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Abstract

In this work, we propose and study a framework of generalized proximal point algorithms asso-
ciated with a maximally monotone operator. We indicate sufficient conditions on the regulariza-
tion and relaxation parameters of generalized proximal point algorithms for the equivalence of the
boundedness of the sequence of iterations generated by this algorithm and the non-emptiness of
the zero set of the maximally monotone operator, and for the weak and strong convergence of the
algorithm. Our results cover or improve many results on generalized proximal point algorithms in
our references. Improvements of our results are illustrated by comparing our results with related
known ones.
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1 Introduction

Throughout this paper,

H is a real Hilbert space,

with inner product 〈·, ·〉 and induced norm ‖ · ‖. Moreover, we assume that H 6= {0} and that m ∈
N r {0}, where N = {0, 1, 2, . . .}.

In 1976, Rockafellar, in the seminal work [9], generalized the proximal point algorithm for mini-
mizing lower semicontinuous proper convex functions by weakening the exact minimization at each
iteration and by replacing the subgradient mapping with an arbitrary maximally monotone operator.
In particular, Rockafellar’s proximal point algorithm solves the fundamental problem:

determine an element x ∈ H s.t. 0 ∈ A(x), where A : H → 2H is maximally monotone, (1.1)

which includes minimization problems subject to implicit constraints, variational inequality problems,
and minimax problems as special cases (see [9] and the references therein for details). For example,
given a proper lower semicontinuous and convex function f , it is well-known that ∂ f is maximally
monotone (see, e.g., [1, Theorem 20.25]), that if there exist a closed convex subset C of H and ξ ∈
R such that the set {x ∈ C : f (x) ≤ ξ} is nonempty and bounded, then zer ∂ f 6= ∅ (see, e.g.,
[1, Theorems 11.10 and 16.3] for details) and solving (1.1) with A = ∂ f is equivalent to finding the
minimizer of f .

Synthesizing the work of Rockafellar [9] with that of Gol’shtein and Tret’yakov [5], Eckstein and
Bertsekas in [4] proposed a generalized form of the proximal point algorithm and elaborated that the
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Douglas-Rachford splitting algorithm is a special case of the proximal point algorithm. In addition,
because generally the proximal point algorithm converges weakly but not strongly (see, e.g., [6] for
details), various modified proximal point algorithms were studied in many articles (see, e.g., [2], [3],
[4], [8], [10], [13], [14], [15], and [16]) to obtain the strong convergence.

Henceforth,

A : H → 2H is maximally monotone.

Then, via [1, Proposition 20.22], (∀γ ∈ R++) γA is maximally monotone. In the whole work, given
a point u ∈ H, we investigate the sequence (xk)k∈N of iterations generated by the generalized proximal
point algorithm with relaxed parameters:

(∀k ∈ N) xk+1 := αku + βkxk + γk Jck A(xk) + δkek, (1.2)

where x0 ∈ H is the initial point and (∀k ∈ N) ek ∈ H is the error term, ck ∈ R++ is the stepsize
or regularization parameter, and αk, βk, γk, and δk are the relaxation parameters in R. For simplicity, in
this work, we refer to generalized proximal point algorithms with relaxed parameters as generalized
proximal point algorithms.

We compare the scheme (1.2) with some known proximal point algorithms in the literatures below.

(i) Suppose that (∀k ∈ N) αk = βk ≡ 0 and γk = δk ≡ 1. Then (1.2) reduces to the proximal point
algorithm devised by Rockafellar in [9].

(ii) Suppose that (∀k ∈ N) αk ≡ 0, γk ∈ [0, 2], and βk = 1 − γk. Then (1.2) turns to the generalized
proximal point algorithm developed by Eckstein and Bertsekas in [4].

(iii) Suppose that (∀k ∈ N) αk = δk ≡ 0, γk ≡ γ, and βk ≡ 1 − γ where γ ∈ R++. Then (1.2)
reduces to the generalized proximal point algorithm scheme proposed by Corman and Yuan in
[3]. In particular, Corman and Yuan provided examples where the generalized proximal point
algorithm scheme with γ > 2 converges faster than that with γ ∈ ]0, 2].

(iv) Suppose that u = x0 and (∀k ∈ N) αk ∈ [0, 1], βk ≡ 0, and γk = δk = 1 − αk, or that u = x0 and
(∀k ∈ N) αk ≡ 0, βk ∈ [0, 1], and γk = δk = 1 − βk. Then (1.2) becomes the modified proximal
point algorithms introduced by Xu in [13].

