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Abstract

The broadly active glutamine antagonist 6-diazo-5-oxo-L-
norleucine (DON) has been studied for 60 years as a
potential anticancer therapeutic. Clinical studies of DON
in the 1950s using low daily doses suggested antitumor
activity, but later phase I and II trials of DON given inter-
mittently at high doses were hampered by dose-limiting
nausea and vomiting. Further clinical development of DON
was abandoned. Recently, the recognition that multiple
tumor types are glutamine-dependent has renewed interest
in metabolic inhibitors such as DON. Here, we describe the
prior experience with DON in humans. Evaluation of past
studies suggests that the major impediments to successful
clinical use included unacceptable gastrointestinal (GI)

toxicities, inappropriate dosing schedules for a metabolic
inhibitor, and lack of targeted patient selection. To circum-
vent GI toxicity, prodrug strategies for DON have been
developed to enhance delivery of active compound to tumor
tissues, including the CNS. When these prodrugs are admin-
istered in a low daily dosing regimen, appropriate for
metabolic inhibition, they are robustly effective without
significant toxicity. Patients whose tumors have genetic,
metabolic, or imaging biomarker evidence of glutamine
dependence should be prioritized as candidates for future
clinical evaluations of novel DON prodrugs, given either as
monotherapy or in rationally directed pharmacologic com-
binations. Mol Cancer Ther; 17(9); 1824–32. �2018 AACR.

Preclinical Studies
Glutamine metabolism as a therapeutic target in cancer

Glutamine is the most abundant amino acid in blood, with
serum concentration of several hundred micromolar. Several
recent reviews detail glutamine utilization inmulticellular organ-
isms (1–3). Rapidly proliferating healthy cells (GI epithelium,
lymphocytes) or cells under physiologic stress have increased
demand for glutamine. Glutamine is transported into cells by
one of multiple amino acid transporters (e.g., ASCT2 and
BOAT2), several of which are thought to be upregulated in cancer
cells (2). Once inside the cell, glutamine is used in multiple
metabolic processes (Fig. 1): (i) It is hydrolyzed to glutamate
and ammonia by glutaminase ("glutaminolysis"; ref. 4); (ii) it is
subject to glutamine amidotransferases that catalyze the use of its
amidogroupas abuilding block for nucleosides, aminoacids, and
hexosamine sugars (2); and (iii) it is used directly to charge tRNA
for protein synthesis. Glutamate, produced from glutamine by
glutaminase and glutamine amidotransferase activities, may be
further metabolized to alpha ketoglutarate and provide a carbon
skeleton source for the mitochondrial tricarboxylic acid cycle

(TCA cycle). In addition to generating reducing equivalents and
high-energy intermediates throughmitochondrial respiration, the
TCA cycle also exports carbon skeletons for synthesis of lipids,
nucleotides, and reducing equivalents, particularly in rapidly
proliferating cells (4, 5). Glutamine-derived glutamate is also
involved in the synthesis of the reducing equivalent glutathione,
vital to maintaining cellular redox status.

Many tumors become largely dependent on glutamine to
provide carbon and nitrogen building blocks needed for
proliferation. Warburg noted in the 1920s that in the presence
of adequate oxygen, tumors increase glucose uptake and
ferment much of it to lactate (6). In cancer model systems,
Eagle and colleagues (7) first demonstrated tumor cells in
culture require supplementation with exogenous glutamine for
efficient proliferation. It was subsequently shown that when
deprived of glutamine tumor cells undergo apoptosis (8). As
interest in cancer metabolism has grown, glutamine utilization
by cancer cells and its genetic regulation have become areas of
intense interest (1–3). The most well-characterized oncogene
to regulate glutamine metabolism is MYC (9), which enhances
glutaminase expression, upregulates glutamine transporters,
and enhances glutamine utilization in energy production and
biosynthesis (1). Other pro-tumorigenic regulators such as
KRAS and mTOR, as well as tumor suppressors (p53, VHL)
have also been associated with alterations in glutamine metab-
olism (5, 10).

