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WEAK AMENABILITY OF MODULE EXTENSIONS
OF BANACH ALGEBRAS

YONG ZHANG

Abstract. We start by discussing general necessary and sufficient condi-
tions for a module extension Banach algebra to be n-weakly amenable, for
n = 0, 1, 2, · · · . Then we investigate various special cases. All these case
studies finally provide us with a way to construct an example of a weakly
amenable Banach algebra which is not 3-weakly amenable. This answers an
open question raised by H. G. Dales, F. Ghahramani and N. Grønbæk.

Introduction

Suppose that A is a Banach algebra, and that X is a Banach A-bimodule. A
derivation from A into X is a linear operator D: A→ X satisfying

D(ab) = D(a)b + aD(b) (a, b ∈ A).

A derivation D is inner if there is x0 ∈ X such that D(a) = ax0 − x0a for a ∈ A.
The quotient space H1(A, X) of all continuous derivations from A into X modulo
the subspace of inner derivations is called the first cohomology group of A with
coefficients in X . A Banach algebra A is said to be amenable if H1(A, X∗) = {0}
for every Banach A-bimodule X ; here X∗ denotes the Banach dual module of X .
The algebra A is said to be weakly amenable if H1(A,A∗) = {0}, and is called
n-weakly amenable, for an integer n ≥ 0, if H1(A,A(n)) = {0}, where A(n) is the
n-th dual module of A when n ≥ 1, and is A itself when n = 0. The algebra A is
said to be permanently weakly amenable if it is n-weakly amenable for all n ≥ 1.

The concept of weak amenability was first introduced by Bade, Curtis and Dales
in [1] for commutative Banach algebras, and was extended to the noncommutative
case by Johnson in [22] (see also [7], [9], [11]–[16], [21] and [24]). Dales, Ghahramani
and Grønbæk initiated the study of n-weak amenability of Banach algebras in their
recent paper [10], where they revealed many important properties of this sort of
Banach algebra. An interesting problem concerning this class of Banach algebras
is the relation between n-weak amenability and m-weak amenability for different
integers n and m. For instance, if A is a commutative Banach algebra, then the
assertion that A is weakly amenable is equivalent to saying that it is permanently
weakly amenable ([1, Theorem 1.5]); but, for noncommutative Banach algebras,
things are different—we only know that (n+ 2)-weak amenability implies n-weak
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amenability for n ≥ 1 ([10, Proposition 1.2]), and weak amenability does not imply
2-weak amenability ([10, Theorems 5.1 and 5.2]). After investigating varieties of
classical Banach algebras, Dales, Ghahramani and Grønbæk raised and left open
the following question in [10]: Does weak amenability imply 3-weak amenability?

This paper is designed to answer the preceding question. We will construct a
counterexample to the question. For this purpose, we study n-weak amenability of
the module extension Banach algebra A⊕X , the l1-direct sum of a Banach algebra
A and a nonzero Banach A-module X with the algebra product defined as follows:

(a, x) · (b, y) = (ab, ay + xb) (a, b ∈ A, x, y ∈ X).

Some aspects of algebras of this form have been discussed in [2] and [10]. We choose
this class of Banach algebras to investigate for the preceding question because this
class is neither too small nor is it too large; it contains permanently weakly amenable
Banach algebras (see Section 6), and it contains no amenable Banach algebras due
to [8, Lemma 2.7], since X is a complemented nilpotent ideal in the algebra. If A has
both left and right approximate identities and they are also, respectively, left and
right approximate identities for X , then A⊕X cannot be pointwise approximately
biprojective (see [30]). The class of module extension Banach algebras also includes
the natural triangular Banach algebra whose amenability has been investigated in
[12]. We will give some comment on the latter algebra in Section 2.

This paper is organized as follows: in Section 1 we study the construction of
module actions of 2m-th dual algebras on 2m-th dual modules. This extends the
corresponding discussion in [10]. In Section 2 we give the main theorems which deal
with the necessary and sufficient conditions for A ⊕ X to be n-weakly amenable.
Section 3 discusses various techniques for lifting derivations. These will be applied
in Section 4 to give the proofs of the main theorems. Sections 5 and 6 deal with the
special cases of X = A, A∗ and X0, where X0 denotes an A-bimodule with the right
module action trivial. In Section 7, we first discuss the condition for A⊕ (X1+̇X2)
to be weakly amenable, where +̇ denotes the l1 direct sum (of modules). Then, we
give an example of a weakly amenable Banach algebra of this form and prove that
it is not 3-weakly amenable. This finally answers the preceding open question in
the negative.

Since (A ⊕X)∗ = (0 ⊕X)⊥ u (A ⊕ 0)⊥, where u denotes the direct A-module
l∞-sum, and (0 ⊕ X)⊥ (respectively, (A ⊕ 0)⊥) is isometrically isomorphic to A∗

(respectively, X∗) as A-bimodules, for convenience, in this paper we simply identify
the corresponding terms and write:

(A ⊕X)∗ = A∗ uX∗.

Similarly, we will identify the underlying space of the n-th conjugate (A ⊕ X)(n)

with A(n) uX(n). The sum is an l1-sum when n is even and is an l∞-sum when n
is odd.

1. Bimodule actions of A(2m)
on X(2m)

Suppose that A is a Banach algebra, and X is a Banach A-bimodule. According
to [10, pp. 27 and 28], X∗∗ is a Banach A∗∗-bimodule, where A∗∗ is equipped with
the first Arens product. The module actions are successively defined as follows.
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First, for x ∈ X , f ∈ X∗, φ ∈ X∗∗ and u ∈ A∗∗, define φf , fx ∈ A∗ and uf ∈ X∗
by

〈a, φf〉 = 〈fa, φ〉, 〈a, fx〉 = 〈xa, f〉 (a ∈ A),

〈x, uf〉 = 〈fx, u〉 (x ∈ X).

Then, for φ ∈ X∗∗ and u ∈ A∗∗, define uφ, φu ∈ X∗∗ by

〈f, uφ〉 = 〈φf, u〉, 〈f, φu〉 = 〈uf, φ〉 (f ∈ X∗).
These give the left and right A∗∗-module actions on X∗∗. Also, the definition for
uf with u ∈ A∗∗ and f ∈ X∗ gives a left Banach A∗∗-module action on X∗. When
u = a ∈ A, all the above A∗∗-module actions agree with the A-module actions on
the corresponding dual modules X∗ and X∗∗. Moreover, it is readily seen that, with
these module actions, the first Arens product on (A⊕X)∗∗ may be represented by

(u, φ) · (v, ψ) = (uv, uψ + φv) (u, v ∈ A∗∗, φ, ψ ∈ X∗∗).
Viewing A(2m) as a new A and X(2m) as a new X , the preceding procedure will

successively define X(2m+2) as a Banach A(2m+2)-bimodule. Here, and throughout
the paper, the first Arens product is consistently assumed on each A(2n). Since
some relations arising from the procedure are important for later use, we now give
the definition in detail as follows.

Suppose that the bimodule action of A(2m) on X(2m) has been defined, where
m ≥ 1. Then in a natural way, X(2m+k), k ≥ 1, is a Banach A(2m)-bimodule with
the module multiplications uΛ and Λu ∈ X(2m+k), for Λ ∈ X(2m+k) and u ∈ A(2m),
defined by

〈γ, uΛ〉 = 〈γu, Λ〉, 〈γ, Λu〉 = 〈uγ, Λ〉 (γ ∈ X(2m+k−1)).

If u = a ∈ A, these module actions coincide with A-module actions on X(2m+k).
Then, for F ∈ X(2m+1) and Φ ∈ X(2m+2), define FΦ, ΦF ∈ A(2m+1) by

〈u, FΦ〉 = 〈F, Φu〉 (= 〈uF, Φ〉)
and

〈u, ΦF 〉 = 〈Fu, Φ〉 (= 〈F, uΦ〉) (u ∈ A(2m)).