(v) Suppose that (∀k ∈ N) αk ∈ ]0, 1], βk ≡ 0, γk = 1 − αk, and δk ≡ 1. Then (1.2) turns to
the contraction-proximal point algorithm introduced by Marino and Xu in [8]. Note that by
some natural substitution one can easily see that the regularization method for the proximal
point algorithm proposed by Xu in [14] is equivalent to the contraction-proximal point algorithm
and hence a special case of the scheme (1.2) as well. Moreover, as it is verified in [14], the
prox-Tikhonov algorithm of Lehdili and Moudafi [7] deals essentially with a special case of the
regularization method for the proximal point algorithm of Xu in [14], which in turn shows that
(1.2) also covers the prox-Tikhonov algorithm in [7].

(vi) Suppose that (∀k ∈ N) δk ≡ 1 and {αk, βk, γk} ⊆ ]0, 1[ with αk + βk + γk = 1. Then (1.2) deduces
the contraction proximal point algorithm proposed by Yao and Noor in [15].

(vii) Suppose that u = 0 and that (∀k ∈ N) αk ≡ 0 and {βk, γk, δk} ⊆ ]0, 1[ with βk + γk + δk = 1.
Then (1.2) becomes the proximal point algorithm with general errors constructed by Yao and
Shahzad in [16].

For the generalized proximal point algorithm conforming the recursion (1.2), the advantage of con-
sidering the range R of the parameters (αk)k∈N, (βk)k∈N, (γk)k∈N, and (δk)k∈N is suggested by [3]; the
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necessity of the consideration of the coefficient (δk)k∈N preceding the error terms is illustrated by [13]
and [16]; and the term u is motivated by [13] and [8].

The goal of this work is to explore the equivalence of the boundedness of (xk)k∈N generated by (1.2) and
zer A 6= ∅ and to deduce sufficient conditions for the weak and strong convergence of the scheme (1.2) for
solving (1.1) when zer A 6= ∅.

Main results of this work are the following.

R1: Theorems 3.11 and 3.12 present requirements on the regularization and relaxation parameters of
(1.2) for the equivalence of the non-emptiness of zer A and the boundedness of the sequence of
iterations generated by the scheme (1.2).

R2: The weak convergence of the generalized proximal point algorithms is illustrated in Theorem 4.1.

R3: Theorems 4.4 and 4.5 exhibit sufficient conditions for the strong convergence of the sequence of
iterations conforming the scheme (1.2).

In Remarks 4.2 and 4.7 below, we shall compare our convergence results with related known results
in references mentioned above and demonstrate our improvements.

The paper is organized as follows. In Section 2, we provide some fundamental and essential results
for proving the convergence of generalized proximal point algorithms. The boundedness and asymp-
totic regularity of the sequence of iterations generated by the generalized proximal point algorithm is
elaborated in Section 3. The equivalence of the boundedness of this sequence and zer A 6= ∅ is also
established in Section 3. Convergence results are exhibited in the last section, Section 4.

We now turn to the notation used in this work. Id stands for the identity mapping. Denote by
R+ := {λ ∈ R : λ ≥ 0} and R++ := {λ ∈ R : λ > 0}. Let x̄ be in H, let r ∈ R+, and let (xk)k∈N

be a sequence in H. B(x̄; r) := {y ∈ H : ‖y − x̄‖ < r} and B[x̄; r] := {y ∈ H : ‖y − x̄‖ ≤ r} are
the open and closed ball centered at x̄ with radius r, respectively. If (xk)k∈N converges strongly to x̄, then
we denote by xk → x̄. (xk)k∈N converges weakly to x̄ if, for every y ∈ H, 〈xk, y〉 → 〈x, y〉; in symbols,
xk ⇀ x̄. Let C be a nonempty closed convex subset of H. The projector (or projection operator) onto C
is the operator, denoted by PC, that maps every point in H to its unique projection onto C. ιC is the
indicator function of C, that is, (∀x ∈ C) ιC(x) = 0 and (∀x ∈ Hr C) ιC(x) = ∞. Let f : H → ]−∞, ∞]
be proper, i.e., dom f 6= ∅. The subdifferential of f is the set-valued operator ∂ f : H → 2H : x 7→
{z ∈ H : (∀y ∈ H) 〈z, y − x〉 ≤ f (y)− f (x)}. Let D be a nonempty subset of H and let T : D → H.
Fix T := {x ∈ D : x = T(x)} is the set of fixed points of T. Let G : H → 2H be a set-valued operator.
Then G is characterized by its graph gra G := {(x, w) ∈ H × H : w ∈ G(x)}. The inverse of G,
denoted by G−1, is defined through its graph gra G−1 := {(w, x) ∈ H ×H : (x, w) ∈ gra G}. The
set of zeros of G is zer G := G−1(0) = {x ∈ H : 0 ∈ G(x)}. G is monotone if (∀(x, u) ∈ gra G)
(∀(y, v) ∈ gra G) 〈x − y, u − v〉 ≥ 0. G is maximally monotone if there exists no monotone operator
B : H → 2H such that gra B properly contains gra G, i.e., for every (x, u) ∈ H ×H, (x, u) ∈ gra G if
and only if (∀(y, v) ∈ gra G) 〈x − y, u − v〉 ≥ 0.