Tumor glutamine dependence has been targeted with selec-
tive glutaminase inhibitors with some success. Several allosteric
inhibitors, including BPTES [bis-2-(5-phenylacetamido-1,3,4-
thiadiazol-2-yl)ethyl sulfide], compound 968, and CB-839
(Calithera) have shown robust activity in cell culture experi-
ments and promising single-agent preclinical activity (11–13).
CB-839 has proceeded into clinical studies. Although target
engagement was clearly observed (14), single-agent antitumor
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Figure 1.

Cellular glutamine utilization targeted by DON. Top: Illustration depicting major glutamine utilizing pathways in mammalian cells with target enzymes
(black abbreviations) known to be inhibited by DON. Bottom: List of known pathways and enzymes affected by DON with established Ki values
where available.
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activity was minimal; combination trials are now underway
with promising initial results (15, 16).

Perhaps a reason for the lack of robust clinical effect of selective
glutaminase inhibitors is that glutaminemetabolism in tumors is
more complex than initially hypothesized. Tumor cells are highly
adaptable and alter nutrient uptake and metabolic networks to
resist single-agent glutaminase inhibition (17, 18). Therefore
short-term cell culture and preclinical studies may not adequately
predict the metabolic response of tumors with longer-term drug
exposure. In addition, in vitro studies rarely account for the effects
of stromal cells or the microenvironment on nutrient availability
to tumor. Indeed, it was recently shown that cells in the micro-
environment of several tumor types upregulate glutamine pro-
duction, thereby enabling tumor cells to escape glutaminase
inhibition (19). All of these studies recommend combination
therapy as ameans to improve efficacy and avoid tumor resistance
to single-agent glutaminase inhibition or a broader approach to
inhibition of glutamine utilization.

DON broadly inhibits glutamine-using enzymes
6-diazo-5-oxo-L-norleucine (DON; Fig. 2A) is the best-studied

broadly active glutamine antagonist, having multiple supporting
biochemical, preclinical and clinical evaluations. DON was orig-
inally isolated from fermentation broth of a Streptomyces in the
1950s (20). Biochemical studies on DON identified a two-step,
mechanism-basedmode of inhibition acrossmultiple glutamine-
using enzymes. First, DON binds competitively to the glutamine
active site, then a covalent adduct is formed irreversibly inhibiting
the enzyme (21). Importantly, DON's diazoketone group is stable
under physiological conditions because of the electron-withdraw-
ing carbonyl group stabilizing the diazo dipole. As a result, DON
acts as a reactive electrophile only when protonated at the a-posi-
tion under certain conditions (e.g., in the proximity of the active-
site serine residue in glutaminase), triggering the release of nitro-
gen (N2; ref. 22). Thus DON serves as a selective mechanism-
based inactivator of glutamine-using reactions rather than a non-
specific reactive intermediate. DON inhibits glutamine-using
enzymes, including glutaminase at low micromolar levels (21)
as well as multiple glutamine amidotransferases (23) involved in
de novo purine and pyrimidine synthesis (24–28), coenzyme
synthesis (29), amino acid synthesis (30, 31), and hexosamine
production (ref. 32; Fig. 1). The kinetics of inhibition and inac-
tivation have been described for some, though not all, of DON's
target enzymes. At far higher concentrations DON also serves as a
substrate and an inhibitor of several amino acid transporters and
transglutaminases (28), as well as a number of amino acid
synthesis reactions more relevant in prokaryotic systems (33).

In early preclinical cancer models, DON inhibited the growth
of multiple cancer cell lines in culture (34), prevented
tumor growth, and increased survival in several murine cancer
models including murine sarcomas, carcinomas, and leukemias
(28, 35).Of note, themost effective dosing regimens in someearly
rodent studies were daily low-dose therapy (36). On the basis of
these data, therewas interest in takingDON into human studies as
an antitumor agent.

