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1 Introduction

In the past years, a consensus has formed that quantum information theory has an im-

portant role to play in the understanding of the AdS/CFT correspondence and quantum

gravity. One comparably recent avenue of study is the investigation of conjectured holo-

graphic measures of complexity. From a quantum information theoretic perspective, the

circuit complexity of a unitary operator U would be the minimal number of quantum-gates

(picked from a given gateset) needed to implement the operation U to within a specified

error tolerance ǫ. Similarly, the (relative) complexity of a state |ψU 〉 with respect to the

reference state |R〉, C(R, ψU ), would be identified with the minimal complexity of any

operator U that satisfies the equation

|ψU 〉 = U |R〉 . (1.1)

In [1, 2], a proposal was formulated to calculate the complexity of an operator U in geo-

metric terms, choosing a distance measure on the space of unitary operators and equating

the complexity of U , C(U), as the (minimal) distance between U and the identity operator

✶ according to this distance function.

Ideas relating to such notions of complexity entered the holography literature in [3–5],

see [6] for a recent overview. Curiously, there are more than one proposal for what bulk

quantity might be a measure of complexity in AdS/CFT. The first is the volume pro-

posal [4, 5, 7–9], according to which the complexity C of a field theory state with a smooth

holographic dual geometry should be measured by the volumes V(Σ) of certain spacelike

extremal codimension-one bulk hypersurfaces Σ, i.e.

C ∝ V(Σ)
LGN

, (1.2)

wherein a length scale L has to be introduced into equation (1.2) for dimensional reasons

which is usually picked to be the AdS scale [8–11]. The second proposal is the action

proposal [10, 11]

C =
A(W)

π~
(1.3)

whereinA(W) is the bulk action over a certain (codimension zero) bulk region, the Wheeler-

de Witt patch W. A third, less utilised proposal, is the volume 2.0 proposal of of [12]. It

suggests that holographic complexity may be given by the volume of the WdW-patch,

C ∝ V(W). (1.4)

Despite sparking a flurry of activity from the AdS/CFT community, these proposals are

on much less firm ground as for example the famous RT and HRT proposals for holographic

entanglement entropy, simply because in the case of complexity even the precise definition

of the quantity of interest on the field-theory side is somewhat uncertain. However, some

progress has been made to ease this predicament. Field theory techniques for defining and
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calculating complexity where investigated in [13–22] following the geometric ideas of [1, 2],

in [23–26] following path integral methods and in [27, 28] following an axiomatic approach.

A fascinating connection with group theory was investigated in [29]. See also [30–35]

for other relevant works. Comparisons between field theory calculations and holographic

calculations of complexity where attempted in [36–41], however, in the holographic pro-

posals (1.2), (1.3), and (1.4) it is not clear what choices of reference state, gate set and

error tolerance might be needed to fix ambiguities of the dual field theory definition of

complexity. If a field theory definition of complexity corresponding to (1.2), (1.3), or (1.4)

is to depend on such choices, they appear to be implicit in the holographic dictionary.

This, and the fact that with currently developed techniques the calculation of complexity

in field-theories sometimes requires the assumption of weak coupling or even free theories,

the comparisons attempted in [36–41] are somewhat limited to a rather qualitative level.

For example, in [40] we studied how in AdS3/CFT2 complexity, according to the vol-

ume proposal (1.2), changes under infinitesimal local conformal transformations from the

groundstate. The rationale behind this is that on the CFT side the conformal transforma-

tions can be written to be generated by unitary operators with a very simple form in terms

of the Virasoro generators or the energy-momentum tensor, irrespectively of whether the

central charge is large or not. Our hope was hence that for such a transformation, the

holographic results on the change of complexity might be somewhat universal among 1+1

dimensional CFTs, allowing for a potentially easier and more meaningful comparison to

field theory models in which computations of complexity are possible. In fact, in [42] a

certain proposal was made for what the field theory definition of C in (1.2) should be,

finding precise agreement with our results of [40].1

The main goal of this paper is hence to extend the results of [40] from the volume

proposal (1.2) to the action proposal (1.3). Hence, we will calculate how the complexity of

the state of a holographic two dimensional conformal field theory (CFT2) dual to Poincaré-

AdS3 changes under an infinitesimal local conformal transformation. The structure of our

paper is as follows: in section 2 we present in detail the calculation of complexity, according

to the proposal (1.3), for the case of Poincaré-AdS in 2 + 1-dimensions. This serves as an

introduction of some relevant concepts and notation, and will be used as a reference for our

later more non-trivial results. Section 3 is devoted to an explanation of how we will study

conformal transformations in AdS3/CFT2, following the lines of our previous paper [40].

Our novel results then start in section 4, where we discuss the features of generic WdW-

patches in Poincaré-AdS3. Based on this, we will then calculate contributions to the

action on the WdW-patch term by term, starting with the bulk term in section 5, and then

moving on to the surface terms (section 6), the parametrization of the null-rays constituting

the null-boundaries in section 7, joint-terms in sections 8 and 9, and finally the so called

counter terms in section 10. We close with a summary and conclusion in section 11. Further

technical details will be relegated to the appendices A and B.

1Another conjectured holographic dual of bulk volumes is the so called fidelity susceptibility [43], see

however [44] for a recent critique of this proposal.
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2 Complexity of the groundstate

2.1 WdW-patch

We start by considering the vacuum state of a large-c CFT2 living in 1 + 1 dimen-

sional Minkowski space, with coordinates t, x (−∞ < t, x < +∞), respectively lightcone-

coordinates x± = t±x. If this CFT has a holographic dual, the bulk geometry dual to the

vacuum state will most easily be given by the Poincaré-patch of AdS3:
2

ds2 =
L2

z2
(

−dt2 + dx2 + dz2
)

=
L2

z2
(

dz2 − dx+dx−
)

. (2.1)

Clearly, this metric is conformally flat, however, it has an asymptotic boundary at z = 0

where one would commonly define a cutoff at z = ǫ with ǫ = const.≪ 1. In this section, we

will revise the calculation of the complexity (1.3) for the state described by the metric (2.1),

following the outline and conventions of [46]. Readers who are already well familiar with

this material may safely skip this section, however it will serve to setup our conventions and

notation, and it will give us the opportunity to remark on a few details that will become

important later on again.

First of all, what do we mean by “A” in (1.3)? A is meant to be [10, 11] the integral of

the bulk action over the Wheeler-de Witt (WdW) patch W. This codimension-0 region of

the bulk is defined as the region enclosed by future and past lightfronts3 emanating from

a chosen equal-time slice on the asymptotic boundary. Consequently, the spacetime-points

inside of W are not in causal contact with the chosen boundary timeslice, while the points

outside of W can be reached by at least one causal curve from at least one point on the

boundary slice. For the boundary time-slice t ≡ 0, the WdW-patch in the Poincaré-patch

is bounded by the Poincaré-horizon at z → ∞ and by the two lightfronts

t+(z, x) = +z, t−(z, x) = −z, (2.2)

to the future and the past, respectively. In order to avoid divergences, a cutoff surface has

to be imposed near the boundary at z = ǫ. Similarly, a cutoff can be imposed at z = zmax,

with zmax → ∞. As pointed out in [48], it is generically not possible to calculate the

contributions from a null boundary to the action via a limiting procedure from family of

timelike or spacelike boundaries, with the exception being the case where the null-boundary

in question is a Killing horizon. This is the case for the Poincaré-horizon. Another intricacy

arises in defining the WdW-patch in the presence of a small cutoff ǫ, see appendix D.4 of [46]

and also [49]. Roughly speaking, it might make a difference whether the null-boundaries

of the WdW-patch are defined to emanate from the cutoff-surface at z = ǫ, or whether

they are defined to emanate from a time-slice of the exact asymptotic boundary at z = 0,

and are hence intersected by the cutoff surface. We will pick the latter convention, which

appears to be the overall more common one in the literature. It was also shown in [46, 49]

2In contrast to the notations and convention of [40, 45], we are using a coordinate z instead of λ, with

λ = 1/z2.
3We use this term instead of lightsheet, as a priori the lightfronts bounding a WdW-patch do not have

to satisfy the necessary requirements to be lightsheets according the the definition of [47].
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z = ǫ

z = zmax

W t = 0

t = z

t = −z

J1

J4

J3

J2

Figure 1. WdW-patch for the t = 0 boundary slice in the Poincaré-patch. Technically, the WdW-

patch would be the lightly shaded square region between the lightfronts t = ±z and the Poincaré-

horizon. However, we introduce the field-theory UV cutoff z = ǫ and the IR cutoff z = zmax near

the Poincaré-horizon, shown as dashed (blue) lines. Hence, the integration-domain W for the action

proposal, which we will still refer to as WdW-patch, is the darkly shaded region. We also mark the

locations of the four spacelike joints J1-J4.

that, for many interesting questions, these two possible choices lead to the same results in

the limit ǫ→ 0. See figure 1 for an illustration of the WdW-patch.

As ultimately worked out in detail in [48], the action is (see also [50–57], we mostly

follow [46, 49, 57]4)

A =
1

16πGN

∫

W
(R− 2Λ)

√−gd3x (2.3)

+
1

8πGN

∑

Ti

∫

Ti

K
√−γd2x+

1

8πGN

∑

Si

∫

Si

K
√
γd2x+

1

8πGN

∑

Ni

∫

Ni

κdλ
√
ρdx (2.4)

+
1

8πGN

∑

Ji

∫

Ji

ηJi

√
ρdx (2.5)

+
1

8πGN

∑

Ni

∫

Ni

θ log(|θℓc|)dλ
√
ρdx (2.6)

where we have included the appropriate surface, boundary, joint and counter terms. Of

course, GN stands for Newton’s constant. This form of the action was derived by demanding

not only a well-defined variational principle under Dirichlet boundary conditions, but also

additivity of the action under joining of bulk regions and independence of the value of the

action under reparametrisation of the generators of the null-boundaries.

We will now go through these terms one by one.

4See also footnote 7 in [58] for a remark on the sign of the term ∝ κ.
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2.2 Bulk term

The bulk term is the integral of the bulk Einstein-Hilbert action [50, 51] over the codimen-

sion 0 region W,

Abulk =
1

16πGN

∫

W
(R− 2Λ)

√−gd3x, (2.7)

with Λ = − 1
L2 in 2 + 1 dimensions. The volume-element is as usual

√−gd3x with g

being the determinant of the bulk metric. Due to (2.1) being a vacuum solution of three

dimensional gravity, the integrand reads R− 2Λ = −4
L2 , with L being the AdS radius which

we will generally set equal to one in the later sections. We hence find

Abulk =
−L

4πGN

∫ zmax

ǫ
dz

∫ z

−z
dt

∫ ∞

−∞
dx

1

z3
=

−LV
2πGN

(

1

ǫ
− 1

zmax

)

, (2.8)

where we have set
∫∞
−∞ dx ≡ V .

2.3 Surface terms

There are potentially three types of codimension-one surfaces, namely timelike ones Ti,
spacelike ones Si, and null ones Ni. From figure 1, we see that we will have to deal

with two null boundaries, two timelike boundaries, and no spacelike boundaries. Let us

begin with the null ones, discussed only recently in [46, 48, 56]. The null boundaries are

generated by null rays with (possibly affine) parameter λ, and the measure
√
ρdx comes

from integrating over all the different null rays constituting the lightfront. The integrand

κ is fixed by the equation [46, 48]

kµ∇µkν ≡ κkν , (2.9)

and measures the failure of λ to be an affine parameter. Hereby, kµ is the null normal to

the lightfront, directed out of W. It is common to choose kµ such that κ = 0 and that

k · t̂
∣

∣

z=0
= ±1 (the sign depending on the orientation of k) where t̂ = ∂t = δµt ∂µ is a future

pointing vector at the boundary [46, 48, 49].5 For the upper lightfront t+ = z, we find that

kµdx
µ ≡ d(t − t+) = dt − dz has just the desired properties κ = 0 and k · t̂ = 1. Similar

statements hold for the past lightfront t−.

The choice κ = 0 clearly makes the contribution from the null-boundary vanish in (2.4).

