
Ann. Telecommun. (2009) 64:197–214
DOI 10.1007/s12243-008-0081-y

WComp middleware for ubiquitous computing: Aspects
and composite event-based Web services

Jean-Yves Tigli · Stéphane Lavirotte · Gaëtan Rey ·
Vincent Hourdin · Daniel Cheung-Foo-Wo ·
Eric Callegari · Michel Riveill

Received: 6 March 2008 / Accepted: 5 December 2008 / Published online: 16 January 2009
© Institut TELECOM and Springer-Verlag France 2009

Abstract After a survey of the specific features of ubiq-
uitous computing applications and corresponding mid-
dleware requirements, we list the various paradigms
used in the main middlewares for ubiquitous comput-
ing in the literature. We underline the lack of works
introducing the use of the concept of Aspects in mid-
dleware dedicated to ubiquitous computing, in spite of
them being used for middleware improvement in other
domains. Then, we introduce our WComp middleware
model, which federates three main paradigms: event-
based Web services, a lightweight component-based ap-
proach to design dynamic composite services, and an

V. Hourdin is employed by MobileGov since Oct 2008.

J.-Y. Tigli (B) · S. Lavirotte · G. Rey ·
V. Hourdin · D. Cheung-Foo-Wo · E. Callegari · M. Riveill
Laboratoire I3S, Université de Nice - Sophia Antipolis /
CNRS, Bâtiment Polytech’Sophia - SI 930 route des Colles,
B.P. 145, 06903 Sophia-Antipolis Cedex, France
e-mail: tigli@polytech.unice.fr

S. Lavirotte
e-mail: lavirott@polytech.unice.fr

G. Rey
e-mail: rey@polytech.unice.fr

V. Hourdin
e-mail: hourdin@polytech.unice.fr

D. Cheung-Foo-Wo
e-mail: cheung@polytech.unice.fr

E. Callegari
e-mail: callegar@polytech.unice.fr

M. Riveill
e-mail: riveill@polytech.unice.fr

D. Cheung-Foo-Wo
CSTB 290, route des Lucioles, BP209,
06904 Sophia-Antipolis, France

adaptation approach using the original concept called
Aspect of Assembly. These paradigms lead to two ways
to dynamically design ubiquitous computing applica-
tions. The first implements a classical component-based
compositional approach to design higher-level com-
posite Web Services and then allow to increment the
graph of cooperating services for the applications. This
approach is well suited to design the applications in a
known, common, and usual context. The second way
uses a compositional approach for adaptation using
Aspect of Assembly, particularly well-suited to tune
a set of composite services in reaction to a particular
variation of the context or changing preferences of the
users. Having detailed Aspect of Assembly concept, we
finally comment on results indicating the expressive-
ness and the performance of such an approach, showing
empirically that principles of aspects and program inte-
gration can be used to facilitate the design of adaptive
applications.

Keywords Ubiquitous computing · Web services
for devices · Event-based component middleware ·
Software composition

1 Ubiquitous computing

We are standing on the brink of a new computing
era, one that will fundamentally transform our com-
puting usages. In September 1991, Mark Weiser in [38]
unveiled his vision of ubiquitous computing. He de-
scribed the future like a world where computing sys-
tems are available anywhere but not visible. Already,
early forms of ubiquitous computing are obvious in the

198 Ann. Telecommun. (2009) 64:197–214

widespread use of laptops and mobile phones. But how
did we get here?

Leaving the mainframe time, the society, motivated
by desires of individualism, did migrate to a personal
computing model. Supported by lot of technologies’
innovations, two majors ways, identified by Lyytinen
in [23], appear. Firstly, the mobility integrates the soci-
ety way of life, and at the same time integrates phones
and computers. Secondly, a kind of technophobia or,
more precisely, a society rebuttal in front of the growing
difficulty to use the new technologies did give birth
to concept of integration. The computing systems in-
tegration with the physical environment act toward
hiding computing systems complexity and diversity for
end-users.

However, beyond these criteria of mobility and inte-
gration, what are the ubiquitous computing challenges?
The principal challenge of ubiquitous computing is to
resolve the new computing “multiple-multiplicity.” In-
deed, now, many users can simultaneously use many
applications (fragmented in many pieces of software
often called services). These users interact with many
devices to communicate with other people located in
many different physical places and environments.

In summary, we could identify three concepts con-
cerning entities (users and devices) evolving in the
new ubiquitous world. The entity’s mobility is the first
concept of the new world. It describes motions of users
and of their devices. The second concept is the entity’s
heterogeneity, which outlines the diversity between en-
tity’s capabilities and possibilities offered by various
unknown functionalities of new smart objects. Finally,
the last concept is the environment high dynamicity. It
illustrates the ubiquitous world entropy with its appear-
ance and disappearance. As a result, future ubiquitous
computing architectures should implement these con-
cepts to solve ubiquitous computing challenges.

The scope of this paper can now be outlined briefly
(Section 2). We will first draw a state of the art on
middlewares for ubiquitous systems according to the
most relevant criteria found in literature (Section 3).
We then study paradigms used in the ubiquitous com-
puting research field: services oriented architectures,
component-based software engineering, event-driven
middlewares, and finally aspect-oriented programming.
(Section 4) From what we have learned about ex-
isting middlewares and paradigms characteristics, we
defined WComp, our lightweight component model,
ubiquitous computing ready, using services to abstract
devices and context from the environment, and as-
pects for structural adaptation of dynamic applications
(Section 5). We explain more deeply our aspect adap-
tation approach, called Aspect of Assembly (Section 6).

We then validate our contributions, studying perfor-
mances and complexity. (Section 7) Adaptation is ei-
ther user-driven or context-driven. We explain used
mechanisms for adaptation of applications (Section 7).
Use cases are finally described, in the ubiquitous com-
puting environment (Section 8). We summarize our
approach of middleware for ubiquitous computing and
give directions for future works.

2 Approaches for adaptation in ubiquitous
computing environments

Many middlewares have appeared in the ubiquitous
computing world, and even more in pervasive or sen-
sors networks, dedicated to adapting software architec-
tures to context changes. We start by listing relevant
middlewares dedicated to ubiquitous computing and
studying the main characteristics of ubiquitous com-
puting systems. We will compare paradigms used in
this field in the next section (Section 3) with the same
characteristics and requirements.

2.1 Middleware requirements for ubiquitous
computing

The requirements and main characteristics of mid-
dlewares for ubiquitous computing have been widely
studied in lots of papers [6, 15, 25, 27]. These papers
try to define basic requirements for such middleware
systems. We will only focus on a subset, which repre-
sents relevant characteristics of ubiquitous computing
middleware and referring to our research work.

Of course, all these middlewares support adaptation,
but we distinguish two categories [6]: structure changes
or behavior changes. Structural adaptation consists in
modifying an assembly of components while preserving
its behavioral services. A behavioral service describes
a sequence of operations to be executed on a partic-
ular component. Thus, a behavioral adaptation may,
in some cases, lead to the failure of the black-box
abstraction of components or services.

Heterogeneity is the ability to handle different pro-
gramming languages, operating systems, hardware, or
communication protocols. Extensibility is the ability to
extend or add new functionalities to the system easily.
Scalability refers to the ability of a system to grow in
the future, to extend to higher-load applications or to a
wider network. Security can be an important concern in
some applications since ubiquitous computing may use
private data from the user. Some middlewares use au-
thentication and authorization mechanisms to protect
user data.

Ann. Telecommun. (2009) 64:197–214 199

Reactivity is a key feature for pervasive or ubiquitous
adaptive systems. If it has to react on context changes,
middleware has to handle some kind of event noti-
fication, like a publish/subscribe mechanism. Mobility
is, of course, handled by all ubiquitous middlewares,
since they create applications from mobile devices, and
a changing context. The discovery of those devices is
important too; it is better to discover dynamically which
device is in the environment than hard-code them be-
forehand. The last characteristic we will focus on for the
state of the art is updating, which is the ability to update
parts of the middleware, like components or services at
run-time.