For other notation not explicitly defined here, we refer the reader to [1].

2 Preliminaries

In order to facilitate our investigation in the following sections, we gather some auxiliary results in
this section. The ideas of these results are frequently used in proofs of the convergence of generalized
proximal point algorithms in references of this work. Clearly, results in this section are interesting in
their own right and are helpful to study various generalized proximal point algorithms.
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Limits of sequences

Fact 2.1. [13, Lemma 2.5] Let (sk)k∈N be a sequence in R+ satisfying

(∀k ∈ N) sk+1 ≤ (1 − ak)sk + akbk + ǫk,

where (ak)k∈N, (bk)k∈N, and (ǫk)k∈N are sequences in R satisfying the conditions:

(i) (ak)k∈K is a sequence in [0, 1] such that ∑k∈N ak = ∞, or equivalently, ∏k∈N(1 − ak) = 0;

(ii) lim supk→∞ bk ≤ 0;

(iii) (∀k ∈ N)ǫk ∈ R+ and ∑k∈N ǫk < ∞.

Then limk→∞ sk = 0.

Inspired by the proof of Fact 2.1, we obtain the following Proposition 2.3, which is critical to some
results in the next sections. It is not difficult to prove that Proposition 2.3(iii) is actually equivalent to
Fact 2.1. We present Proposition 2.3(iii) because comparing with Fact 2.1, Proposition 2.3(iii) is more
convenient to use. The following lemma is necessary to prove Proposition 2.3.

Lemma 2.2. Let (αk)k∈N be in R+ and let (βk)k∈N be in R such that (∀k ∈ N) αk + βk ≤ 1. Then

(∀m ∈ N)(∀k ∈ N)
m+k

∑
i=m

m+k

∏
j=i+1

αjβi ≤ 1 −
m+k

∏
i=m

αi. (2.1)

Consequently, (∀m ∈ N)(∀k ∈ N) ∑
m+k
i=m ∏

m+k
j=i+1 αj(1 − αi) ≤ 1 − ∏

m+k
i=m αi.

Proof. Let m ∈ N. If k = 0, then (2.1) turns to βm ≤ 1 − αm, which is true by assumption.1 Suppose
that (2.1) holds for some k ∈ N. Then apply the induction hypothesis in the first inequality below to
observe that

m+k+1

∑
i=m

m+k+1

∏
j=i+1

αjβi = βm+k+1 + αm+k+1

m+k

∑
i=m

m+k

∏
j=i+1

αjβi ≤ βm+k+1 + αm+k+1

(

1 −
m+k

∏
i=m

αi.

)

≤ 1 −
m+k+1

∏
i=m

αi.

So, we proved (2.1) by induction. The last assertion is clear with (∀k ∈ N) βk = 1 − αk. �

Proposition 2.3. Let (tk)k∈N and (αk)k∈N be sequences in R+, and let (βk)k∈N, (γk)k∈N, and (ωk)k∈N be
sequences in R such that

(∀k ∈ N) tk+1 ≤ αktk + βkωk + γk. (2.2)

The following statements hold.

(i) Suppose that lim supk→∞ αk < 1 and M := supk∈N
(βkωk + γk) < ∞. Then (tk)k∈N is bounded.

(ii) Suppose that (∀k ∈ N) αk ∈ [0, 1], αk + βk ≤ 1, and ωk ∈ R+, that ω̂ := supk∈N
ωk < ∞, and that

(∀k ∈ N) αk + γk ≤ 1 or ∑k∈N |γk| < ∞. Then (tk)k∈N is bounded.

(iii) Suppose that (∀k ∈ N) αk ∈ [0, 1] and βk ∈ [0, 1] with αk + βk ≤ 1 and ∑k∈N(1 − αk) = ∞, that
lim supk→∞ ωk ≤ 0, and that ∑k∈N |γk| < ∞. Then limk→∞ tk = 0.