We are hence left with the terms for the timelike boundaries, which are just the well known

Gibbons-Hawking type boundary terms [52, 53]. Then γ is the determinant of the induced

metric on the surface z = const., and the extrinsic curvature can be easily calculated (see

appendix A) to be K = 2
L at z = ǫ and K = − 2

L at z = zmax. Hence

Asurface =
V

8πGN

(∫ ǫ

−ǫ

2

L

L2

ǫ2
dt+

∫ zmax

−zmax

2

L

L2

z2max

dt

)

=
LV

2πGN

(

1

ǫ
− 1

zmax

)

. (2.10)

5In fact, t̂ = δµt ∂µ is a timelike Killing vector, which defines the units in which we measure boundary

time. This kind of consideration also played a role in [59].
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2.4 Joint terms

We are left with the four codimension-two joint terms J1-J4 that arise where two of the

codimension-one boundaries come together [48, 49]:

Ajoint =
1

8πGN

4
∑

i=1

∫

Ji

ηJi

√
ρdx. (2.11)

Herein
√
ρdx is the induced line-element on the joints J , which are one-dimensional

spacelike submanifolds. In principle, there might be timelike-timelike, spacelike-spacelike,

timelike-spacelike, timelike-null, spacelike-null or even null-null joints. From figure 1, it is

apparent that so far we will only have to deal with timelike-null type joints. The integrand

for this case is then defined as [48, 49]

ηJi
= −sign(k · s)sign

(

k · ť
)

log (|k · s|) , (2.12)

with the null normal kµ defined in section 2.3, the unit normal form s of the timelike

boundary surface Ti (defined to point out of W) and ť, a normalized timelike vector living

in the tangent space of the boundary Ti and normal to the joint surface, pointing away

from W. See e.g. [49] for details, and note that ť 6= t̂. Let us focus on the joint J1 first.

We find sign(k · s) = +1, sign
(

k · ť
)

= +1, k · s = ǫ
L and

√
ρ = L/ǫ, thus

AJ1
=

V

8πGN

L

ǫ
log

(

L

ǫ

)

. (2.13)

Similarly, at J2, sign(k · s) = +1, sign
(

k · ť
)

= +1, k · s = ǫ
L and

AJ2
=

V

8πGN

L

ǫ
log

(

L

ǫ

)

. (2.14)

On the other hand, at both J3 and J4, we find sign(k · s) = −1, sign
(

k · ť
)

= +1,

k · s = − zmax

L and

AJ3,4
=

−V
8πGN

L

zmax
log

(

L

zmax

)

. (2.15)

Consequently

Ajoint =
V L

4πGN

[

1

ǫ
log

(

L

ǫ

)

− 1

zmax
log

(

L

zmax

)]

. (2.16)

2.5 Counter terms

Lastly, we are dealing with the term

Acounter =
1

8πGN

∑

Ni

∫

Ni

θ log(|θℓc|)dλ
√
ρdx, (2.17)

which has been introduced already in [48], but the importance of which was pointed out

in [57] (see also [58, 60] for the importance of these terms, but also [61]). Again, the null
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boundaries are generated by null rays with affine (due to κ = 0, see section 2.3) parameter λ,

and the measure
√
ρdx comes from integrating over all the different null rays constituting

the lightfront. The reason why these terms are called counter-terms is that they make

sure that the value of the action remains the same under reparametrisations of the affine

parameter λ parametrising the lightrays that make up the null boundaries [48, 57]. As we

can see, however, this comes at the price of introducing an arbitrary lengthscale ℓc.
6

With the equations of appendix A in mind, we could now proceed to directly evalu-

ate (2.17), however, we will first simplify the expression following [57]. To do so, we remind

ourselves firstly that the expansion θ is given by (see appendix A)

θ =
1√
ρ
∂λ

√
ρ. (2.18)

Hence (2.17) can be rewritten as

Acounter =
1

8πGN

∫ λmax

λmin

∫ +∞

−∞
(∂λ

√
ρ) log(|θℓc|)dλdx (2.19)

=
1

8πGN

∫ +∞

−∞
[
√
ρ log(|θℓc|)]

∣

∣

∣

λmax

λmin

dx− 1

8πGN

∫ λmax

λmin

∫ +∞

−∞

∂λθ

θ
dλ

√
ρdx. (2.20)

This is as far as [57] went, but we can make an additional step by using Raychaudhuri’s

equation (A.14), which in a 2+1-dimensional vacuum bulk-spacetime boils down to ∂λθ
θ =

−θ, and hence, using (2.18) again,

Acounter =
1

8πGN

∫ +∞

−∞
[
√
ρ log(|θℓc|)]

∣

∣

∣

λmax

λmin

dx+
1

8πGN

∫ λmax

λmin

∫ +∞

−∞
∂λ

√
ρdλdx (2.21)

=
1

8πGN

∫ +∞

−∞

[√
ρ log(|θℓ′c|)

]

∣

∣

∣

λmax

λmin

dx, (2.22)

where we have redefined the arbitrary lengthscale ℓc such that log(ℓc) + 1 = log(ℓ′c). We

have now achieved to rewrite the term (2.17) as a term to be evaluated solely on the

joints Ji.

For the upper lightfront, t+ = z and kµdx
µ ≡ d(t − t+) = dt − dz. The surfaces of

constant λ along this lightfront are codimension 2 spacelike slices defined by t ≡ z ≡ const.

with induced line-element
√
ρ = L/z. Hence (see [57] and appendix A) λ = L2/z and

θ = z/L2. The upper lightfront gives the term

Acounter,+ =
V L

8πGN

[

1

ǫ
log

(

ℓ′cǫ

L2

)

− 1

zmax
log

(

ℓ′czmax

L2

)]

. (2.23)

A similar contribution comes from the lower lightfront t− = −z: here kµdxµ ≡ d(t−t−) =

−dt− dz,
√
ρ = L/z, λ = L2/z and θ = z/L2. Hence

Acounter,− =
V L

8πGN

[

1

ǫ
log

(

ℓ′cǫ

L2

)

− 1

zmax
log

(

ℓ′czmax

L2

)]

. (2.24)

6One might be tempted to set this lengthscale equal to the AdS-scale L as e.g. [57], however in general

this tends to simplify the results for complexity almost too much. So we leave ℓc to be arbitrary in this

paper.
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2.6 End result

Taking the results from the previous subsections together, we find7

A =
V L

4πGN

[

1

ǫ
log

(

ℓ′c
L

)

− 1

zmax
log

(

ℓ′c
L

)]

, (2.25)

which is exclusively given by Ajoint and Acounter,±, as the bulk and surface terms cancel

precisely. Furthermore, it is noteworthy that even without this cancellation, all the terms

involving zmax vanish independently in the limit zmax → ∞. This is a consequence of the

special properties of the Poincaré-horizon, which when mapping the WdW-patch to global

AdS would collapse to a pair of lightrays, emanating from what would be the “point at

infinity” for the Poincaré-patch. Similarly, the joints J3 and J4, after taking the limit

zmax → ∞, would be mapped to two caustic points which do not contribute to the action,

see appendix B of [46]. Usually, it would not be consistent to calculate the contributions

from a null surface by taking a limit of spacelike surfaces, however in the case of the

Poincaré-horizon, this is possible [48]. Following [57], it is also interesting to point out that

due to the inclusion of the counter terms (2.6), the overall result (2.25) diverges only as V
ǫ

with the x-Volume V and the UV-regulator ǫ, as opposed to a divergence V
ǫ log(ǫ) indicated

by (2.16). This however comes at the price of introducing the ambiguous lengthscale ℓ′c.

3 Conformal transformations in AdS3/CFT2

3.1 Solution generating diffeomorphisms

Let us revise some of the details about how to implement local conformal transformations in

AdS3/CFT2, discovered in [63], but following the outline and notation of [40, 45]. We start

with equation (2.1). Local conformal transformations can now be implemented by applying

global bulk diffeomorphisms which act nontrivially near the boundary [63], see also [45].

These diffeomorphisms map solutions of the equations of 2+1 dimensional AdS gravity to

new solutions which will be physically inequivalent, hence describing distinct CFT-states.

They can thus be called solution generating diffeomorphisms (SGDs) [45]. For example,

holographically calculating the expectation value of the energy-momentum tensor of the

boundary theory by the method of [64] after applying an SGD will give a result different

from zero (which we would get from the metric (2.1)), which however agrees with the

formula for the energy-momentum tensor of a CFT after a conformal transformation due

to the Schwarzian derivative [45]. The resulting metrics, due to their discovery in [63], are

called Bañados geometries and have been studied in more detail for example in [45, 65–69].

7See also [62] for related, but more general results.
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The SGDs are of course only defined up to a residual diffeomorphism which is trivial

at the boundary. Following [45], we will write them as8

z = z̃
√

G′
+(x̃

+)G′
−(x̃

−), (3.1)

x+ = G+(x̃
+), (3.2)

x− = G−(x̃
−), (3.3)

where G± are some functions with G′
± > 0. The line element in the new coordinates z̃, x̃±

is [45]

ds2 =
1

z̃2
dz̃2 − 1

z̃2
dx̃+ · dx̃− +

(

A+dx̃
+ +A−dx̃

−
)2 − 2

z̃
dz̃ ·

(

A+dx̃
+ +A−dx̃

−
)

, (3.4)

A± = −1

2

G±
′′(x̃±)

G±
′(x̃±)

. (3.5)

There are two possible equivalent viewpoints from which we can approach these geome-

tries. The first would be to just take (3.4) and treat it like any other solution in holography.

In order to calculate quantities like the expectation value of the energy-momentum tensor

or entanglement entropies, we would introduce the natural cutoff z̃ = ǫ with ǫ = const.≪ 1.

We call this choice of cutoff natural because z̃ takes the role of the (inverse) radial coordi-

nate in (3.4), and the induced line element on the cutoff surface reads

ds2ind = − 1

ǫ2
dx̃+ · dx̃− +O(ǫ0), (3.6)

i.e. the dual CFT lives on flat space. By (3.1), this coice of cutoff would correspond to

deforming the cutoff in the old coordinates:

z̃ = ǫ⇔ z = ǫ
√

G+
′(x̃+)G−

′(x̃−). (3.7)

This motivates the second (equivalent) perspective that we can take, namely that in the old

coordinates of the Poincaré-patch, the SGDs actively shift the position of the cutoff surface

according to (3.7), which in the holographic calculation of CFT quantities then leads to

the changes expected for a conformal transformation [45].9 This is shown in figure 2. In

the coordinates of (2.1), the induced line element on this cutoff surface (3.6) then reads

ds2ind = −G
(−1)
+

′(x+)G
(−1)
−

′(x−)

ǫ2
dx+dx− +O(ǫ0) = − 1

ǫ2
dx̃+

dx+
dx̃−

dx−
dx+dx− +O(ǫ0), (3.8)

which is of course consistent with the way the metric transforms under conformal trans-

formations, acquiring an overall prefactor. Throughout this paper, we will switch between

these two perspectives, depending on what is easier for the given task at the time.

8This is different from the convention used in [63]. The convention used here and in [40, 45], while

leading to a somewhat more involved expression for the line element, has the advantage of presenting the

SGDs in a simpler form. This will not affect our physical endresults.
9Something similar happens in AdS2-holography: there, the family of physically inequivalent solutions

to the bulk equations is given by the set of curves defining different cutoff-surfaces near the boundary of

AdS2 [70].

– 10 –



J
H
E
P
0
5
(
2
0
1
9
)
0
8
6

t→
+
∞

z = ǫ

t→
−∞

z̃ = ǫ

B
ou

n
d
ar
y
:

z
=
z̃
=

0

Cutoff surfaces

Figure 2. A conformal diagram of the Poincaré-patch of AdS3. The vertical line is the asymptotic

boundary while the two diagonal lines are the two Poincaré-horizons where t → ±∞. The two

cutoff surfaces z = ǫ and z̃ = ǫ are shown as dashed (red) and dotted (blue) lines, respectively. The

figure is taken from [40].

Following [40], we will again consider a small SGD

x+ = G+(x̃
+) = x̃+ + σ g+(x̃

+), (3.9)

x− = G−(x̃−) = x̃− + σ g−(x̃
−), (3.10)

with the expansion parameter σ ≪ 1. Just as in [40], we will throughout the paper assume

that the functions g± as well as their derivatives are smooth, bounded, and fall off to zero

at infinity. The line-element (3.4) can similarly be expanded, yielding

ds2 =
1

z̃2
(

−dt̃2 + dx̃2 + dz̃2
)

(3.11)

+
σ

z̃

[(

g′′+
(

t̃+ x̃
)

+ g′′−
(

t̃− x̃
)

)

dt̃+
(

g′′+
(

t̃+ x̃
)

− g′′−
(

t̃− x̃
)

)

dx̃
]

dz̃ +O(σ2),

where we have switched from lightcone coordinates x̃± to standard coordinates t̃, x̃ on the

boundary. In this paper, as in [40], we will be interested in terms up to and including order

O(σ2), however we have not written out the terms of this order in the line-element above

as they are rather cumbersome. It is a trivial exercise to derive them from (3.4).

3.2 Towards complexity change under conformal transformations

The SGDs (3.1)–(3.3) not only wrap the cutoff-surface as explained in section 3 and

sketched in figure 2, they also lead to a change of the definition of equal-time slice, as

clearly t ≡ const. and t̃ ≡ const. are two inequivalent conditions. Our goal is to holo-

graphically calculate the complexity of the state after applying an SGD, which is naturally

understood to live on an equal time-slice of the new coordinates, t̃ ≡ t̃0 = const. How will

this time-slice look like in the old, untilded coordinates?
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In general, it will not be possible to exactly invert the transformations in (3.9), (3.10).