Throughout this paper, for a Banach space Y and an element y ∈ Y , ŷ always
denotes the image of y in Y ∗∗ under the canonical mapping. When F ∈ X(2m+1)

and φ ∈ X(2m), we denote Fφ̂ by Fφ and φ̂F by φF . It is easy to check that

〈u, Fφ〉 = 〈φu, F 〉, 〈u, φF 〉 = 〈uφ, F 〉 for u ∈ A
(2m).(1.1)

By using the canonical image of F or Φ in the appropriate 2l-th dual space of the
space that it belongs to, we can then signify a meaning for FΦ and ΦF for every F ∈
X(2m+1) and Φ ∈ X(2n); they are elements of A(2k+1), where k = max{m,n− 1}.

Now for µ ∈ A(2m+2) and F ∈ X(2m+1), we define µF ∈ X(2m+1) by

〈φ, µF 〉 = 〈Fφ, µ〉 (φ ∈ X(2m)).

This actually defines a left Banach A(2m+2)-module action on X(2m+1).
Finally, for µ ∈ A(2m+2) and Φ ∈ X(2m+2), define µΦ, Φµ ∈ X(2m+2) by

〈F, µΦ〉 = 〈ΦF, µ〉, 〈F, Φµ〉 = 〈µF, Φ〉 (F ∈ X(2m+1)).

These finally define the A(2m+2)-module actions on X(2m+2) and, therefore, com-
plete our definition.
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If limuα = µ in σ(A(2m+2)), A(2m+1)) and limφβ = Φ in σ(X(2m+2), X(2m+1)),
where (uα) ⊂ A(2m) and (φβ) ⊂ X(2m), and σ(Y ∗, Y ) denotes the weak* topology
on Y ∗, then

µΦ = lim
α

lim
β
uαφβ , Φµ = lim

β
lim
α
φβuα in σ(X(2m+2), X(2m+1)).

For µ ∈ A(2m+2) and φ ∈ X(2m), since µφ = µφ̂, φµ = φ̂µ, we have

〈F, µφ〉 = 〈φF, µ〉, 〈F, φµ〉 = 〈Fφ, µ〉 (F ∈ X(2m+1)).(1.2)

One can also easily check the relations

uf̂ = ûf̂ = (uf )̂ ,

f̂ φ̂ = (fφ)̂ , φ̂f̂ = (φf )̂ ,

ûφ̂ = (uφ)̂ , φ̂û = (φu)̂ ,

where f ∈ X(2m−1), φ ∈ X(2m) and u ∈ A(2m) (m ≥ 1). Therefore, each product
agrees with those previously defined.

Concerning dual module morphisms, we have the following.

Lemma 1.1. Suppose that X and Y are Banach A-bimodules. Then, for every
continuous A-bimodule morphism τ : X → Y and for each m ≥ 1, τ (2m): X(2m) →
Y (2m), the 2m-th dual operator of τ is an A(2m)-bimodule morphism.

Proof. It suffices to prove the lemma in the case where m = 1. However, for
this simple case, the proof is straightforward if we note that τ∗∗ is weak*-weak*
continuous.

In the following, to avoid involving unnecessarily complicated notation, for an
element y in a Banach space Y , we will use the same notation y to represent its
canonical image in any of the 2m-th dual spaces Y (2m).

Take A(n) u X(n) as the underlying space of (A ⊕ X)(n). From induction, by
using the relations in (1.1) and (1.2), one can verify that the (A ⊕ X)-bimodule
actions on (A⊕X)(n) are formulated as follows:

(a, x) · (a(n), x(n)) =

{
(aa(n) + xx(n), ax(n)), if n is odd;
(aa(n), ax(n) + xa(n)), if n is even,

(1.3)

and

(a(n), x(n)) · (a, x) =

{
(a(n)a+ x(n)x, x(n)a), if n is odd;
(a(n)a, a(n)x+ x(n)a), if n is even,

(1.4)

where (a, x) ∈ A⊕X and (a(n), x(n)) ∈ A(n) uX(n) = (A⊕X)(n).

2. Main theorems

Suppose that A is a Banach algebra, and X is a Banach A-bimodule. For n-weak
amenability of the Banach algebra A⊕X , we have the following main results, whose
proofs will be given in Section 4.

Theorem 2.1. For m ≥ 0, A ⊕X is (2m+ 1)-weakly amenable if and only if the
following conditions hold:

1. A is (2m+ 1)-weakly amenable;
2. H1(A, X(2m+1)) = {0};
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3. for every continuous A-bimodule morphism Γ: X → A(2m+1), there is F ∈
X(2m+1) such that aF − Fa = 0 for a ∈ A and Γ(x) = xF − Fx for x ∈ X;

4. the only continuous A-bimodule morphism T : X → X(2m+1) for which xT (y)
+ T (x)y = 0 (x, y ∈ X) in A(2m+1) is T = 0.

Theorem 2.2. For m ≥ 0, A ⊕ X is 2m-weakly amenable if and only if the fol-
lowing conditions hold:

1. the only continuous derivations D: A→ A(2m) for which there is a continuous
operator T : X → X(2m) such that T (ax) = D(a)x + aT (x) and T (xa) =
xD(a) + T (x)a (a ∈ A, x ∈ X) are the inner derivations;

2. H1(A, X(2m)) = {0};
3. the only continuous A-bimodule morphism Γ: X → A(2m) for which xΓ(y)

+ Γ(x)y = 0 (x, y ∈ X) in X(2m) is zero;
4. for every continuous A-bimodule morphism T : X → X(2m), there exists
u ∈ A(2m) for which au = ua for a ∈ A and T (x) = xu − ux for x ∈ X.

Remark 2.3. A simple calculation shows that, when m = 0, condition 3 in Theo-
rem 2.1 is equivalent to the following:

30. there is no nonzero continuous A-bimodule morphism Γ: X → A∗.
For the general case, condition 3 in Theorem 2.1 is equivalent to the following:
3m. if Γ: X → A(2m+1) is a continuous A-bimodule morphism, then Γ(X) ⊂ A⊥

and there is G ∈ X(2m+1) ∩X⊥ for which aG−Ga = 0 in X(2m+1) (a ∈ A)
and Γ(x) = xG −Gx (x ∈ X).

Proposition 2.4. Suppose that condition 4 of Theorem 2.1 holds for an m ≥ 0.
Then, span(AX +XA) is dense in X.

Proof. Assume, towards a contradiction, that span(AX + XA) is not dense in X .
Take a nonzero element F ∈ X∗ ∩ (AX +XA)⊥, and define T : X → X∗ by

T (x) = F (x)F.

Since F |AX+XA = 0, it is easy to see that T is a nonzero, continuous A-bimodule
morphism and that AT (X) = T (X)A = {0}. Also, for x, y ∈ X , we have xT (y) =
T (x)y = 0 in A∗ since T (X) ⊂ (AX)⊥ ∩ (XA)⊥. This shows that condition 4 of
Theorem 2.1 does not hold for m = 0. So it does not hold for all m ≥ 0. This is a
contradiction.

Corollary 2.5. For m = 0, condition 4 in Theorem 2.1 is equivalent to the follow-
ing:

40. span(AX+XA) is dense in X and there is no nonzero A-bimodule morphism
T : X → X∗ satisfying 〈x, T (y)〉+ 〈y, T (x)〉 = 0 for x, y ∈ X.

Proof. Suppose that condition 4 in Theorem 2.1 holds. From the preceding propo-
sition, span(AX + XA) is dense in X . If the A-bimodule morphism T : X → X∗

satisfies

〈x, T (y)〉+ 〈y, T (x)〉 = 0 for x, y ∈ X ,

then, for every a ∈ A,

〈a, xT (y) + T (x)y〉 = 〈ax, T (y)〉+ 〈y, T (ax)〉 = 0.

