions. For partial and/or strided accesses, a
read results in the top element, �, of the CLP lattice to
be returned, while a write results in all affected memory
partitions to be abstracted by � till a subsequent update.

Abstract Transfer Functions: These functions define
the composition of a CLP A = (l1, u1, δ1) with another CLP
B = (l2, u2, δ2) or an integer, k. Transfer functions have
been defined for a wide range of arithmetic, logical, shift,
bitwise and set operations. Here we present a few sample
compositions.

UNION

• k1 ∪ k2 = (a, b, diff)

• (l1, u1, δ1) ∪ k ⊆ (a, b, gcd(diff, δ1))

• (l1, u1, δ1) ∪ (l2, u2, δ2) ⊆ (a, b, gcd(diff, δ1, δ2))

diff is chosen by considering two alternatives as shown in
Figure 1(b). Out of t1 and t2, it is the one that results in
a smaller value for ( diff

δ
). This choice results in minimum

over-approximation. a is either l1 or l2 and is set according
to the choice taken in the above step. Similarly, b is one
of the upper bounds. The result set always has 1 ≤ δ ≤
MAX P . This follows since for the union of two constants,

t1 + t2 + 2 = MAX D + 1

⇒ δ = min(t1, t2) ≤ t1 + t2

2
≤ MAX D − 1

2
≤ MAX P

In case the two input sets overlap, there is only one choice.
For the following transfer functions, first assume that

MAX N ≤ l1, u1, l2, u2 ≤ MAX P , l1 ≤ u1, l2 ≤ u2 and
no operation results in overflow.

ADDITION

• (l1, u1, δ1) + k = (l1 + k, u1 + k, δ1)

• (l1, u1, δ1) + (l2, u2, δ2) ⊆ (l1 + l2, u1 + u2, gcd(δ1, δ2))

SUBTRACTION

• (l1, u1, δ1) − k = (l1 − k, u1 − k, δ1)

• (l1, u1, δ1) − (l2, u2, δ2) ⊆ (l1 − u2, u1 − l2, gcd(δ1, δ2))

MULTIPLICATION

• (l1, u1, δ1) ∗ k = (min(l1 ∗ k, u1 ∗ k), max(l1 ∗ k, u1 ∗
k), |δ1 ∗ k|)

• (l1, u1, δ1)∗(l2, u2, δ2) ⊆ (min(l1∗l2, u1∗u2, l1∗u2, u1∗
l2), max(l1 ∗ l2, u1 ∗u2, l1 ∗u2, u1 ∗ l2), gcd(|l1 ∗ δ2|, |l2 ∗
δ1|, δ1 ∗ δ2))
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Figure 2: Sample computation

LEFT SHIFT

• (l1, u1, δ1) << k = (l1 << k, u1 << k, δ1 << k). It is
assumed that k ≥ 0.

• (l1, u1, δ1) << (l2, u2, δ2) ⊆ (min(l1 << l2, l1 <<
u2), max(u1 << l2, u1 << u2), gcd(|l1|, δ1) << l2).
The second series is assumed to contain only non-
negative values.

To remove the restriction l < u for the above compositions,
given any general CLP C(l, u, δ), we construct two disjoint
sets P, Q as follows:

• If(l ≤ u), then P = C, Q = φ

• Otherwise, P = (l, l + δ
ˆ

MAX P−l
δ

˜
, δ), Q = (u −

δ
ˆ

u−MAX N
δ

˜
, u, δ).

Now, any operation ⊗ other than ∪ and \ is defined as

A ⊗ B = (PA ∪ QA) ⊗ (PB ∪ QB)
= (PA ⊗ PB) ∪ (PA ⊗ QB) ∪ (QA ⊗ PB)∪

(QA ⊗ QB)

Overflows are handled by computing the result in 2n bits
and converting it back to an n-bit representation. This is
done by decomposing the result into 2 CLPs, X containing
the first n-bit part and Y containing the lower n-bits of the
rest of the result obtained by ANDing the rest part with
MAX D. The final n-bit result is computed as X ∪ Y .

Linear Dependence: Precision can be improved by con-
sidering linear relations between static objects. For example,
in the sequence r0 = m1 + r2, r3 = r0 − r2, the fact that
r3 is equal to m1 can be used to compute a possibly tighter
abstraction for r3. We use a best-of-two selection strategy
between the result computed by the transfer function and
that implied by the relation matrix. Space and time com-
plexity is quadratic in the number of static objects tracked.