Clinical Studies
1956–1962: Low daily dosing of DON shows antitumor activity

The first-in-human study of DON was published in 1957.
Magill and colleagues (37) evaluated DON as a single agent in 63

patients. The majority of patients had advanced inoperable solid
tumors, including lung, breast, colon, and genitourinary tumors; a
smaller number had leukemia or lymphoma. DONwas given as a
single agent by either intravenous, intramuscular, or oral routes at
doses ranging from 0.2 to 0.6 mg/kg/dose once daily (IV/IM) or
0.2 to 1.1 mg/kg/dose (oral; conversion 7.4–40.7 mg/m2/dose;
Table 1). Several smaller groups of patients also receivedmultiple
smaller daily doses (e.g., 0.2 mg/kg/dose q4–6 hours) or less
frequent infusions at highermg/kg dosing (1.6mg/kg IV q4 days).
Duration of DON treatment varied on the basis of toxicities but
three-quarters of patients were treated for two or more weeks.

Magill's early study was not designed or powered to show
therapeutic efficacy and clinical trial terminology was less stan-
dardized than it is today; nonetheless there were hints of activity
among the patients treated (Table 1). Seven of 47 (15%) patients
who had at least 2 weeks' duration of DON exposure were
reported to have partial response to treatment. These included
2 patients with breast cancer and 2 patients with bronchogenic
carcinoma with decrease in metastases. An advanced sigmoid
adenocarcinoma patient, a uterine cancer patient, and an
advanced Hodgkin's lymphoma patient also experienced tran-
sient partial responses of metastatic disease. Four additional
patients (two breast tumor and two "other carcinoma" patients)
showed reversal of hypercalcemia of malignancy in response to
DON. In 24 patients, there was neither demonstrable regression
nor progression of the disease, and DON therapy was deemed to
have "no effect" on this subset. Twelve patients had disease
progression.

Following the report by Magill and colleagues (37), several
other groups evaluated daily dosing of DON in humans against a
variety of malignant diseases (Table 1; refs. 38–40). Included
among these was one pediatric study inwhich children with acute
leukemia were treated with the combination of DON (daily
0.25 mg/kg) and 6-mercaptopurine (6-MP). Forty-two percent
of patients achieved complete remission with the combination
therapy, an advantage over 6-MP alone.

1980s–2000s: Higher intermittent dosing of DON does not
show efficacy

In the 1980s interest in the antitumor effects of DON were
rekindled by its robust activity against several human tumor
xenografts in the newly introduced nude mouse model. DON
was reported to be effective against human lung, colon, and breast
tumor xenografts, inducing tumor regression at high intermittent
dosing regimens (25–100 mg/kg IP every 4 days; ref. 41). Mech-
anistic studies showed DON treatment led to decreased cell
proliferation and S phase blocks (42). Animal toxicity studies
were performed by the National Cancer Institute using azotomy-
cin, which is metabolized to DON. These studies established
target organs of the gastrointestinal tract and bone marrow;
effects on the heart, kidneys, and liver became more pronounced
with increased drug exposure (20, 43). Because the highest DON
exposures could be achieved with intermittent doses and this
dosing regimen was effective at inducing tumor regression in the
nude mouse model, an intermittent dosing paradigm was
employed in further clinical trials.

Five phase I dose-escalation studies of DON were carried out
and published in the 1980s (43–47). Patients received DON
intravenously in doses ranging from 50 mg/m2/dose to
600 mg/m2/dose (approximately 1.35–16.2 mg/kg equivalent)
generally two to three times weekly every 3 to 4 weeks. Four
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studies examined adult patients with a range of treatment refrac-
tory cancers, and one study focused on a pediatric population.
Among the five phase I studies, no objective responses to therapy
were noted in any adult solid tumor group with measurable
disease. Among the pediatric patients treatedwithDONas a single
agent, a handful of both hematologic and solid tumorpatients had
studies suggesting stable disease to partial responses (43).

The subsequent phase II studies of DON at intermittent high
doses carried out between the 1980s and 2000s generally had
disappointing outcomes (Table 1; refs. 48–51). Four of these
studies used DON as a single agent in advanced or refractory
adult solid tumors. These studies used maximum-tolerated dos-
ing regimens based on the phase I trials ranging from 50 mg/m2/
dose daily for 5 days every 3 weeks, given to sarcoma patients, to
200 mg/m2/dose twice weekly for two weeks with 1 week off,
given to patients with colorectal cancer. There were few clinical
responses even in the more well-defined oncology populations,
with the exception of data published as an abstract more recently
on concurrent therapy with DON and PEGylated glutaminase
(52).On the basis of these collective experiences, it was concluded
that intermittent high doses were ineffective and too toxic (see
below), and DON was abandoned as an anticancer therapy.