Mascolo et al. [25] have isolated other character-
istics to adaptive systems, like feasibility, which is a
mechanism-handling resource unavailability resulting
in middleware functionalities that cannot be provided
at some time. Since ubiquitous systems are context-
dependent, they have to deal with such concerns. Ro-
bustness is another characteristic, which should be
handled by ubiquitous adaptive systems. Feasibility
can be a part of it. Execution environment moving,
devices appearing/vanishing, and error rises must not
affect middleware stability and its capacity to adapt
continuously.

2.2 Existing middlewares

We focus on few middleware approaches for ubiquitous
computing, and we summarize in Table 1 how they
handle previous characteristics and requirements.

• Gaia [31] aims to provide middleware support for
active space environments such as smart rooms and
living environments. It essentially provides a dis-
tributed operating system where all inputs, outputs,
and processing units within a room are considered
as a single computer. Gaia uses a component repos-
itory and centralized approaches to events and ser-
vices discovery. Code can be updated, replacing
components in the repository, which limits used

services to a static list, thus preventing new services
from being dynamically added to applications. Gaia
handles heterogeneity with encapsulation of active
spaces, presenting them as a programmable envi-
ronment. However, when heterogeneity is handled
by abstraction, there are always some capabilities
unavailable through the abstraction layer. More-
over, its objects can be distributed on any node,
which requires all nodes to be set up with an object
container (CORBA).

• ExORB [32] project’s main aim is to contribute
towards construction of configurable, updatable,
and upgradable middleware services. It targets the
mobile phone industry; thus, mobility is explicitly
addressed. Code updating is possible but requires
human intervention to spread the changes. ExORB
uses IIOP and XML-RPC, enabling heterogeneity.
Its software configuration can change at runtime,
implying an adaptability potential. However, appli-
cations are designed for local execution, and the
discovery of entities is made with a local object
broker and does not address reactivity.

• CORTEX [35, 37] proposes a novel sentient ob-
ject model to address the emergence of a new
class of application that operates independently
of human control. Infrastructure-based and ad-
hoc-based wireless environments are considered to
address mobility. The middleware is highly config-
urable at run-time. It reacts on events by changing
the behavior of objects. CORTEX does not use
black-boxes for its objects. They are adapted mod-
ifying their internal content. It does not address
security, while it aims at quality of service in large-
scale architectures.

• Aura [18] is a context-aware middleware that can
be used to create mobile applications. It represents
the user by its aura, like a personal area network,
and brings the appropriate resources from the ser-
vices of the environment to support the user’s task.
Aura migrates tasks depending on context changes,
which are notified by events. It is also interesting to

Table 1 Characteristics of middleware approaches for ubiquitous computing

Structural Behavioral Heterogeneity Extensibility Scalability Security Reactivity Mobility Discovery Updating
adapt. adapt.

Gaia x x x x x x x
ExORB x x x x
CORTEX x x x x
Aura x x x x x x
Oxygen x x x x x x
SATIN x x x x x
DoAmI x x x
SCORPIO x x x x

200 Ann. Telecommun. (2009) 64:197–214

note that it suspends tasks that cannot be processed
anymore due to a context change, storing their
state for a future resume. User location information
is secured by a SPKI/SDSI (Simple Public Key
and Simple Distributed Security Infrastructures).
Moreover, constraints can be expressed in task de-
scriptions, and the middleware restricts some of its
operations in order to stop a violation if they are
violated (on context, for example). Heterogeneity
in Aura is handled by several mechanisms: services
can be dynamically discovered with Jini, which is
Java-based only, and interactions with services can
be done using different mechanisms like CORBA,
COM, or RPC, which are not device-oriented.

• Oxygen [1] addresses human needs using speech
and vision technologies that enable the user to
communicate with it as if the user were interacting
with a person. It enables pervasive human-centered
computing. It defines intelligent networks with dy-
namic topologies according to devices locations,
fixed and mobile devices with embedded software.
Code can be automatically updated thanks to that.
Network rules can be specified to allow sets of users
to use particular resources. However, it uses ob-
jects, communicating with method invocation, and
does not handle reactivity or heterogeneity.

• Self-adaptation targeting integrated networks [39]
(SATIN) argues that the application of logical mo-
bility primitives in a component system assists in
building self-organizing mobile systems. They de-
fine a component-based middleware, dynamically
updatable, for example, on context changes. It aims
at the reconfiguration of mobile device code. Com-
ponents communicate together inside the same ad-
dress space, which is a good point for performances.
They use Java for supporting heterogeneity of ar-
chitectures but not for programming languages.
They also use Jini for discovering services.

• Domain-specific ambient intelligence [6] (DoAmI)
is a service-oriented middleware architecture. It
uses CORBA, which enables language heterogene-
ity handling capabilities and centralized discovery
of services. Depending on found services and the
current context, DoAmI interconnects them and
sets them into running state. However, it only re-
lies on services, so services must be created with
adaptation purposes in mind. Indeed, adaptation
is limited to basic service compatible interfaces,
and there is no middleware message processing.
DoAmI does not yet include event-based commu-
nications between services.

• SCORPIO [8] proposes a work about structural
adaptation of software components. It restructures

components in order to match heterogeneous struc-
tures when integrating new components. Moreover,
they propose to divide behavioral services into sev-
eral groups so as to deploy them separately on
different systems for load balancing. Structural
adaptation can be made adapting interfaces of com-
posite components, but it requires code genera-
tion and application relaunch. Reactivity is not
addressed.

Table 1 gathers these overviewed approaches. For
each, we checked the characteristics from (Section 2.1)
of ubiquitous systems programming supported. Those
approaches are not able to fulfill all our requirements
for the kind of system we deal with. They often base
themselves on standard middlewares like CORBA,
which handles a lot of the characteristics. However,
they are not ubiquitous computing oriented and lack
a way to properly manage highly dynamic or mobile
applications and adaptation, which is exactly what these
projects want to add.

3 Paradigms

Adaptation requires the ability to reconfigure the de-
ployed code, which is considerably simplified when
applications are loosely coupled and modular rather
than monolithic blocks of codes. Numerous systems
have been designed in order to partially respond
to ubiquitous applications’ problems. We distinguish
component-based, service-oriented, event-driven, and
aspect-oriented systems. By component-based, we refer
to dynamic and easily manipulable system engineer-
ing; by service-oriented, we refer to architectures based
on services descriptions and interactions; by event-
driven, we focus on publish–subscribe-based middle-
wares, which notify entities by significant changes; and
by aspect-oriented, we refer to the methodology en-
abling separation of concerns.

3.1 Component-based software engineering

Components, as they were defined in [2], are an alterna-
tive to object-oriented programming in the design and
handling of basic entities. Components provide func-
tionalities, exported and used through their interfaces.
We focus on black-box components, for which we only
know the semantic, and not the implementation, like
services. In this case, adaptation cannot be reflection-
based, like in object-oriented programming for white-
box components. The behavior of components cannot

Ann. Telecommun. (2009) 64:197–214 201

be modified internally; we can only modify the compo-
sition between them. The corresponding adaptation is,
thus, much more structural than behavioral.