Sample analysis: Figure 2 shows the source for a sample
computation which is similar to that appearing in a JPEG
DCT algorithm. The corresponding ARM7 assembly code
could not be included here due to space constraints, but is
available in [12]. d[k ∗ j], d[k ∗ (7 − j)] are read by two
memory reference instructions and t[j], t[7 − j] are modi-
fied by another two. x starts at virtual address 0x2008120
and t at 0x20080f0. Our analysis automatically computes
the following CLPs to describe the sets of memory loca-
tions being accessed by the 4 instructions mentioned in that
order: (0x2008120,0x2008180,4), (0x2008130,0x2008200,4),
(0x20080f0,0x20080fc,4) and (0x2008100,0x200810c,4). By

simulation, we find that the approximations for the writes
are exact. For the reads, the actual address sets are proper
subsets of the abstract sets computed. For the first read,
the simulation address set corresponds to 7 array indices:
0,1,2,3,8,16,24 whereas our approximation corresponds to 25
indices: 0 through 24, and is the closest linear approxima-
tion to the actual set. For the second read, the actual set
corresponds to 8 indices: 4,5,6,7,32,40,48,56 whereas our ap-
proximation includes 53 indices: 4 through 56. In all cases,
the analysis correctly detects the inherent granularity of 4
bytes in the access stream.

6. CACHE ANALYSIS
An abstraction of the state and transformation semantics

of physical caches is useful for tracking the set of all possi-
ble cache states that may hold at a program point during
execution. The methodology adopted here is an extension
of the Abstract Cache model and Must Analysis technique
developed in [8]. Must analysis tracks the set of memory
blocks definitely residing in the cache at any program point.
This is useful for tracking memory accesses that will always
result in cache hits regardless of program input. Currently,
only set associative caches with perfect LRU replacement
policy are supported.

Cache State: The abstract cache state at any point in
the program is a safe approximation of all possible concrete
cache states that can hold at that point over various execu-
tion sequences. Two copies (IN,OUT) of the abstract cache
state are maintained per basic block. The organization of
the abstract cache is similar to the concrete cache, but with
two notable differences:

1. The abstract cache blocks in any set are arranged in
increasing order of access age.

2. Each abstract cache block can hold data corresponding
to a set of memory blocks instead of only 1 block in
the concrete case.

Consider a cache organization with associativity A, number
of sets S and block size B. For abstract set ŝ, ŝ(0) denotes
the set of memory blocks most recently accessed whereas
ŝ(A − 1) denotes the set of least recently accessed ones.
Memory blocks in ŝ(A − 1) are candidates for replacement
on the next miss mapping to ŝ. Memory blocks mapping to
the same abstract set and determined to have the same age
map to the same abstract cache block. Maintaining accurate
information for a large number of memory blocks mapping
to the same abstract block not only consumes space, but
also increases processing time as each block needs to be in-
dividually checked to determine reference classification. We
maintain another parameter, η, which serves as a threshold.
When the number of memory blocks mapping to the same
abstract cache block exceeds η, the abstract cache block is
cleared. This decision is safe with respect to our analysis.

Reference Classification: A memory reference with ad-
dress set described by the CLP x is classified as always
hit(ah), iff every address a ∈ conc(x) is present in the ab-
stract cache state at that point. Otherwise, it is marked
as non classified(nc). Performing lookup for every a ∈ x is
time consuming if |x| is large. We maintain a parameter ξ
which serves as a CLP unroll limit. If |x| ≥ ξ, we treat it
as � and classify the reference as nc. Access latency for nc
references is equal to the miss latency, while for ah it is the
hit latency.
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Cache Update: A key difference between instruction
and data references is that the address set for the latter
may not be a singleton set, as for example, array references.
Further, when the address set is not singleton, we cannot
say which particular subset of addresses will be definitely
accessed during actual execution. This is because Address
Analysis computes an over-approximation of the actual set
and in the absence of other information, it is not possible to
say whether the abstraction is tight or not. Thus, in such
cases, no new element can be brought into the abstract cache
as that element may never be accessed during any concrete
execution. This is to ensure safety since Must Analysis com-
putes upper bounds on ages of memory blocks. However,
if the address set is singleton, we know that the abstrac-
tion is tight and the addressed memory block will always be
brought into the cache.