(iv) Suppose that (∀k ∈ N) αk ∈ [0, 1[ and βk ∈ R+ with supk∈N

βk

1−αk
< ∞ and ∑k∈N(1 − αk) = ∞, that

lim supk→∞ ωk ≤ 0, and that ∑k∈N |γk| < ∞. Then limk→∞ tk = 0.

1As is the custom, in the whole work, we use the empty sum convention and empty product convention, that is, given a
sequence (tk)k∈N in R, for every m and n in N with m > n, we have ∑

n
i=m ti = 0 and ∏

n
i=m ti = 1.
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Proof. Based on (2.2), by induction, it is easy to get that

(∀m ∈ N)(∀k ∈ N) tm+k ≤
m+k−1

∏
j=m

αjtm +
m+k−1

∑
i=m

m+k−1

∏
j=i+1

αjβiωi +
m+k−1

∑
i=m

m+k−1

∏
j=i+1

αjγi. (2.3)

(i): Because lim supk→∞ αk < 1, there exists α̂ ∈ R++ and N ∈ N such that lim supk→∞ αk < α̂ < 1
and (∀k ≥ N) αk ≤ α̂. This and the assumption that (∀k ∈ N) αk ∈ R+ ensure that

(∀k ∈ N)
N+k

∑
i=N

N+k

∏
j=i+1

αj ≤
N+k

∑
i=N

N+k

∏
j=i+1

α̂ =
N+k

∑
i=N

α̂N+k−i =
k

∑
j=0

α̂j ≤ (1 − α̂)−1,

which, combining with (2.3), entails that

(∀k ∈ N) tN+k+1 ≤
N+k

∏
j=N

αjtN +
N+k

∑
i=N

N+k

∏
j=i+1

αj (βiωi + γi)

≤ tN + (1 − α̂)−1 max{M, 0} < ∞.

(ii): In view of (2.3),

(∀k ∈ N) tk+1 ≤
k

∏
j=0

αjt0 +
k

∑
i=0

k

∏
j=i+1

αjβiωi +
k

∑
i=0

k

∏
j=i+1

αjγi. (2.4)

Because (∀k ∈ N) αk ∈ [0, 1], we know that (∀k ∈ N) ∏
k
i=0 αi ∈ [0, 1] and 1 − ∏

k
i=0 αi ∈ [0, 1]. Then

combine Lemma 2.2 with the assumption to get that

(∀k ∈ N)
k

∑
i=0

k

∏
j=i+1

αjβiωi ≤

(

1 −
k

∏
i=0

αi

)

ω̂ ≤ ω̂. (2.5)

If (∀k ∈ N) αk + γk ≤ 1, then by Lemma 2.2, (∀k ∈ N) ∑
k
i=0 ∏

k
j=i+1 αjγi ≤ 1 − ∏

k
i=0 αi ≤ 1, which,

combining with (2.4) and (2.5), forces that (∀k ∈ N) tk+1 ≤ t0 + ω̂ + 1 < ∞.
On the other hand, if ∑i∈N |γi| < ∞, then (∀k ∈ N) ∑

k
i=0 ∏

k
j=i+1 αjγi ≤ ∑

k
i=0 |γi| ≤ ∑i∈N |γi| < ∞.

Combine this with (2.4) and (2.5) to get that (∀k ∈ N) tk+1 ≤ t0 + ω̂ + ∑i∈N |γi| < ∞.
Hence, in both cases, (tk)k∈N is bounded.
(iii): Let ǫ ∈ R++. Because lim supk→∞ ωk ≤ 0 and ∑k∈N |γk| < ∞, there exists N ∈ N such that

(∀k ≥ N) ωk ≤ ǫ and
∞

∑
i=k

|γi| < ǫ. (2.6)

Taking (2.3) and Lemma 2.2 into account, we establish that

(∀k ∈ N \ {0}) tN+k ≤
N+k−1

∏
j=N

αjtN +
N+k−1

∑
i=N

N+k−1

∏
j=i+1

αjβiωi +
N+k−1

∑
i=N

N+k−1

∏
j=i+1

αjγi

≤
N+k−1

∏
j=N

αjtN +

(

1 −
N+k−1

∏
j=N

αj

)

ǫ +
N+k−1

∑
i=N

|γi|

≤
N+k−1

∏
j=N

αjtN + ǫ + ǫ,
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which implies that lim supk→∞ tk ≤ 2ǫ, since (∀k ∈ N) αk ∈ [0, 1] and ∑i∈N(1 − αi) = ∞ imply that

∏k∈N αk = 0 and that limk→∞ ∏
N+k−1
j=N αj = 0. Because ǫ ∈ R++ is chosen arbitrarily, and (tk)k∈N is in

R+, we obtain that limk→∞ tk = 0.