However, when working perturbatively in σ, we can make use of the inverse transformations

x̃+ = G
(−1)
+ (x+) ≈ x+ − σ g+(x

+) + σ2g+(x
+)g′+(x

+) +O(σ3), (3.12)

x̃− = G
(−1)
− (x−) ≈ x− − σ g−(x

−) + σ2g−(x
−)g′−(x

−) +O(σ3). (3.13)

z̃ = z

√

G
(−1)
+

′(x+)G
(−1)
−

′(x−). (3.14)

Consequently, the equal-time boundary-slice in the new coordinates, t̃ = 1
2(x̃

++ x̃−) ≡
t0, z̃ = 0, when mapped back to the old Poincaré-patch coordinates takes the (approxi-

mate) form

tbdy(x) = t0 +
σ

2
[g+(t0 + x) + g−(t0 − x)] (3.15)

− σ2

4
[g−(t0 − x)− g+(t0 + x)]

[

g′−(t0 − x)− g′+(t0 + x)
]

+O(σ3),

z = 0. (3.16)

From now on, unless explicitly specified otherwise, we will generally assume

t0 ≡ 0. (3.17)

Given the time-translation invariance of the background (2.1) from which we start, this is

possible without loss of generality. However, in order to simplify our calculations, we will

also generally assume

g−(t0 − x) = g+(t0 + x), (3.18)

which yields

tbdy(x) = t0 + σg+(t0 + x) +O(σ3). (3.19)

This now sets the stage for what we have to do in the rest of the paper. In order to compute

the change of the complexity (1.3) due to an infinitesimal conformal transformation, we

have to calculate the WdW-patch for the state after the transformation. This could be

tried in the tilded coordinates, where the line-element is given by (3.11). We would then

be faced with the task of solving for generic lightcones or null geodesics in such a metric

with t̃ and x̃-dependent components. An alternative approach would be to work in the old

coordinates, where the background spacetime (2.1) is manifestly conformally flat. In this

setup, we hence know all lightcones and null-geodesics trivially, however we will need to

find the WdW-patch for a boundary-slice of the form (3.19). This is indeed what we will

do in the following sections.

4 General WdW-patches in AdS3

Due to its definition, which inherently relates the shape of the WdW-patch W to the causal

connectivity of the spacetime in question, the boundary of W will, apart from cutoff surfaces
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which we have artificially introduced or bulk-horizons, consist of null surfaces generated

by lightrays emanating from the boundary slice, see figure 1. How can we calculate these

null-surfaces for a general boundary slice like (3.19)? Assuming that in the coordinates

of (2.1) (with L = 1 from now on), the future10 null-boundary can be expressed as a

function t = t+(z, x), we can easily calculate the induced metric on such a general surface.

As a null surface, the determinant of this metric should then vanish, and demanding this

leads to the PDE

(∂zt
+(z, x))2 + (∂xt

+(z, x))2 = 1. (4.1)

This will be the central equation defining the null-boundaries of W in the Poincaré-patch,

subject to the boundary condition

t+(0, x) = tbdy(x). (4.2)

A similar but more cumbersome equation can be derived for the embedding t̃ = t̃
+
(z̃, x̃)

of the lightfront in the tilded coordinates. In appendix B, we will give a numerical scheme

for obtaining solutions and a discussion of some generic properties of such solutions. Here,

we will just state some of the most important observations for later.

First of all, in the case tbdy(x) = 0, equation (4.1) is trivially solved by the light-

fronts t+(z, x) found in section 2. These lightfronts are well behaved all the way from

the boundary to the Poincaré-horizon. However, for general boundary conditions tbdy(x),

equation (4.1) does only allow for piecewise smooth solutions. A physicist’s proof for this

can be given by the use of the focusing theorem, which generically implies caustics to

emerge at finite z ∼ O(1/σ), see the discussion in appendix B.2. These caustics will be the

starting point of null-null joints, where two piecewise smooth parts of the function t+(z, x)

will meet in a non-smooth manner. These joints will then give rise to extra contributions

to the action, which we will discuss in sections 9 and 10.2.

Secondly, due to the conformal flatness of (2.1), the lightrays that foliate the surface

t+(z, x) are straight lines of unit slope in the coordinate system spanned by t, z, x. Hence,

along each of these lightrays, the expressions ∂zt
+(z, x) and ∂xt

+(z, x) will be constant.

Drawing the lines in the z, x-plane along which these quantities are constant11 will hence be

an easy method to draw the projections to the z, x-plane of the lightrays which foliate the

null front, given a numerical solution of t+(z, x). In figure 3, we show the corresponding

figures for some simple choices of tbdy(x).

Thirdly, apart from numerical approaches, we can also try to solve (4.1) iteratively in

σ, starting with the σ = 0 result t+(z, x) = +z. To second order, this yields12

t+(z, x) ≈ +z + tbdy(x)− 1

2
ztbdy′(x)2 +O(σ3), (4.3)

t−(z, x) ≈ −z + tbdy(x) +
1

2
ztbdy′(x)2 +O(σ3). (4.4)

10Of course the treatment of the past boundary will be almost identical, so we will not spell it out in

every step in the following.
11For example using the ContourPlot[...] command of Wolfram Mathematica.
12Similar expansions of general lightfronts in the z coordinate were done for example in [49, 57, 71].
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Figure 3. Contour plots for the functions ∂zt
+(z, x) respectively ∂xt

+(z, x) (up to numerical

errors, the contours for both expressions are identical) for various boundary conditions tbdy(x).

Top left : tbdy(x) = 0.01
1+x2 . Top right : tbdy(x) = −0.01

1+x2 . Bottom left : tbdy(x) = 0.01·x
1+x2 . Bottom

right : tbdy(x) = 0.01
1+x4 . The black lines are projections of the null rays forming the lightfront down

to the x, z-plane, and should hence be perfectly straight. Any deviation from straight line behaviour

is due to numerical inaccuracies. The orange points at the boundary (z = 0) are what we called

hyperbolic points in section B.2, while the red points in the bulk are caustics, which are generated by

the hyperbolic points. These caustics are generally the starting point of creases or null-null joints

on which the function t+(z, x) is not smooth (leading to increased numerical problems). Starting

from a caustic, these creases will extend from there towards the Poincaré-horizon. Those creases

that we could determine analytically are marked by a dashed red line, see the discussion later in

section B.3. In the case shown on the bottom right, we see that generically, creases may collide and

merge into one.
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Hereby, we have assumed t0 = 0 and hence tbdy(x) ∼ O(σ), tbdy′(x)2 ∼ O(σ2), see (3.19).

As we already pointed out in section 2, it is generally not correct to evaluate the terms of the

action coming from null boundaries by a limiting procedure of boundary-terms on space-

or timelike surfaces. Similarly, we cannot evaluate such null-boundary terms directly from

the approximate solutions (4.3), (4.4), however, in the calculation of the bulk term and

timelike boundary terms near the asymptotic boundary this approximation will be useful

later on. It should also be pointed out that (4.3) takes on a series-expansion form not only

in σ, but also in z. This stays true even in higher orders. In fact, it is clear that even

with arbitrarily higher order terms in σ, the expression (4.3) will have a finite convergence

radius in z for fixed tbdy(x). The reason for this is that in the iterative procedure for

deriving the terms of (4.3) for any additional order of σ, the resulting term will always be

smooth by construction as long as tbdy(x) is smooth. However, as discussed above and

in appendix B.2, the focusing theorem implies that even for smooth but otherwise generic

tbdy(x), the function t+(z, x) cannot be smooth for large enough z. This is also clearly

visible in figure 3. Hence expressions of the form (4.3) can only be a good approximation

close to the boundary. As the caustics will only appear at coordinates of order z ∼ 1/σ,

we will from now on assume the solutions (4.3), (4.4) to be valid up to z . O (1/σ).

In the following sections, we will now evaluate the action on the WdW-patch after a

conformal transformation perturbatively in σ up to second order, subject to the simplifying

assumptions (3.18) and t0 = 0. Whenever possible, we will try to work with analytical

expressions as much as possible, only using numerical solutions of t+(z, x) for specific

examples of tbdy(x) when necessary. As mentioned already earlier, we will switch between

the coordinate systems of (2.1) and (3.11) depending on what is more convenient in the

given situation.

5 Bulk term

To calculate the bulk term of (2.3), we need to know the surfaces by which the WdW-patch

W is bounded. To the future and the past, this will be the lightfronts t±(z, x), which we

can calculate numerically as explained in section 4 and appendix B, and for which we also

possess the approximate solutions (4.3), (4.4) valid close to the boundary, for coordinates

z . O (1/σ). By our assumptions, the function tbdy(x) is bounded and fluctuates around

t0 = 0 with an amplitude of order σ, so |tbdy(x)| ≤ Aσ with some O(1) constant A.

Consequently, due to causality, we know

z +Aσ ≥ t+(z, x) ≥ z −Aσ, (5.1)

−z +Aσ ≥ t−(z, x) ≥ −z −Aσ, (5.2)

for any z. This will be of use shortly.

Towards the asymptotic boundary, W will be bounded by the cutoff surface z̃ =

ǫ (ǫ ≪ 1), as explained in section 3.1, see also figure 2. This surface will be timelike

(i.e. 1+1-dimensional), and is most conveniently described in the new, tilded, coordinates.

In section 2.1, see also figure 1, we introduced a timelike IR-cutoff surface z = zmax near
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x z

t t

t = Aσ

t = −Aσ

tbdy(x)
z̃ = zmid

z̃ = zmax

t =
z −

Aσ

t = −z +
Aσ

z = zmax

z = zmid

t = −z −
Aσ

t =
z +

Aσ

z̃ = ǫ

Figure 4. Bounds relevant for the calculation of the bulk integral, not to scale. Left: asymptotic

boundary. Right: a x = const. slice of the bulk, in Poincaré-patch coordinates of (2.1).

the Poincaré-horizon. In the tilded coordinates, it might now seem most natural to employ

a cutoff-surface z̃ = zmax, however a problem arises here: because of the relation (3.1),

we know that in the original Poincaré-coordinates, a surface z̃ = const. will fluctuate, and

the magnitude of these fluctuations will be ∝ const., see figure 4 for an illustration. For

some const. ∼ O(1/σ), these fluctuations will become so strong that the surface defined by

z̃ = const. is not everywhere timelike anymore. So instead of z̃ = zmax, we will introduce

an IR-cutoff surface at z = zmax, even for the cases after a conformal transformation. This

is no problem, as we are only interested in taking the limit zmax → ∞, and as in this limit

the IR cutoff-surfaces approach the Poincaré-horizon, we expect that the end result will be

independent of the specific family of cutoff surfaces with which this limit was taken [48].

We will also introduce a zmid ∼ O(1/σ), which we assume to be small enough such that

the series expansions of (4.3), (4.4) still is a good approximation up to this point.

To summarise, for the calculation of the bulk term, we take the WdW-patch W to

be bounded by the surfaces z̃ = ǫ, t = t+, t = t−, z = zmax. Furthermore, we split the

integration domain into two parts, W = W1 +W2, where W1 is bounded by the surfaces

z̃ = ǫ, t = t+, t = t−, z̃ = zmid and W2 is bounded by the surfaces z̃ = zmid, t = t+, t =

t−, z = zmax, with ǫ≪ 1, zmid ∼ O(1/σ), and zmax→∞. Clearly then

Abulk(W) = Abulk(W1) +Abulk(W2). (5.3)

We will first look at the term Abulk(W1). This will be easiest to do in the tilded

coordinates, as then the integration bounds z̃ = ǫ and z̃ = zmid will not depend on the

other coordinates, see figure 2 and (3.7). The approximate expressions for the lightfronts

are given in Poincaré-coordinates in (4.3), (4.4), but they can just as well be calculated in

tilded coordinates. The result is a little bit more cumbersome, and given in equation (B.21)

of appendix B.4. We are dealing with vacuum solutions of Einstein’s equations, hence

R − 2Λ = −4 (setting L = 1) exactly, and from (3.11) one can show
√−g ≈ 1

z̃3
+ O(σ3).
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Consequently

Abulk(W1) =
−1

4πGN

∫ z̃max

ǫ
dz̃

∫ ∞

−∞
dx̃

∫

t̃
+(z̃,x̃)

t̃
−(z̃,x̃)

dt̃
1

z̃3

=
−1

4πGN

∫ zmid

ǫ
dz̃

∫ ∞

−∞
dx̃

t̃
+
(z̃, x̃)− t̃

−
(z̃, x̃)

z̃3
. (5.4)

Expanding t̃
+
(z̃, x̃)− t̃

−
(z̃, x̃) in σ, we find that the O(σ0)-term is identical to (2.8) under

the replacement zmax → zmid. As can be seen from (B.21), the O(σ1)-term of t̃
+
(z̃, x̃) −

t̃
−
(z̃, x̃) vanishes identically. The O(σ2)-term of t̃

+
(z̃, x̃) − t̃

−
(z̃, x̃) is more complicated,

and so for the moment we obtain

Abulk(W1, σ) = Abulk(W1, 0) +
−1

4πGN

∫ zmid

ǫ
dz̃

∫ ∞

−∞
dx̃

t̃
+
(z̃, x̃)− t̃

−
(z̃, x̃)− 2z̃

z̃3
(5.5)

≡ Abulk(W1, 0) + σ2A(2)
bulk,1 +O(σ3). (5.6)

A series expansion of t̃
+
(z̃, x̃) − t̃

−
(z̃, x̃) − 2z̃ in z̃ shows that the term A(2)

bulk,1 will not

contribute any divergences in the limit ǫ→ ∞. This is as good as our general approach gets.