Let x denote the CLP describing the address set of a mem-
ory reference at a point. For any a ∈ x, let φ(a) = (a/B)
denote the block address of a and ρ(a) = φ(a)%S denote the
cache set that a maps to. The abstract cache update func-
tion Û(x, ŝ) defines how the state of abstract set ŝ needs to
be updated, as a result of (multiple) accesses to addresses in
x, to ensure safety for Must Analysis. In the following, the
LHS of �→ describes state after update whereas the RHS is
computed using state before update.

First suppose |x| = 1 and let ŝ = ρ(x.l). If ∃h : φ(x.l) ∈
ŝ(h) (hit), then,

Û(x, ŝ) =

8<
:

ŝ(i) �→ ŝ(i − 1), 1 ≤ i < h
ŝ(0) �→ {φ(x.l)}
ŝ(h) �→ (ŝ(h) \ {φ(x.l)}) ∪ ŝ(h − 1), if h > 0

otherwise, (miss)

Û(x, ŝ) =

j
ŝ(i) �→ ŝ(i − 1), 1 ≤ i < A
ŝ(0) �→ {φ(x.l)}

Next, consider |x| > 1. For any abstract set ŝ, define
shift ctr(ŝ, j), 0 ≤ j < A, as the number of positions that
the contents of ŝ(j) need to be shifted towards the older age
blocks to make way for memory blocks that can potentially
occupy the lower age blocks. To compute this, we determine
all addresses in conc(x) mapping to ŝ and then the number
of distinct memory blocks present in abstract blocks of age
greater than j or not present at all. Formally,

shift ctr(ŝ, j) = |{a ∈ conc(x)|(ρ(a) = ŝ)∧((φ(a) ∈ ŝ(k), j <
k < A) ∨ (φ(a) /∈ ŝ(k), 0 ≤ k < A))}|
shift ctr is computed using state before update. The update
function is now defined as:

Û(x, ŝ) =

j
ŝ(i) �→ {k|k ∈ ŝ(j) ∧ ((j + shift ctr(ŝ, j)) = i),

0 ≤ i < A}
If (i+shift ctr(ŝ, i)) ≥ A, the old contents of ŝ(i) are shifted
out and do not appear in the new state. The above definition
ensures the following two conditions if |x| > 1:

1. No new memory block can be brought into the abstract
cache

2. No memory block already in the abstract cache can
decrease in age

The following example illustrates the update function.
The first line shows the state of abstract set ŝ of a 4-way as-
sociative cache. Each of the following lines show the result-

ing state after Û(x, ŝ) has been applied to the state before.
Assume that all memory blocks mi shown have ρ(mi) = ŝ.

� Age
ŝ {m1} {m2} {m3, m4}

Û({m3}, ŝ) {m3} {m1} {m2, m4}
Û({m5}, ŝ) {m5} {m3} {m1}

Û({m2, m3}, ŝ) {m3, m5}

Cache Join: In Must Analysis, the join function for an
abstract cache set results in associating each memory block
with the maximum age, equivalently, maximum abstract
block number in the abstract sets being joined. Formally,
the join function of two abstract sets ŝ1 and ŝ2 is an abstract
set ŝ with ŝ(j), 0 ≤ j < A, defined as follows:
ŝ(j) = {m|∃a,∃b, 0 ≤ a, b < A : (m ∈ ŝ1(a)) ∧ (m ∈
ŝ2(b)) ∧ (j = max(a, b))}

7. ANALYSIS MODES
As mentioned earlier, access sequencing is handled through

partial physical and virtual unrolling of loops. Partial phys-
ical unrolling divides the program into regions and regions
are alternately assigned to be analyzed in either Expansion
or Summary mode. The size and number of regions and
hence the relative proportion of time spent by the analysis
in each of these modes can be controlled by the user through
the following environment settings:

• frac exp: approximate fraction of the total iteration
space to be analyzed in expansion mode

• samples: number of regions over which the fraction to
be analyzed in expansion mode is to be distributed.

Each outer loop is partially unrolled to form 2 × samples
regions. Let α denote the number of program iterations
that a single region in expansion mode corresponds to and
let β denote the number for summary mode. Let N denote
the total number of iterations of the outer loop. Then,

samples× (α +β) = N, samples× (α) = frac exp×N

⇒ α =
frac exp× N

samples
, β =

N × (1 − frac exp)

samples

Unrolling is performed by disconnecting the loop blocks
from the rest of the SuperGraph, replicating the blocks,
changing the loop continuation constants and finally con-
necting all the blocks (old and created) back to the Su-
perGraph. For each region created, the iteration space is
constrained by setting the loop continuation condition ap-
propriately. Consider for example, a simple dot-product ap-
plication as shown in Figure 3. Let frac exp = 0.1 and
samples = 4, that is, we want to analyze 10% in expansion
mode spread over 4 samples. The partially unrolled CFG is
shown in Figure 3(d) along with the modified loop continu-
ation conditions for each region. Regions 1,3,5,7 are set to
expansion mode(E) and each corresponds to 1 iteration of
dotp. The rest are in summary mode(S) and correspond to
9 iterations each.