Components are usually more finely grained than
services. However, some component models, like EJB
or CCM, are more seen as services on this point since,
in addition, they can be deployed and distributed on
a network. On the other side, OSGi is often consid-
ered as a component-based system, due to its relative
lightness. We mainly focus on lightweight component
models, like JavaBeans or .NET components despite
their need for a virtual machine, which can be fitted
in embedded systems and easily used in pervasive sys-
tems. Conversely, heavy components include a part
of the middleware that makes them become services,
i.e., capable of automatic injection of proxy and dy-
namic construction of glue codes. They can also handle
multiple requests at the same time, and robustness is in-
creased, due to several nonfunctional embedded prop-
erties. The intersection of a lightweight component and
a service constitutes the core functional component.
[17] suppressed a level of complexity by introducing the
self-adaptive component model K-Component, which
enables individual components to adapt to changing
environments through a complex decentralized coor-
dination, model which simplified the integration of
multiple objectives and allowed groups of components
to collectively adapt their behavior. Component-based
systems bring dynamicity to local application, enabling
pieces of softwares and relations between them to be
added, removed, or updated at run-time.

3.2 Service-oriented systems

The main features of service-oriented systems are their
flexibility in handling dynamicity and their suitabil-
ity for the integration of new devices. They are also
relevant to and very used by distributed computing.
Services can appear or vanish on a network, notifying
the whole system, and reconsidering the services used
for the application that best suits the needs. From a
certain point of view, this notification can be considered
as being part of an event-driven system, but this is only
made by the services repository, and services cannot
send applicative events to other services.

Our aim is not that different from the aim of
the nondistributed lightweight service architecture
OSGi [24]. However, this approach remains Java-
dependent, and therefore, the model stays, to some
extent, confronted to object-oriented architecture in-
terdependency. We draw from the CORBA standard,
which was a precursor of services-oriented architec-
tures used for distributed computing, enabling differ-

ent languages and different computer architectures to
share data and act in the same application. Later, Web
services came up, providing this kind of wider software
interoperability using Web standards.

A second point is lacking in services-oriented sys-
tems when used in pervasive systems: they rely on a
centralized architecture, like the CORBA broker, or
a UDDI repository for Web services. Mobile systems
can appear on several networks, often wireless and not
persistent, and need a more flexible approach.

Furthermore, [39] provided logical primitives to
transfer codes to reconfigure software systems and en-
hance robustness. Robinson et al. [30] focused on the
configuration and integration of devices in perva-
sive computing scenarios, which include self-organizing
configuration for pervasive computing environments
supporting unskilled installation. They coupled a
domain-specific language (DSL) and middleware, but
with a centralized approach. Service-oriented systems
allow robustness, coordinating services in a program-
matic decentralized collaboration.

3.3 Event-driven systems

Event-driven architectures have been used for self-
adaptive or reconfigurable systems for many years.
Their common distinctive feature is the weak cou-
pling of components, meaning that individual com-
ponents do not know the components realizing their
required functionalities at design time. The information
is set at runtime either by the component itself or
another one. The first case is illustrated by the reflective
component model OpenCOM v2, where new types of
components can be added and function calls can be
altered by modifying a process vtable [10]. The second
case is known as the principle of inversion of control
that has been experimented on in a lightweight con-
tainer in [4, 14] as an interactive adaptive system. The
third case appears in distributed systems, like service-
oriented architectures, and even more nowadays with
the outcome of event-driven SOA [26]. Events serve
well such distributed black-box systems, highly loose-
coupled. Two points make events helpful in ubiquitous
computing middlewares: loose coupling and reactivity.
When request/response communications are used in
an application, when it needs to be adapted, all the
irrelevant method invocations need to be reconfigured.
Thanks to events and their high decoupling, entities do
not have to explicitly manage communications between
them. This is also a consequence of inversion of control.
Weak-coupling offers a high degree of expandability,
but its relatively low level of abstraction does not allow
complex software design.

202 Ann. Telecommun. (2009) 64:197–214

Events also increase reactivity of applications. It
was generally used in parts of applications interacting
with users, like GUIs. Now it is used for discovering
services as soon as they appear on a network, notifying
changes in states of pieces of softwares, or get a better
reactivity when creating applications from devices of
the ubiquitous environment. Event-driven systems are
not suitable for very complex designs, but they are ade-
quate for reactivity, dynamicity, and high adaptability.

3.4 Aspect-oriented systems

We consider that the three previous paradigms are
made to be used for composition, creating the system
behavior and initial structure. Aspect-oriented pro-
gramming can be seen as an orthogonal approach, used
for adaptation.

Aspect-oriented systems [21] consist of a set of join
points, pointcuts, advice, and weaving loops, which op-
erate at runtime or design-time to construct or modify
an executable program from cross-cutting concerns. It
cannot exist alone, and is most often associated with
object-oriented programming. The trend consists now
in considering adaptations as cross-cutting components
woven as classical AOP aspects. David and Ledoux
[16] designed a DSL and expressed adaptation concerns
as aspectual components in order to monitor self-
adaptive systems. He also proposed to express point-
cuts in terms of binding scripts. However, this approach
does not provide a collaborative combination and does
not avoid semantic conflicts by the bindings declaration.
Aspect-oriented systems provide an enhanced modu-
larity as they include separation of concerns, but are not
intended to achieve service collaboration.

3.5 Paradigms of existing middlewares

To link these paradigms with real-world approaches,
we list what paradigms are used by the middlewares we
studied in Section 2.2 (Table 2).

• Gaia relies on services with events and compo-
nents, but in a centralized approach. This is not
convenient for networks that change frequently.

Most ubiquitous applications must deal with vari-
ous networks and intermittent connections. Thus,
centralized approach might be impracticable. Be-
cause brokers might be unreachable, in centralized
approaches, parts of the applications could be inef-
fective. Thus, basically distributed solutions, with,
for example, a dynamic discoverable registry or
broker, like in WS-Discovery, seem to be the only
efficient way to deal with ubiquitous applications.

• ExORB uses microbuilding blocks, which behave
close to a component architecture for the modular-
ity and updatability; it has a component structure
but is called ORB like object request broker. How-
ever, the communication protocols used look more
like services ones. Therefore, it is not very clear
what paradigm is used by ExORB.

• CORTEX uses objects as a main entity of its
network and events for communications between
them.

• Aura finds services in the environment and notifies
the middleware using events for context changes.
However, it is built with components.

• Oxygen uses a distributed object-oriented database
to upgrade software, improve performances, and
add features easily.

• SATIN defines a component model but does not
rely on any other paradigm.

• DoAmI uses CORBA services only.
• SCORPIO performs adaptations using structural

modifications of a component assembly.

We see that approaches used to create middlewares
for ubiquitous computing can vary a lot for the para-
digm used. But what are the advantages of using one
paradigm or another, or even several at a time? The
two following subsections will answer this concern.

3.6 Comparison of paradigms characteristics

Table 3 summarizes relative strengths and weaknesses
of studied paradigms. We see that we cannot get all
ubiquitous computing requirements if we do not use
both component, service, and event paradigms. Aspects

Table 2 Paradigms used by
middleware approaches

Events Services Components Objects Aspects

Gaia x x x
ExORB x
CORTEX x x
Aura x x
Oxygen x
SATIN x
DoAmI x
SCORPIO x

Ann. Telecommun. (2009) 64:197–214 203

Table 3 Comparison of
self-adaptive approaches

Component Service Event Aspect

Adaptation x x
Heterogeneity x
Extensibility x
Scalability x x x
Security x x x x
Reactivity x
Mobility x x
Discovery x
Updating x x

are orthogonal to these, and give full strength to com-
ponent assembly adaptations.

Components are best suited for adaptation, due to
their modularity and dynamicity, as a support for aspect
to weave on. Heterogeneity or communication proto-
cols, devices, and languages can be reached using Web
services. Reactivity needs a publish/subscribe mecha-
nism to broadcast information to several services of the
environment at the time it gets available.

3.7 Multi-paradigm systems

Multiparadigm systems are born to take advantages
of several paradigms at the same time. Table 3
(Section 3.6) has proved that using only one paradigm
cannot achieve full support of ubiquitous computing
requirements.