For specific examples similar to the ones evaluated in [40], we find (keeping in mind (3.18)

and (3.17) and taking ǫ→ 0)

g+(x̃
+) =

a · c
a2 + x̃2

⇒ A(2)
bulk,1 =

−1

4πGN

3c2π

8|a|3zmid
+O(z−5

mid), (5.7)

g+(x̃
+) =

c · x̃
a2 + x̃2

⇒ A(2)
bulk,1 =

−1

4πGN

3c2π

8|a|3zmid
+O(z−5

mid). (5.8)

As explained above, we assume zmid ∼ O(1/σ), and hence the combination σ2A(2)
bulk,1

does in general not contribute at order O(σ2). Consequently, up to and including second

order in σ,

Abulk(W1, σ) ≈ Abulk(W1, 0), (5.9)

at least for the examples studied above. We still need to calculate the term Abulk(W2), or

more specifically the difference

Abulk(W2, σ)−Abulk(W2, 0) = +
−1

4πGN

∫ z=zmax

z̃=zmid

dz

∫ ∞

−∞
dx

t+(z, x)− t−(z, x)− 2z

z3
,

(5.10)

which we have now spelled out in (untilded) Poincaré-coordinates. Again, we will argue

that this does not contribute at order O(σ2), in the following way: as said above, the

region W2 is bounded by the surfaces z̃ = zmid, t = t+, t = t−, z = zmax. When replacing

Abulk(W2, σ) with Abulk(W2, σ = 0), we are instead integrating (the same integrand) over

the region bounded by the surfaces z = zmid, t = +z, t = −z, z = zmax. How big is the error

that we make by changing the integral bounds? This can be estimated by integrating over
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the gray-shaded areas in figure 4. Due to the bounds (5.1), (5.2), the error E1 introduced

by replacing t = t+(z, x) with t = +z and t = t−(z, x) with t = −z is at most of order

E1 ∝ 2

∫ zmax→∞

zmid

2Aσ

z3
∝ σ

z2mid

∼ O(σ3). (5.11)

Similarly, the error E2 due to integrating from z = zmid instead of z̃ = zmid ⇔ z =

zmid/
√

G+
′(x+)G−

′(x−) (where we have used (3.14)) is estimated by13

E2 ∝
∫

dt

∫ ∞

−∞
dx

∫ z=zmid/
√

G+
′(x+)G−

′(x−)

z=zmid

dz
1

z3
(5.12)

∝
∫

dt

∫ ∞

−∞
dx

σ

z2mid

(

g′+(t+ x)− g′−(x− t)
)

(5.13)

∝
∫

dtσ3 (g+(t+ x)− g−(x− t))
∣

∣

∣

x=∞

x=−∞
. (5.14)

The last expression vanishes identically, due to our assumption that the functions g± fall

off to zero at infinity (see section 3.1). To summarise, we find

Abulk(W2, σ) ≈ Abulk(W2, 0) (5.15)

and consequently

Abulk(W, σ) ≈ Abulk(W1, σ) ≈ Abulk(W, 0) (5.16)

up to and including O(σ2) for the examples studied in (5.7), (5.8). This leads us to the

first main result of this paper: for the action proposal (1.2), we will still have to take

into account the remaining terms (2.4), (2.5), (2.6), however for the volume 2.0 proposal

of [12], (1.4), the result (5.16) is all we need. As the gravitational Lagrangian of our

spacetime was constant, R− 2Λ = −4, we find Abulk(W) ∝ V(W). Hence, we have shown

that the complexity, according to (1.4), does not change under infinitesimal conformal

transformations up to order O(σ2) for the examples studied above. For general g+, there

may be a change of order O(σ2), independent of the UV-cutoff ǫ, that can be calculated

by the integral in (5.5), using (B.21).

6 Timelike surface terms

Next we turn to the timelike boundary terms which, as explained in the previous section,

we evaluate at the UV and IR cutoff surfaces z̃ = ǫ (ǫ ≪ 1) and z = zmax (zmax → ∞).

The term at z = zmax is the easiest to deal with, which we do in Poincaré-coordinates.

Then, just as in section 2.3, we find K = −2 and
√
γ = 1/z2max. So

Asurface,IR ∝
∫ +∞

−∞
dx

∫

t
+(zmax,x)

t
−(zmax,x)

dt
1

z2max

=

∫ +∞

−∞
dx

(

2

zmax
+O

(

σ

z2max

))

, (6.1)

13Below, we do not specify the integral bounds in the
∫
dt integral explicitly, but it is enough to know

that by (5.1), (5.2), |t| . O(zmid). The dependence of the exact integration bounds on the other coordinates

does not play a role to lowest order in σ, so we can assume that the integration bounds of the t-integral are

independent of x and z below.

– 18 –



J
H
E
P
0
5
(
2
0
1
9
)
0
8
6

where in the last step we have used the bounds (5.1), (5.2). So we see that in the limit

zmax → ∞, the variation of the term Asurface,IR vanishes, just as the O(σ0) result, which

we discussed in section 2.

Next we turn to the term to be evaluated at the UV cutoff z̃ = ǫ ≪ 1. The trace of

the extrinsic curvature at this surface is K = 2, independently of σ. The reason for this is

simple: the holographic energy-momentum tensor of the dual theory is calculated by the

famous equation [64]14

8πGNTij = lim
ǫ→0

(−Kij +Kγij − γij) . (6.2)

Now, taking the trace and ensuring T = 0 for the CFT even after a conformal transforma-

tion is equivalent to demanding K = 2 + O(ǫ), independently of σ. The induced metric

and volume element on this surface read

γijdx̃
idx̃j =

1

ǫ2
(

−dt̃2 + dx̃2
)

+O(σ2),
√
γ =

1

ǫ2
− σ2

2
g′′+(x̃− t̃)g′′+(t̃+ x̃) +O(σ3). (6.3)

Consequently

Asurface,UV = +
1

8πGN

∫ +∞

−∞
dx̃

∫

t̃
+(ǫ,x̃)

t̃
−(ǫ,x̃)

2

(

1

ǫ2
− σ2

2
g′′+(x̃− t̃)g′′+(t̃+ x̃) +O(σ3)

)

dt̃ (6.4)

= Asurface,UV(σ = 0) +
1

8πGN

∫ +∞

−∞
dx̃ O

(

ǫσ2
)

, (6.5)

where in the last step we have made use of t̃
+
(ǫ, x̃) − t̃

−
(ǫ, x̃) = O(ǫ) (see (B.21)) and

the mean value theorem for definite integrals. As ǫ ≪ 1, we drop all terms of order ǫ,

and consequently we see that up to and including order O(σ2) the divergent (and finite)

contribution from Asurface,UV does not change.

7 Affine parametrisation of lightrays and normalisation

In order to compute the remaining terms, namely the null-surface term, the joint terms

and the counter terms, we need to discuss the normalisation of the null normals kµ for the

lightfronts in question. Without loss of generality, we will focus on the future lightfront,

described by the function t+(z, x) in Poincaré-coordinates. Generalising section 2.3, the

null-normal kµ is given by the equation

Φ−1(σ, t, x, z)kµdx
µ ≡ d(t− t+(z, x)) = dt− ∂zt

+(z, x)dz − ∂xt
+(z, x)dx. (7.1)

Herein, the function Φ(σ, t, x, z) is meant to allow for general local rescalings which of

course don’t affect the orthogonality of kµ to the lightfront or the condition kµk
µ = 0,

which is equivalent to

(∂zt
+(z, x))2 + (∂xt

+(z, x))2 = 1. (4.1)

14Compared to [64], we changed the sign of the extrinsic curvature, to conform with our conventions of

appendix A.
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We now have to plug (7.1) into the equation

kµ∇µkν ≡ κkν , (2.9)

in order to calculate κ. Ideally, we would like to be able to set κ = 0, as was also the case

in section 2.3. Calculating the Christoffel symbols and covariant derivative in Poincaré-

coordinates is an easy exercise, and in fact in the special case Φ = 1 we find κ = 0 as a

consequence of (4.1) and (7.1). In the more general case, we obtain (again using (4.1))

κ = 0 ⇔ ∂tΦ(σ, t, x, z) + ∂zt
+(z, x)∂zΦ(σ, t, x, z) + ∂xt

+(z, x)∂xΦ(σ, t, x, z) = 0 (7.2)

Interestingly, there is a large class of general solutions to this equation: if the function

Φ(σ, t, x, z) only depends on the coordinates x, z via the expressions ∂zt
+(z, x), ∂xt

+(z, x),

i.e. Φ(σ, t, x, z) = Φ (σ, ∂zt
+(z, x), ∂xt

+(z, x)), then (7.2) is implied to vanish identically

by (4.1). So, in a vector-like notation with coordinates t, x, z (in that order), we obtain

κ = 0 for

kµ = Φ
(

σ, ∂zt
+(z, x), ∂xt

+(z, x)
)







1

−∂xt+(z, x)
−∂zt+(z, x)






, (7.3)

where the remaining function Φ(σ, ·, ·) is still up to our choice. Hence, just as in section 2.3,

we will have a vanishing null-surface term,

Asurface, Ni
=

1

8πGN

∑

Ni

∫

Ni

κdλ
√
ρdx = 0. (7.4)

The result (7.3) is also important because it only depends on the coordinates via the

expressions ∂zt
+(z, x), ∂xt

+(z, x), and as discussed in section 4, these expressions will be

constant along any lightray that foliates the lightfront. Hence, in Poincaré-coordinates,

the components kµ of the null normal will be constant along each lightray. Remember that

it was the projections of these lightrays to the x, z-plane which the plots in figure 3 show.

Consequently, even though we do not know the function t+(z, x) analytically for too large

coordinates of z, as long as we know where the lightray in question starts at the boundary,

we can use the approximate solution (4.3) to calculate the components kµ within order

O(σ2) in the region near the boundary. This will be of use later in sections 9 and 10.

In section 2.3, we had fixed the overall normalisation of kµ by demanding k · t̂
∣

∣

z=0
= 1

where t̂ is a future pointing vector at the boundary [46, 48, 49].15 In our more general

setting, we will take t̂ = ∂t̃ = δµ
t̃
∂µ to be the future pointing vector at the boundary

z̃ = z = 0. Ensuring k · t̂
∣

∣

z=z̃=0
= 1 then fixes our choice of Φ as a function of σ and x

at the boundary. As we know that Φ has to be constant along each of the lightrays due

to (7.3), Φ can then be extended from the boundary into the bulk. So at z = 0, we make

15Of course, the presence of the counter terms (2.6) is designed to make the action reparametrisation

invariant [48, 57], but fixing a specific parametrisation is still convenient in practice.
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the ansatz

kµ
∣

∣

z=0
≈ Φ̂ (σ, x)







1

−σg′+(x)
−1 + 1

2σ
2g′+(x)

2






, (7.5)

where (4.3) was used, and Φ̂ (σ, x) = limz→0Φ (σ, ∂zt
+(z, x), ∂xt

+(z, x)).16 Also, in

Poincaré-coordinates

t̂µ = δµ
t̃

∣

∣

z=0
≈









1 + σ
2

(

g′+(x
+)− g′+(−x−)

)

− σ2

2

(

g+(−x−)g′′+(−x−) + g+(x
+)g′′+(x

+)
)

σ
2

(

g′+(−x−) + g′+(x
+) + σ2

2

(

g+(−x−)g′′+(−x−)− g+(x
+)g′′+(x

+)
)

)

0









.

(7.6)

Then, we find17

1 ≡ k · t̂
∣

∣

z=0
≈ Φ̂(0, x) + ∂σΦ̂(σ, x)

∣

∣

σ=0
+ σ2

(

1

2
∂2σΦ̂(σ, x)

∣

∣

σ=0
− Φ̂(0, x)g′+(x)

2

)

+O(σ3),

(7.7)

which can be solved by

Φ̂(σ, x) ≈ 1 + σ2g′+(x)
2 +O(σ3) ≈ 1 + (∂xt

+(z, x))2
∣

∣

z=0
+O(σ3), (7.8)

hence up to order O(σ2) we can assume

Φ
(

σ, ∂zt
+(z, x), ∂xt

+(z, x)
)

≈ 1 + (∂xt
+(z, x))2 +O(σ3). (7.9)

8 Timelike-null joints

The types of timelike-null joints that we might have to deal with for nonzero σ will be

similar to the joint-terms already studied in section 2.4 for the σ = 0 case. At the IR-

cutoff surface z = zmax, we will again have a volume element
√
ρ ∼ 1/zmax and an integrand

η ∼ log (|k · s|) with at most a logarithmic divergence, so these terms will again vanish in

the limit zmax → ∞.

