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WE MUST CHOOSE THE SIMPLEST PHYSICAL THEORY�

LEVIN�LI�VIT�ANYI THEOREM AND ITS

POTENTIAL PHYSICAL APPLICATIONS

D� FOX� M� SCHMIDT� M� KOSHELEV

V� KREINOVICH� L� LONGPR�E

Department of Computer Science
University of Texas at El Paso
El Paso� TX ������ USAz

AND

J� KUHN

National Solar Observatory�Sacramento Park�
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����� USAx

Abstract� If several physical theories are consistent with the same experimental
data� which theory should we choose� Physicists often choose the simplest theory�
this principle �explicitly formulated by Occam� is one of the basic principles of
physical reasoning� However� until recently� this principle was mainly a heuristic
because it uses the informal notion of simplicity�

With the explicit notion of simplicity coming from the Algorithmic Information
theory� it is possible not only to formalize this principle in a way that is consistent
with its traditional usage in physics� but also to prove this principle� or� to be
more precise� deduce it from the fundamentals of mathematical statistics as the
choice corresponding to the least informative prior measure� Potential physical
applications of this formalization �due to Li and Vit�anyi� are presented�

In particular� we show that� on the qualitative level� most fundamental ideas of
physics can be re	formulated as natural steps towards choosing a theory that is the
simplest in the above precise sense �although on the intuitive level� it may seem
that� e�g�� classical physics is easier than quantum physics�
 in particular� we show
that such ideas as Big Bang cosmology�atomism� uncertainty principle� Special
Relativity� quark con�nement� quantization� symmetry� supersymmetry� etc� can
all be justi�ed by this �Bayesian justi�ed� preference for formalized simplicity�

zEmails� fdfox�mschmidt�mkosh�vladikg�cs�utep�edu�
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Key words� Kolmogorov complexity� Algorithmic Information theory� Occam ra	
zor� Bayesian statistics� fundamental physics

�� The problem

The problem� what theory should we choose� If several physical theories
are consistent with the same experimental data� which theory should we choose�

How is a theory chosen now� Physicists often choose the simplest theory�
This principle �explicitly formulated by Occam� is one of the most basic prin	

ciples of physical reasoning�

The idea of choosing the simplest theory was actively advocated by
Einstein� The most famous promoter of this idea was A� Einstein� For example�
in his lecture On the method of theoretical physics�� he said that It is the grand
object of all theory to make ��� irreducible elements as simple and as few in number
as possible� ����� p� �����

This principle used to be heuristic� The principle of choosing the simplest
physical theory was� until recently� only heuristic� because until recently� there was
no well	accepted de�nition of simplicity�

Simplicity can now be de�ned formally�Now� with the advent of Algorithmic
Information Theory �see� e�g�� ������ there are formal �and well	accepted� de�ni	
tions of simplicity� The �rst such de�nition was proposed� in mid	��s� practically
simultaneously� by A� Kolmogorov� R� Solomono�� and G� Chaitin� this notion is
called Kolmogorov complexity� Crudely speaking� Kolmogorov complexity of a text
is the shortest length of a program �in some universal language� that generates this
text� There are also several modi�cations of this de�nition� For di�erent problems�
di�erent formalizations turn out to be more adequate�

This formalization leads to the following two �natural and related� questions


� First� which of the de�nitions of simplicity is more adequate for choosing a
physical theory�

� Second� now that the idea of choosing the simplest theory becomes formal�
the question is
 is this principle mathematical or physical� In other words


� does this formal principle follow from the traditional principles of math	
ematical statistics �that are used to process physical data�� or

� is this principle independent from the general principles of mathematical
statistics� and somehow re�ecting the speci�c structure of our physical
world �as opposed to other mathematically possible worlds���

What we are planning to do� In Section �� we describe the result by Li and
Vit�anyi �which is� in its turn� based on Levin�s theorem� that the basic principles of
mathematical statistics do indeed lead to a formalization of the principle of choos	
ing the simplest theory� and we explicitly describe the formalization of complexity
that this theory corresponds to� Thus� we get answers to both questions�

The main ideas of our exposition are from Li and Vit�anyi ����� However� since
our main goal is formalizing this principle with respect to physical theories�
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our exposition will be speci�cally oriented towards the physics readers and
therefore� our formulation and our exposition will be somewhat di�erent from
����� In particular� we will give physical motivations for all de�nitions and
requirements that are used in the proof�

In Section �� we show that the resulting formalization is consistent with the tra	
ditional use of this principle in theoretical physics� Hopes and speculations are
described in the �nal Section ��

	� Justi�cation of the principle of choosing the simplest physical theory

Basic statistical approach� brief reminder� According to the fundamentals
of mathematical statistics� in order to choose a theory based on the experimental
data� we must do the following


� �nd the prior probabilities P��Hi� of di�erent hypotheses Hi�
� use the experimental data E to compute the posterior probabilities P �Hi�

of di�erent hypotheses� to compute these probabilities� we can use the Bayes
rule

P �Hi� �
P �EjHi� � P��Hi�P
P �EjHj� �P��Hj�

�

where P �EjH� is the probability of observing the dataE in case the hypothesis
H is true�

� and� �nally� select a hypothesis whose probability is the largest P �Hi� � max�

The posterior probability P �Hi� of a hypothesis Hi is also called its likelihood� and
correspondingly� the above basic statistical approach is also called the maximum
likelihood �ML� approach�

From the computational viewpoint� it is often convenient to use negative loga

rithms � log�P �Hi�� of the probabilities
 e�g�� for the most widely used Gaussian
distribution� the probabilities exp��c � x�� require calling an exponential function
and are� therefore� much more di�cult to compute than their negative logarithms
�c � x�� Since negative logarithm is a decreasing function� in terms of negative
logarithms� the criterion P �Hi�� max takes the form � log�P �Hi�� � min�

At �rst glance� this approach may sound somewhat subjective because the
resulting choice of a hypothesis depends on the original �rather subjective� choice
of prior probabilities� However� it is known that in the long run �as we get more
and more experimental data�� this dependence disappears� To be more precise� let
us assume that the actual theory is Ha� Then


� If the prior probability of Ha is � �i�e�� P��Ha� � ��� then no matter how many
experimental data we get� if we apply the above Bayes formula� we always end
up with P �Ha� � ��

� However� if we make sure that the prior probability of the correct hypothesis
is positive �P��H�� � ��� then� as the number of experimental data increases�
the probability P �Ha� of this hypothesis will increase� while the probabilities
of other hypotheses will decrease and eventually� we will get P �Ha�� P �Hi�
for all Hi �� Ha and therefore� eventually� the hypothesis Ha will be chosen�
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Since we do not know which hypothesis is correct� we must require that an prior
probability of each hypothesis is positive�

This mathematically sounding result is actually very intuitively clear
 if we
do not know which of the hypotheses is true� we must not throw away any of
them� otherwise� we may throw away the only theory that is consistent with the
observations�

How to apply this general approach to fundamental physics 
�rst ap�
proximation�� One of the major goals of physics is to predict the results of
di�erent experiments� Whatever mathematical language a theory or hypothesis is
formulated in� eventually� we are interested in what observation results this theory
predicts� These results can also be described in di�erent terms� but since most
measurements and practically all data processing is done by using computers� we
can use the fact that inside the computers� everything is represented by ��s and
��s� Each � or � is called a binary unit� or� for short� a bit� Therefore� for simplicity
of analysis �and without losing any generality�� we can assume that all possible ex	
perimental results form a �potentially in�nite� binary sequence X � x�x� � � � xn � � �

Our goal is to predict either the results of all the experiments� or at least the
results of some of them� So� our goal is to predict either the entire �potentially
in�nite� sequence X� or a �nite portion of this sequence� Therefore� to apply the
standard statistical methodology� we need a prior measure on the set of all such
sequences�

To describe this measure� it is su�cient to describe� for each �nite sequence
x � x� � � � xn� the probability p�x� that the �possible in�nite� sequence X of mea	
surement results will start with x� These probabilities must satisfy the two natural
requirements


� Since every sequence starting with x must continue either with �� or with ��
we get the additivity condition for probabilities
 p�x� � p�x�� � p�x���

� Also� the total probability must be equal to �� i�e�� p��� � p��� � ��

The second requirement can be formulated as a particular case of the additivity
requirement� if we allow an empty string x � � and assume that

p��� � � ����

Comment In the following text� we will see that we need to make a �minor�
modi�cation to these formulas� that is why we called this description the �rst
approximation�

The prior probabilities must be computable 
in some reasonable sense��
The above	described statistical methodology requires us to compute the posterior
probabilities based on the prior ones� Bayes� formula is explicit� but in order to
use it� we must assume that the prior probabilities P��H� are� in some reasonable
sense� computable� What does this computable� mean�

Crudely speaking� a prior probability of an event means the probability of this
event that is computed based on some a priori ideas� i�e�� probabilities computed
based on some prior theory��
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If an event is simple enough� then� in this prior theory�� we can simply com	
pute its probability directly� To be more precise� we can compute this probability
with an arbitrary accuracy� i�e�� there exists an algorithm that� given a positive in	
teger k� computes a rational number rk that is ��

�k	close to the desired probability
p �i�e�� for which jrk�pj � ���k�� Real numbers p for which such an algorithmic ap	
proximation is possible are called computable� If we have an algorithm that� given
x and k� returns a ���k	approximation to p�x�� then p�x� is called a computable
function�

Often� however� the desired event can have many di�erent reasons� it is possible
to compute the probabilities related to each reason but it is di�cult to compute the
total probability� This e�ect is well known to experimental physicists who estimate
the reliability of their experimental results �i�e�� the probability that the observed
results are caused not by the analyzed phenomena� but rather by noise�� There
are well	known examples when experimental claims� that were initially thought
to be correct� later on turned out to be false because of some additional factors

e�g�� Weber�s experimental discovery of gravitational waves turned out to be an
observation of a di�erent phenomenon �����

If we take this feature of experimental physics into consideration� we will arrive
at the conclusion that for each �nite sequence x� the desired probability p�x� is not
necessarily a computable real number� but that it is the limit p�x� � limpN �x��
where pN �x� is the probability that only takes �rst N factors into consideration�
The sequence fpN �x�g is


� non
decreasing in the sense that p��x� � p��x� � � � � � pN �x� � pN���x� �
� � �� and

� computable in the sense that there is an algorithm that� for every x� N � and
k� returns a ���k	approximation to pN �x��

Functions that can be represented as limits of non	decreasing computable se	
quences are called enumerable �crudely speaking� this name comes from the fact
that after we enumerate all factors� we get the desired probabilities�� Thus� we can
re	formulate the requirement on the function p�x� by saying that p should be an
enumerable function�

How to distinguish a reasonable prior probability measure from other
possible probability measures� When choosing prior probabilities p��x�� the
main requirement is not to assign probability � to an event E that could end up
with a non	zero probability if we use a di�erent prior probability measure p�x��
In particular� if� as the event E� we take the statement that X must start with a
given �nite sequence x� this requirement means that we must avoid the situations
when p��x��p�x� � �� i�e�� we must require that p��x��p�x� � � for all words x�

Events E can be more complicated than that� for example� we may have events
that are de�ned as limits of the above simple events� To cover all possible more com	
plicated events� it is reasonable to require that not only all the ratios p��x��p�x�
be positive� but that also the limits p��x

�N���p�x�N�� of such ratios� corresponding
to di�erent sequences x�N�� should also be always positive�

In mathematical terms� this requirement can be formulated as follows
 we have
a set S of all possible values of the ratio p��x��p�x�� and we require that if a
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sequence of real numbers from this set S has a limit� then this limit should be
positive� For an arbitrary set S of real numbers� the smallest possible limit of
sequences from S is known to be equal to the in�mum inf�S� of this set S �i�e��
to its greatest lower bound �g�l�b���� Thus� the requirement that all the limits are
positive is equivalent to requiring that the smallest of these limits is positive� i�e��
that inf�p��x��p�x�� � �� This� in turn� means that there exists a positive number
c � � for which� for all x� p��x� � c � p�x��

Thus� we can say that an enumerable probability measure p��x� is an ideal
prior measure if for every other enumerable probability measure p�x�� there exists
a constant c � � for which p��x� � c � p�x� for all x�

Modi�cation is needed� The above idea of an ideal� prior probability measure
was proposed� in the early ��s� by R� Solomono�� one of the authors of Algorith	
mic Information Theory� However� Solomono� himself showed that� in e�ect� the
seemingly reasonable formalization of this idea �the one we have just described�
does not work� in the sense that the above	de�ned ideal� prior measure cannot
exist �for detailed and precise history� see ������

In view of this impossibility� we must modify our de�nitions� Such a modi�	
cation has actually been proposed� The modi�cation� as well see in a second� is
very natural from the computer science viewpoint �and from the common sense
viewpoint as well��

Final de�nitions� The prior probability p�x� can be obtained� e�g�� if we poll
several experts and take� as p�x�� the fraction N �x��N between the total number
N �x� of experts who believe that x will occur in the measurement� and the total
number N of experts� If every expert is a priori de�nite in his beliefs� i�e�� if he
believes� for every word x� either that x will occur� or that x will not occur� then
the resulting values p�x� indeed form a probability measure
 e�g�� among all the
experts who believe in x � x� � � �xn� some believe in x� � x� � � � xn� and some
in x� � x� � � �xn� �but everyone does believe in one of these two�� and therefore�
N �x� � N �x�� � N �x�� and p�x� � p�x�� � p�x���

In reality� however� experts may be undecided about some measurement results�
So� among N �x� experts who initially believe in x� some will believe in x�� some
in x�� while some will be undecided about what will follow x� In databases and
in other areas of computer science� the case when we do not know a certain value
is called a wild card and is denoted by 	� Thus� we can express the situation in
which an expert has no opinion about the continuation of x by x	� and conclude
that N �x� � N �x���N �x���N �x	� and therefore� p�x� � p�x��� p�x��� p�x	��

We are interested only in the probabilities p�x� of de�nite sequences �i�e�� se	
quences that contain only ��s and ��s but not the wild card 	�� For these values�
the above complicated additivity requirement turns into an inequality


p�x� � p�x�� � p�x��� ���

It is known that other methods of soliciting the degree of belief �e�g�� methods that
take into consideration not only how voted for and who against� but also to what
extent each expert believes in x� also lead to numerical measures that satisfy the
inequality ����
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Thus� instead of probability measures� we must consider functions p that maps
�nite binary strings into real numbers and that satisfy the properties ��� and ����
In Algorithmic Information theory� such functions are called semi
measures�

Main results� Using the same arguments as above� we conclude that it is reason	
able to require


� that the function p�x� is enumerable� and
� that the ideal prior semi	measure p��x� must be such that for any other enu	

merable semi	measure p�x�� there exists a constant c � � for which for all x�
p��x� � c � p�x��

For thus modi�ed de�nition �with probability measure replaced by semi	measure��
it is already possible to prove that the ideal prior semi	measure exists �and that
it is� in some reasonable sense� unique� this theorem was �rst proven by L� Levin�
see ���� for a detailed history�� The resulting ideal prior semi	measure is usually
denoted by M�x��

Thus� according to the statistical methodology� we must choose� for each n�
the sequence x � x� � � � xn for which M�x� � max� or� equivalently� for which
KM �x� � min� where we denoted KM �x� � � log��M�x���

It turns out that this negative binary logarithm KM �x� � � log��M�x�� is
closely related to one of the versions of Kolmogorov complexity
 namely� to the
monotone complexity Km�x� that is de�ned �crudely speaking� as the length of
the shortest program that computes a sequence x or a sequence that starts with
x on a universal monotone Turing machine �i�e�� on a computer with a one	way
read	only input tape� a one	way write	only output tape �and some work tapes��

The close relationship between Km�x� and KM �x� is described� e�g�� by the
following two properties


� KM �x� � Km�x� � KM �x� �Km�KM �x�� � O����
� for almost all in�nite sequences X � x� � � �xn � � �� the di�erence between
Km�x� � � �xn� and KM �x� � � � xn� grows slower than any unbounded com	
putable function�

Due to this close relationship� the negative logarithmKM �x� of a universal semi	
measure is also considered one of the versions of Kolmogorov complexity�

Conclusion� From the basis statistical methodology� we can deduce that� if there

are several physical theories consistent with the known experimental data� we must

always choose the simplest theory x� i�e�� a theory for which KM �x� � min� where
KM �x� is the above formalization of complexity�

Historical comment This derivation was �rst proposed by M� Li and P� Vit�anyi�
see ��������������

Why is this particular formalizationof Kolmogorov complexity the most
adequate for choosing a theory� Physical explanation� Let us give a physi	
cal explanation of why not the original Kolmogorov complexity� but its monotone
version turned out to be more adequate for choosing physical theories� Indeed� the
main di�erence between Km�x� and the original Kolmogorov complexity C�x� is
that
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� in the de�nition of original Kolmogorov complexity� we only consider programs
that produce exactly x� while

� in the de�nition of Km�x�� we also consider programs whose output contains
x followed by something else�

This di�erence has a simple physical interpretation
 In physics� often� when we
want to predict a certain value of the �eld at some speci�c moment of time� a
natural way is


� to �nd a general solution of the corresponding system of partial di�erential
equation� and then

� to extract the desired values from the general solution �this general� solution
is� frequently� only applicable to a certain area� e�g�� a vacuum electromagnetic
�eld solution only holds outside the bodies��

The resulting algorithm consists of two parts


� solving the system of equations� and
� extracting the desired values from the general solution�

From the viewpoint of the original Kolmogorov complexity� we have to count the
complexity of both parts when we estimate the complexity of the solution� The
complexity of the �rst part is indeed indicative of the complexity of the physical
world� while the complexity of the second part �extraction� has nothing to do
with the physical world and is caused solely by the fact that we are not currently
interested in all the solution� only in the part of it� Therefore� if we are interested
in characterizing the physical world itself �and not in our own goals�� we should
neglect the complexity of the second �extraction� part� This is exactly whatKm�x�
is doing�

This idea has been successfully used in many applications� In the above
derivation� we did not use many speci�cs of physics as opposed to data processing
in general� It will� therefore� not be a surprise to a reader to know that this idea
�of choosing the hypothesis for which some version of Kolmogorov complexity
takes the smallest possible value� has been originally proposed and successfully
used in data processing� Namely� it was �rst described� under the name of the
minimum description length principle� by J� J� Rissanen in ����� for a more recent
modi�cations and updates� see� e�g�� �����������

This idea has been applied to various areas such as handwriting recognition
�!�� surface reconstruction in computer vision ��!�� economic forecasts ����� cogni	
tive psychology ���� biology� etc� ����� These successes make us believe that this
formalized principle will be useful in fundamental physics as well�

�� Qualitative physical examples

���� MAIN IDEA BEHIND THE EXAMPLES

Our intention� In this section� we will show that� on the qualitative level� most
fundamental ideas of physics can be re	formulated as natural steps towards choos	
ing a theory that is the simplest in the above precise sense�
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Is this intention consistent with our intuition� At �rst glance� this claim
may seem counter	intuitive� because the advance of physics usually means going
to more and more complicated theories� For example