For example, services-oriented systems and event-
driven systems have given birth to services for
devices [12] like JINI [7]. They give services the abil-
ity to send events by themselves to any other service
which want to receive them. They also break the need
for a centralized repository and make fully distrib-
uted architectures, using multicast discovery. To enable
interoperability and standardization brought by Web
services, Web services for devices were created, the
two currently existing being UPnP [20] and DPWS [33].
However, creating applications based on Web services
for devices only may be quite nonevolutive since dis-
covered services, or, more exactly, their interface, have
to be known at code time.

Another example of combination is SCA, which
stands for service component architectures [3]. SCA
handles components and services, using components to
manipulate service orchestrations and create higher-
level services. However, components used in this model
cannot be classified as lightweight components since the
framework provides life cycle operations such as lazy
instanciation, or a reduced transaction management,
called conversations.

Several combinations of components and aspects
have also appeared. For example, Aokell [34] uses
aspects to create component containers (called “mem-
branes” in the Fractal component model). This only
adds nonfunctional properties handling using aspects.
The same team has created Fractal Aspect Component
(FAC) [28], which uses a symmetric solution represent-
ing aspects by components. With FAC, aspects can in-
tercept messages between components since they fit in
the controller but do not handle conflicts and structural
adaptation of the assembly when inserting or removing
aspects. Pointcuts can be specified as a method name,
component name, or return type, using regular expres-
sions. Aspect-Oriented Component Infrastructure [36]
is another approach using aspects to adapt component-
oriented middlewares, using EJB, which makes it quite
heavy for pervasive computing, but its main drawback
is that they use grey-box components and violate the
interface access only.

The most promising approach is Self-Adaptative
Fractal Components [16], though it is autonomic-
computing oriented. It defines a structural–adaptable
component platform, using aspects as adapting tools.
Aspects advice represent a list of structural modifica-
tion to be applied on the base assembly. The pointcuts
can be defined by two kinds of events: changes from
the execution context (e.g., memory or attribute of a
resource) and changes from the execution of the target
application itself (e.g., reception of a message or cre-
ation of a new binding).

Other works on adaptive middlewares are using as-
pects and services. Services and aspects are getting on
the front of the scene; lots of works are appearing in
pervasive computing or context-sensitive worlds [22,
29]. Service fits well with handling of devices in the
environment, or mobile-computing issues needing dy-
namic discovery, and in these works, aspects bring an
adaptation layer to services, respecting cross-cutting
concerns between the functional code and adaptation
code.

204 Ann. Telecommun. (2009) 64:197–214

4 Our middleware model: WComp

We propose a middleware approach called WComp,
taking into account, at best, all the previously explained
principles for ubiquitous computing. For that matter, it
federates three main paradigms:

• Event-based Web services paradigm: we distinguish
two kinds of services: composite services, which are
services whose implementation calls other services.
They are opposed to basic services, whose imple-
mentations are self-contained and do not invoke
any other services. They are generally Web ser-
vices for devices like UPnP or DPWS (Section 3.7).
These services handle heterogeneity, extensibility
with the reuse of composite services, scalability,
security using Web services security standards like
WS-Security, reactivity since they use event-based
communications, dynamic decentralized discovery,
and mobility. Ubiquitous applications are then a
graph of event-based Web services.

• Lightweight component-based paradigm inside
composite Web services: a composite service is
based on an internal lightweight components as-
sembly to manage composition between other
event-based Web services and to design the in-
terface of a new higher-level composite service. We
call this paradigm service lightweight component
architecture (SLCA) [19], which is based on
events, and a minimum of extra-functional prop-
erties unlike SCA [3]. A composite service is
then a WComp container managing a dynamic
assembly of lightweight WComp components and
providing an event-based Web service interfaces.
Components handle the high dynamicity of the
model, providing a way to be structurally adapted.
They also address reactivity, since they use event-
based communications. A composite event-based
Web service is dynamically managed using an
internal lightweight components assembly.

• Adaptation paradigm using the original concept
called Aspect of Assembly (AA): this concept
allows us to prepare kinds of independent and
crosscutting schemes of adaptation dealing with
separation of concerns, logically mergeable in case
of conflicts and applicable to every composite Web
service of the application, not necessarily known (a
priori). Aspects provide adaptation to the model,
which is structural, since we modify the internal
component assembly of composite services without
modifying black-box base components.
Adaptations, as a set of AA, are designed without
knowing event-based Web services of the applica-

tions. They are applied (weaved for AA) to the set
of event-based Web services of the applications at
runtime implementing required adaptations.

Thus, our middleware allows us to adopt both ways
to dynamically design ubiquitous computing applica-
tions. The first implements a classical component-based
compositional approach, using SLCA, to design higher-
level composite Web services and then increments the
graph of cooperating services for the applications. This
approach is well suited to design the applications in a
known, common, and usual context (Fig. 1). We call
such a compositional approach composition for higher-
level services.

The other way uses a compositional approach for
adaptation using AA, particularly well-suited to tune a
set of event-based Web services in reaction to a partic-
ular variation of the context or even new preferences
of the users. We call such a compositional approach
composition for adaptation.

4.1 Composition for higher-level services with WComp

WComp is a lightweight component-based approach to
design composite Web services (Fig. 2). A composite
service encapsulates a WComp container, managing a
dynamic assembly of lightweight WComp components.
The WComp component model is a slightly modified
JavaBeans model adapted to other programming lan-
guages with the concepts of input and output ports,
properties, and hierarchy. Still an instance of a compo-
nent type, but not necessarily serializable, a component
has a unique name and an interface composed of two
sets of events and methods (event’s names are prefixed
by ‘ˆ’). Types of components define their interfaces. We
consider C the set of component instances, E the set of

Fig. 1 Graph of event-based Web service

Ann. Telecommun. (2009) 64:197–214 205

Fig. 2 Composite event-based Web service

events characterized by their unique name, and M the
set of methods. We gather the declaration of events and
methods in the term “port.” We consider a set of links
L, which are lists composed of an instance event and a
type method. Then, an assembly consists of a subset of
C and L. The container component implements an API
to dynamically control this assembly and, consequently,
the addition and removal of elements in C and L.
Roughly speaking, we use events—also known as late-
bindings, “push” mechanism, or inversion of control—
in lightweight containers for communications between
components, what we can call connectors in our model.
This is now a shared characteristic of adaptive compo-
nent models [9].

A composite service provides both service interfaces.
A first interface concerns the new functionalities pro-
vided by the composite Web service (called functional
interface) and the second one allows us to dynamically
modify the internal assembly of WComp components
(called structural interface).

The Functional interface exports events and meth-
ods of the internal assembly using probe components.
The insertion of a new probe component dynamically
modifies the functional interface and the description of
the corresponding composite service.

The structural interface allows an external client ser-
vice to dynamically modify the internal assembly of the
service by adding or removing links and components. It
is possible for the external client service to be another
composite service using a proxy component on this
service.

Hierarchical composition of services Remote event-
based Web services can be handled in a WComp
lightweight assembly by using a lightweight proxy com-
ponent. This is how a hierarchical relationship can be
constructed in the WComp model.

4.2 Composition for adaptation with WComp

In our first model of WComp [14] (a middleware for
ubiquitous computing), we have introduced an adap-
tation mechanism based on sets of AAs. An AA can
either be selected by the user or triggered by con-
text changes in a self-adaptive process. Multiple se-
lected AAs are then composed by a weaver according
to logical merging rules in a high-level specification
(Section 5). The result of the weaver is projected in
terms of pure elementary modifications (PEMs)—add,
remove components, link, unlink ports. Components
are then involved in different interaction patterns. We
detail the AAs principles in the next section.