(iv): Because (∀k ∈ N) βk

1−αk
∈ R+ with supk∈N

βk

1−αk
< ∞ and lim supk→∞ ωk ≤ 0, it is easy to prove

that lim supk→∞

βk

1−αk
ωk ≤ 0. Moreover, inasmuch as (2.2),

(∀k ∈ N) tk+1 ≤ αktk + βkωk + γk ≤ αktk + (1 − αk)
βk

1 − αk
ωk + |γk| .

So the required result follows easily from Fact 2.1. �

Fact 2.4. [11, Lemma 2.2] Let (uk)k∈N and (vk)k∈N be bounded sequences in H and let (αk)k∈K be a sequence
in [0, 1] with 0 < lim infk→∞ αk ≤ lim supk→∞ αk < 1. Suppose that

(∀k ∈ N) uk+1 = αkvk + (1 − αk)uk and lim sup
i→∞

(‖vi+1 − vi‖ − ‖ui+1 − ui‖) ≤ 0.

Then limk→∞ ‖vk − uk‖ = 0.

The existence of the limit limk→∞ ak in the following Fact 2.5 was directly used in proofs of [4], [8],
[9], [13] and many other papers on the convergence of proximal point algorithms. For completeness,
we present a detailed proof below.

Fact 2.5. Let (ak)k∈N and (bk)k∈N be sequences in R+ such that ∑k∈N bk < ∞ and

(∀k ∈ N) ak+1 ≤ ak + bk. (2.7)

Then limk→∞ ak = lim infk→∞ ak ∈ R+.

Proof. Let ǫ ∈ R++. Because ∑k∈N bk < ∞ and (bk)k∈N is in R+ , there exists K1 ∈ N such that

(∀k ≥ K1)
∞

∑
i=k

bi <
ǫ

3
. (2.8)

Denote by ā := lim infk→∞ ak. By the definition of lim inf, there exists a subsequence (ank
)k∈N of

(ak)k∈N such that ank
→ ā ∈ R+. Then, there exists K2 ∈ N such that

(∀k ≥ K2) |ank
− ā| <

ǫ

3
. (2.9)

Employ the definition of lim inf again to know that there exists K3 ∈ N such that

(∀k ≥ K3) ak > ā −
ǫ

3
. (2.10)

Set K := max{K1, K2, K3}. Then

(∀i > nK) ā −
ǫ

3

(2.10)
< ai

(2.7)
≤ ai−1 + bi−1

(2.7)
≤ · · ·

(2.7)
≤ anK

+
i−1

∑
j=nK

bj

(2.8)(2.9)
≤ ā +

2ǫ

3
,

which implies the desired result. �

Fact 2.6. [8, Lemma 2.5] Let x and y be in H. Then ‖x + y‖2 ≤ ‖x‖2 + 2 〈y, x + y〉 ≤ ‖x‖2 + 2 ‖y‖ ‖x + y‖

and ‖x + y‖2 ≤ ‖x‖2 + ‖y‖ (2 ‖x‖+ ‖y‖).
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Maximally monotone operators

Definition 2.7. [1, Definition 23.1] Let G : H → 2H and let γ ∈ R++. The resolvent of G is

JG = (Id+G)−1

and the Yosida approximation of G of index γ is

γG =
1

γ
(Id− JγG).

Definition 2.8. [1, Definition 4.1] Let D be a nonempty subset of H and let T : D → H. Then T is

(i) firmly nonexpansive if (∀x ∈ D) (∀y ∈ D) ‖Tx − Ty‖2 + ‖(Id−T)x − (Id−T)y‖2 ≤ ‖x − y‖2;

(ii) nonexpansive if (∀x ∈ D) (∀y ∈ D) ‖Tx − Ty‖ ≤ ‖x − y‖.

Remember that throughout this work,

A : H → 2H is maximally monotone.

The following properties of the resolvent and Yosida approximation of maximally monotone oper-
ators are fundamental to our analysis later and will be frequently used in the next sections.

Fact 2.9. (i) [1, Proposition 20.38(ii)] gra A is sequentially closed in Hweak × Hstrong, i.e., for every se-
quence (xk, uk)k∈N in gra A and every (x, u) ∈ H×H, if xk ⇀ x and uk → u, then (x, u) ∈ gra A.