We are left with the timelike-null joints at the cutoff surface z̃ = ǫ. For simplicity, we

will focus on the joint between the cutoff surface and the future lightfront t+(z, x), the

16Strictly speaking, because of this limit Φ̂ cannot have an arbitrary x-dependence, but should be only a

function of g′+(x), Φ̂ (σ, x) = Φ̂ (σ, g′+(x)), because as visible in (7.5) this is how ∂xt
+(z, x) and ∂zt

+(z, x)

depend on x in this limit. We will see shortly that this is indeed satisfied, at least to second order in σ. This

is not surprising, as g′+(x) ∼ t
bdy′(x), and at the beginning of section B.3 we will see how some properties

of kµ at the boundary are only functions of tbdy′(x).
17Note that in this equation, evaluating the product at the boundary z = 0 also implies setting the

t-coordinate in (7.6) to be t = t
bdy(x), as this is the time-coordinate as a function of x for which the

lightfront emanates from the boundary.
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calculation for the joint with the past lightfront would be analogous. As seen in section 2.4,

the joint term takes the form [46, 48]:

Ajoint,1 =
1

8πGN

∫

J1

ηJ1

√
ρdx, (8.1)

with integrand

ηJ = −sign(k · s)sign
(

k · ť
)

log (|k · s|) , (2.12)

with the null normal kµ now generally defined as in (7.3) with Φ as in (7.9), the unit

normal vector s of the timelike boundary surface (defined to point out of W) and ť, a

normalized timelike vector living in the tangent space of the timelike boundary. The

values of sign(k · s) = +1 and sign
(

k · ť
)

= +1 had already been calculated in section 2.4

for the σ = 0 case, and we assume that they stay the same perturbatively. For the

generic cutoff surface defined by z̃ = ǫ with (3.14), we find that its intersection with the

lightfront t+(z, x), described accurately by (4.3) near the boundary, can be parametrised

perturbatively in σ and ǫ as

tI(x) ≈ σg+(x) + ǫ
(

1− σ2g′+(x)
2
)

+ σǫ2g′′+(x), z
I(x) ≈ σǫ

(

1− 1

2
σ2g′+(x)

2

)

+ ǫ2g′′+(x).

(8.2)

Hence we find the induced volume element on the joint curve

√
ρ ≈ 1

ǫ
− σg′′+(x) (8.3)

and the product

k · s
∣

∣

J1
= ǫ+O(σ2, ǫ2). (8.4)

Consequently

Ajoint,1 =
−1

8πGN

∫ ∞

−∞

(

log(ǫ)

ǫ
− σ log(ǫ)g′′+(x)

)

dx+O(σ3). (8.5)

The term ∼ log(ǫ)
ǫ is the order O(σ0) result and the term ∼

∫∞
−∞ g′′+(x)dx vanishes by our

assumption that the function g+(x) (and hence its derivative) vanishes at large |x|. We are

thus left with

δAjoint,1 = O(σ3). (8.6)

9 Null-null joints

Our next step will be to evaluate the joint-terms corresponding to the null-null joints or

“creases”. These terms will be interesting, because they have no analogue in the σ = 0

case: in section 2, there simply were no null-null joints in the lightfronts t±(x, z). However,

as explained in section B.2, such creases will exist whenever tbdy(x) 6= const.. In figure 3,
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we plotted some examples for different physically interesting choices of tbdy(x) (the null-

null joints where marked in red), and in section B.3 we explained how these creases can

be located perturbatively in σ. The most important thing here is to remember that in

section B.3 we introduced the coordinate xB1 on the crease, such that for a lightray that

meets the crease at this coordinate (from one of its two sides), xB1 is also the value of

the x-coordinate at which that lighray started at the boundary.18 In this sense, xB1 has

a double meaning. The embedding of the crease into the Poincaré ambient-space is thus

given by a triplet of functions tP (xB1 ), x
P (xB1 ), z

P (xB1 ), see e.g. (B.14). Unfortunately, these

calculations were only possible on a case by case basis, so in this section we will only present

explicit results for the three cases tbdy(x) = ±σ
1+x2 ,

σx
1+x2 .

Case tbdy(x) = σ

1+x
2 . See the upper left figure in figure 3. In terms of the coordinate

xB1 ∈ [0,+∞[, the embedding tP (xB1 ), x
P (xB1 ), z

P (xB1 ) for this crease is given in (B.14),

and the induced volume-element on this curve can then be calculated to be

√
ρdxB1 =

8σxB1
2
(

(

xB1
2 + 1

)3 − σ2
)

(

xB1
2 + 1

)6 − 4σ2xB1
2
(

xB1
2 + 1

)2dx
B
1 =

8σxB1
2

(

xB1
2 + 1

)3dx
B
1 +O(σ3). (9.1)

An interesting observation that can be made here is that limxB
1 →0

√
ρ = 0. I.e. while the

crease is overall a spacelike curve, as we approach the caustic point at which it starts,

it approaches a null-ray such that the induced volume-element at the caustic point van-

ishes. This fact will be very important shortly. Another interesting fact is that also

limxB
1 →∞

√
ρ = 0, consequently the overall volume (or more accurately length) of the

crease is finite:

∫ +∞

0

√
ρdxB1 ≈ πσ

2
. (9.2)

Again, this leads us to a very important and general observation: the creases are always

spacelike curves starting at a caustic, and as explained in section B.2, we always expect

the caustics to be located at z-coordinates of order O(1/σ). Consequently, it is our generic

expectation that the volume element
√
ρ (and total volume, if finite) on the crease will be

of order σ. Again, this will be important shortly. By [48, 49], the joint term takes the form:

Ajoint =
1

8πGN

∫

J
ηJ

√
ρdx, (9.3)

with integrand

ηJ = −sign(k · k′)sign(k̂1 · k′) log
(

1

2
|k · k′|

)

. (9.4)

Herein, k and k′ are the outward-pointing normal one-forms associated with the two light-

fronts that meet on the null-null joint from its two sides. k̂1 is an auxiliary vector, colinear

18For the lightray coming to the crease from the other side, we had introduced the coordinate xB
2 , which

has to be a function of xB
1 .
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to kµ1 , but oriented such that it points away from W and the null-null joint. We have

sign(k · k′) = −1 and k̂µ1 = −kµ1 , hence sign(k̂1 · k′) = +1.19

We do not know t+(z, x) analytically (not even perturbatively) for the regime in which

the z-coordinate is larger than the z-coordinate (of order O(1/σ)) at which caustics appear,

and of course this is exactly the regime in which the creases will be located. However, as

seen in section 7, in Poincaré-coordinates the components of kµ are constant along each

lightray, hence

kµ(x
P (xB1 ), z

P (xB1 )) = kµ(x
B
1 , 0), (9.5)

which can be evaluated as in (7.5), as we know that (4.3) is valid near the boundary. So it

will be possible for us to evaluate (9.4) on the caustic. We find

k · k′ = −2xB1
2 − 7σ2xB1

4

(

xB1
2 + 1

)4 +O
(

σ3
)

. (9.6)

Let us comment on this result for a moment: the two null-vectors (or one forms) k and k′

are oriented with respect to the future lightcones in the same way, so their scalar product

is negative, as said above. In (9.4), we see there would be a logarithmic divergence if ever

k · k′ = 0. This could happen in two ways:

Firstly, when setting σ = 0, kµ in (7.5) becomes independent of x, and hence k = k′.

So we might naively expect that k · k′ → k · k = 0 as σ → 0, which is clearly not true

in (9.6). Why? Because (9.6) was evaluated at the null-null joint, where as we know by

now the z-coordinate will be of order O(1/σ) (at least), and consequently in the expression

k · k′ = gµνkµk
′
ν the inverse metric will contribute such that the overall result has the

expansion in σ shown in (9.6), with a non-zero term at order O(σ0). So it is important to

note here that in an expansion in σ, the integrand (9.4) will have an order O(σ0) term.

Secondly, from e.g. figure 3 we see that as we move towards the caustic point along

the worldline of the null-null joint, we also expect that k′ → k, and hence k · k′ → 0. Why

does this not cause problems? Because as we had noted above, in this limit the induced

volume element on the worldline of the null-null joint,
√
ρ, will also vanish like a power

law, i.e. faster than the divergence of the log.

Hence we expect to find an overall finite result for the null-null joint term. In fact, we

can now calculate

Ajoint =
1

8πGN

∫ +∞

0

16σxB1
2 log

(

xB1
)

(

xB1
2 + 1

)3 dxB1 +O(σ3) = 0 +O(σ3). (9.7)

So in this specific and simple case, the term on the null-null joint vanishes identically.

However, by the arguments above, we expect generically
√
ρ ∼ O(σ1) and ηJ ∼ O(σ0),

so it looks like the null-null joint terms will contribute at order O(σ) to the change of the

action under conformal transformations. We will indeed see this on our next examples.

19This will apply to all three cases studied in this section.
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Case tbdy(x) = −σ

1+x
2 . See the upper right figure in figure 3, the specific embedding of

this curve is given in (B.16). The range of xB1 is xH ≥ xB1 ≥ −xH with xH ≈ 1 − σ2/8.20

We find the volume element

√
ρ =

2σ
(

xB1
2 − 1

)2

(

xB1
2 + 1

)3 +O(σ3). (9.8)

Interestingly, the combined volume of both arcs of the null-null joint will hence be

∫ +xH

−xH

√
ρdxB1 ≈ πσ

2
, (9.9)

just as in the previous case. Note that ostensibly we are only studying the creases of future

lightfronts, t+(z, x), but the future lightfront t+(z, x) with boundary slice tbdy(x) is related

to the past lightfront t−(z, x) with boundary slice −tbdy(x) by simple time-reflection. So

the two cases tbdy(x) = ±σ
1+x2 are intimately related.

The scalar product turns out to be

k · k′ = −
(

xB1
2 − 1

)2

2xB1
2

+
σ2
(

xB1
6 − 4xB1

4 + 3xB1
2 + 1

)

(

xB1
2 + 1

)4 +O(σ3), (9.10)

and the same overall remarks apply as in the previous case: as expected, the quantity is

negative and has a term of order O(σ0). Consequently21

Ajoint =
1

8πGN

∫ +xH

−xH

2σ
(

xB1
2 − 1

)2

(

xB1
2 + 1

)3 log

(

(

xB1
2−1

)2

4xB1
2

)

dxB1 +O(σ3) =
1

8πGN
πσ +O(σ3).

(9.11)

So we obtain a term of order O(σ) in the change of the action under one of our infinitesimal

conformal transformations. The existence of contributions at this order is one of the main

results of this paper.

Case tbdy(x) = σx

1+x
2 . See the lower left corner of figure 3, the specific embedding

of this curve is given in (B.20). The range of xB1 is xB1 ∈] − ∞, xH−] ∪ [xH+,+∞[ with

xH+ ≈
√
2−1− 1

32

(

3
√
2 + 4

)

σ2 and xH− ≈ −
√
2−1+ 1

32

(

3
√
2− 4

)

σ2. In analogy to the

previous cases, we find

√
ρ =

σ
(

xB1
2 + 2xB1 − 1

)2

(

xB1
2 + 1

)3 +O(σ3), (9.12)

20±xH are the coordinates of the hyperbolic points, a concept introduced in appendix B.2, see also the

caption of figure 3 for an explanation.
21Technically, we should integrate from −xH to −ε and from ε to xH , for some finite but infinitesimal ε.

The integrations for negative and positive xB
1 would then correspond to integrations along the two arcs of

the crease. The lightray leaving the boundary at exactly xB
1 = 0 does not reach either of the arcs of the

crease (by symmetry under x → −x), but goes to the Poincaré-horizon, as can be gleaned from figure 3

(upper right corner). However, in our integrals the limit ε → 0 can be taken and yields the finite result

presented below.
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(

∫ xH−

∞
∪
∫ +∞

xH+

)

√
ρdxB1 ≈ 1

8
(π − 2)σ +

1

8
(2 + 3π)σ =

πσ

2
, (9.13)

k · k′ = −
(

xB1
2 + 2xB1 − 1

)2

2(xB1 + 1)2
(9.14)

− σ2
(

xB1
2 + 2xB1 − 1

) (

xB1
6 + 6xB1

5 + 13xB1
4 − 4xB1

3 − xB1
2 + 6xB1 + 3

)

8
(

xB1
2 + 1

)4 +O(σ3),

and hence

Ajoint =
1

8πGN

(

∫ xH−

∞
∪
∫ +∞

xH+

)

σ
(

xB1
2+2xB1 −1

)2

(

xB1
2 + 1

)3 log

(

(

xB1
2+2xB1 −1

)2

4(xB1 + 1)2

)

dxB1 +O(σ3)

(9.15)

≈ σ

8πGN
(0.5240 + 1.0468) ≈ σ

8πGN
1.5708. (9.16)

The results in the last line come from a numerical integration. Curiously, 0.5240+1.0468 ≈
1.5708 might be a numerical expression of π/6+π/3 = π/2, so just as in the previous case

it seems that we obtain a term at order O(σ) with a very nice mathematical form.