5 Aspects of assembly

We propose a component-oriented integration that
takes into account the adaptation characteristics in
(Section 2.1). Our architecture is twofold: it consists
of an extended model of AOP for adaptation advices
and of a weaving process with logical merging. We
implemented a toolkit (Fig. 3) that includes AAs as the
central concepts. We introduce here concepts used in
the rest of the paper:

Base assembly: an assembly of components.
Join point: components and ports of the base assembly.
Pointcut: a description of a set of join points for a particular
adaptation advice.
Adaptation advice: adaptation advice describing architectural
reconfigurations.
Weaver: mechanism integrating advice according to specified
pointcuts selecting join points from a base assembly. It is also
responsible for the merging of conflicting advice.

An AA is structured as an aspect with a pointcut and
advice (adaptation advice), which is specified in a DSL
using interaction specification firstly defined in [11].
This DSL has then been enhanced in [14] to integrate
event-driven declarations. With this present approach,
self-adaptive pervasive software developers can reason,
plan, and validate AA-based assemblies at all stages of
the development phase. Using logical predefined val-
idation rules, logical configurations’ incompatibilities
can be detected at runtime.

206 Ann. Telecommun. (2009) 64:197–214

Fig. 3 AA definition

Advice In AAs, the advice is not a piece of code
that will be weaved into components. It defines a set
of component instances (C) and links (L) that will be
weaved inside the targeted assembly of components.

We present an example of advice that is used in a
practical situation for raising an alarm when someone
has not been visible for a time or is out of reach. The
advice, called “Ex,” redefines an input and an output
port and is applied to a set of components symbolically
represented by the observed and alarm variables:

1 ADVICE Ex (observed, alarm):
2 observed.^Out ->
3 (IF (alarm.Check) CALL)
4 alarm.Check ->
5 (alarm.Start ; CALL)

Description Firstly, it redefines the ˆOut output of the
observed component, which specifies that actions possi-
bly defined in the base assembly are executed only if the
alarm component authorizes it. Secondly, it redefines
the Check input of alarm, which specifies that, before
the execution of the input possibly required by other
components, alarm must be started, i.e., the Start input
must be executed.

We defend a minimalistic approach in order to be
able to cope with scalability. For this reason, those spec-
ifications are translated into a set of PEM. Any mod-
ification can be regarded as an assembly-to-assembly
transformation. Thus, the AA designer depicted in the
bottom window in Fig. 3 communicates its PEM to a
container (Section 4.1).

Pointcut We define pointcut descriptions as sets of fil-
ters on base assembly metadata—component ID, their

types, etc. Those filters construct a list of parameters
satisfying the list of variables of an advice for the latter
to be integrated in the base assembly. If only one
list is constructed, the advice is integrated only once
in the base assembly and the symbolic variables are
syntactically replaced in the advice to match the base
assembly join points. If several lists are constructed, the
advice is duplicated and each set of variables, with one
occurrence of each join point, are respectively replaced.
For our experiments, we choose for convenience to
express filters in the AWK language [5] and define a
simple grammar to make AWK responses correspond
to advice variables: “<variable>:=<AWK filters>;...”
For example:

1 observed := /user*/ ;
2 alarm :=
3 /err*/ { a[substr($1,3)]=$1 }
4 END {for(i=1;i<=NR;i++){print a[i]}};

Description The observed variable is matched against
component ID starting with “user” and alarm, against
those starting with “err.” The second filter (lines 3–
4) is an AWK program that, more than matching the
beginning of component IDs, actually sorts them by
alphanumeric order. Line 3 stores the IDs in a table,
depending on their suffix. At the end of the matching
test, the program displays stored IDs sorted.

The order of the components is not specified and
can be random when a specific program in AWK to
sort them is not written. In this example, the first
pointcut is unordered and the second is ordered. We
consider a base assembly of five components: err1, err2,
err3, user1, and user2. The advice is duplicated into
two applicable advices (Ex1, Ex2). The global result

Ann. Telecommun. (2009) 64:197–214 207

is a two-dimensional table where duplicated advices’
parameters are represented in the columns:

user2 user1 ← this line is not sorted
err1 err2 err3 ← this line is sorted

Consequently, in the two duplicated advices Ex1 and
Ex2, the parameters of Ex1 and Ex2 are not associated
with the parameter with respectively the same ID: user2
is, rather, associated with err1 and user1 is associated
with err2.

1 ADVICE Ex1(user2, 1 ADVICE Ex2(user1,
err1): err2):

2 user2.^Out -> 2 user1.^Out ->
3 (IF(err1.Check) 3 (IF(err2.Check)

CALL) CALL)
4 err1.Check -> 4 err2.Check ->
5 (err1.Start ; 5 (err2.Start ;

CALL) CALL)

The decision to integrate adaptation advice accord-
ing to specified pointcut follows the following rules: (1)
only the first complete columns of the table become
parameters of the duplicated advices (in this example,
only the two first columns become parameters). (2) The
order of the ID in the first line {user2, user1} can change.
Therefore, to apply an advice deterministically, lines
must be sorted.

Weaver with logical merging The logical integration
rules are represented by a matrix representing the two-
by-two merging of operators. Indeed, advices are de-
scribed using a set of operators and connectors names.
We created a set of seven operators (inspired by previ-
ous works [11]), fitting most needs for adaptation of the
behavior of the overall application. Future works will
focus on other specific domains for composition, like
HMI, for example.

We give only a few examples of logical rules in Fig. 4,
but all merge algorithms between operators are well
defined. We explain the weaving of two advices called
“Ex” and “AA0” (lines 1 and 5 below). Hypothesis: two
pointcuts, respectively specifying the “observed” vari-
able and the “worker” variable, are in conflict (produce
the same join points):

1 ADVICE Ex (observed,alarm):
2 observed.^Out ->
3 (IF (alarm.Check) CALL)
4 alarm.Check -> (alarm.Start ; CALL)

5 ADVICE AA0 (producer,worker,consumer):
6 producer.^Out -> (worker.In)
7 worker.^Out -> (consumer.In)

Fig. 4 Operator merging matrix

Merging example The specification rules (SRs) at
lines 4 and 6 are not conflicting. Thus, they are copied
in the resulting advice (lines 5 and 6 below). How-
ever, the SRs at lines 2 and 7 are conflicting because
they redefine the same output ˆOut of the confounded
observed/worker component. Therefore, their respec-
tive specification programs are logically merged and
the resulting “AA0+Ex” advice is calculated using the
merging matrix (Fig. 4). The “+” operator corresponds
to the unordered couple of operations to execute. The
merging process replaces CALL at line 3 of “Ex” by
CALL + consumer.In in “AA0+Ex.” The resulting AA
is then translated into a set of PEMs. For instance,
IF operator is interpreted as the addition of a generic
component of type IF.

1 ADVICE Ex+AA0 (observed,alarm,
2 producer,consumer):
3 observed.^Out ->
4 (IF(alarm.Check) {CALL + consumer.In})
5 alarm.Check -> (alarm.Start ; CALL)
6 producer.^Out -> (observed.In)

In more complicated merging cases, the merging
process can be explained as follows: we parse an advice
into a semantic tree in which nodes are operators and
leaves are components ports. When weaving two ad-
vices, operators are merged two by two according to the
operator merging matrix, propagating the merge down
to the leaves. This matrix verifies associativity, com-
mutativity, and idempotence properties in the overall
merging process. Thus, the order in which more than
two advices are merged is not important at this level,
and we can write this equivalence: Ad1 ⊗ Ad2 ⊗ ... ⊗
Adn = (((Ad1 ⊗ Ad2) ⊗ ...) ⊗ Adn [13]. Multiple ad-
vices merging results, finally, in a single merged advice

208 Ann. Telecommun. (2009) 64:197–214

semantic tree, which will be translated into a set of
PEMs.

We saw the AA-specific design process as well as one
cycle of the adaptive pervasive application. In the next
section, we present the process cycles used to perform
self-adaptation.