Low daily dosing of DON: local gastrointestinal toxicities and
evidence for target engagement

In studies from the 1950s using daily doses of DON, the most
common toxicitywas direct toxicity to the gastrointestinalmucosa
(Table 1). Mucositis was observed in up to 83% patients, in spite
of preventive treatments, and diarrhea in 48% patients (37).
Nausea and vomiting (30% patients), GI bleeding (16%
patients), and abdominal pain (8% patients) also occurred. One
third of patients also had hematologic changes (leukopenia/
thrombocytopenia) but these included patients with underlying
bony metastases or disease involving the marrow. Mucositis and
diarrhea were more severe in patients receiving multiple daily
divided doses compared with patients receiving the same total
dose in one daily infusion, though sample sizes in the divided
dose regimenswere small. Similar side effectswere reported across
the early studies using low dailyDONdoses (37–40). In theDON
and 6-MP combination study the improved outcomes with com-
bination therapy were offset by an increase in toxicity, especially
mucositis and other gastrointestinal symptoms.

When DON was administered on intermittent high dose sche-
dules, nausea and vomiting were the major dose-limiting toxi-
cities (Table 1; refs. 48–52)—the stomatitis/mucositis/diarrhea

Figure 2.

DON prodrugs enhance DON tissue-to-plasma ratios and possess potent antitumor activity without overt toxicities. A, Structures of DON Prodrugs. B, Prodrug 1
preferentially delivers DON to the CNS. DON and Prodrug 1 were dosed by IV infusion (1.6 mg/kg equivalent doses for 1 hour) in swine and DON was quantified in
plasma, CSF and brain samples. Prodrug 1 delivered DON preferentially to CSF (i) and brain (ii) resulting in 15-fold enhanced CSF/plasma ratio and 9-fold
enhanced brain/plasma ratio when compared directly with equimolar doses of DON. Adapted with permission from reference (58). Copyright 2017 American
Chemical Society. C, Prodrug 2 preferentially delivers DON to P493B tumor cells. In head-to-head comparison, Prodrug 2 shows a 90-fold enhanced tumor cell/
plasma ratio versus DON.D, Prodrug 2 does not release significant DON in gastrointestinal tissue. Prodrug 2was incubatedwith pig gastrointestinal homogenate for
60 minutes. At 60 minutes, DON liberation from Prodrug 2 was limited to 20%. E, Daily dosing of Prodrug 3 eliminates EL4 engrafted tumors without
weight loss or overt toxicity. Eight- to 10-week-old male C57BL/6 mice (6–7 per treatment group) were injected subcutaneously into the right flank with 1� 106 EL4
cells on day 0, and after 5 days of growth the mice had measurable tumors. On day 6 after implantation, treatment was initiated with either vehicle or DON
Prodrug (1 mg/kg p.o. daily � 5 days followed by 0.3 mg/kg, p.o.). Tumors were measured every other day with calipers and volumes calculated by the
formula V ¼ (L�W2)/2. DON prodrug eliminated tumor in all mice, whereas mice treated with vehicle succumbed to tumors by day 13.
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observed on earlier daily dosing regimens was less frequently
observed even though the total dose administered was much
greater. Moderate to severe nausea and vomiting was observed in
one study using DON doses between 300 and 550 mg/m2 given
by rapid IV infusion (45). In these patients, DON peak plasma
concentration (Cmax) was found to be over 20 mg/mL (45).
Longer infusion times of high intermittent doses of DON in two
additional studies resulted in peak plasma concentrations mea-
sured at less than 10 mg/mL and slightly milder side effects (46).
By contrast, low daily dosing of DON in earlier studies (0.2–
0.3mg/kg IV) resulted in peak plasma concentrations of only 400
to 500ng/mLmeasured by an indirectmicrobiological assay (37).
This dose schedule primarily resulted in oral mucositis and some
diarrhea, with less nausea and vomiting reported.

Taken together, these observations suggest that low daily or
divided dose exposures produced low plasma concentrations and
a characteristic local GI toxicity, whereas high intermittent doses
lead tomore typical chemotherapy-induced nausea andvomiting.