(ii) [1, Proposition 23.7(i)] (∀γ ∈ R++) (∀x ∈ H) 1
γ (x − JγA x) = γ A(x) ∈ A

(

JγA x
)

, that is,
(

JγA x, γ A(x)
)

∈ gra A.

(iii) [1, Proposition 23.10] JA is full domain, single-valued, and firmly nonexpansive.

(iv) [1, Proposition 23.38] Let γ ∈ R++. Then zer A = Fix JγA = zer γ A.

(v) [1, Proposition 23.39] zer A is closed and convex.

Fact 2.10. [8, Lemma 2.4] Let λ and µ be in R++. Then

(∀x ∈ H) JλA(x) = JµA

(µ

λ
x +

(

1 −
µ

λ

)

JλA x
)

.

The following Fact 2.11(i) is used in the proof of [8, Theorem 3.6].

Fact 2.11. Let λ and µ be in R++. Set Tλ := 2 JλA − Id and Tµ := 2 JµA − Id. Then the following hold.

(i) (∀x ∈ H) Tλx = Tµ

( µ
λ x +

(

1 − µ
λ

)

JλA x
)

+
(

1 − µ
λ

)

(JλA(x)− x).

(ii) (∀x ∈ H)
∥

∥Tλ(x)− Tµ(x)
∥

∥ ≤
∣

∣1 − µ
λ

∣

∣ ‖Tλ(x)− x‖.

Proof. (i): The desired result follows immediately from Fact 2.10 and the definitions of Tλ and Tµ.
(ii): Notice that, via Fact 2.9(iii) and [1, Proposition 4.4], Tλ and Tµ are nonexpansive. Hence, the

required inequality follows easily from (i). �

Fact 2.12. [8, Lemma 3.3] Let c and c̄ be in R++ with c̄ ≤ c. Then (∀x ∈ H) ‖Jc̄A(x)− x‖ ≤ 2 ‖JcA(x)− x‖.
In particular, for every sequences (yk)k∈N in H and (ck)k∈N in R++ such that (∀k ∈ N) c̄ ≤ ck, we have

(∀k ∈ N) ‖Jc̄A(yk)− yk‖ ≤ 2
∥

∥Jck A(yk)− yk

∥

∥ .
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Sets of zeroes

The technique of the following proof was used in [9, Theorem 1] to prove the uniqueness of the weak
sequential cluster point of the sequence of iterations generated by Rockafellar’s proximal point algo-
rithm. According to Rockafellar’s remark, one similar uniqueness argument was used by B. Martinet
in 1970 and it was suggested to Martinet by H. Brézis.

Proposition 2.13. Let (yk)k∈N be a sequence in H. Set Ω as the set of all weak sequential cluster points of
(yk)k∈N. Suppose that for every z ∈ Ω, the limit limk→∞ ‖yk − z‖ exists. Then there is at most one element in
Ω, that is, there cannot be more than one weak sequential cluster point of (yk)k∈N.

Proof. Suppose to the contrary that there exist z1 and z2 in Ω with z1 6= z2. Then based on the assump-
tion, there exist q1 and q2 in R+ such that (∀i ∈ {1, 2}) limk→∞ ‖yk − zi‖ = qi. Note that for every
k ∈ N,

‖yk − z2‖
2 = ‖yk − z1‖

2 + 2 〈yk − z1, z1 − z2〉+ ‖z1 − z2‖
2 and

‖yk − z1‖
2 = ‖yk − z2‖

2 + 2 〈yk − z2, z2 − z1〉+ ‖z2 − z1‖
2 ,

which imply, respectively, that

2 〈yk − z1, z1 − z2〉 = ‖yk − z2‖
2 − ‖yk − z1‖

2 − ‖z1 − z2‖
2 → q2

2 − q2
1 − ‖z1 − z2‖

2 , and (2.11a)

2 〈yk − z2, z2 − z1〉 = ‖yk − z1‖
2 − ‖yk − z2‖

2 − ‖z2 − z1‖
2 → q2

1 − q2
2 − ‖z1 − z2‖

2 . (2.11b)

On the other hand, {z1, z2} ⊆ Ω forces that once limk→∞ 〈yk − z1, z1 − z2〉 and limk→∞ 〈yk − z2, z2 − z1〉
exist, these two limits must be 0. Combine this with (2.11) and z1 6= z2 to deduce that

q2
2 − q2

1 = ‖z1 − z2‖
2
> 0 and q2

1 − q2
2 = ‖z1 − z2‖

2
> 0,

which is absurd. Therefore, the desired result holds. �

The following result is inspired by the proof of [9, Theorem 1], which shows the weak convergence
of Rockafellar’s proximal point algorithm.