6 Validation

We comment on the results of a few experiments on
sets of randomly generated assemblies. The purpose
is to show the advantages of AAs while evaluating
additional costs concerning adaptation time of compos-
ite Web services in ubiquitous applications. Moreover,
these experiments will allow us to identify parameters
of the model that will be explained for the duration of
the pointcut matching process and validate the adapta-
tion process.

In this section, we present the first part of a step-
by-step model of the weaving process using AAs. We
draw some experimental results in order to verify and
identify parameters of a simple performance model
we propose to predict pointcut matching performance
under certain conditions.

6.1 Step-by-step model of the weaving process

The assembly size is the number of components and
links. The weaving process is separated in four steps
(Fig. 5): selection of AA (1), pointcut matching (2), com-
position and merging of AAs (3), and translation and
modifications from an AA to elementary modifications
(4) for the container of the corresponding composite
service.

Fig. 5 Adaptation cycle with AA

First of all, the composition process (3)—logical
merging of AAs—depends on the advice of the AAs.
Indeed, even if we can assign a measure to an AA in
terms of the sum of the number of links and compo-
nents that are necessary for its description, we remain
unable to predict the rules that would be processed
in order to compose and possibly merge the AAs
together. As an example, terminal rules, such as the
“msg+call” rule, cost less than recursive rules, such as
the “if(...)+if(...)” rule in (Fig. 4), and rule selection
depends on AA advice specification. It is difficult to
predict the content of an AA, which depends on many
factors (application domain, scenario complexity, etc.).
Therefore, we cannot provide a model of the compo-
sition time process yet. Finally, modification and trans-
formation model (4)—AA to PEMs and interpretation
by the container—exploits composition results. This is
the reason why we cannot provide a model for it yet.

However, pointcut matching (2), together with selec-
tion (1) (which gives join points and specifies duplica-
tions of AAs), are processes that perform computation
on sets of components and AAs. Thus, their duration
varies according to our initially defined parameters
(program size and AA size). We may thus design a
simple model.

Let Dp be the duration of the pointcut matching
process. Let a1, . . . , a2 be the model parameters (spe-
cific to a particular type of hardware) and c the number
of components in the base assembly.

6.1.1 Pointcut matching

Opposed to standard adaptation mechanisms, AAs al-
low more generic modifications by matching the points
at which adaptations occur inside any composite ser-
vice. Thus, this matching process is what has to be
explicitly modelized.

Let Ainit be the number of initial AAs (those in the
repository). We note di the number of duplications of
the AA number i. We have Ainit AAs, and each of
them is associated with a pointcut specification. Hence,
each pointcut gives the number di of duplications. Each
duplication is processed in order to calculate the new
advice of the AA.

The calculation consists in an AWK processing. We
propose here a very simple model of the AWK proces-
sor, saying that it behaves like c2, where c stands for the
number of components. We have the following model
for pointcut matching:

Dp = a1.

Ainit∑

i=1

(di + 1) ∗ c2 + a2

Ann. Telecommun. (2009) 64:197–214 209

The quantity di is not easy to determine because it
might depend on usage or characteristics of the appli-
cation. Typically, this quantity depends on how com-
ponents appear in the system. We have experimented
on a probabilistic model and we have estimated a value
for di.

This model, however, might not be sufficient for
relatively small values for c because it is rather simple.
However, we obtain a quite good approximation, as
shown in the following sections.

6.2 Experimental results

We have measured the pointcut matching duration and
confronted it with our simple model. In this section,
we describe firstly the experimental conditions under
which we have performed the experiment. Then, from
the results, we propose an identification of the parame-
ters of the model.

6.2.1 Pointcut matching example

The experiment was performed on an Intel T2300
1.66 GHz processor. During this experiment, compo-
nents appeared randomly according to a binomial law.
We can already infer that the number of duplications
noted di in the previous section is dependent on this
law.

On this system, we programmed an application as
follows. Every tenth second (for about 20 s), a new
component among two categories lx and sy is randomly
added to the base assembly and their indices x and y
are incremented each time from 0 to 200. Every time a
new component is added, the pointcut matching process
is executed and a set of AAs is selected and applied.
To keep the example simple, we defined only one AA,
called aa0, but able to duplicate when specified.

We explored two cases: the first case consists in
disallowing aa0 to duplicate; the second case allows
it. We confront our model (in green in the following
figures) with the real-world measures (in red).

1) Without duplication The first case we analyze
is without duplication, and we obtain the graphs in
(Fig. 6). This means that, for every aspect i, the number
of duplications di is zero, and we only use one AA. So,
the formula is then simplified as follows:

Dp = a1.c2 + a2

We draw in (Fig. 6) the experimental result with
the predicted model. Although simple, we can see that
the model fits the experimental data quite well. This

Fig. 6 Experimental results without duplications

first experiment permits us to determine the model
parameters. We found a1 = 280.10−9 and a2 = 2.10−3.

2) With duplication The second case consists in sys-
tematically duplicating the AA. However, in such a
case, we need to know how di behaves. As a matter
of fact, we know that a component appears randomly,
chosen among lx and sy. Therefore, the AA has a
probability of being duplicated of 1

2 . This is why we
take di = 1

2 , which is the probability of getting the right
parameter in order for the AA to be duplicated. After
simplifications, we obtain the following formula for
the performance model and reuse the parameters we
determined in the previous experiment:

D′
p = a1.

3

2
.c2 + a2

Figure 7 shows that the parameters are correct.
Those parameters are characteristics of the hardware
system. We can see irregularities in the experiment.
This is due to memory collection.

6.2.2 Parameters identification example

We have identified the parameters of our model for
a T2300-based computer. By bringing the results of
the experiment and the model face to face, such as
in (Fig. 6), we obtain an approximation of the model
parameters (a1 and a2). We obtain approximately for
the two cases the values for a1 and a2 that remain the
same for the two experiences and, thus, characteristics
of the hardware system:

a1 = 280.10−9 and a2 = 2.10−3

210 Ann. Telecommun. (2009) 64:197–214

Fig. 7 Experimental results with duplications

7 Demonstration of self-adaptation cycles

Self-adaptation consists in reacting to modifications
operated by the user or the environment. Self-
configuration is processed by the decoupled AA de-
signer. We describe the user-driven approach and the
process, which permits us to adapt the application to its
environment (Fig. 8).

The user-driven adaptation consists in (de-)selecting
AA in order to integrate or erase some behaviors
and functionalities in the system. The user can also
intervene on the base assembly and operate directly
on the assembly. Concerning the area of end-user

Fig. 8 Context- and user-driven self-adaptation using AAs

programming, we distinguish expert and end users.
Expert users can design new AAs for new situations,
whereas end-users do not have to create AAs, but only
select predefined AAs. In that case, the interaction with
the user is simplified.

The context-driven adaptation consists in scanning
the underlying infrastructure periodically in order to
verify if devices are still present in the environment.
New devices can asynchronously inform the system of
their presence by broadcasting a notification. There-
fore, when a device is removed from the system’s en-
vironment, the software component representing the
device is unlinked and removed from the base as-
sembly. Conversely, when a new device appears, a
new software component representing this new de-
vice is added to the assembly. Consequently, the self-
adaptation process consists in detecting those structural
changes in the base assembly and each cycle of the
process checks if either new AA are applicable, or is
applied AA are not valid anymore. This depends on
whether required components to an AA are present or
not. If a notable change occurred, it recalculates PEMs
to be applied on the base assembly.

However, two cases should be considered when an
adaptation calculation occurs. The base assembly can
be empty (at least, with no links between components
ports). In such a case, the application—more precisely,
the interactions between components—is constructed
by iterations of the application of AAs. Conversely,
the base assembly can be composed of interconnected
components. In that case, before adapting the assembly
by iterations of application of AA, the base assembly
(under the form of ADL) is translated into an AA,
which is always selected to be composed so that the
composition of PEMs takes into consideration this ini-
tial state. For example, the advice “AA0” explained in
Section 5 is the AA result of the transformation of a
base assembly.