This shows that xT (y) +T (x)y = 0 for x, y ∈ X . Therefore, T = 0 and so 40 holds.
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Conversely, if 40 holds, and T : X → X∗ is a continuous A-bimodule morphism
satisfying xT (y) +T (x)y = 0 in A∗, then, for every x = ax1 + x2b ∈ AX +XA and
y ∈ X , we have

〈x, T (y)〉+ 〈y, T (x)〉 = 〈a, x1T (y) + T (x1)y〉+ 〈b, T (y)x2 + yT (x2)〉 = 0.

Since span(AX +XA) is dense in X , this implies that 〈x, T (y)〉+ 〈y, T (x)〉 = 0 for
all x, y ∈ X . Hence T = 0, and so condition 4 of Theorem 2.1 holds for m = 0.

Suppose that A and B are Banach algebras, and letM be a Banach A,B-module.
The algebra T with the triangular matrix structure

T =
(

A M
0 B

)
is called a triangular Banach algebra. The sum and product on T are given by the
usual 2 × 2 matrix operations and obvious internal module actions. The norm on
T is ∥∥∥∥(a m

0 b

)∥∥∥∥ = ‖a‖A + ‖m‖M + ‖b‖B.

Denote by A+̇B the direct l1-sum Banach algebra of A and B, and view M as an
(A+̇B)-bimodule with the module actions given by

(a, b) ·m = am, m · (a, b) = mb, a ∈ A, b ∈ B, m ∈M.

Then T is isometrically isomorphic to the module extension Banach algebra (A+̇B)
⊕M. With this setting and some calculations, one sees that Theorems 2.1 and
2.2 imply some main results in [12]. For instance, if A and B are unital and
M is a unital A,B-module, then T is weakly amenable if and only if both A

and B are weakly amenable. In fact, the condition can be weakened further to
the following: there exist a bounded approximate identity of A and a bounded
approximate identity of B that are also, respectively, left and right approximate
identities for M.

3. Lifting derivations

In this section we give several lemmas concerning the lifting of derivations (and
module morphisms) from A (or X) into A(n) or X(n) to derivations from A ⊕ X
into (A⊕X)(n).

Lemma 3.1. Suppose that Γ: X → A(2m+1) is a continuous A-bimodule mor-
phism. Then Γ: A⊕X → (A ⊕X)(2m+1), defined by

Γ((a, x)) = (Γ(x), 0),

is a continuous derivation. The derivation Γ is inner if and only if there exists
F ∈ X(2m+1) such that aF − Fa = 0 and Γ(x) = xF − Fx for a ∈ A and x ∈ X.

Proof. It is straightforward to check that Γ is a continuous derivation. Noting that
(Γ(x), 0) = Γ((0, x)) and Γ((a, 0)) = (0, 0), one can also see easily that the element
F ∈ A(2m+1) described in the lemma exists if Γ is inner.

Conversely, if such an element F exists, then

Γ((a, x)) = (Γ(x), 0) = (xF − Fx, aF − Fa) = (a, x) · (0, F )− (0, F ) · (a, x),

showing that Γ is inner.
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A similar proof gives the following lemma.

Lemma 3.2. Suppose that T : X → X(2m) is a (continuous) A-bimodule mor-
phism. Then T : A⊕X → (A⊕X)(2m), defined by

T ((a, x)) = (0, T (x)),

is a continuous derivation. The derivation T is inner if and only if there exists
u ∈ A(2m) such that ua = au for a ∈ A, and T (x) = xu − ux for all x ∈ X.

Concerning dual operators we have the following.

Lemma 3.3. Suppose that k > 0 is an integer, and that D: A→ X(k) is a (contin-
uous) derivation. Then, for every integer m ≥ 0, D(2m+1): X(k+2m+1) → A(2m+1),
the (2m+ 1)-th dual operator of D, satisfies

D(2m+1)(aF ) = aD(2m+1)(F )− (D(a)F )|A(2m) ,

D(2m+1)(Fa) = D(2m+1)(F )a− (FD(a))|A(2m) ,

for a ∈ A and F ∈ X(k+2m+1).

Proof. The lemma is true for m = 0 because

〈b, D∗(aF )〉 = 〈D(b)a, F 〉 = 〈D(ba)− bD(a), F 〉 = 〈b, aD∗(F )−D(a)F 〉

and

〈b, D∗(Fa)〉 = 〈aD(b), F 〉 = 〈D(ab)−D(a)b, F 〉 = 〈b, D∗(F )a− FD(a)〉,

for a, b ∈ A and F ∈ X(k+1).
For m > 0, from Proposition 1.7 of [10], D(2m): A(2m) → X(k+2m) is a (contin-

uous) derivation; here we take the first Arens product in each A(2m). Then, the
above shows that D(2m+1) = (D(2m))∗ : X(k+2m+1) → (A(2m))∗ satisfies

D(2m+1)(uF ) = uD(2m+1)(F )− (D(2m)(u)F )|A(2m)

and

D(2m+1)(Fu) = D(2m+1)(F )u− (FD(2m)(u))|A(2m) ,

for u ∈ A(2m) and F ∈ X(k+2m+1). In particular, when u = a ∈ A, these give the
formulae in the lemma.

Lemma 3.4. Let m be an integer. Suppose that D: A→ X(2m+1) is a (continuous)
derivation. Then D: A⊕X → (A ⊕X)(2m+1), defined by

D((a, x)) = (−D(2m+1)(x), D(a)) for (a, x) ∈ A⊕X,

is also a (continuous) derivation. Moreover,

1. if D is inner, then so is D;
2. if D is inner, then there exists a (continuous) derivation D̃: A ⊕ X →

(A ⊕ X)(2m+1) satisfying D̃((a, 0)) = 0 (a ∈ A) and for which D − D̃ is
inner.
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Proof. For a, b ∈ A and x, y ∈ X , we have, from Lemma 3.3,

D((a, x) · (b, y)) = D ((ab, ay + xb)) =
(
−D(2m+1)(ay + xb), D(ab)

)
=
(
−[aD(2m+1)(y)− (D(a)y)|A(2m)

+D(2m+1)(x)b − (xD(b))|A(2m) ], D(a)b+ aD(b)
)

=
(
−[aD(2m+1)(y)−D(a)y +D(2m+1)(x)b − xD(b)], D(a)b + aD(b)

)
=
(
−aD(2m+1)(y) + xD(b), aD(b)

)
+
(
−D(2m+1)(x)b +D(a)y, D(a)b

)
= (a, x) ·

(
−D(2m+1)(y), D(b)

)
+
(
−D(2m+1)(x), D(a)

)
· (b, y)

= (a, x) ·D((b, y)) +D((a, x)) · (b, y).

Therefore, D is a (continuous) derivation.
If D is inner, then, for some u ∈ A(2m+1) and F ∈ X(2m+1), we have

D((a, x)) = (a, x) · (u, F )− (u, F ) · (a, x).

Thus,

(0, D(a)) = D((a, 0)) = (a, 0) · (u, F )− (u, F ) · (a, 0) = (au− ua, aF − Fa).

This shows that D(a) = aF − Fa for all a ∈ A, and hence D is inner.
Conversely, if D is inner, then there exists F ∈ X(2m+1) such that D(a) =

aF − Fa for a ∈ A. Let T : X → A(2m+1) be defined by

T (x) = −D(2m+1)(x)− (xF − Fx) (x ∈ X),

and let T : A⊕X → (A ⊕X)(2m+1) be defined by

T ((a, x)) = (T (x), 0) ((a, x) ∈ A⊕X).

Then

(D − T )((a, x)) = (xF − Fx, aF − Fa) = (a, x) · (0, F )− (0, F ) · (a, x)

for (a, x) ∈ A ⊕X . Therefore, D − T is an inner derivation. This in turn implies
that T is a (continuous) derivation. So D̃ = T satisfies all the requirements. This
completes the proof.

If D is a (continuous) derivation from A into A(2m+1), m ≥ 0, we define D:
A⊕X → (A⊕X)(2m+1) by

D((a, x)) = (D(a), 0).