Expansion mode: The analysis in this mode can be
visualized as a virtual unrolling of the loop nest over a por-
tion of the iteration space. The region can correspond to
more than 1 program iteration depending on frac exp and
samples. The expansion mode helps to prime the abstract
cache as more often, references have singleton address sets in
this mode. It also maintains sequencing within the region.
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Figure 3: (a)dotp source (b)original CFG (c) ARM7 assembly code (d) partially unrolled CFG (10%,4)

Blocks in the region are analyzed in any reverse postorder
sequence (produced by a topological sort ignoring back edges).
At every branch, the evaluation of the condition (if any) at
that point determines whether the true path or the false
path needs to be taken. The successor block on the path
that is not to be taken and all the blocks that it dominates
are not processed. In case the condition cannot be decisively
resolved, both paths will be activated for further analysis.
A boolean flag indicating activation is maintained with each
basic block data structure and is set to true or false accord-
ing to the above decision. In every pass, all blocks in the
region will be considered, but a block will be processed iff
this flag is set to true. Iteration over the list of blocks in that
region continues as long as the basic block corresponding to
the loop header for that region is activated. Deactivation
can happen only when the loop continuation condition eval-
uates to false. In that case, the loop header is not on the
path to be taken and all blocks in the region that it domi-
nates (which is all the blocks in that region) are deactivated
and iteration terminates. The analysis is equivalent to per-
forming Abstract Interpretation over the virtually unrolled
loop. As the virtually unrolled part is acyclic, no widening
is required.

Both Address and Cache Analyses are carried out simulta-
neously. The address computed for any reference in any pass
is immediately used for abstract cache lookup and update.
Depending on the result of cache lookup, the appropriate
latency is added to the local worstcase cost for that block.
Worst case estimates over the whole region can be efficiently
computed without solving integer linear programs. The key
observation is that in this mode, the virtually unrolled loop
resembles a directed acyclic graph, so the problem reduces
to the following well studied graph-theoretic problem:

“Given a DAG with nodes in topologically sorted order
and costs on vertices, find the longest path from the first to
the last vertex”

The above problem can be solved by considering each ver-
tex in turn, considering the maximum values propagated to
it by its predecessors, adding its own cost and propagating

the new value to its successors. The expansion mode takes
time proportional to the static size of the relevant portion
of the SuperGraph multiplied by the number of iterations
unrolled. No extra space is required as unrolling is virtual.

Summary mode: In this mode of analysis, abstract in-
terpretation for only address computation is carried out till a
fix-point is reached. At the end of the fix-point iteration, the
abstract cache analysis is carried out using the fix-point CLP
for each memory reference till a fix-point is reached. Ref-
erence classification happens using the fix-point states for
the cache. The summary data loses intra-region sequencing
information, but analysis is faster. The analysis time taken
in this mode depends only on the static size of the relevant
portion of the SuperGraph.

The distinction between expansion and summary modes
only applies if a block is part of a loop. Otherwise, for non-
loop blocks, both analyses are equivalent.

Sample analysis: Consider the dot-product example of
Figure 3. In 3(c), we see that two reads happen for each
element of b. Similarly for c. There are a total of 4 reads in
every loop iteration and the result variable is allocated a reg-
ister. These facts are not obvious from the source. The CLP
sets for the 4 memory reference instructions at PCs (in hex)
2000098, 200009c, 20000ac, 20000b0 computed by Address
analysis are (in hex) (20080e0,200812e,2), (20080e1,200812f,
2), (2008130,200817e,2), and (2008131,200817f,2), each in-
cluding 40 2-byte elements. With frac exp = 0, analysis
happens on the CFG of Figure 3(b). None of the memory
blocks can be brought into the abstract cache and every ref-
erence is categorized as nc.