Of note, at the time many of the clinical studies on DON were
done, 5HT3 receptor antagonists were not routinely in clinical
practice as antiemetics, although several of the phase II studies
and a pediatric phase I study pretreated patients with prochlor-
perazine or chlorpromazine and observed decreased severity of
nausea and vomiting (43, 48, 51). Other non–dose-limiting
toxicities ofDONobserved in the high intermittent dosing studies
include reversible myelosuppression and transient hypocalcemia
(43, 44, 47).

Our review of the clinical observations suggests that the low
dosing paradigm of the early studies was sufficient to inhibit
glutamine utilization. In the trials using low daily dosing stoma-
titis and diarrhea were consistently observed, reflecting local
glutamine starvation of the gastrointestinal mucosa and inhibi-
tion of cell cycle in rapidly proliferating intestinal epithelial cells.
Of note, these side effects are not reported with CB-839, the
glutaminase inhibitor currently in human trials (14), suggesting
that full blockade of glutamine utilization is dependent on

Table 1. Clinical experience with DON in humans

Early Studies (1957–1962) at low daily dosing
Patients enrolled
Disease type Dosing regimen(s) Toxicities Outcomes Reference

63 patients

Refractory tumors:
majority breast/lung

Majority dosed at
0.2–1.1 mg/kg
daily IV, IM, or PO

Mucositis (83%)
Diarrhea (48%)
Nausea/vomiting (30%)

7/63 patients with
partial response

(37)

10 patients in DON cohort 10 to 15 mg daily in
combination (with
6-MP or an alkylator)

Not reported 1/10 patients with
decreased urine
tumor markers

(39)

Metastatic testicular cancer
41 patients

Hodgkins lymphoma,
lymphosarcoma,
bronchogenic carcinoma,
melanoma

0.2 mg/kg PO daily x
30 days

Stomatitis
Diarrhea
Vomiting

47% Hodgkin's
lymphoma lesions
decreased by
�20%

(38)

71 pediatric patients

Untreated acute
leukemia

0.25 mg/kg DON PO
daily þ 2.5 mg/kg
6MP daily for
28 days

Mucositis (85%)
GI symptoms (28%)
Leukopenia (60%)

30/71 patients
with complete
remission

(40)

Phase II Studies (1980s–2000s) at high intermittent dosing
23 patients 160 mg/m2/dose IV Nausea/vomiting No responses (48)

Diarrhea
Advanced lung cancer Three consecutive

days every 3 weeks
Leukopenia/
Thrombocytopenia

23 patients (14 evaluable)

Advanced colorectal
carcinoma

200 mg/m2/dose IV

Twice weekly for
four doses every
3 weeks

Nausea/vomiting
Thrombocytopenia

Progressive
disease: 11/14
patients

(50)

30 patients

Advanced colorectal
carcinoma

160 mg/m2/dose IV

Three consecutive
days every 3 weeks

Nausea/vomiting
Rare CNS toxicity
(diplopia/ataxia/visual
hallucinations)

Hyperbilirubinemia

Progressive
disease: 13/30

Stable disease:
16/30

(51)

98 patients,
41 treated with DON

Advanced sarcomas

50 mg/m2/dose IV

Five consecutive days
every 4 weeks

Nausea/vomiting
Diarrhea
Myelosuppression

No objective
responses

(49)

55 patients

Advanced refractory
solid tumors

140 mg/m2/dose IV

Twice weekly every
3 weeks þ once
weekly 120 IU/m2

PEGylated glutaminase

Fatigue
Nausea and vomiting
Diarrhea

Progression free
at 5 months: 5/17

Partial response: 1/17

(52)
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enzymes beyond glutaminase. Evidence for low dose DON inhi-
bition of glutamine amidotransferases was directly observed in
humans in a study of DON for gout (53). In this study, DONwas
administered at low daily intramuscular doses of only 5 to 20mg
and inhibited glutamine utilization as measured by radiotracer.
These doses were more than an order of magnitude lower than
those used in subsequent cancer trials in the 1980s (45, 50, 51),
supporting the notion that high intermittent dosing was not an
optimal schedule to achieve blockade of glutamine metabolism
with DON.