If D is a (continuous) derivation from A into X(2m), m ≥ 0, we define D: A⊕X →
(A⊕X)(2m) by

D((a, x)) = (0, D(a)).

If T : X → A(2m) is a (continuous) A-bimodule morphism, satisfying xT (y) +
T (x)y = 0 in X(2m) for x, y ∈ X , we define T : A⊕X → (A ⊕X)(2m) by

T ((a, x)) = (T (x), 0).

Finally, if T : X → X(2m+1) is a (continuous) A-bimodule morphism, satisfying
xT (y) + T (x)y = 0 for x, y ∈ X , we define T : A⊕X → (A⊕X)(2m+1) by

T ((a, x)) = (0, T (x)).
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Then, straightforward calculations yield the following result.

Lemma 3.5. The operators D and T defined above are (continuous) derivations.
Furthermore, the derivation D is inner if and only if D is inner, and T is inner if
and only if T = 0.

4. Proofs of the main theorems

We first prove Theorem 2.1.

Proof. Denote by ∆1 the projection from (A⊕X)(2m+1) onto A(2m+1) with kernel
X(2m+1). Let ∆2 be the projection id−∆1: (A⊕X)(2m+1) → X(2m+1), and let τ1:
A → A ⊕ X be the inclusion mapping (i.e., τ1(a) = (a, 0)). Then ∆1 and ∆2 are
A-bimodule morphisms, and τ1 is an algebra homomorphism.

We now prove the sufficiency in Theorem 2.1. Suppose that conditions 1–4 hold.
Suppose also that D: A ⊕ X → (A ⊕ X)(2m+1) is a continuous derivation. Then
D ◦ τ1: A→ (A ⊕X)(2m+1) is a continuous derivation. This implies that ∆1◦D◦τ1:
A → A(2m+1) and ∆2 ◦ D ◦ τ1: A → X(2m+1) are continuous derivations. By
conditions 1 and 2, they are inner. Therefore, D ◦ τ1 is inner. From Lemmas 3.5
and 3.4,

D ◦ τ1 = ∆1 ◦D ◦ τ1 + ∆2 ◦D ◦ τ1 : A⊕X → (A⊕X)(2m+1)

is a continuous derivation, and there is a continuous derivation D̃: A ⊕ X →
(A⊕X)(2m+1) satisfying D̃((a, 0)) = 0 for a ∈ A and such that D ◦ τ1− D̃ is inner.
On the other hand,

(D −D ◦ τ1)((a, 0)) = D((a, 0))−D ◦ τ1((a, 0))

= D ◦ τ1(a)−D ◦ τ1(a) = 0 (a ∈ A).

Let D̂ = D − D ◦ τ1 + D̃. Then D̂ is a continuous derivation from A ⊕ X into
(A⊕X)(2m+1) satisfying D̂((a, 0)) = 0 for a ∈ A. Moreover,

D̂((0, ax)) = D̂((a, 0) · (0, x)) = (a, 0) · D̂((0, x)) = aD̂((0, x)) (a ∈ A, x ∈ X),

and

D̂((0, xa)) = D̂((0, x) · (a, 0)) = D̂((0, x))a (a ∈ A, x ∈ X).

Denote by τ2: X → A⊕X the inclusion mapping given by τ2(x) = (0, x) (x ∈ X).
Then D̂ ◦ τ2: X → (A ⊕ X)(2m+1) is a continuous A-bimodule morphism. From
condition 3, there exists F ∈ X(2m+1) for which ∆1 ◦ D̂ ◦ τ2(x) = xF − Fx, and
aF − Fa = 0 for x ∈ X and a ∈ A. Since

(0, 0) = D̂((0, 0)) = D̂((0, x) · (0, y))

= D̂((0, x)) · (0, y) + (0, x) · D̂((0, y))

= ([∆2 ◦ D̂((0, x))]y, 0) + (x[∆2 ◦ D̂((0, y))], 0)

= ([∆2 ◦ D̂ ◦ τ2(x)]y + x[∆2 ◦ D̂ ◦ τ2(y)], 0),

we have

(∆2 ◦ D̂ ◦ τ2(x))y + x(∆2 ◦ D̂ ◦ τ2(y)) = 0 (x, y ∈ X).
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From condition 4, ∆2 ◦ D̂ ◦ τ2 = 0. Thus,

D̂((a, x)) = D̂((0, x)) = D̂ ◦ τ2(x)

= (∆1 ◦ D̂ ◦ τ2(x), ∆2 ◦ D̂ ◦ τ2(x))

= (xF − Fx, 0) = (a, x) · (0, F )− (0, F ) · (a, x).

We have that D̂ is inner. Thus D = D̂ + (D ◦ τ1 − D̃) is inner. This proves that
A⊕X is (2m+ 1)-weakly amenable.

Necessity: Suppose that A⊕X is (2m+1)-weakly amenable. Then from Lemmas
3.5 and 3.4, H1(A, A(2m+1)) = {0} and H1(A, X(2m+1)) = {0}. Therefore, con-
ditions 1 and 2 hold. Furthermore, Lemma 3.1 gives condition 3, and Lemma 3.5
shows that condition 4 holds. This completes the proof of Theorem 2.1.

We now turn to the proof of Theorem 2.2.

Proof. Denote by τ1 and τ2 the inclusion mappings described in the preceding
proof from, respectively, A and X into A ⊕ X , and denote by ∆1 and ∆2 the
natural projections from (A ⊕X)(2m) onto A(2m) and X(2m), respectively. These
are A-bimodule morphisms.

To prove the sufficiency we assume that conditions 1–4 in Theorem 2.2 hold.
Let D: (A⊕X)→ (A⊕X)(2m) be a continuous derivation. Then ∆1 ◦ D ◦ τ1:
A→ A(2m) and ∆2 ◦D ◦ τ1: A→ X(2m) are continuous derivations.

Claim 1: ∆1 ◦D ◦ τ2: X → A(2m) is trivial.
Let Γ = ∆1 ◦D ◦ τ2. To prove claim 1, by condition 3 it suffices to show that Γ is
an A-bimodule morphism satisfying xΓ(y) + Γ(x)y = 0 in X(2m) for x, y ∈ X . In
fact,

0 = D((0, 0)) = D((0, x) · (0, y)) = D((0, x)) · (0, y) + (0, x) ·D((0, y))

= (0,Γ(x)y) + (0, xΓ(y)).

Thus, xΓ(y) + Γ(x)y = 0. On the other hand,

Γ(ax) = ∆1 ◦D((0, ax)) = ∆1 ◦D((a.0) · (0, x))

= ∆1 (D((a, 0)) · (0, x) + (a, 0) ·D((0, x)))

= ∆1 ((a, 0) ·D((0, x))) = ∆1(aD ◦ τ2(x)) = aΓ(x).

Similarly, Γ(xa) = Γ(x)a and so Γ is an A-bimodule morphism. Therefore, claim 1
is true.

Now let T = ∆2 ◦D ◦ τ2: X → X(2m), and set D1 = ∆1 ◦D ◦ τ1: A→ A(2m).
Claim 2: T (ax) = D1(a)x+ aT (x) and T (xa) = xD1(a) +T (x)a for a ∈ A and
x ∈ X .

In fact, from claim 1,

(0, T (ax)) = D((0, ax)) = D((a, 0) · (0, x)) = D((a, 0)) · (0, x) + (a, 0) ·D((0, x))

= (0, D1(a)x) + a(0, T (x)) = (0, D1(a)x+ aT (x)).

Similarly, (0, T (xa)) = (0, xD1(a) + T (x)a), for a ∈ A and x ∈ X . Thus, claim 2 is
true.