Proposition 2.14. Let r ∈ R++. Define Ã := A + ∂ιB[0;r]. The following assertions hold.

(i) (∀x ∈ H) ∂ιB[0;r]x =











{0}, if ‖x‖ < r;

R+x, if ‖x‖ = r;

∅, if ‖x‖ > r,

and Ãx =











A(x), if ‖x‖ < r;

A(x) + R+x, if ‖x‖ = r;

∅, if ‖x‖ > r.

(ii) Suppose that dom A ∩ B(0; r) 6= ∅. Then the following hold.

(a) Ã is maximally monotone. Consequently, (∀γ ∈ R++) JγÃ : H → H is full-domain and firmly
nonexpansive.

(b) zer Ã 6= ∅.

(c) Let γ ∈ R++ and let x ∈ H. If x ∈ J−1
γA (B(0; r)) or x ∈ J−1

γÃ
(B(0; r)), then JγÃ x = JγA x.

Consequently, B(0; r) ∩ zer A = B(0; r) ∩ zer Ã.

(d) If zer Ã is not a singleton, then zer A 6= ∅.

Proof. (i): The explicit formula of ∂ιB[0;r] is a direct result from [1, Examples 6.39 and 16.13], which

immediately implies the formula of Ã.
(ii)(a): Clearly, because B[0; r] is a nonempty closed and convex set, we have that ιB[0;r] is a proper

lower semicontinuous and convex function. Then the required results are guaranteed by [1, Theo-
rem 20.25, Corollary 25.5(ii), and Proposition 23.10(iii)].
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(ii)(b): According to (i), dom Ã ⊆ B[0; r] is bounded. Hence, the desired result is immediate from
the maximal monotonicity of Ã and [1, Proposition 23.36(iii)].

(ii)(c): If x ∈ J−1
γA (B(0; r)), i.e., JγA(x) ∈ B(0; r), then, via Definition 2.7,

JγA(x) = (Id+γA)−1(x) ⇔ x ∈ JγA(x) + γA
(

JγA(x)
)

⇔ x ∈ JγA(x) + γÃ
(

JγA(x)
)

(by JγA(x) ∈ B(0; r) and (i))

⇔ JγA(x) ∈ (Id+γÃ)−1(x) = JγÃ(x)

⇔ JγA(x) = JγÃ(x). ( JγÃ is single-valued)

On the other hand, switch A and Ã in the proof above to obtain that x ∈ J−1
γÃ

(B(0; r)) implies JγÃ(x) =

JγA(x). Hence, the first required result is true.
In addition, for every y ∈ B(0; r) ∩ zer A, by Fact 2.9(iv), JγA(y) = y ∈ B(0; r), which, combining

with the result proved above, entails that y = JγA(y) = JγÃ(y) ∈ Fix JγÃ = zer Ã. Hence, B(0; r) ∩

zer A ⊆ B(0; r) ∩ zer Ã. Moreover, applying the similar technique, we obtain that B(0; r) ∩ zer Ã ⊆
B(0; r) ∩ zer A. Altogether, B(0; r) ∩ zer A = B(0; r) ∩ zer Ã.

(ii)(d): Suppose that {x, y} ⊆ zer Ã with x 6= y. If ‖x‖ < r or ‖y‖ < r, then, via (ii)(c), ∅ 6=
B(0; r) ∩ zer Ã ⊆ zer A.

Suppose that ‖x‖ = r and ‖y‖ = r. Notice that, due to (ii)(a) and Fact 2.9(v), zer Ã is closed and
convex. Let α ∈ ]0, 1[ . Then based on [1, Corollary 2.15],

‖αx + (1 − α)y‖2 = α ‖x‖2 + (1 − α) ‖y‖2 − α(1 − α) ‖x − y‖2
< r2,

which leads to αx + (1 − α)y ∈ B(0; r) ∩ zer Ã ⊆ zer A by (ii)(c).
Altogether, the proof is complete. �

Proposition 2.15. Let (yk)k∈N be a sequence in H and let (ck)k∈N be in R++. Suppose that (yk)k∈N and
(

Jck A yk

)

k∈N
are bounded. Set Ω as the set of all weak sequential cluster points of (yk)k∈N. Then there exists

r ∈ R++ such that Ã := A + ∂ιB[0;r] is a maximally monotone operator and that

zer Ã 6= ∅,
(

Ω ∩ zer Ã
)

⊆ zer A, and (∀k ∈ N) Jck A yk = Jck Ã yk.