Targeting cancer metabolismmay be complementary to classic
cytotoxic approaches and many inhibitors of "metabolic targets"
are in preclinical studies or in early clinical trials (54). As is
suggested for DON optimal dosing of metabolic inhibitors will
differ compared from the cytotoxic agents typically used with
intermittent dosing. Constant target inhibition with overall low
dose therapy is thought to be important for avoiding resistance
mechanisms that can occur more readily when agents are started
and stopped intermittently. Currently approved metabolic inhi-
bitors are dosed clinically on a daily to BID basis, allowing for
constant target inhibition at doses below themaximally tolerated
dose (55).

Strategies for Clinical Redevelopment
Development of a targeted DON prodrug to improve
therapeutic index

Given DON's breadth of activity and promising efficacy in
treating glutamine-dependent tumors, particularly with daily low
doses, it is of clinical importance to identify a strategy to deliver it
preferentially to the tumor while minimizing its peripheral expo-
sure, and thus toxicity tonon-tumor tissues. Prodrugs haveproven
to be a valuable strategy to alter tissue distribution and improve
delivery of active agents to target tissues (56). We have developed
a dual prodrug strategy tomaskDON's carboxylic acid and amino
groups with addition of promoieties (Fig. 2A). The resulting
prodrugs circulate intact and inert in plasma and preferentially
release DON at the target tissue, permitting dose reductions and
improved therapeutic index. We have developed two types of
DON prodrugs—those that preferentially deliver DON to brain
and those that preferentially deliver DON to peripheral tumors.

Wewereparticularly interested indeliveringDON to theCNSas
manybrain tumors (e.g., gliomas,medulloblastoma) have ampli-
fication of the MYC or MYCN oncogenes, potentially rendering
them glutamine dependent (57). The brain-targeted prodrugs,
exemplified by Prodrug 1 (Fig. 2A) were designed to introduce
bulky hydrophobic groups to enhance the cLogP and cellular
permeability of DON, while maintaining plasma stability such
that the peripheral exposure to DON would be limited (11, 58).
Following infusion in swine, Prodrug 1 delivered DON prefer-
entially to CSF and brain, resulting in a 15-fold enhanced CSF/
plasma ratio and 9-fold enhanced brain/plasma ratio when
compared directly with equimolar doses of DON (Fig. 2B, I
and II; ref. 58). A second class of prodrugs was designed to
enhance tumor delivery by using promoieties that are cleaved by
enzymes enriched in tumor. This approach is exemplified by
Prodrug 2, designed to take advantage of HDAC and Cathepsin
L overexpression by tumors (59–61). When directly compared
with DON, Prodrug 2 shows a greater than 50-fold enhanced
tumor cell/plasma ratio (Fig. 2C). Importantly, when incubated
with GI tissue homogenates, Prodrug 2 did not release significant

amounts of DON (Fig. 2D), confirming that DON delivery is
preferential to tumor cells and suggesting that the prodrug
approach should decrease gut exposure to DON, and thereby
reduce GI toxicity.

Low daily dosing of DON prodrug provides efficacy without
toxicity

We have evaluated the in vivo tolerability and efficacy of
DON prodrugs using a low daily dosing paradigm, reminiscent
of the original studies in humans (37) and similar to dosing
paradigms employed with other metabolic inhibitors (55).
Mice bearing EL-4 lymphoma were treated with vehicle or
DON prodrug (1 mg/kg p.o. � 5 days followed by 0.3 mg/kg,
p.o. � 9 days). As clearly demonstrated, Prodrug 3 (62) robust-
ly induced tumor elimination while mice succumbed to vehi-
cle-treated tumors (Fig. 2E). No overt side effects or weight
changes were observed with prodrug treatment, in agreement
with the observation that DON prodrugs do not release sig-
nificant DON in gut tissue (Fig. 2D).