Therefore, by condition 1, D1 = ∆1 ◦D◦τ1 is inner. Suppose that u ∈ A(2m) sat-
isfies D1(a) = au−ua for a ∈ A. Let T1: X → X(2m) be defined by T1(x) = xu− ux
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for x ∈ X . Then T − T1: X → X(2m) is a continuous A-bimodule morphism. In
fact, from claim 2, for a ∈ A and x ∈ X ,

(T − T1)(ax) = T (ax)− T1(ax) = (D1(a)x+ aT (x))− (axu − uax)

= (au− ua)x+ aT (x)− (axu − uax)

= a(ux− xu) + aT (x) = a(T − T1)(x).

Similarly, T − T1 is a right A-module morphism. From condition 4, there is a
v ∈ A(2m) such that av = va for a ∈ A, and (T −T1)(x) = xv−vx for x ∈ X . From
Lemma 3.2, we have that

T − T1 : (a, x) 7→ (0, (T − T1)(x)), A⊕X → (A ⊕X)(2m)

is an inner derivation.
Since ∆2◦D◦τ1: A→ X(2m) is a continuous derivation, it is inner by condition 2.

From Lemma 3.5,

∆2 ◦D ◦ τ1 : (a, x) 7→ (0,∆2 ◦D ◦ τ1(a)), A⊕X → (A⊕X)(2m)

is also inner. Using claim 1, we now have

D((a, x)) = (D1(a), ∆2 ◦D ◦ τ1(a) + T (x))

= ∆2 ◦D ◦ τ1((a, x)) + (T − T1)((a, x)) + (D1(a), T1(x)).

Since

(D1(a), T1(x)) = (au− ua, xu− ux) = (a, x) · (u, 0)− (u, 0) · (a, x),

for a ∈ A and x ∈ X , it gives an inner derivation from A ⊕X into (A ⊕ X)(2m).
Hence as a sum of three inner derivations, D is inner. This shows that under
conditions 1–4 of Theorem 2.2, A⊕X is 2m-weakly amenable.

Now we prove the necessity. Suppose that A ⊕X is 2m-weakly amenable. Let
D: A → A(2m) be a continuous derivation with the property given in condition 1.
Then D: A⊕X → (A⊕X)(2m) defined by

D((a, x)) = (D(a), T (x)), (a, x) ∈ A⊕X,

is a continuous derivation and hence is inner. This implies that D is inner, and
so condition 1 holds. The other conditions are consequences of Lemma 3.5 and
Lemma 3.2.

The proof is complete.

5. The algebras A⊕ A and A⊕ A∗

In this and the following section we consider several concrete cases. This section
deals mainly with the two cases X = A and X = A∗ as Banach A-bimodules.

We first note that, if A is not amenable, then there is a Banach A-bimodule X
such that H1(A, X∗) 6= {0}. From Theorem 2.1, for this X , A ⊕X is not weakly
amenable. In fact, the Banach algebra A ⊕ X is never weakly amenable when
X = A∗, as implied in the following proposition.

Proposition 5.1. Suppose that A is a Banach algebra. Then A ⊕ A∗ is not n-
weakly amenable for every n ≥ 0.
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Proof. From Proposition 1.2 of [10], it suffices to prove the cases of n = 0, n = 1
and n = 2. Note that condition 30 does not hold, because the identity mapping
from X (= A∗) onto A∗ is a nonzero, continuous A-bimodule morphism. So the
proposition is true for n = 1.

For n = 2m with m = 0 or m = 1, if condition 4 in Theorem 2.2 holds for
X = A∗, then the operator T described in this condition has the property that
T (f) ∈ A⊥ for f ∈ X . In fact, for a ∈ A, we have

〈a, T (f)〉 = 〈a, f · u− u · f〉 = 〈af − fa, u〉 = 〈f, ua− au〉 = 0.

But X = A∗ certainly does not annihilate A. So, as A-bimodule morphisms, the
identity mapping (in the case m = 0) from X onto X and the inclusion mapping
(in the case m = 1) from X into X∗∗ do not satisfy condition 4. Consequently,
A⊕ A∗ is not 2m-weakly amenable for m = 0 and 1.

Now we consider the case that X = A. To avoid any confusion, from now on,
when we regard A as an A-bimodule, we will use the notation A instead of A. If
X = A, condition 4 in Theorem 2.2 never holds for any integer m (the canonical
embedding is a nonzero morphism). It turns out that A ⊕ A is never 2m-weakly
amenable for any m ≥ 0. If A is commutative, for the same reason we can conclude
more as in the next proposition. Recall that an A-bimodule X is symmetric if
ax = xa for a ∈ A and x ∈ X .

Proposition 5.2. Suppose that A is a commutative Banach algebra. Then for
every nonzero, symmetric A-bimodule X, A⊕X is not 2m-weakly amenable.

Proof. Let X be symmetric. Then xu = ux for u ∈ A(2m) and x ∈ X . Since
the canonical embedding from X into X(2m) is a nontrivial A-bimodule morphism,
condition 4 in Theorem 2.2 does not hold for such a module X .

But A⊕A can be weakly amenable. Before giving an example let us go through
some relation identities for corresponding elements of A(n) and A(n). Suppose that
φ ∈ A(n). We denote the same element in A(n) by φ̃.

Lemma 5.3. Suppose that A is a Banach algebra, and let m ≥ 0. Then, for
φ, ψ ∈ A(2m) and F ∈ A(2m+1), we have

(φ̃ψ)∼ = φ̃ψ̃ = (φψ̃)∼, φF = (φ̃F )∼ = φ̃F̃ , Fφ = (Fφ̃)∼ = F̃ φ̃.

Proof. It is straightforward to check the identities for the case m = 0. Then, an
induction on m completes the proof for the general case.

A special case of Lemma 5.3 is the following group of identities which will be
used in the proof of the next theorem:

(aφ)∼ = aφ̃, (φa)∼ = φ̃a,

xF = (x̃F )∼ = x̃F̃ , Fx = (F x̃)∼ = F̃ x̃,

where a ∈ A, x ∈ A, φ ∈ A(2m) and F ∈ A(2m+1). From these identities, we also see
that, for X = A and m ≥ 0, condition 3 in Theorem 2.1 holds if and only if there
is no nonzero A-bimodule morphism T from A into A(2m+1), and that, if this is the
case, then condition 4 holds automatically. Moreover, with X = A, conditions 1
and 2 of Theorem 2.1 are the same.
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Theorem 5.4. For a Banach algebra A:
1. if span{ab−ba; a, b ∈ A} is not dense in A, then A⊕A is not weakly amenable;
2. if span{ab − ba; a, b ∈ A} is dense in A, then A ⊕ A is weakly amenable,

provided that A is weakly amenable and has a bounded approximate identity.

Proof. By condition 1 of Theorem 2.1, without loss of generality, we can assume
that A is weakly amenable for both cases. If span{ab− ba; a, b ∈ A} is not dense
in A, then there exists f ∈ A∗ such that f 6= 0 and 〈ab − ba, f〉 = 0 for a, b ∈ A.
So af = fa for a ∈ A. Then T : A→ A∗, defined by

T (x) = x̃f = fx̃,

is an A-bimodule morphism. According to Proposition 1.3 of [10], A2, the linear
span of all product elements ab, a, b ∈ A, is dense in A. So there are a, b ∈ A such
that 〈ab, f〉 6= 0. This implies that T 6= 0. Therefore, condition 30 does not hold.
As a consequence, A⊕A is not weakly amenable.

If span{ab − ba; a, b ∈ A} is dense in A, and A has a bounded approximate
identity (ei), then, for every given continuous A-bimodule morphism T : A → A∗,
we have T (a) = af = fa, where f is a weak* cluster point of (T (ei)). Therefore,
〈ab − ba, f〉 = 0 for all a, b ∈ A. This shows that f = 0 and hence T = 0. Thus
conditions 3 and 4 in Theorem 2.1 hold for m = 0. The other two conditions
hold automatically for m = 0. So, from Theorem 2.1, the second statement of the
theorem is true.

From case 1 of Theorem 5.4 we immediately have the following corollary.