With frac exp = 0.1, samples = 4, analysis happens on
the CFG in Figure 3(d). In regions 1,3,5,7, references for
both b and c have singleton address sets. Memory blocks
corresponding to those addresses are brought into the ab-
stract cache. For other references, memory blocks are not
brought into the abstract cache. Assume a cache configu-
ration with associativity=4, block size=32 bytes, sets=256.
Table 1 gives the breakup of the address sets computed along
with reference classification.
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Table 1: Partial access sequencing for dotp (10%,4)
Region Address(hex) Block(hex) Set Class

1

20080e0 100407 7 nc
20080e1 100407 7 ah
2008130 100409 9 nc
2008131 100409 9 ah

2

(20080e2,20080f2,2) 100407 7 ah
(20080e3,20080f3,2) 100407 7 ah
(2008132,2008142,2) 100409,10040a 9,10 nc
(2008133,2008143,2) 100409,10040a 9,10 nc

3

20080f4 100407 7 ah
20080f5 100407 7 ah
2008144 10040a 10 nc
2008145 10040a 10 ah

4

(20080f6,2008106,2) 100407,100408 7,8 nc
(20080f7,2008107,2) 100407,100408 7,8 nc
(2008146,2008156,2) 10040a 10 ah
(2008147,2008157,2) 10040a 10 ah

5

2008108 100408 8 nc
2008109 100408 8 ah
2008158 10040a 10 ah
2008159 10040a 10 ah

6

(200810a,200811a,2) 100408 8 ah
(200810b,200811b,2) 100408 8 ah
(200815a,200816a,2) 10040a,10040b 10,11 nc
(200815b,200816b,2) 10040a,10040b 10,11 nc

7

200811c 100408 8 ah
200811d 100408 8 ah
200816c 10040b 11 nc
200816d 10040b 11 ah

8

(200811e,200812e,2) 100408,100409 8,9 ah
(200811f,200812f,2) 100408,100409 8,9 ah
(200816e,200817e,2) 10040b 11 ah
(200816f,200817f,2) 10040b 11 ah

Table 2: frac hit for nc references of dotp
Region Address(hex) Block(hex) frac hit

2
(2008132,2008142,2) 100409,10040a 7/9
(2008133,2008143,2) 100409,10040a 7/9

4
(20080f6,2008106,2) 100407,100408 5/9
(20080f7,2008107,2) 100407,100408 5/9

6
(200815a,200816a,2) 10040a,10040b 3/9
(200815b,200816b,2) 10040a,10040b 3/9

8. AN ESTIMATION HEURISTIC
In general, for a reference with a non-singleton address

set, we may find some fraction 0 ≤ frac hit ≤ 1 of the set
of memory blocks that can be possibly accessed to be in the
cache. If frac hit < 1, we cannot classify the reference as
ah since all blocks are not present. In the last example,
although reference (0x2008132,0x2008142,2) of region 2 has
7 out of 9 elements in block 0x100409 that are in the abstract
cache, it cannot be classified as ah. Table 2 shows frac hit
for all nc references with non-singleton address sets of the
last example.

The probable estimate considers frac hit as an indicator
of the potential reuse that the memory reference will expe-
rience in that region during actual execution. The heuristic
takes frac hit as a likely estimate of the hit ratio for that
particular reference in that region and the corresponding
access latency as a weighted average of the hit and miss
latencies.

access latency = frac hit × hit latency+

(1 − frac hit) × miss latency

For references with a singleton address set, the access latency
is the same as that for the safe case. Thus, the probable
estimate is always ≤ the safe estimate. Typically, a large
difference between safe and probable values indicates that
the safe estimate may be tightened significantly by vary-

Figure 4: (a)False cycle (b)Instance calculation

ing frac exp or samples as potential reuses have not been
tracked. The converse does not hold as the abstract cache
may not have been adequately primed before analyzing that
region and hence frac hit is small although reuse exists.
The probable estimate may not be safe as the CLP repre-
senting the address set may not be a tight approximation of
the actual set.

9. ILP FORMULATION
After the worst case execution costs for each basic block

has been individually computed, an approximation of the
overall worst case cost and corresponding path is obtained
by solving an ILP. The ILP seeks to maximize the over-
all cost subject to structural constraints. To every basic
block, and every edge, a variable is assigned that indicates
the number of times the corresponding block or edge needs
to be executed to maximize the overall cost. The values of
these variables in the final solution indicates the worst case
path and the objective function value gives the overall cost.