Finally, the adaptation process is projected on a
set of services and composite services as defined in
Section 4.1 and is considered as a distributed system.

To illustrate the principles of described mechanisms,
let us take an example of an ubiquitous application. The
example we will describe is based on a multidevices
application to send text messages through a network.
There are three kinds of communication modes: Wifi or
GSM connection and, when we lack any infrastructure,
the application can store messages and send them to a
cache system.

The described application is developed with basic
components or services and the adaptation is made
using AAs to reorganize the connections between en-
tities, instanciate new software components, or interact

Ann. Telecommun. (2009) 64:197–214 211

(a) Before Adaptation (b) After Adaptation

Fig. 9 Adaptation based on Wifi activation (a, b)

with new services. We have grouped aspects of assem-
blies into three categories:

• Basic functionalities: These AAs are used to build
the application upon the basic available services
and components. Each AA specifies the method to
weave to add a new functionality (Wifi or GSM
communication or caching system) to the existing
application.

• Energy policy: We have defined three AAs based
on power consumption policy:

– Minimal power consumption: The Wifi and
GSM devices will be disconnected from the
application and all the communication will be
routed to the cache system to store messages.

– Standard power consumption: Messages are
sent by SMS over the GSM network.

– No limitation to energy consumption: Wifi is
used and all messages are routed to this device.

• Adding new functionality: The functionality we
want to add to our communication application is to
be able to use it hands-free. To achieve this, we will
define two kinds of aspects:

– Voice control: This module is dedicated to bind
a voice control system to activate part of the
user interface.

– Voice input: This module is used to achieve
speech to text recognition to allow input text
messages to the system.

All these aspects of assemblies are applied to the
initial defined application to dynamically build the con-
nections between components or services to give the
right behavior. “Basic functionalities” are selected by
the context exclusively (a user cannot decide to use a
Wifi communication in the infrastructure if not present
in the environment), but all other sets of AAs can be
activated by user or by context of the application.

In the first example presented by Fig. 9, the ap-
plication sends all messages via the Wifi connection
(Fig. 9a). When the user wants to minimize power
consumption to maximize the autonomy (user-driven
adaptation) or when the battery is low (context-driven
adaptation), the AA defined in the “Energy Policy”
section modifies the application to send all data to the
cache component (Fig. 9b).

The second example presented by (Fig. 10) shows
the application adaptation provided by AAs dedicated
to “New Voice functionality.” The adaptation consist
in adding new software components and modifying
the connections between components and services to
add the new functionality. All modifications result in
structural modifications on the assembly. Defined AAs
for this example can be found in Section Annexe.

The described example has been implemented using
WComp1 and AAs paradigms. This application is also
included in a framework we have developed for the
study of mobile computer appliances in simulated en-
vironments, called Computer Ubiquarium.2 The Ubi-
quarium3 comprises various devices and services, which
can be discovered and composed at runtime. Those
devices can either be virtual devices (3D scene objects
in which the user is immersed), or physical devices
worn by the user or present in his/her immediate en-
vironment. All devices of the Ubiquarium, physical or
virtual, are based on Web services for Devices that
provide a uniform type of interface.

We can also add that the WComp middleware was
created and used in French national research projects,

1http://rainbow.i3s.unice.fr/wcomp/.
2From Latin Ubique, everywhere, with the suffix rium, meaning
location and structure. Hence, Ubiquarium means: “a location
or a structure in which the computer is everywhere and in
everything”.
3http://rainbow.polytech.unice.fr/ubiquarium/.

http://rainbow.i3s.unice.fr/wcomp/
http://rainbow.polytech.unice.fr/ubiquarium/

212 Ann. Telecommun. (2009) 64:197–214

(a) Before Adaptation (b) After Adaptation

Fig. 10 Adaptation to pilot application with voice (a, b)

RNTS Ergodyn, RNTL Faros, and RNTL Continuum,
to provide experimentation prototypes for real case ex-
amples. The first aims at the creation of user-centered
adaptation for people with disabilities. The second aims
at the application of contracts in service-based appli-
cations. Finally, the third aims at user-centered service
continuity in ubiquitous computing environments. This
demonstrates the ability of the middleware to be used
and extended to diverse domains. Indeed, other tools,
like the AA designer, can be created in composite
services and can be used to provide new methods of
adaptation.

8 Conclusion

We first studied features and characteristics of ubiq-
uitous computing middlewares and paradigms, which
gave us ideas of what was mandatory and lacking
in ubiquitous computing. As a result, we introduced
the WComp middleware approach, which federates
three main paradigms: an event-based Web services
approach, a lightweight component-based approach to
design composite Web services, and an adaptation ap-
proach using the original concept called AA. Then, we
introduce both ways to dynamically design ubiquitous
computing applications. The first implements a clas-
sical component-based compositional approach, using
SLCA, to design higher-level composite Web services,
and then increments the graph of cooperating services
for the applications. This approach is well suited to
design the applications in a known, common, and usual
context. The second way uses a compositional approach
for adaptation using AA, particularly well-suited to
tune a set of event-based Web services in reaction
to a particular variation of the context, or even new
preferences of the users. We call such compositional
approach composition for adaptation. In such a process,
AAs are either selected by the user or triggered on

context changes and composed by a weaver with logical
merging of high-level specifications. The result is then
projected in terms of PEMs of component assemblies.
We finally commented on results indicating the expres-
siveness and the performance of such an approach,
showing empirically that principles of aspects and pro-
gram integration can be used to facilitate the design of
adaptive application.

Our perspectives get organized around four ways.
Firstly, we plan to separate the DSL from the AA
concept in order to specify advices by means of as-
semblies of components making up “good practice”
advices. Secondly, we want to explore a new and gener-
alized AA-merging algorithm allowing the expert user
to define his/her own merging strategies. At the same
time, we will ripen the cost model of the composition
step. Finally, we will press on our works on the AA
to introduce a trigger mechanism to the AA selection
mechanism.

Annexe: AAs

Adding new functionalities: vocal interface

Vocal control AA

POINTCUT
button:=/button*/
micro:=/microphone*/

ADVICE Vocal_Control(button, micro, vocal_push):
vocal_push : ’WComp.Services.SpeechCommand’;

micro.^SendAudioFile -> (
vocal_push.TranslateButtonCommand

)

vocal_push.^SendButtonCommand -> (
button.PerformClick

)

Ann. Telecommun. (2009) 64:197–214 213

Vocal input

POINTCUT
box:=/textBox*/
micro:=/microphone*/

ADVICE Vocal_Input(box, micro, vocal_input):
vocal_input : ’WComp.Services.SpeechToText’;

micro.^SendAudioFile -> (
vocal_fill.TranslateText

)

vocal_input.^SendText -> (
box.set_Text

)

References

1. Computer Science and Artificial Intelligence Laboratory
(2004) Mit oxygen project. http://oxygen.lcs.mit.edu/

2. WCOP’96 (1996) Summary of the WCOP’96 workshop in
ECOOP’96, Linz, July

3. Open SOA (2006) Service Component Architecture spec.
http://www.osoa.org/

4. Ahmed M, Ghanea-Hercock R, Hailes S (2006) MACE:
adaptive component management middleware for ubiquitous
systems. In: Proc. of the 4th int. workshop on Middleware for
perv. and ad-hoc comp. ACM, New York, p 3

5. Aho AV, Kernighan BW, Weinberger PJ (1988) The AWK
programming lang. Addison-Wesley, Reading

6. Anastasopoulos M, Klus H, Koch J, Niebuhr D, Werkman
E (2006) DoAmI—a middleware platform facilitating re-
configuration in ubiquitous systems. In: System support for
ubiquitous computing workshop. at the 8th annual conf. on
ubiquitous computing (Ubicomp 2006), Irvine, September