Corollary 5.5. If A is a commutative Banach algebra, then A ⊕ A is not weakly
amenable.

Let H be an infinite-dimensional Hilbert space. According to a classical result
due to Halmos (Theorem 8 of [18]), every element in B(H) can be written as a sum
of two commutators (see also [4] and [5]). Together with the fact that B(H) has an
identity and, as a C∗-algebra, is weakly amenable [17], from Theorem 5.4 we see
that B(H) ⊕ B(H) is weakly amenable. Later in this section we will see that it is
in fact (2m+ 1)-weakly amenable.

Proposition 5.6. Suppose that V = span{au− ua; u ∈ A∗∗, a ∈ A} is not dense
in AA∗∗ + A∗∗A (if A has an identity, this is equivalent to saying that V is not
dense in A∗∗). Then A⊕A is not 3-weakly amenable.

Proof. In fact, in this case A∗∗A * cl(V ), since otherwise it would follow that both
AA∗∗ and A∗∗A were in cl(V ), and then cl(V ) ⊇ AA∗∗ + A∗∗A, which contradicts
the assumption that V is not dense in AA∗∗ + A∗∗A.

Hence, from the Hahn-Banach Theorem, there exists F ∈ A∗∗∗ such that F |V =
0, but F 6= 0 on A∗∗A. This implies that aF = Fa for all a ∈ A and aF 6= 0
for some a ∈ A. Define T : A → A∗∗∗ by T (x) = x̃F (= F x̃). Then, T is a non-
zero, continuous A-bimodule morphism from A into A∗∗∗. Therefore, condition 3
in Theorem 2.1 does not hold for m = 1. This shows that A ⊕ A is not 3-weakly
amenable.

Regarding the open question of whether weak amenability implies 3-weak amen-
ability, Theorem 5.4 and Proposition 5.6 suggest that one might find a counterex-
ample in the Banach algebras of the form A ⊕ A. Unfortunately, B(H) cannot be
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a candidate. We can see this from the next two lemmas. The following lemma is
basically Theorem 8 in [18], but we have highlighted some of its features which will
be useful for our purposes.

Lemma 5.7. Suppose that H is an infinite-dimensional Hilbert space. Then there
are two elements Q0 and S0 in B(H) such that, for each B ∈ B(H), there exist
PB ∈ B(H) and RB ∈ B(H) with ‖PB‖ ≤ ‖B‖ and ‖RB‖ ≤ ‖B‖ for which

B = (PB ◦Q0 −Q0 ◦ PB) + (RB ◦ S0 − S0 ◦RB).

Proof. For an infinite-dimensional Hilbert space H, there exists an isometry η:
H →

∑∞
i=1 +̇Hi, where

∑∞
i=1 +̇ denotes an l2 direct sum and each Hi is a copy of

H.
Let Q: H →

∑∞
i=1 +̇Hi and S:

∑∞
i=1 +̇Hi →

∑∞
i=1 +̇Hi be the bounded opera-

tors given by the infinite matrices

Q =


I
0
0
...

 and S =


0 0 0 0 · · ·
I 0 0 0 · · ·
0 I 0 0 · · ·
0 0 I 0 · · ·
...

... 0
. . .

 .

Let Q0 = η−1 ◦Q and S0 = η−1 ◦ S ◦ η. Then Q0, S0 ∈ B(H). Given an element
B ∈ B(H), let P :

∑∞
i=1 +̇Hi → H and R:

∑∞
i=1 +̇Hi →

∑∞
i=1 +̇Hi be the bounded

operators given by the infinite matrices

P =
(
B 0 0 · · ·

)
and R =


0 B 0 0 · · ·
0 0 B 0 · · ·
0 0 0 B · · ·
...

...
... 0

. . .

 .

Take PB = P ◦ η and RB = η−1 ◦ R ◦ η. Then PB, RB ∈ B(H) and ‖PB‖ ≤ ‖B‖,
‖RB‖ ≤ ‖B‖. We have that B = (PB ◦Q0 −Q0 ◦ PB) + (RB ◦ S0 − S0 ◦RB).

The following result on the 2n-th dual of B(H) seems not to be known.

Lemma 5.8. For every integer n ≥ 0,

B(H)(2n) = span{au− ua; a ∈ B(H), u ∈ B(H)(2n)}.

Proof. By taking weak* limits and using induction, one can show the result imme-
diately from Lemma 5.7.

Proposition 5.9. For each integer m ≥ 0, B(H) ⊕ B(H) is (2m + 1)-weakly
amenable but is not 2m-weakly amenable.

Proof. First, as a C∗-algebra, B(H) is permanently weakly amenable. So condi-
tions 1 and 2 of Theorem 2.1 hold for X = A = B(H) and m ≥ 0. To show
that conditions 3 and 4 also hold, it suffices to prove that every continuous B(H)-
bimodule morphism T from B(H) into B(H)(2m+1) is trivial.

In fact, letting e be the identity of B(H) and F = T (e), we have T (a) = aF = Fa
for all a ∈ B(H). Therefore, for all u ∈ B(H)(2m), we have 〈au−ua, F 〉 = 0. From
Lemma 5.8, this implies that F = 0. Hence T = 0. Therefore, B(H) ⊕ B(H) is
(2m+ 1)-weakly amenable for m ≥ 0.
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On the other hand, we have indicated in the paragraph before Proposition 5.2
that A ⊕ A is never 2m-weakly amenable. So B(H) ⊕ B(H) is not 2m-weakly
amenable for m ≥ 0. This completes the proof.

Remark 5.10. Denote by K(H) the algebra of compact operators on H. Using
Theorem 1 of [29] one can also prove that K(H) ⊕ K(H) and B(H) ⊕ K(H) are
(2m+ 1)- (but not 2m-) weakly amenable. On the other hand, it is interesting to
recall Proposition 2.4, which implies that K(H)⊕B(H) is not weakly amenable.

6. The algebra A⊕X0

In this section we consider the case that the module action on one side of X
is trivial. We denote by X0 (respectively, 0Y ) specifically the A-bimodules with
right (respectively, left) module action trivial. We observe that, when X = X0,
conditions 3 and 4 in Theorem 2.1 are reduced, respectively, to the following:

3′0. for each continuous A-bimodule morphism Γ: X0 → A(2m+1), there is F ∈
X

(2m+1)
0 such that Fa = 0 for a ∈ A and Γ(x) = xF for x ∈ X0;

4′0. AX0 is dense in X0.
Also, conditions 1, 3 and 4 in Theorem 2.2 are reduced, respectively, to the follow-
ing:

1′′0 . every continuous derivation D: A→ A(2m) with the property that there is a
continuous operator T : X0 → X

(2m)
0 such that T (ax) = D(a)x + aT (x) for

a ∈ A and x ∈ X0 is inner;
3′′0 . the only continuous A-bimodule morphism Γ: X0 → A(2m) satisfying Γ(x)y =

0 (x, y ∈ X0) in X
(2m)
0 is zero;

4′′0 . for every continuous A-bimodule morphism T : X0 → X
(2m)
0 , there exists

u ∈ A(2m) such that au = ua for a ∈ A and T (x) = ux for x ∈ X0.

Proposition 6.1. Suppose that A is a (2m + 1)-weakly amenable Banach algebra
with a bounded approximate identity and satisfying that AA(2m) = A(2m). Then,
A⊕X0 is (2m+ 1)-weakly amenable if and only if AX0 is dense in X0.

Proof. Since A has a bounded approximate identity, from Proposition 1.5 of [23],
condition 2 in Theorem 2.1 always holds for X = X0. If AA(2m) = A(2m), then
there is no nonzero, continuous A-bimodule morphism T : X0 → A(2m+1), since
such a morphism must satisfy 〈au, T (x)〉 = 〈u, T (xa)〉 = 0 (a ∈ A, u ∈ A(2m)). So
condition 3′0 holds automatically.

For m = 0, the above proposition yields the following.