� a simple pre	physical theory that everything in this world is determined by
the good and evil spirits and is� therefore� completely unpredictable� a theory
that uses no mathematics at all� seems to be very simple�

� while Newtonian mechanics� a theory that uses complicated di�erential equa	
tions� seems to be much more complicated�

This seeming contradiction with the intuition only comes from the fact that the
word simple� is very ambiguous� If we use the word simple� in the precise way
indicated in the previous section� then Newtonian mechanics is no longer simpler
that the belief in a completely unpredictable world� Indeed� according to this
de�nition� a complexity of a theory is� crudely speaking� the smallest length of the
program that is able to predict �according to this theory� the results of all possible
observations and measurements�

� By the intuitive understanding of a completely unpredictable world� the only
way for a program to predict all the measured values is to actually store them�
�If we would be able to store some of these values and predict the others� the
theory would not be completely unpredictable�� Thus� within this theory� we
must store all the values to predict them� The complexity of this theory is �in
the formal sense described in the previous section� the largest possible�

� On the other hand� in Newtonian mechanics� e�g�� for particles� we only need
to know the positions and velocities of all the particles in the initial moment
of time t�� then we will be able� by integrating the equations of motion� to
predict the values at all other moments of time� Thus


� instead of storing the values of the particles� coordinates and velocities
at all possible moments of time�

� it is su�cient to store these values only for a single moment of time�

Thus� when we go from a lawless world to a world described by Newtonian me	
chanics� we get a drastic decrease in the �formally understood� complexity�

Comment The idea that progress in physics actually leads to theories that are
simpler in some reasonable sense was emphasized and advocated by Einstein� e�g��
he wrote that as our experience grows larger and larger ��� the simpler the logical
structure hof the physical theoryi becomes � that is to say� the smaller the number
of logically independent conceptual elements which are found necessary to support
the structure� ����� p� �����

How to minimize the complexity� a general idea� One of the major goals
of a physical theory is to describe what is happening everywhere in the Universe�
In other words� we must describe the values of all possible physical quantities in
di�erent points of space at di�erent moments of time�

In the above	mentioned hypothetical completely unpredictable and lawless
world� to describe all these values� we would actually need to describe the value
of each quantity at each point of space	time� �Since all these values are unlimited
and unrelated� if we miss one of these values� we will not be able to reconstruct it
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from the other stored ones� and therefore� if we want to be able to reconstruct the
state of the Universe� we must actually store all the values�� In other words� the
Kolmogorov complexity of this description is equal to the total length of all the
values stored� How can we decrease the complexity of this description�

In order to answer this question� let us estimate how many bits we need to store
the complete information about the lawless world� By using b bits� we can store
V � �b possible values� Therefore� if a certain physical quantity has V possible
values� we must use 
 log��V � bits to store its value� Therefore� if we have T
moments of time� S points in space� if we have the total number Q of measurable
quantities� and if we have V possible values of each quantity� we need to store
T � S � Q di�erent values� each of which requires log��V � bits� Therefore� totally�
we need B � T � S �Q � log��V � bits to store all this information� �If one of these
numbers is in�nite� then� of course� we must store in�nitely many bits��

From the purely mathematical viewpoint� to decrease the complexity B of this
description� we must� therefore� do one �or several� of the following things


� decrease the number T of moments of time�
� decrease the number S of possible points in space�
� decrease the number Q of possible quantities�
� decrease the number V of possible values of each quantity� and
� introduce dependency between


� values of di�erent quantities�

� values at di�erent moments of time� and"or

� in di�erent spatial points�

���� HOW TO MINIMIZE COMPLEXITY	 EXAMPLES FROM FUNDAMENTAL

PHYSICS

Let us show that� on the qualitative level� the above possibilities are exactly what
major fundamental physical ideas have been achieving�

Restricting T � Big Bang� Restricting the number of di�erent moments of time�
means� in e�ect� restricting the lifetime of the Universe� Thus� we naturally arrive
at the idea of a Universe that has the beginning�

Restricting S� atomism� Similarly� restricting the number of di�erent spatial
points� means that� according to our theory� most of the spatial points inside the
Universe have no objects in them� and the matter is concentrated in a few places
while others are �lled with vacuum� Thus� we get the idea of atomism�

Restricting Q� uncertainty principle� Since the total number of possible phys	
ical quantities is given� the only way to restrict the total number of measured
quantities is to impose restriction according to which measuring one of the prop	
erties restricts or even prohibits the measurement of the other quantities�

Restricting V � Special Relativity Theory quark con�nement quantiza�
tion� Similarly to the above two methods of decreasing the total number S of
spatial points� there are two ways to decrease the total number of possible values
V of a physical quantity
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� First� we can bound the possible values of this quantity�

� The best known example of such bounding is the bounding of possible
velocities which is the basis of special relativity�

� Another example� also well known but much less fundamental� is the
restriction on the relative location of two quarks known as quark con

�nement �see� e�g�� �� ���

� Second� we can assume that not all values within the bound are possible� but
only some of these values� This is the original fundamental idea of quanti

zation
 in quantum mechanics� many quantities can also take values from a
certain discrete set �spectrum��

Dependency between di�erent values� general idea� Finally� we can assume
some dependency between the values of di�erent quantities� and between the values
of the same quantity at di�erent moments of time� and in di�erent spatial points�

Dependency between the values of di�erent quantities� symmetry su�
persymetry Dirac�s large numbers� Dependency between the values of di�er	
ent components of a multi	component physical �eld �e�g�� a vector� a spinor� or a
tensor �eld� corresponds� crudely speaking� to the fundamental notion of symmetry
of a physical theory �see� e�g�� ��� �������� ������

The relationship between the Kolmogorov	complexity based principle and
symmetries is not surprising to us� because in ����� we used Kolmogorov com

plexity �and related notion of randomness� to explain why symmetries are a
universal language of physics�

Speci�cally� dependency between components of �elds of di�erent types corre	
sponds to the idea of supersymmetry�

If we do not have a complete relations between di�erent �elds� we can at
least get some relation� e�g�� in terms of equality of some numerical characteristics
corresponding to di�erent �elds� Such equalities have been discovered since Dirac�
in �!��� �rst observed that the ratio between the electromagnetic and gravitational
forces between� say� two protons �
 ������ is almost equal to the ratio of the
Universe�s size and the time during which light passes through a proton� This
equality is not very easy to explain within speci�c theories of modern physics �see
detailed discussion in ������ but it is quite in line with our general principle of
choosing the simplest theory�

�� Speculations and hopes

In this paper� we have shown two things


� First� we have described� for a physics reader� how the principle of choosing
the simplest physical theory� the idea that is usually formulated in informal�
qualitative terms� can be reformulated in precise� quantitative terms� this for	
malization has been successfully used in various areas of data processing�

� Second� we have shown that this formalization explains� on the qualitative
level� many fundamental principles of physics�
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The success of formalizing the principle itself makes us hope that it may be possible
to formalize these explanations as well� and thus� come out with a new universal
physical theory in which the choice of the simplest hypothesis �or� equivalently�
algorithmic information theory� is the sole axiom�

This possibility is in good accordance with the vision of Einstein who said �����
p� ���� that Our experience hitherto justi�es us in believing that nature is the
realization of the simplest conceivable mathematical ideas��

This hope of ours� that physics may be eventually reduced to algorithmic in	
formation theory� is also in clear agreement with the physically motivated ideas of
J� A�Wheeler of logic as pre	geometry and pre	physics �see� e�g�� ���� and references
therein��
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