DON prodrugs may also avoid the resistance to glutaminase
inhibition and metabolic adaptation to single-agent therapy that
has been a concern in trials of the selective glutaminase inhibitor
CB-839. In contrast, DON broadly inhibits glutamine utilization,
including glutaminase, glutamine amidotransferases (used in de
novo purine and pyrimidine synthesis, coenzyme synthesis, and
hexosamine synthesis), and glutamine synthetase (Fig. 1). Thus
DON prodrug inhibition may be more difficult for tumor and
stromal cells to adapt to and circumvent. DON's breadth of
inhibition, tolerability at low daily doses, and potential utility
in combinations can nowbe exploitedwith the prodrug approach
in further clinical oncology studies.

Theway forward: evaluatingnovelDONprodrugs administered
at daily lowdoses inpatientswith glutamine-dependent tumors

With the growing appreciation of the complexity of targeting
glutamine metabolism in cancers and the promising preclinical
results with the novel DON prodrugs described above, we believe
that clinical studies of theseDONprodrugs arewarranted. Dosing
in humans should be trialed at low daily doses—the prodrug
doses that we have tested inmice of 0.3 to 1mg/kg are equivalent
to less than 0.1 mg/kg in humans, which is below the lower limit
of tolerable doses evaluated in the original 1957 human study
(37, 63). Unlike the early DON clinical trials, however, modern
DON prodrug clinical studies should aim to include oncology
patients whose tumors have the best chance of benefiting from
therapy targeting tumor glutamine dependence.

We propose that investigations ofDONprodrugs be prioritized
in three clinical areas. First, many CNS tumors are in need of new
therapeutic options that cross the blood–brain barrier. Preclinical
evidence suggests that subtypes of brain tumors (e.g., glioblasto-
ma, group III medulloblastoma) have MYC or MYCN amplifica-
tion, are glutamine-avid, thus should benefit therapeutically from
glutamine antagonists (64, 65). Brain-targeted DON prodrugs
have been shown to deliver DON preferentially to the CSF to
enhance drug activity in a tissue usually inaccessible to chemo-
therapy. In this way brain-targeted DONprodrugs offer an advan-
tage when compared to CB-839, which is reported to have limited
CNS availability (66).

Second, non-CNS tumors with evidence of glutamine depen-
dence are good candidates for treatment with DON prodrugs.
Multiple means exist to identify such populations. Mutations in
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genes established to drive glutamine dependence (e.g., MYC or
MYCN, KRAS) as well as more recently identified genetic muta-
tions affecting glutamine utilization (e.g.,VHL, KEAP1, ASS1) can
be used for rational patient selection (67–72). Alternatively, or in
combination, new technologies to evaluate tumor metabolism in
vivo may be employed. Positron emission-tomography (PET)–
based imaging with 18F-glutamine, evaluation of the tumor
environment with magnetic resonance spectroscopy, and meta-
bolomics or tracer profiling of tumor biopsy at diagnosis can
identify increased glutamine uptake or dependence in vivo (64, 65,
73–75). These techniquesmay alsoprove valuable in clinical trials
to establish makers of blockade of glutamine utilization after
DON prodrug administration.

Finally, we propose that DON prodrugs be evaluated in com-
bination with either standard-of-care therapies or in rationally
directed new pairings. For example, in an early clinical trial, DON
was successful when combined with 6-MP in pediatric acute
leukemias (1, 40). In addition DON prodrugs should be com-
bined with newer targeted therapies. Glutamine metabolism
promotes tumor resistance to mTOR inhibitors in certain tumor
contexts (54, 64); the combination of a DON prodrug and an
mTOR inhibitor will be interesting to study. Finally, it is known
that aberrant glutaminemetabolism by a tumor can lead tomore-
wide ranging effects on the localmicroenvironment or evenwhole
organism that play into the broader effects of cancer (3, 19).
Therefore, DON prodrugs should be evaluated for synergy with
tumor cell non-autonomous therapeutics, including immuno-
therapy agents.

By inhibiting a wide range of metabolic pathways using glu-
tamine that are critically upregulated in cancer cells, DON has
been shown to be a selective but broadly targeted therapy. To
deliver the active drug to compartments like the CNS and min-
imize GI exposure, we have synthesized and conducted thorough
preclinical investigations of targetedDONprodrugs.Nowwith an
improved understanding of how to dose these agents and what
tumor types are best suited for broad inhibition of glutamine
metabolism, these novel glutamine antagonists are well posi-
tioned for future success in the clinic.
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