10 Counter terms

We are left with calculating the counter-terms which, for the Poincaré-case, had already

been discussed in section 2.5. We would like to remind the reader that given in the

form (2.6), these terms would have to be evaluated on the entire null-boundaries (i.e. light-

fronts) Ni. However in section 2.5 we showed, using [57] and in addition Raychaudhuri’s

equation (A.14), that for our cases these terms are total derivatives, and hence boil down

to expressions (2.22)

Acounter =
±1

8πGN

∫ +∞

−∞

√
ρ log(|θℓ′c|)dx (10.1)

to be evaluated on the joints where the null-boundaries start (− sign) and end (+ sign).

For the expansion θ, we will make use of the explicit equation (A.13) presented in ap-

pendix A.2.22

10.1 Counter terms near boundary

Just as in section 8, we will focus on the intersection between the UV-cutoff surface and the

future lightfront t+(z, x). The embedding and induced volume element on this joint-curve

22Specifically, we will use the last expression in this equation, which is formulated in terms of the em-

bedding of the joint-curve into the ambient Poincaré-space and the null-vector kµ, without the need to

apply covariant derivatives to kµ. Of course, all expressions for θ given in section A.2 are equivalent, but

especially for large z when we do not know the lightfronts t±(x, z) analytically it is convenient in practice

to avoid having to act on kµ with covariant derivatives.
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are already given in equations (8.2) and (8.3). Note that the joint-curve is one-dimensional,

so its induced metric is a 1 × 1-matrix with ρij = 1/ρij = (
√
ρ)2. We hence find

θ(x) = ǫ+O(ǫ2, σ3), (10.2)

and

Acounter,1 ≈
+1

8πGN

∫ ∞

−∞

(

log(ℓ′cǫ)

ǫ
− δg′′+(x) log(ℓ

′
cǫ)

)

dx (10.3)

where again the integral over g′′+(x) vanishes. Hence

δAcounter,1 = O(σ3). (10.4)

10.2 Counter terms at null-null joints

In dealing with the counter-terms induced on the null-null joints, it is important to notice

that each null-null joint is the end-surface for two types of lightrays, coming from both

of its sides, with normal forms k and k′. Hence on each of these joints, we will have to

integrate two terms, one with θ (of k) and one with θ′ (of k′). Again, we will do this on

a case by case basis for the specific examples where we have identified the locations of the

creases in appendix B.3. The volume-forms
√
ρ can be found in section 9.

Case tbdy(x) = σ

1+x
2 . From equation (A.13), we can derive

θ = θ′ =

(

xB1
2 + 1

)3

8σxB1
2

− σ
(

11xB1
4 + 3xB1

2 − 2
)

16
(

xB1
3 + xB1

)2 +O
(

σ3
)

. (10.5)

Let us comment on the qualitative features of this result: first of all, we see that it diverges

as xB1 → 0. This is to be expected, because on the worldline of the crease, taking the

coordinate xB1 towards zero corresponds to moving toward the caustic point at which the

crease starts. At a caustic point, the expansion of lightrays diverges by definition, as

discussed in appendix B.2.23 However, this divergence will not cause a divergence of the

integrand of (2.22), as the volume element
√
ρ vanishes in this limit, too. This is similar

to how divergences are avoided in the integrand of the null-null joint terms, as discussed

in section 9.

Another noteworthy aspect of the above equation is that its leading order is O(1/σ).

Perhaps this should not be surprising to us. In section 2.5, we had seen that in the usual

Poincaré-case with σ = 0, θ ∼ z. Now equation (10.5) has to be evaluated at the location of

the null-null joint, and as we are not saying for the first time, these joints will generically

start at z-coordinates of order O(1/σ), and from there on move out towards the Poincaré-

horizon. Hence θ ∼ z ∼ 1/σ along the crease was to be expected. Remember also that in

the σ = 0 case, the intersection between the lightfronts t± = ±z and the Poincaré-horizon

is also nothing but a caustic when mapped to global AdS. So it is sensible to expect a

23The divergence here is towards +∞, because as in section 2.5 we have effectively chosen the affine

parameter to increase when going from the bulk towards the boundary.
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divergence in θ (evaluated at the crease) when taking the limit σ → 0, as in this limit the

crease itself moves towards the Poincaré-horizon.

We are hence left with

Acounter = 2× −1

8πGN

∫ +∞

0

8σxB1
2

(

xB1
2 + 1

)3 log

(

ℓ′c
(

xB1
2 + 1

)3

8σxB1
2

)

dxB1 +O(σ3) (10.6)

=
−1

16πGN
πσ

(

2 log

(

ℓ′c
σ

)

− 3 + log(64)

)

+O(σ3), (10.7)

i.e. the counter terms provide us with contributions at orders σ and even σ log(σ).

Case tbdy(x) = −σ

1+x
2 . In this case, we find θ and θ′ as given in equations (B.22), (B.23),

appendix B.4. The integration of both counter terms (one for θ, one for θ′) along both arcs

of the caustic then yields

Acounter ∝
−1

16πGN
πσ

(

2 log

(

ℓ′c
σ

)

− 1 + log(64)

)

+O(σ3). (10.8)

Case tbdy(x) = σx

1+x
2 . The expansions θ and θ′ for this case are given in equa-

tions (B.24), (B.25), appendix B.4. We obtain

Acounter ∝
−σ

8πGN

(

π log

(

ℓ′c
σ

)

+ 3.39117

)

+O(σ3), (10.9)

where the O(σ) term comes from a numerical integration.

11 Summary and conclusion

Before summarising the results of this paper, let us first look at the results of [40] again.

In this paper, together with N. Miekley, we studied the change of complexity under in-

finitesimal conformal transformations according to the volume proposal (1.2). The basic

result was

V(Σ) = V|σ=0 + σ2V(2)(g±) +O(σ3), with V(2)(g±) > 0 and V(2)(−g±) = V(2)(g±).

(11.1)

This implied that, according to the volume proposal, Poincaré-AdS is, among the Bañados

geometries, a local minimum of complexity, with the change of complexity under an in-

finitesimal conformal transformation being of second order in σ. It should also be stated

that V(2) was independent of the UV cutoff ǫ and the infinite volume V =
∫

dx. The

feature V(2)(−g±) = V(2)(g±) was particularly interesting, as at lowest order in σ, this

sign change corresponds to the inverse conformal transformation. See the appendix of [40]

for a discussion on the operators U±(σg±) that implement the conformal transformation

corresponding to σg± in terms of field theory expressions, such as the Virasoro generators

or the field theory energy-momentum tensor.

Let us now compare these results to the ones obtained in this paper. First of all,

from the sections 5, 6, 8 and 10.1, we see that the change of the action A integrated
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over the WdW-patch W does not receive any terms depending on the UV-cutoff ǫ or

V =
∫

dx, i.e. δA is finite up to O(σ2). This is a similarity between the action proposal

and the volume proposal, which holds for generic functions g+ subject to our assumptions

concerning finiteness and falloff stated in section 3. In fact, for the examples of (5.7), (5.8),

these terms didn’t lead to a change of action up to order O(σ2) at all. A full evaluation

of the finite contributions to δA requires the evaluation of joint and counter terms at the

null-null joints of the lightfronts t±(x, z). This is very demanding to do in general, however

for some simple examples of functions g± (always assuming (3.18) and (3.17)) we were able

to calculate the necessary terms in sections 9 and 10.2. Taking these results together now

(and including the correct terms for the past lighfronts t−(z, x), too), we find

δA
(

g+ =
1

1 + x2

)

=
−1

4πGN
πσ log

(

ℓ′c
σ

)

+
1

8πGN
(3− log(64))πσ +O(σ3), (11.2)

δA
(

g+ =
−1

1 + x2

)

=
−1

4πGN
πσ log

(

ℓ′c
σ

)

+
1

8πGN
(3− log(64))πσ +O(σ3), (11.3)

δA
(

g+ =
±x

1 + x2

)

≈ −1

4πGN
πσ log

(

ℓ′c
σ

)

− 1

8πGN
3.64074 +O(σ3). (11.4)

So again, the change in complexity is invariant under inversion of the conformal transfor-

mation, which is a natural consequence of time-reflection invariance of AdS-space.24

Of course, the elephant in the room is that δA contains terms of orders σ and even

σ log(σ). This is very hard to interpret in terms of what a physical definition of complexity

might look like on the field theory side, see figure 5. Complexity is meant to provide a

distance measure between states, and we are essentially working with the triangle spanned

by the groundstate |0〉, the state after an infinitesimal conformal transformation U(σ) |0〉,
and the implicit reference state |R〉. As the change of complexity caused by U(σ) and

U(−σ) ≈ U(σ)−1 is the same, it seems in a naive geometrical picture that the line of states

U(σ) |0〉 is perpendicular to the line between |0〉 and |R〉, so the three states under consid-

eration form a right triangle. One of the sides of this triangle will also be of infinitesimal

length, which we call C (|0〉 ,U(σ) |0〉) = b and assume b ∝ σ. If the metric defined by the

complexity functional was a flat metric, then we could use the Pythagorean theorem to

solve for the change of complexity and find δC ∝ σ2. Even if a Riemannian metric defined

by the complexity functional on the Hilbert space is curved, we might still expect a similar

result. This would qualitatively correspond to the result (11.1) of the volume proposal.

Suppose now we had obtained only the terms of order O(σ) in the action proposal.

Those could have a very simple interpretation if we assume that the distance measure

defined on the Hilbert space by complexity is more akin to a Manhattan-metric, where

instead of a2 + b2 = c2 the distance when moving along two perpendicular axes is defined

as |a| + |b| = |c|. This could naturally lead to δC ∝ σ in our naive geometrical picture.

24Another curious fact is that (3−log(64))π ≈ −3.64074, so it seems that the change of complexity induced

by the conformal transformations g+ = 1

1+x2 and g+ = x

1+x2 is identical subject to the assumptions (3.18)

and (3.17). See also (5.7) and (5.8). This equivalence was already a feature of the results for the volume

proposal [40], but we don’t currently understand why this fact should hold generally for any holographic

complexity proposal.
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|R〉 |0〉

U(σ) |0〉

U(σ)−1 |0〉
≈ U(−σ) |0〉

C(R, 0) ≡ a

C(R,
U)

= C(σ)
≡ c σ

C(σ)

b

c =
√
a2 + b2

≈ |a|+ b2

2|a| +O(b4)

|c| = |a|+ |b|

Figure 5. Possible interpretation of order O(σ2) and O(σ) terms in δC.

A change of order δC ∝ σ log(σ) however would seem very hard to interpret in terms of

a plausible distance measure on the Hilbert space, especially as it would mean δC < 0 to

lowest order, with an initial decrease with infinite negative slope.25 Above we have made

the assumption that the relative complexity between |0〉 and U(σ) |0〉, C (|0〉 ,U(σ) |0〉) = b,

is of order σ. By the relation between operator-complexity and (relative) complexity of

states outlined in section 1, we also have C(U(σ)) ≥ b. Furthermore, with the notation of

figure 5, the triangle inequality would imply b ≥ |a− c|. With |a− c| ≈ |δC| and our results

from above, for σ → 0 this would mean

C(U(σ)) ≥ |σ log(σ)| · K (11.5)

with some positive finite constant K. Note that for small σ, σK′ < |σ log(σ)|K for any

positive constants K,K′, as limσ→0 ∂σ (−σ log(σ)) = +∞. Hence (11.5) and our results

imply the following statement:

Any definition of field-theory complexity (for both operators and states as dis-

cussed in section 1) that utilises a unique reference state |R〉, satisfies the trian-

gle inequality and assigns to any operator of the form U(σ) = ✶+σV +O(σ2)26

a complexity of the form C(U(σ)) = σK′ +O(σ2) (for sufficiently small σ and

a finite constant K′ depending on V ) can not possibly be dual to the CA pro-

posal (1.3) in AdS3/CFT2 with the counter-terms chosen as in (2.6).