Corollary 6.2. Suppose that A is a weakly amenable Banach algebra with a
bounded approximate identity. Then A ⊕ X0 is weakly amenable if and only if
AX0 is dense in X0.

A dual result to Corollary 6.2 is as follows.

Corollary 6.3. Suppose that A is a weakly amenable Banach algebra with a
bounded approximate identity. Let 0Y be a Banach A-bimodule with left module
action trivial. Then, A⊕ 0Y is weakly amenable if and only if 0YA is dense in 0Y .

View A as a left A-module and then impose a trivial right A-module action on it.
This results in a Banach A-bimodule. We denote it by A0. Suppose that φ ∈ A(n)

0 .
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We denote the same element in A(n) by φ̃. Similarly to Lemma 5.3, one can check
that the following equalities hold:

(uφ)∼ = uφ̃, φu = 0, φF = φ̃F̃ ,

Fφ = 0, uF = 0, (Fu)∼ = F̃ u,

where u ∈ A(2m), φ ∈ A(2m)
0 , F ∈ A(2m+1)

0 (m ≥ 0).

Proposition 6.4. Suppose that A is a (2m + 1)-weakly amenable Banach algebra
with a bounded approximate identity. Then A⊕A0 is (2m+ 1)-weakly amenable.

Proof. As in the proof of Proposition 6.1, it suffices to verify conditions 3′ and 4′.
Condition 4′0 holds since A has a left bounded approximate identity for A0. Let
(xα) ⊂ A0 be a net such that (x̃α) is a bounded approximate identity for A. If Γ:
A0 → A(2m+1) is a continuous A-bimodule morphism, we let F̃ be a weak* cluster
point of (Γ(xα)). Let the element in A

(2m+1)
0 corresponding to F̃ be F . Then F

satisfies the requirement in condition 3′0.

Concerning 2m-weak amenability, we have the following.

Proposition 6.5. Let m ≥ 1, and suppose that A is a commutative 2m-weakly
amenable Banach algebra with a bounded approximate identity. Then A ⊕ A0 is
2m-weakly amenable.

Proof. It suffices to show that conditions 3′′0 and 4′′0 hold. Suppose that an A-
bimodule morphism Γ: A0 → A(2m) satisfies Γ(x)y = 0 in A

(2m)
0 (x, y ∈ A0).

Then

0 = (Γ(x)y)∼ = Γ(x)ỹ = ỹΓ(x) = Γ(ỹx) (x, y ∈ A0).

This implies that Γ(ax) = 0 for a ∈ A and x ∈ A0. So Γ(x) = 0 for all x ∈ A0.
Therefore, condition 3′′0 holds.

Assume that T : A0 → A
(2m)
0 is a continuous A-bimodule morphism. Let v be

a weak* cluster point of (T (xi)), where (x̃i) is a bounded approximate identity for
A. Let u = ṽ. Then, T (x) = limT (x̃xi) = x̃v. However, (x̃v)∼ = x̃ṽ = x̃u = ux̃ =
(ux)∼. Hence T (x) = ux. On the other hand, ua = au since A is commutative.
Condition 4′′0 holds.

Although we have already had an example of a Banach algebra which is (2m+1)-
weakly amenable but not 2m-weakly amenable (see Proposition 5.9; another known
example is the nuclear algebra N (E) with E a reflexive Banach space having the
approximation property [10, Corollary 5.4]), we end this section by giving one more
example of a weakly amenable Banach algebra which is not 2-weakly amenable.

Suppose that A is a weakly amenable Banach algebra with a bounded approx-
imate identity and satisfying that AA∗ 6= A∗A (an example is A = L1(G) with G
a non-SIN locally compact group; see [28] and [25] for the reference of SIN groups,
and Theorem 32.44 of [20] as well as [26] for the property we need here). Without
loss of generality, we assume that AA∗ * A∗A.

Example 6.6. For the above Banach algebra A, A ⊕ A0 is weakly amenable but
is not 2-weakly amenable.
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Proof. From Proposition 6.4, A⊕A0 is weakly amenable. We show that condition
3′′0 does not hold for m = 1. Take a φ ∈ A∗∗ for which φ|AA∗ = 0 but φ|A∗A 6= 0
(notice that by Cohen’s factorization theorem, AA∗ is closed in A∗). Then φa =
0 for all a ∈ A and aφ 6= 0 for some a ∈ A. Let T : A0 → A∗∗ be defined by
T (x) = x̃φ. Then T is a continuous A-bimodule morphism and T 6= 0. Since

(T (x)y)∼ = T (x)ỹ = (x̃φ)ỹ = x̃(φỹ) = 0,

we have T (x)y = 0 for all x, y ∈ A0. Therefore, condition 3′′0 is not satisfied.

7. Weak amenability does not imply 3-weak amenability

Suppose that X1 and X2 are two Banach A-bimodules. We denote by X1+̇X2

the direct module sum of X1 and X2, i.e., the l1 direct sum of X1 and X2 with the
module actions given by a(x1, x2) = (ax1, ax2), (x1, x2)a = (x1a, x2a). For this
module we have the following equality:

(x1, x2) · (f∗1 , f∗2 ) = x1f
∗
1 + x2f

∗
2

(
(x1, x2) ∈ X1+̇X2, (f∗1 , f

∗
2 ) ∈ (X1+̇X2)∗

)
.

In this section we shall first study the weak amenability of the Banach algebra
A⊕ (X1+̇X2). Then we shall give an example of a weakly amenable Banach algebra
of this form which is not 3-weakly amenable.

Lemma 7.1. Suppose that A ⊕ X1 and A ⊕ X2 are weakly amenable. Then the
following are equivalent:

(i) A⊕ (X1+̇X2) is weakly amenable;
(ii) there is no nonzero, continuous A-bimodule morphism γ: X1 → X∗2 ;
(iii) there is no nonzero, continuous A-bimodule morphism η: X2 → X∗1 .

Proof. Suppose that (i) holds. We show that (ii) also holds. Indeed, suppose that
γ: X1 → X∗2 is a continuous A-bimodule morphism. Consider the continuous
A-bimodule morphism T : X1+̇X2 → (X1+̇X2)∗ defined by

T ((x1, x2)) = (−γ∗(x2), γ(x1)), (x1, x2) ∈ X1+̇X2.

For (x1, x2), (y1, y2) ∈ X1+̇X2, and a ∈ A, we have

〈 a, (x1, x2) · T ((y1, y2)) + T ((x1, x2)) · (y1, y2) 〉
= 〈 a, −x1γ

∗(y2) + x2γ(y1) 〉+ 〈 a, −γ∗(x2)y1 + γ(x1)y2 〉
= 〈 a, −γ(x1)y2 + x2γ(y1) 〉+ 〈 a, −x2γ(y1) + γ(x1)y2 〉 = 0.

So (x1, x2) · T ((y1, y2)) + T ((x1, x2)) · (y1, y2) = 0. Then, from condition 4 of
Theorem 2.1, T = 0. Thus γ = 0. As a consequence, (ii) holds.

To prove that (ii) implies (iii), we suppose that η: X2 → X∗1 is a continuous
A-bimodule morphism. Then γ: X1 → X∗2 defined by γ = η∗|X1 is a continuous
A-bimodule morphism. Therefore, γ = 0. This implies that η∗ = 0 since η∗ is
weak*-weak* continuous and X1 is weak* dense in X∗∗1 . Thus, η = 0, showing that
(iii) holds. Similarly, one can prove that (iii) implies (ii).