Objective function: Let xi be the variable associated
with basic block i and let wi denote the individual worst
case cost of block i. Then the ILP seeks to maximize the

value of the expression

BX
i=1

wi × xi subject to the following

constraints.
Flow constraints: Let e(i, j) be the variable associated

with the edge from block i to block j. Then, the flow con-
straints ensure that the total number of times each block
is executed is equal to both the total number of times con-
trol can reach this block and also the total number of times
control can leave this block. Formally,

xi =
X

j∈pred(i)

e(j, i) =
X

j∈succ(i)

e(i, j)

Loop constraints: In case of loops, the execution count
of blocks in the loop need to be bounded by the maximum
number of times the loop can execute. We constrain the
execution count of the loop back edges as follows.

e(i, j) ≤
8<
:

loop cnt − loop parent cnt if the loop is not
an outer loop,

loop cnt − 1 otherwise.

loop parent refers to the closest enclosing loop of an inner
loop. The loop counts are taken as absolute values. Thus,
the loop count of an inner loop is the product of its local
count and the local counts of all its enclosing loops. Note
that loop constraints are considered only if the particular
regions have been analyzed in summary mode. For expan-
sion mode, the worst case for that region has already been
computed and will just appear in the objective function.
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Table 3: Benchmarks

Name Characteristics
WCET bounds (cycles)
simulation All-Miss

bsort100 array access,conditions in loops,premature loop exist,imperfect nesting 81091 315897
cnt array access,conditions in loops,function calls in loops,perfect nesting 4410 9895

edn fir array access,imperfect nesting 52990 103133
edn fir no red ld array access,imperfect nesting 40328 73114

edn iir array and pointer access 2274 5032
edn latsynth array access 3281 5875

edn mac array and pointer access 3139 6104
jfdctint array access,loop counter loaded from memory in every iteration 2275 3481
matmult array access,multiple calls to same function,function calls in loops,imperfect nesting 147413 298022

Interprocedural constraints: Although the call graph
is acyclic, cycles may be created in the SuperGraph due to
false paths as our analysis is context-insensitive. Consider
the example in Figure 4(a). There are 2 locations of calls to
procedure p2 from procedure p1 – from blocks 3 and 7. In
the SuperGraph, we see that a cycle has been created with
blocks 4 through 7. Unless additional constraints are im-
posed, the ILP solution will be unbounded. We handle this
by imposing upper bounds on blocks which end in function
calls as follows:

xi ≤
8<
:

instances(proc(xi)) if xi is not in a
loop,

instances(proc(xi)) × loop cnt otherwise.

instances(p) of procedure p is the number of instances of p
that would have been present if every procedure were inlined
at the point of call. To compute this, we first scan every ba-
sic block of p to get the maximum number of invocations
of every successor procedure, r, of p relative to one invoca-
tion of p. Let us denote this count as call cnt(p, r). The
edges of the call graph are annotated with this count. Fig-
ure 4(b) shows an example. instances(p) is now computed
by processing each procedure in reverse postorder sequence
and using the following recurrence relation.

instances(p) =
X

q∈pred(p)

instances(q) × call cnt(q, p)

For this example, instances(p) for every p are shown in
brackets in Figure 4(b).

10. EXPERIMENTAL SETUP
We have implemented the framework for the ARM7TDMI

[1]. The ARM7TDMI is a 32-bit RISC processor and has
applications in audio equipments, wireless devices, printers,
digital still cameras, etc. We assume the existence of a set
associative cache with perfect LRU replacement policy.

We have used the benchmarks listed in Table 3 for test-
ing our setup. Source code for these benchmarks have been
taken from [3]. The edn programs are subroutines in the
edn benchmark. All sources have been compiled with gcc to
create ARM7 executables. Complete listing of the sources
and assembly can be found in [12]. The actual WCET num-
bers are obtained by running the executables on the sim-safe
Simplescalar/ARM simulator [2] with a configurable cache
model added. All-Miss WCET cycles corresponds to our
analysis results with every memory reference classified as
nc. These two numbers provide lower and upper bounds
for other WCET estimates. The numbers in the table cor-
respond to the following settings: Associativity=4, Block

size=32 bytes, Total Cache size=32 KB, read/write Hit la-
tency=1 cycle, read Miss latency=6 cycles, write Miss la-
tency=4 cycles. Every instruction has a base cost of 1 cycle.
Worst case numbers for other configurations appear in [12].