The existence of the O(σ log(σ)) terms is the central result of this paper: despite the

fact that we were only able to explicitly compute them for three concrete examples, we have

provided arguments throughout the paper that these terms should generally be expected

to contribute with the orders that they do. Let us repeat: for non-constant tbdy(x), we

generically expect caustics and creases to emerge in the lightfronts bounding the WdW-

patch [73]. The focusing theorem implies that the caustics will have z-coordinates of

25A somewhat similar behaviour of complexity decrease with infinite slope was observed in [72] in the

time evolution of complexity in black hole backgrounds.
26See e.g. the appendices of [40] and [45] for how to write the generators of conformal transformations in

this form.
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order O(1/σ) (section B.2), and consequently the creases starting there will too. So the

(codimension-2) creases, on which joint- and counter terms will have to be evaluated,

will have induced volume elements
√
ρ ∼ σ due to the factors of z induced by the ambient

metric (2.1). The integrands to be evaluated on these creases will have the form
√
ρ log(. . .),

see sections 9 and 10. As argued in section 9, the term k · k′ will be of order O(σ0) and

hence lead to a term δA ∼ σ. However, the expansion θ of the lightfronts evaluated at the

crease will diverge as 1/σ. This gives rise to the σ log(σ)-terms, however as explained in

section 10, this divergence has to be expected: in global AdS-coordinates the intersection

between the lightfront and the Poincaré-horizon is also just a caustic point, thus θ diverges

when approaching it. Hence, with our present hindsight and understanding of the topic,

the terms of order σ and σ log(σ) seem almost inevitable.

We leave a further discussion of what possible implications this has for the CA-

conjecture (or the terms required in (2.3)–(2.6)) and proposed field-theory definitions

of complexity to the future. In any case, our results show a significant qualitative

difference between volume proposal (1.2), action proposal (1.3), and also the volume

2.0 proposal (1.4), for which our results implied δC = O(σ3) for the g+ of (5.7)

and (5.8). Other papers in which qualitative differences between these proposals where

found are [36–39, 74, 75].27 Which of the proposals is the “better” one according to these

comparisons still seems to be an open question, to which we hope to have made a contri-

bution with this paper.

Despite there being already considerable theoretical knowledge concerning the geom-

etry of lightfronts (see the discussion in appendix B), some of our ideas outlined there

may be helpful in practice for dealing with WdW-patches in generic cases, i.e. when the

background-spacetime is not translation invariant or when the boundary-conditions on the

lightfront are nontrivial. This may be useful for further investigations along the lines of [77]

or [78, 79], although in [78] it was shown that the caustics would not play a role.
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A Explicit expressions for extrinsic curvature and geodesic expansion

In this appendix we will collect a number of explicit expressions useful in calculating

geometrical quantities such as extrinsic curvatures or null expansions.

27The paper [75] dealt with complexity of AdS/BCFT models, a topic also studied in [76].
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A.1 Codimension-1 extrinsic curvature

We begin with a codimension-1 surface Σ, which is either timelike or spacelike, i.e. which

has a nondegenerate induced metric of definite sign. Then, there exists a normal vector

which can be normalised so that

nµn
µ = ±1, (A.1)

where nµ is spacelike for timelike Σ and vice versa. One can then define a degenerate

tensor

γµν = gµν ∓ nµnν . (A.2)

which can be used to project quantities into the tangent-space of Σ after raising one of its

indices. Alternatively, for coordinates Xµ in the spacetime manifold and coordinates yi in

the worldsheet of Σ, we can define the induced metric on Σ,

γij = gµν
∂Xµ

∂yi
∂Xν

∂yj
(A.3)

The extrinsic curvature tensor or second fundamental form, in yi-coordinates, is then given

by [80]28

Kij =
∂Xµ

∂yi
∂Xν

∂yj
∇µnν = −nµ

(

∂2Xµ

∂yi∂yj
+ Γµ

αβ

∂Xα

∂yi
∂Xβ

∂yj

)

, (A.4)

and its trace is

K = γijKij . (A.5)

A.2 Codimension-2 extrinsic curvatures and null expansion

We will now turn to a codimension-2 surface Σ, which we assume to be spacelike. One can

then choose two normal vectors, one timelike and one spacelike, subject to the normalisation

and orthogonality conditions

n(1)µ n(1)µ = −1, n(2)µ n(2)µ = 1, n(1)µ n(2)µ = 0. (A.6)

Similar to the previous subsection, we can then introduce the projector

ρµν = gµν + n(1)µ n(1)ν − n(2)µ n(2)ν (A.7)

and the induced metric

ρij = gµν
∂Xµ

∂yi
∂Xν

∂yj
. (A.8)

28There is an overall ambiguity of sign choice in the definition of the extrinsic curvature, which is related

to the ambiguity of choosing the orientation of nµ. For the timelike Gibbons-Hawking type boundary terms,

we chose the normal vector to be pointing outward of W [53].
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For each normal direction, it is now possible to define an extrinsic curvature tensor (or

second fundamental form) by

K
(i)
ij =

∂Xµ

∂yi
∂Xν

∂yj
∇µn

(i)
ν = −n(i)µ

(

∂2Xµ

∂yi∂yj
+ Γµ

αβ

∂Xα

∂yi
∂Xβ

∂yj

)

, (A.9)

and

K(i) = ρijK
(i)
ij . (A.10)

Another interesting aspect of the geometry of spacelike codimension-2 surfaces are the

properties of the lightfronts emanating from them. To understand this better, we will

collect a few more equations, following mostly [56] (see also [81]). In general, there will be

four lightfronts emanating from a codimension-2 spacelike surface, two towards the future

and two towards the past. Assume that we pick one of them, and its null-normal one-form

is given by kµ, just as in section 2.3. We introduce an auxiliary null-vector lµ such that

lµlµ = 0, lµkµ = −1. (A.11)

So although the null vectors lµ, kµ cannot be normalised individually, they are normalised

with respect to each other. The tensor of (A.7) then takes the form

ρµν = gµν + lµkν + kµlν , (A.12)

which easily follows by rewriting the null-normals as linear combinations of the time- and

spacelike normals. An important geometrical quantity of the lightfront in question is its

expansion θ. It is intuitively appealing, because it measures the normalised change of the

volume element
√
ρ of Σ as we make a step dλ of affine parameter away from the surface

along the light rays:

θ =
1√
ρ
∂λ

√
ρ. (2.18)

It can be shown [56, 82] that this is simply the trace of the extrinsic curvature with respect

to the null vector kµ:

θ = K(k) = ρij
∂Xµ

∂yi
∂Xν

∂yj
∇µkν = −kµρij

(

∂2Xµ

∂yi∂yj
+ Γµ

αβ

∂Xα

∂yi
∂Xβ

∂yj

)

. (A.13)

The overall freedom of rescaling kµ hereby corresponds to the freedom of rescaling the

affine parameter λ in (2.18), so θ transforms under these rescalings in the expected way.

A.3 The Raychaudhuri equation

In the previous subsection, we saw how the expansion θ of a lightfront originating from a

spacelike codimension-2 surface is determined, at this surface, by its geometry and embed-

ding into the ambient space. Now, we would like to understand how this expansion will

evolve along the lightfront, as a function of the affine parameter of the lightrays. To this

end, we introduce the important Raychaudhuri equation. A general overview is given for
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t

tbdy(x)

z

x

t = t1

Figure 6. The solid (red) line is the equal time slice tbdy(x) on the boundary, and the dotted

(green) lines are the ligthrays emanating from this slice, forming the lightfront that is the boundary

of W to the future. The dashed (blue) line is the intersection of the lightfront with the bulk

equal-time slice at t = t1. Two lightcones are sketched with solid (blue) lines.

example in [83], but here we will only need the case relevant for null-geodesics in 2 + 1-

dimensions, where shear and twist automatically vanish. Assuming Einsteins equations,

we are then left with

θ̇ = −θ2 − Tµν γ̇
µγ̇ν , (A.14)

where θ is the expansion of a family of lightrays with tangent vectors γ̇µ and θ̇ is the

derivative of the expansion with respect to the affine parameter.

B Details on WdW-patches in AdS3

B.1 Numerical method

In this section, we present our numerical method for finding (physical) solutions to (4.1). A

basic illustration for this is given in figure 6. We assume that we have given the boundary

slice tbdy(x), and we want to calculate the intersection of the lightfront t+(z, x) with a

bulk equal-time slice at t = t1, as a function z = zt1(x).

A point inside of W by definition is not in causal contact with any point on the

boundary slice t = tbdy(x), and hence is outside of any lightcone emanating from such

a point. Consequently, the function zt1(x), i.e. the intersection of the lightfront with the

bulk slice t = t1, will be the enveloping function of the circular intersections of the bulk

slice t = t1 with all the lightcones emanating from a point on the boundary slice, see

figure 7. How could we derive this enveloping function? Again, the explicit conformal

flatness of (2.1) is of help here, because it means that in t, z, x-coordinates, the lightcones

will just be straight undeformed cones with 90◦ opening angle. The intersection between

any of the lightcones with the t = t1 bulk slice (t1 > t0+O(σ)) will hence be a (semi)-circle

with center at coordinate x = xc, z = 0 and radius

r(t1, xc) = t1 − tbdy(xc). (B.1)
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Figure 7. Construction of the enveloping function zt1(x) as in figure 6 for tbdy(x) = x

2+2x2 and

t1 = 1 (left) and t1 = 2.5 (right). We see that z1(x) (left) is a smooth function while z2.5(x) (right)

has developed a kink. This indicates the presence of a caustic point on the lightfront somewhere

between t1 = 1 and t1 = 2.5.

This defines the family of circles shown in figure 7. For a fixed center xc, the functional

form of these semi-circles will then be

f(t1, xc, x) =
√

−(x− xc)2 + r(t1, xc)2. (B.2)

This defines a fictitious three dimensional surface, shown in figure 8, which is generated

by smearing out the circles of figure 7 along the xc axis. The silhouette of this surface,

when viewed along the xc axis, is precisely given by the enveloping function zt1(x) that

we are trying to calculate. This means that for any given x and t1, we need to maximize

f(t1, xc, x) as a function of xc in order to obtain the value zt1(x). This will in general have

to be done numerically, and doing so on a grid of points in the x, t1-plane will give us, by

numerical interpolation, the function t+(z, x). It can then be checked that these numerical

solutions will indeed, within numerical errors, satisfy equation (4.1). Drawing the contours

along which the quantities ∂zt
+(z, x) and ∂xt

+(z, x) are constant does, as expected due

to the discussion in section 4, yield (identical) straight lines which are the projections to

the z, x-plane of the light-rays which foliate the lightfront, see figure 3.

In this context it has to be pointed out that for AdS3, causal wedges and entanglement

wedges for intervals on the boundary are identical [84, 85]. In other words, the half-circles

that we dealt with above, which were of interest to us because they are intersections of

lightcones with the equal time slice t = t1, were also geodesics describing the entanglement

entropy of a given boundary interval via the Ryu-Takayanagi formula. There is hence an

overlap between our calculations above and results concerning hole-ography and differential

entropy [86, 87], see especially [88, 89]. In the nomenclature of [88], the function zt1(x)

was the outer envelope of a given set of intervals that can be derived from tbdy(x) and t1.

Also, the swallow-tail like feature shown in figure 6b of [89] is related to the emergence of a

caustic and null-null joint in the case tbdy(x) = σ
1+x2 which we study throughout this paper,

see e.g. figure 3, upper left corner. We leave it to the future to study in more generality the

possible relations between differential entropy and WdW-patches, respectively complexity.
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Figure 8. Fictitious three-dimensional bodies. When viewed along the xc-axis, the silhouette of

these bodies (shown in gray) corresponds to the functions zt1(x) shown in figure 7.

B.2 Identifying caustics

As visible in figure 3, for generic functions tbdy(x) the lightfronts will, at finite z (for finite

σ), develop caustics from which null-null joints emerge. This is a well known consequence

of the focusing theorem, which can be derived by integrating the Raychaudhuri equa-

tion (A.14), either in vacuum or assuming the null energy condition (see e.g. [73, 83, 90]).

As we are working with vacuum-solutions in which Tµν = 0, it is easy to solve (A.14) and

prove that generically, whenever the expansion θ is negative near the boundary, it will di-

verge to minus infinity after a finite (positive) affine parameter, signaling that the lightrays

have met a caustic, i.e. that they have been focused to a point.

In the remainder of this section, instead of integrating equation (A.14), we will show

how the emergence of such caustics can be predicted directly from the shape of the boundary

slice tbdy(x). As can be seen from figure 3, the shape of tbdy(x) determines in which

direction the lightrays emanating from the boundary timeslice initially go, before at some

point lightrays start to collide forming caustics and null-null joints. Depending on the

curvature of tbdy(x), these lightrays can be initially focused or defocused A caustic is a

point where neighbouring lightrays first collide, and hence locally looks like the tip of a

past lightcone. The past lightcone of the caustic point at bulk coordinates tc, xc, zc will

intersect the boundary in a hyperbolic curve of the form

h(x) = tc −
√

z2c + (x− xc)2. (B.3)

Consequently, in order to find the (infinitesimal) section of tbdy(x) which focuses lightrays

such that they meet in a caustic, we need to find the point x at which tbdy(x) locally looks

like a hyperbola (B.3). Given the number of free parameters in (B.3), fitting a hyperbola

to tbdy(x) at any point x is always possible to second order in a Taylor expansion around

x, but nontrivial to third or higher order. The hyperbola (B.3) satisfies the characteristic
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third order differential equation

h′(x)h′′(x)2

−1 + h′(x)2
− 1

3
h′′′(x) = 0, (B.4)

so any boundary point xH at which tbdy(x) satisfies

tbdy′(xH)tbdy′′(xH)2

−1 + tbdy′(xH)2
− 1

3
tbdy′′′(xH) = 0, tbdy′′(xH) < 0 (B.5)

will generate a caustic in t+(z, x) at some point in the bulk.29 We will call such a point

xH a hyperbolic point. From the fitting of the parameters of the hyperbola (B.3) to tbdy(x)

at xH , we can then also read off the location of the caustic in the bulk.

xc = xH +
tbdy′(xH)

(

−1 + tbdy′(xH)2
)

tbdy′′(xH)
, (B.6)

zc =

(

1− tbdy′(xH)2
)3/2

−tbdy′′(xH)
, (B.7)

tc = tbdy(xH) +
−1 + tbdy′(xH)2

tbdy′′(xH)
(B.8)

The most important lesson from this is that for tbdy(x) ∼ O(σ), the z-coordinate of the

caustic will generically be of order O(1/σ).