Finally, we prove that (ii) + (iii) implies (i). Because A ⊕ X1 and A ⊕ X2

are weakly amenable, conditions 1–3 of Theorem 2.1 hold automatically for X =
X1+̇X2 and m = 0. We show that condition 4 also holds. Suppose that T : X → X∗

is a continuous A-bimodule morphism satisfying

(x1, x2) · T ((y1, y2)) + T ((x1, x2)) · (y1, y2) = 0 ((x1, x2), (y1, y2) ∈ X).
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Let Pi: X∗ → X∗i be the natural projections and let τi: Xi → X be the natural
embeddings, i = 1, 2. Then, by taking x2 = y2 = 0 and x1 = y1 = 0 separately, we
have

x1 · P1 ◦ T ◦ τ1(y1) + P1 ◦ T ◦ τ1(x1) · y1 = 0,

x2 · P2 ◦ T ◦ τ2(y2) + P2 ◦ T ◦ τ2(x2) · y2 = 0,

for all xi, yi ∈ Xi, i = 1, 2. So we have Pi ◦ T ◦ τi = 0 by applying condition 4 of
Theorem 2.1 to the weakly amenable Banach algebras A⊕Xi, i = 1, 2. Furthermore,
(ii) and (iii) imply that P1 ◦T ◦ τ2: X2 → X∗1 and P2 ◦T ◦ τ1: X1 → X∗2 are trivial.
Therefore, we have T = 0. Condition 4 of Theorem 2.1 holds for X = X1+̇X2.
From Theorem 2.1, A⊕(X1+̇X2) is weakly amenable. This completes the proof.

Proposition 7.2. The algebra A⊕(X1+̇X2) is weakly amenable if and only if both
A ⊕ X1 and A ⊕ X2 are weakly amenable and condition (ii) or condition (iii) in
Lemma 7.1 holds.

Proof. If A ⊕ (X1+̇X2) is weakly amenable, then conditions 1–4 of Theorem 2.1
hold for this algebra. It follows that these conditions also hold for the algebras
A⊕X1 and A⊕X2. So the latter two are also weakly amenable. The rest has been
given in Lemma 7.1.

In the remainder of the paper we focus on constructing an example of a weakly
amenable Banach algebra which is not 3-weakly amenable. Recall that we always
equip A(2m) with the first Arens product. The following lemma has been proved in
[31].

Lemma 7.3. Suppose that A is a left (right) ideal in A∗∗. Then it is also a left
(respectively, right) ideal in A(2m) for all m ≥ 1.

Suppose that B is a Banach algebra and A = B∗∗. If B is an ideal in B∗∗,
then a natural way to make B an A-bimodule is using (the first) Arens product to
give the module actions. In this way B∗∗ is an A∗∗-bimodule. For b ∈ B ⊂ B∗∗

and u ∈ A∗∗, the module coupling u · b and b · u result in elements of B∗∗. Since
B ⊂ B(4) (= A∗∗), we can also consider the products ub and bu in the sense of
Arens in B(4). But, from the above lemma, ub, bu ∈ B ⊂ B∗∗. It is routine to
check that, as elements in B∗∗, u · b = ub and b · u = bu.

From this point on, H will denote an infinite-dimensional, separable Hilbert
space, B(H) will denote the Banach algebra of all bounded operators on H, and
K(H) the ideal of all compact operators on H. It is well known that, with any
Arens product, K(H)∗∗ = B(H) (see [27, p. 103] for details).

Lemma 7.4. There is an element a0 ∈ B(H) such that a0 /∈ K(H), a0 is not right
invertible in B(H) and a0K(H) is dense in K(H).

Proof. Let (ei)∞i=1 be an orthonormal basis of H. Let a0 ∈ B(H) be defined by

a0(ei) =

{
1
i ei if i is even;
ei if i is odd.

Clearly, a0 /∈ K(H). Also, a0 is neither right nor left invertible because any one-
sided inverse of a0 must satisfy

a−1
0 (ei) =

{
iei if i is even;
ei if i is odd,
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which cannot be a bounded operator.
For each n ≥ 1, denote by Vn the subspace of H generated by {e1, e2, . . . , en},

and let Pn be the orthogonal projection fromH onto Vn. Then, from Corollary II.4.5
of [6], for every k ∈ K(H) and ε > 0, there is n = n(k, ε), such that ‖Pn◦k−k‖ < ε.
For this n = n(k, ε), let bn ∈ B(H) be defined by

bn(ei) =


iei if i ≤ n and i is even;
ei if i ≤ n and i is odd;
0 for i ≥ n.

Then a0 ◦ bn = Pn and a0 ◦ bn ◦ Pn = P 2
n = Pn. Let kn = bn ◦ Pn ◦ k. Then

kn ∈ K(H), and a0 ◦ kn = Pn ◦ k. Also, ‖a0 ◦ kn − k‖ = ‖Pn ◦ k − k‖ < ε. Since
k ∈ K(H) and ε ≥ 0 are arbitrarily given, this shows that a0K(H) is dense in
K(H).

For the element a0 in the above lemma, a0B(H) is a proper right ideal of B(H)
since the identity 1 /∈ a0B(H). The closure of a0B(H) is also a proper right ideal
of B(H) ([3, p. 46]). So there is F ∈ B(H)∗ such that F 6= 0 but Fa0 = 0. Then,
FB(H) 6= {0} is a right B(H)-submodule of B(H)∗. Take

X0 = (K(H))0, and 0Y = 0(cl(FB(H)).

Then we have the following example.

Example 7.5. B(H)⊕ (X0+̇ 0Y ) is weakly amenable but not 3-weakly amenable.

Proof. Clearly, we have B(H)X0 = X0 and 0Y B(H) = 0Y . By Corollaries 6.2 and
6.3, the Banach algebras B(H)⊕X0 and B(H)⊕ 0Y are weakly amenable.

Suppose that T : 0Y → X∗0 is a continuous B(H)-bimodule morphism. We prove
that T is trivial. Let f = T (F ). Then fa0 = T (Fa0) = 0, and so 〈 a0K(H), f 〉 =
{0}. We then have f = 0 since a0K(H) is dense inK(H). This shows that T (F ) = 0
and hence T (FB(H)) = {0}. Thus, T = 0. From Proposition 7.2, B(H)⊕(X0+̇ 0Y )
is weakly amenable.

To prove that B(H)⊕ (X0+̇ 0Y ) is not 3-weakly amenable, we show that it fails
condition 4 of Theorem 2.1 for m = 1. Since

(X0)∗∗∗ = 0(K(H)∗∗∗) = 0(B(H)∗) ⊃ 0Y,

there exists a nonzero B(H)-bimodule morphism from 0Y into (X0)∗∗∗ (e.g., the in-
clusion mapping). Let τ : 0Y → (X0)∗∗∗ be such a morphism, and let ∆: (X0)∗∗∗ →
(X0)∗ be the projection with the kernel X⊥0 . Take T = ∆ ◦ τ : 0Y → X∗0 . From the
preceding paragraph, we have that T = 0. So

〈x, τ(y)〉 = 〈x, T (y)〉 = 0 (y ∈ 0Y, x ∈ X0).

Now let Γ: X0+̇ 0Y → (X0+̇ 0Y )∗∗∗ be the continuous B(H)-bimodule morphism
defined by

Γ((x, y)) = (τ(y), 0).

Then, for (x1, y1), (x2, y2) ∈ X0+̇ 0Y , and u ∈ B(H)∗∗, we have

〈u, (x1, y1) · Γ((x2, y2)) + Γ((x1, y1)) · (x2, y2) 〉
= 〈 (u · x1, 0), (τ(y2), 0) 〉+ 〈 (0, y2 · u), (τ(y1), 0) 〉
= 〈u · x1, τ(y2) 〉 = 〈ux1, τ(y2) 〉 = 0.
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Here we used the fact that u · x1 = ux1 ∈ X0 (see the paragraph following
Lemma 7.3). So

(x1, y1) · Γ((x2, y2)) + Γ((x1, y1)) · (x2, y2) = 0

for all (x1, y1), (x2, y2) ∈ X0+̇ 0Y . But Γ 6= 0; so condition 4 of Theorem 2.1 does
not hold for m = 1 and X = X0+̇ 0Y . As a consequence, B(H) ⊕ (X0+̇ 0Y ) is not
3-weakly amenable.
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