Following are the major processing steps performed by the
tool on loading an executable:
CFG construction: The text section is scanned, starting
from the program entry point, one word at a time to detect
control transfer instructions. Such an instruction may be a
Branch or Branch-and-link (function call), or a write to PC
(returns and indirect jumps). During processing, a Transfer
Queue is maintained. Whenever it is possible to determine
the target of a control transfer, the target is enqueued in
the Transfer Queue. Processing continues along the current
path until a previously visited address is reached again. At
that point, an entry from the Transfer Queue is dequeued
and processing continues along that path. The process stops
when the Transfer Queue is empty and the current path has
been exhausted. CFG construction may be revisited later
when targets of indirect control transfers get resolved.
SuperGraph construction: The entry point and targets
of BL instructions are considered as procedure start ad-
dresses. We assume that all basic blocks of a procedure
are placed together in memory. The list of blocks is sorted
by start address and partitioned according to the procedure
start addresses. All blocks falling in a partition are assigned
to the corresponding procedure. Blocks ending in function
calls are linked with the entry block of the called procedure.
The immediately following block in the calling procedure is
linked with all return points in the called procedure.
Memory Partitioning: The data section is scanned for
identifying global memory locations to be tracked. Next,
each procedure is scanned for local memory locations. These
are identified through stack push and pop operations. In
ARM7 code, sp(r13) is usually copied to r11 which is used
to access the stack. The contents of the memory partitions
are tracked during Address Analysis as described in §5.
Loop detection: Loops are detected with the standard al-
gorithm using dominance relationships. While considering
back edges for natural loops we check that the end points
of the back edge lie in the same procedure. Registers and
memory locations holding loop induction variables for every
loop are identified.
Constant Propagation: Constant propagation over the
SuperGraph is needed to simplify loop continuation condi-
tions of the form cmp reg1, reg2 with cmp reg, const.
Unrolling: As described in §7.

Tables 4 and 5 show the analysis results for the bench-
marks listed and the cache configuration mentioned earlier.
The missing WCET entries in Table 5 are for the cases where
frac exp and samples are such that α < 1 for that partic-
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ular benchmark. This becomes equivalent to the case when
frac exp = 0 since our tool can currently partition only
in units of loop iterations. Results for other cache config-
urations can be found in [12]. The following estimates are
provided:

• Safe WCET: estimate not including the heuristic of §8.
• Probable WCET: estimate including the heuristic.

We observe that without any expansion(0%), Must Anal-
ysis is not very useful for programs with array accesses. cnt
at 0% gives good results due to a larger number of scalar
references in loops. Scalar references always have single-
ton address sets. For fir programs, 10% expansion itself
shows significant improvement. We also see the large dif-
ference between safe and probable estimates indicating pos-
sibilities for further improvement of the safe value. The
minimum expansion for jfdct is 20% as the outer loop is
only 8 iterations. jfdct shows most improvement at min-
imum expansion. bsort does not show good results as our
tool is unable to precisely track a condition embedded within
the inner loop that effectively makes the loop nest triangu-
lar. Without this condition, simulation takes almost twice
its current cycles which is close to our estimates. Other
programs show progressive improvement as expansion is in-
creased. Increasing samples affects results in two ways – it
tends to improve as more regions are chosen for expansion
(∝ samples), and it tends to degrade as each such region
gets smaller (∝ 1/samples). Usually improvement prevails
as the regions get more spread out, but there are exceptions.
The probable estimate is significantly better than the safe
one in most cases and appears to be safe for the given cache
configuration and executables.

11. CONCLUSIONS
This paper presents techniques for predicting WCET of

executables taking the effects of data caches on performance
into account. Executables are analyzed since only source
based analyses may not be reliable due to compiler trans-
formations during code generation. Further, the ability to
directly analyze executables makes the tool language inde-
pendent. Another strength of the tool is in the ability to
analyze programs with both affine and non-affine memory
access patterns. Current limitations include requirement of
an inorder execution model, program loops being counter
based with the termination condition being a comparison
between the contents of a register/memory location and an
expression evaluating to a constant, and caches with a per-
fect LRU replacement policy.