7. Arnold K (ed) (2000) The JINI specifications, 2nd edn.
Addison-Wesley Professional, Reading

8. Bastide G, Seriai A, Oussalah M (2006) Adapting software
components by structure fragmentation. In: Proc. of ACM
symposium on applied computing

9. Bencomo N, Blair G, Grace P (2006) Models, reflective mech-
anisms and family-based systems to support dynamic con-
figuration. In: Proc. of the 1st workshop on MOdel driven
development for Middleware. ACM, New York, pp 1–6

10. Blair G, Coulson G, Ueyama J, Lee K, Joolia A (2004) Open-
COM v2: a component model for building systems software.
In: IASTED software engineering and applications

11. Blay-Fornarino M, Charfi A, Emsellem D, Pinna-Dery
A-M, Riveill M (2004) Software interactions. J Object
Technol 3(10):161–180

12. Bussière N, Cheung-Foo-Wo D, Hourdin V, Lavirotte S,
Riveill M, Tigli J-Y (2007) Optimized contextual discovery of
web services for devices. In: IEEE int. workshop on context
modeling and management for smart environments, October

13. Cheung D (2008) Dynamic adaptation weaving aspects.
Ph.D. thesis

14. Cheung-Foo-Wo D, Tigli J-Y, Lavirotte S, Riveill M (2006)
Wcomp: a multi-design approach for prototyping applications
using heterogeneous resources. In: 17th IEEE int. workshop
on rapid syst. prototyping, Crete, pp 119–125

15. Cheung-Foo-Wo D, Tigli J-Y, Lavirotte S, Riveill M (2007)
Self-adaptation of event-driven component-oriented Middle-

ware using aspects of assembly. In: 5th int. workshop on
Middleware for pervasive and ad-hoc computing (MPAC),
California, November

16. David P-C, Ledoux T. (2006) An aspect-oriented approach
for developing self-adaptive Fractal components. In: Softw
Comp, pp 82–97

17. Dowling J, Cahill V (2004) Self-managed decentralised sys-
tems using K-Components and collaborative reinforcement
learning. In: Proc. of the 1st ACM SIGSOFT workshop on
self-managed systems. ACM, New York, pp 39–43

18. Garlan D, Siewiorek D, Smailagic A, Steenkiste P (2002)
Aura: Toward distraction-free pervasive computing. In:
IEEE pervasive computing

19. Hourdin V, Tigli J-Y, Lavirotte S, Rey G, Riveill M (2008)
Slca, composite services for ubiquitous computing. In: ACM
t.b.p. (ed) Mobility’08: the 5th int. conf. on mobile technol-
ogy, applications & systems, September 2008

20. Jeronimo M, Weast J (2003) UPnP design by example. Intel
Press, May

21. Kiczales G, Lamping J, Menhdhekar A, Maeda C, Lopes C,
Loingtier J-M, Irwin J (1997) Aspect-oriented programming.
In: Proc. European conf. on object-oriented programming,
vol 1241. Springer, Berlin Heidelberg New York, pp 220–242

22. Lagaisse B, Joosen W (2006) True and transparent dis-
tributed composition of aspect-components. In: Middle-
ware 2006. LNCS, vol 4290. Springer, Berlin Heidelberg
New York, pp 41–61, November

23. Lyytinen K, Yoo Y (2002) Introduction. Commun ACM
45(12):62–65

24. Marples D, Kriens P (2001) The open service gateway ini-
tiative: an introductory overview. In: IEEE Commun Mag.
pp 110–114, December

25. Mascolo C, Hailes S, Lymberopoulos L, Picco GP, Costa
P, Blair G, Okanda P, Sivaharan T, Fritsche W, Karl M,
Rnai MA, Fodor K, Boulis A (2005) Survey of middleware
for networked embedded systems. Technical Report D5.1

26. Michelson BM (2006) Event-driven architecture overview.
Event-driven SOA is just part of the eda story. Technical
report. Feb

27. Niemela E, Latvakoski J (2004) Survey of requirements and
solutions for ubiquitous software. In: MUM ’04: Proc. of the
3rd international conference on mobile and ubiquitous mul-
timedia. ACM, New York, pp 71–78

28. Pessemier N, Seinturier L, Duchien L, Coupaye T (2006) A
model for developing component-based and aspect-oriented
systems. In: Springer (ed) 5th int. symposium on software
composition. LNCS, vol 4089. pp 259–274, March

29. Rho T, Kniesel G (2004) Uniform genericity for aspect lan-
guages. Technical Report IAI-TR-2004-4. Computer Science
Department III, University of Bonn, December

30. Robinson J, Wakeman I, Chalmers D (2007) Composing
software services in the pervasive computing environment:
Languages or APIs? J Perv Mobile Comput Apr

31. Roman M, Hess CK, Cerqueira R, Ranganathan A,
Campbell RH, Nahrstedt K (2002) Gaia: a middleware in-
frastructure to enable active spaces. In: IEEE Pervasive
Computing, pp 74–83, December

32. Roman M, Islam N (eds) (2004) Dynamically programmable
and reconfigurable middleware services. LNCS, vol 3231.
Springer, Berlin Heidelberg New York

33. Schlimmer J, Thelin J (2006) Devices profile for web services.
schemas.xmlsoap.org/ws/2006/02/devprof, Feb

34. Seinturier L, Pessemier N, Duchien L, Coupaye T (2006)
A component model engineered with components and as-
pects. In: CBSE. LNCS, vol 4063. Springer, Berlin Heidelberg
New York, pp 139–153

http://oxygen.lcs.mit.edu/
http://www.osoa.org/
http://schemas.xmlsoap.org/ws/2006/02/devprof

214 Ann. Telecommun. (2009) 64:197–214

35. Sivaharan T, Blair G, Friday A, Wu M, Duran-Limon H,
Odanka P, Sorensen C (2004) Cooperating sentient vehi-
cles for next generation automobiles. In: ACM MobiSys
2004 workshop on applications of mobile embedded systems
(WAMES 2004), June

36. Söldner G, Kapitza R. (2007) AOCI: an aspect-oriented com-
ponent infrastructure. In: WCOP 2007, twelfth int. work-
shop on component-oriented programming, at ECOOP 2007,
July

37. Verissimo P, Cahill V, Casimiro A, Cheverst K, Friday A,
Kaiser J (2002) Cortex: towards supporting autonomous and
cooperating sentient entities. In: Proc. of European wireless
2002

38. Weiser M (1991) The computer for the twenty-first century.
Sci Am 265(3):94–104

39. Zachariadis S, Mascolo C, Emmerich W (2006) The SATIN
component system—a meta model for engineering adaptable
mobile systems. IEEE Trans Softw Eng 32(11):910–927

	WComp middleware for ubiquitous computing: Aspects and composite event-based Web services
	Abstract
	Ubiquitous computing
	Approaches for adaptation in ubiquitous computing environments
	Middleware requirements for ubiquitous computing
	Existing middlewares

	Paradigms
	Component-based software engineering
	Service-oriented systems
	Event-driven systems
	Aspect-oriented systems
	Paradigms of existing middlewares
	Comparison of paradigms characteristics
	Multi-paradigm systems

	Our middleware model: WComp
	Composition for higher-level services with WComp
	Composition for adaptation with WComp

	Aspects of assembly
	Validation
	Step-by-step model of the weaving process
	Pointcut matching

	Experimental results
	Pointcut matching example
	Parameters identification example

	Demonstration of self-adaptation cycles
	Conclusion
	Annexe: AAs
	Adding new functionalities: vocal interface
	Vocal control AA
	Vocal input

	References