B.3 Identifying null-null joints or “creases”

In this section we will explain how to analytically calculate the position of the null-null

joints which where depicted as dashed red lines in figure 3. By definition, these null-null

joints are spacelike curves in the lightfront on which two lightrays foliating the lightfront

will meet coming from different directions (see [73] for a related discussion). We will refer to

the x-coordinates from which these two light-rays emanate on the boundary as xB1 and xB2 ,

respectively. See figure 9. As is clear by the conformal flatness of the Poincaré-metric (2.1),

lightrays in this spacetime will be straight lines in the space spanned by the coordinates

t, x, z, and their projections to the x, z-plane will also be straight lines

x1/2(z) = s1/2z + xB1/2 (B.9)

with slopes s1/2. These slopes are entirely determined by the function tbdy(x), and read

si =
tbdy′(xBi )

√

1− tbdy′(xBi )
2
. (B.10)

This is easy to derive: it is clear that the slopes si should be locally determined by the choice

of the boundary slice, i.e. that they will be a function of tbdy(xBi ) and its derivatives only.

29Points with t
bdy′′(xH) > 0 can be fitted by a hyperbola that is opened upwards, and hence generate a

caustic in the past lightfront t−(z, x). Also, we can point out that to first order in σ, equation (B.5) boils

down to t
bdy′′′(xH) = 0.
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Figure 9. This figure is essentially a reproduction of the figure in the top right corner of figure 3,

which depicts the situation for tbdy(x) = −0.01
1+x2 . The lines are projections of the null rays forming

the lightfront down to the x, z-plane, and should hence be perfectly straight. Any deviation from

straight line behaviour is due to numerical inaccuracies. The red point is the caustic and the orange

point is the hyperbolic point, both as defined in section B.2. The change compared to figure 3 is

that we have plotted fewer lightrays overall, and highlighted two specific lightrays emanating from

the boundary points xB1 and xB2 as green dashed lines. These two lightrays meet at the same point

with coordinates (xP , zP ) of the null-null joint.

For tbdy(x) = const., we find s1 = 0, and for the boosted case tbdy(x) = const1x+ const2
(|const1| < 1) it is easy to derive (B.10) explicitly from the analytical solution of (4.1) which

can be found in this case. Now, for general smooth tbdy(x), if we zoom in close enough

around any xBi , the setup should be well approximated by tbdy(x) = const1x+ const2, and

hence (B.10) is the general result.

We will now assume that these two straight lines (projections of the two lightrays to

the x, z-plane) cross in a point with coordinates (xP , zP ) on the x, z-plane. This implies

the set of equations

xP − xB1 = s1z
P , xP − xB2 = s2z

P , (B.11)

which has the solution

xP =
s1x

B
2 − s2x

B
1

s1 − s2
, zP =

xB2 − xB1
s1 − s2

. (B.12)

For the point at (xP , zP ) to truly lie on the crease, it is not enough that the projections of

the lightrays to the x, z-plane meet each other at this point, the lightrays themselves also
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need to have the same t-coordinate tP there. In the three-dimensional coordinate space

spanned by t, x, z the slope of the lightrays is 1, i.e. ∆t =
√
∆x2 +∆z2, and this yields the

additional equation

tP = tbdy(xB1 ) + zP
√

1 + s21 ≡ tbdy(xB2 ) + zP
√

1 + s22. (B.13)

This equation is important because if we could solve it, then for any given xB1 it would

tell us the coordinate xB2 from which a second lightray would have to emerge from the

boundary in order to intercept the ray emanating from xB1 at the crease.30 Unfortunately,

for generic tbdy(x) this equation cannot be solved analytically. It is possible to treat (B.13)

perturbatively in σ, but this is best done on a case by basis for tbdy(x). So in the following

we will study a few specific examples which are of relevance in this paper.

Case tbdy(x) = σ

1+x
2 . This was plotted in the upper left corner of figure 3. By sym-

metry, it is obvious that the solution to (B.13) is xB2 = −xB1 . Consequently, the crease can

be parametrized as

tP (xB1 ) =

(

1 + xB1
2
)2

2σ
+

σ

1 + xB1
2
, xP (xB1 ) = 0, zP (xB1 ) =

(

xB1
2 + 1

)2
√

1− 4σ2xB
1

2

(xB
1

2+1)
4

2σ
.

(B.14)

Taking the limit xB1 → 0 = xH reproduces the coordinates of the caustic point which we

could also identify with the methods of section B.2. So as expected we see that the creases

will always emerge at a caustic point, which will have a z-coordinate of order 1/σ. It

would also be possible to invert the expression zP (xB1 ) in (B.14) perturbatively in σ and

then calculate tP (zP ) along the caustic perturbatively in σ, however for most applications

the expressions in (B.14) are sufficient, i.e. we can view the crease as a spacelike curve

parametrised by a coordinate xB1 ∈ [0,+∞[.

Case tbdy(x) = −σ

1+x
2 . This was plotted in the upper right corner of figure 3. This

case is related to the previous one in that the creases of the past lightfront of the case

tbdy(x) = σ
1+x2 are related to the creases of the future lightfront of this case by simple

time inversion. There will now be two arc-shaped creases, one in the region x > 0 and, by

symmetry, one in the region x < 0. We will only focus on the case x > 0 now. Of course

xB1 = −xB2 would still be a solution to (B.13), but one that would imply zP < 0. There

are however also nontrivial solutions for the physical regime zP > 0 which can be found

perturbatively in σ. Assuming xB2 ≥ xH ≥ xB1 > 0 with xH ≈ 1− σ2

8 being the hyperbolic

point as defined in section B.2, we find

xB2 =
1

xB1
− σ2xB1
(

xB1
2 + 1

)2 +O(σ3). (B.15)

30An additional physical assumption zP > 0 has to be imposed.
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We then find

tP (xB1 ) ≈
(

xB1
2 + 1

)2

2σxB1
2

− σ
(

xB1
2 + 3

)

2
(

xB1
2 + 1

) , xP (xB1 ) ≈ xB1 +
1

xB1
− σ2xB1
(

xB1
2 + 1

)2 , (B.16)

zP (xB1 ) ≈
(

xB1
2 + 1

)2

2σxB1
2

− σ
(

xB1
4 + 2xB1

2 + 3
)

2
(

xB1
2 + 1

)2 ,

where the crease is parametrised by xH ≥ xB1 > 0. In fact, (B.16) parametrises both arcs

of the caustic if we allow for xH ≥ xB1 ≥ −xH . Curiously, we see that at the very lowest

order in σ, the embedding functions in (B.16) satisfy the relation σzP ≈ xP 2/2, so the

crease plotted in figure 3 (upper right corner) is approximately a parabolic arc.

Case tbdy(x) = σx

1+x
2 . This was plotted in the lower left corner of figure 3. We now

see that there are two asymmetric creases, one in the x > 0 region, and one in the x < 0

region. Correspondingly, there are also two hyperbolic points
√
2− 1− 1

32

(

3
√
2 + 4

)

σ2 ≈
xH+ > 0 > xH− ≈ −

√
2 − 1 + 1

32

(

3
√
2− 4

)

σ2. Assuming xH+ ≥ xB2 ≥ xH− and

xB1 ∈]−∞, xH−] ∪ [xH+,+∞[, the perturbative solution of (B.13) is

xB2 =
1− xB1
xB1 + 1

− σ
xB1 + 1

2
(

xB1
2 + 1

)2 +O(σ3). (B.17)

Consequently

tP (xB1 ) ≈
(

xB1
2 + 1

)2

σ(xB1 + 1)2
− σ

(

xB1
2 − 4xB1 + 1

)

4
(

xB1
2 + 1

) , (B.18)

xP (xB1 ) ≈
xB1

2 + 1

xB1 + 1
+
σ2(xB1

2 − 1)

4
(

xB1
2 + 1

)2 , (B.19)

zP (xB1 ) ≈
(

xB1
2 + 1

)2

σ(xB1 + 1)2
− σ

(

xB1
4 + 4xB1

2 − 4xB1 + 3
)

4
(

xB1
2 + 1

)2 , (B.20)

where the two arcs of the crease are parametrised by xB1 ∈]−∞, xH−] and x
B
1 ∈ [xH+,+∞[.

Again, as in the previous case, we can note that at the very lowest order in σ, the embedding

functions in (B.20) satisfy the relation σzP ≈ xP 2, so the two parts of the crease plotted

in figure 3 (lower left corner) are approximately arcs of the same parabola.

B.4 Auxiliary results

Results for section 5. Here, we write down the analogue of the perturbative re-

sults (4.3), (4.4) in tilded coordinates:

t̃
±
(x̃, z̃) =± z̃ +

σ

2

(

−z̃g′+(x̃− z̃) + z̃g′+(x̃+ z̃)− g+(x̃− z̃)− g+(x̃+ z̃) + 2g+(x̃)
)

± σ2
(1

2
z̃g+(x̃)g

′′
+(x̃− z̃)− 1

4
z̃g+(x̃− z̃)g′′+(x̃− z̃)− 1

4
z̃g+(x̃+ z̃)g′′+(x̃− z̃)

+
1

2
z̃g+(x̃)g

′′
+(x̃+ z̃)− 1

4
z̃g+(x̃− z̃)g′′+(x̃+ z̃)− 1

4
z̃g+(x̃+ z̃)g′′+(x̃+ z̃)
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− 1

2
z̃g′+(x̃)

2 − 3

8
z̃g′+(x̃− z̃)2 − 3

8
z̃g′+(x̃+ z̃)2 +

1

4
z̃g′+(x̃− z̃)g′+(x̃+ z̃)

− 1

2
g+(x̃−z̃)g′+(x̃) +

1

2
g+(x̃+z̃)g

′
+(x̃) +

1

2
g+(x̃)g

′
+(x̃−z̃)−

1

4
g+(x̃−z̃)g′+(x̃−z̃)

− 1

4
g+(x̃+ z̃)g′+(x̃− z̃)− 1

2
g+(x̃)g

′
+(x̃+ z̃) +

1

4
g+(x̃− z̃)g′+(x̃+ z̃)

+
1

4
g+(x̃+ z̃)g′+(x̃+ z̃)− 1

4
z̃2g′+(x̃− z̃)g′′+(x̃− z̃) +

1

4
z̃2g′+(x̃+ z̃)g′′+(x̃− z̃)

− 1

4
z̃2g′+(x̃− z̃)g′′+(x̃+ z̃) +

1

4
z̃2g′+(x̃+ z̃)g′′+(x̃+ z̃)

)

+O(σ3). (B.21)

Results for section 10.2. Some useful expressions of interest in section 10.2 are

θ =

(

xB1
2 + 1

)3

2σ
(

xB1
2 − 1

)2 (B.22)

+
σ
(

−xB1 14 − 3xB1
12 − 35xB1

10 − 21xB1
8 + 85xB1

6 − 65xB1
4 + 7xB1

2 + 1
)

2
(

xB1
2 − 1

)5 (
xB1

2 + 1
)2 +O(σ3)

θ′ =

(

xB1
2 + 1

)3

2σxB1
2
(

xB1
2 − 1

)2 (B.23)

+
σ
(

−3xB1
14 + 7xB1

12 − 29xB1
10 − 11xB1

8 + 67xB1
6 − 87xB1

4 + 21xB1
2 + 3

)

2
(

xB1
2 − 1

)5 (
xB1

2 + 1
)2 +O(σ3)

for the case tbdy(x) = −σ
1+x2 and

θ =

(

xB1
2 + 1

)3

σ
(

xB1
2 + 2xB1 − 1

)2 +O(σ1) (B.24)

θ′ =
2
(

xB1
2 + 1

)3

σ(xB1 + 1)2
(

xB1
2 + 2xB1 − 1

)2 +O(σ1) (B.25)

for the case tbdy(x) = σx
1+x2 . Here, although the O(σ1)-terms might in principle be relevant,

we have not explicitly given them for the sake of brevity.
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