The WCET estimation problem in the presence of data
caches is subdivided into four subproblems – address analy-
sis, cache analysis, access sequencing and worstcase path
analysis. Abstract Interpretation, with its guarantees of
safety, is the basic mechanism for both address and cache
analyses. The CLP numerical abstract domain is used for
computing a strided linear approximation to the set of ad-
dresses that can be generated by any memory reference in-
struction. This information is used by Must Analysis for
determining lower bounds on access ages of memory blocks
in the abstract cache states and for classifying references as
always hit or otherwise. Sets of access addresses do not have
ordering or frequency information. This shortcoming is par-
tially alleviated through partial unrolling of loops. Partial

physical unrolling establishes inter-region sequencing which
allows separate classifications of the same set of references
over disjoint sections of the iteration space. Virtual unrolling
establishes intra-region sequencing and helps to prime the
abstract cache. Expansion mode results in tighter estimates
whereas summary mode reduces analysis time. Together
they render Must Analysis useful for data caches. The tool
offers a range of analyses by allowing the relative proportion
of the two processing modes to be chosen by the user. Our
future work will focus on extending the tool to support a
wider range of cache organizations.
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Table 4: WCET estimates (cycles) for bsort100, edn fir, edn fir no red ld, edn iir

frac exp samples
bsort100 edn fir edn fir no red ld edn iir

Safe Probable Safe Probable Safe Probable Safe Probable
0 - 315793 308650 103077 103077 73037 73037 4956 4956

0.1 1 301945 274555 75605 60519.2 55393 51010 4696 4528
0.1 2 301945 274564 76116 58998.7 55750 47556.6 4752 4584
0.1 3 301903 262984 75616 57992.9 54972 45093 4706 4370
0.1 4 301867 251410 70127 54683.5 55301 44731.3 4772 4212
0.2 1 286463 251879 73093 60044.3 53724 48722.1 4426 4314
0.2 2 286371 241532 73098 56132.5 53737 47145.9 4436 4156
0.2 3 287830 232045 59606 54438.9 53345 44808.4 4426 4370
0.2 4 286279 231194 68112 54504.7 53356 43312 4436 4212
0.3 1 270884 231663 71081 59642.7 52383 48464.9 4212 4100
0.3 2 270745 222546 71089 55888.9 52221 45404.3 4212 4156
0.3 3 273712 214906 53094 53076 52044 44544.3 4222 3942
0.3 4 270461 204312 66603 54362 52052 42176 4222 3998
0.4 1 255007 206011 68071 55910.1 50375 46229.3 3886 3886
0.4 2 255007 206020 68074 55507.9 50091 43655 3896 3728
0.4 3 254815 198130 53079 53055 50099 43078 3896 3728
0.4 4 254623 190246 60585 53589.1 50102 41917.4 3916 3356
0.5 1 239175 191945 65559 55574.8 48703 44180 3626 3458
0.5 2 238933 185288 59567 53681 48787 43426.4 3682 3514
0.5 3 240262 178999 53070 53013 47189 40976.6 3636 3300
0.5 4 238939 185306 59573 53527.1 48804 41733.6 3692 3356

Table 5: WCET estimates (cycles) for edn latsynth, edn mac, matmult, cnt, jfdctint

frac exp samples
edn latsynth edn mac matmult cnt jfdctint

Safe Probable Safe Probable Safe Probable Safe Probable Safe Probable
0 - 5806 5594 6046 6046 283688 283688 6173 6121 3265 3265

0.1 1 5551 5439 5761 5661 232520 232520 5551 5525 - -
0.1 2 5540 5108 5791 5491 232567 230439 - - - -
0.1 3 5529 4803 5781 5321 - - - - - -
0.1 4 5513 4505 5811 5131 - - - - - -
0.2 1 5301 5033 5471 5351 223097 223097 5424 5424 2713 2665
0.2 2 5285 4857 5481 5181 223135 223135 5427 5341 - -
0.2 3 5295 4803 5491 5011 223182 221718 - - - -
0.2 4 5258 4350 5496 4976 223229 220301 - - - -
0.3 1 5046 4782 5201 5041 218390 217326 5424 5424 2641 2601
0.3 2 5030 4606 5211 4871 223135 223135 5427 5341 2542 2478
0.3 3 5066 4552 5256 4856 218475 215947 - - - -
0.3 4 4998 4350 5226 4666 223229 220301 - - - -
0.4 1 4791 4627 4891 4731 204251 204251 5173 5121 2569 2537
0.4 2 4780 4296 4901 4561 204289 204289 5176 5038 2542 2478
0.4 3 4764 4050 4906 4546 204336 202872 5176 5026 2286 2286
0.4 4 4379 3961 4916 4356 204383 201455 5179 4943 - -
0.5 1 4536 4376 4601 4421 194828 194828 5046 5020 2569 2537
0.5 2 4520 4296 4626 4406 194875 192747 5176 5038 2542 2478
0.5 3 4530 4050 4621 4081 194913 193449 5049 4925 2286 2286
0.5 4 3885 3619 4646 4046 204383 201455 5179 4943 2286 2286
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