Proof. Because (yk)k∈N and
(

Jck A yk

)

k∈N
are bounded, there exists r ∈ R++ such that

(∀k ∈ N) ‖yk‖ ≤
r

2
and

∥

∥Jck A yk

∥

∥ ≤
r

2
, (2.12)

which, due to [1, Lemmas 2.42 and 2.45], implies that ∅ 6= Ω ⊆ B[0; r
2 ] ⊆ B(0; r).

Set Ã := A+ ∂ιB[0;r]. In view of Fact 2.9(ii), (∀k ∈ N) 1
ck
(yk − Jck A yk) =

ck A(yk) ∈ A
(

Jck A yk

)

, which,

by (2.12), yields that (∀k ∈ N) Jck A yk ∈ B(0; r) ∩ dom A. Combine this with Proposition 2.14(ii) to

entail that Ã is maximally monotone and that zer Ã 6= ∅, Ω ∩ zer Ã ⊆ B(0; r) ∩ zer Ã ⊆ zer A, and
(∀k ∈ N) Jck A yk = Jck Ã yk. �

The result of Proposition 2.16 under the condition (i) was also proved in proofs of [9, Theorem 1]
and [4, Theorem 3] for related proximal point algorithms by applying Fact 2.9(ii) and employing the
definition of maximal monotonicity. In addition, the idea of the proof of Proposition 2.16 under the
hypothesis (ii) with t = 1 was adopted in the Step 2 of the proof of [13, Theorem 5.1].

Proposition 2.16. Let (yk)k∈N be a sequence in H and let (ck)k∈N be in R++. Set Ω as the set of all weak
sequential cluster points of (yk)k∈N. Suppose that one of the following holds.

(i) c̄ := infk∈N ck > 0 and yk − Jck A(yk) → 0.
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(ii) ck → ∞, (yk)k∈N is bounded, and there exists t ∈ N such that yk+t − Jck A(yk) → 0.

Then Ω ⊆ zer A.

Proof. If Ω = ∅, then the desired inclusion is trivial. Suppose that Ω 6= ∅. Take ȳ ∈ Ω, that is, there
exists a subsequence (yki

)i∈N of (yk)k∈N such that yki
⇀ ȳ.

Assume that (i) holds. Then Fact 2.12 and the assumption that yk − Jck A(yk) → 0 imply that Jc̄A(yki
)−

yki
→ 0. Therefore, by Fact 2.9(iii)&(iv) and [1, Corollary 4.28], we conclude that ȳ ∈ Fix Jc̄A = zer A.

Assume that (ii) holds. Clearly, the boundedness of (yk)k∈N and the convergence yk+t − Jck A(yk) → 0
imply that (Jck A(yk))k∈N is bounded and that

Jcki−t A(yki−t) = yki
−
(

yki
− Jcki−t A(yki−t)

)

⇀ ȳ. (2.13)

Moreover, as a consequence of Fact 2.9(ii),

(∀i ∈ N)

(

Jcki−t A(yki−t),
1

cki−t

(

yki−t − Jcki−t A(yki−t)
)

)

∈ gra A. (2.14)

Because ck → ∞ and the boundedness of (yk)k∈N and (Jck A(yk))k∈N yield 1
cki−t

(

yki−t − Jcki−t A(yki−t)
)

→

0, combine (2.13), (2.14), and Fact 2.9(i) to establish that (ȳ, 0) ∈ gra A, i.e., ȳ ∈ zer A.
Altogether, the required result is correct, since ȳ ∈ Ω is arbitrary. �

Asymptotic regularity and convergence

Given a sequence (yk)k∈N in H and a sequence (ck)k∈N in R++, we say the asymptotic regularity holds for
(yk)k∈N and (ck)k∈N, if yk − Jck A yk → 0. We shall see that the asymptotic regularity plays an important
role in the proof of the convergence of generalized proximal point algorithms.

Proposition 2.17. Suppose that zer A 6= ∅. Let p ∈ zer A and let (yk)k∈N be a sequence in H. Suppose
that limk→∞ ‖yk − p‖ exists in R+ and that yk+t − Jck A yk → 0 for some t ∈ N. Then yk − Jck A yk → 0 and
yk − yk+t → 0.

Proof. Taking Fact 2.9(iii)&(iv) into account and employing Definition 2.8(i), we observe that

(∀k ∈ N)
∥

∥Jck A yk − p
∥

∥

2
+
∥

∥yk − Jck A yk

∥

∥

2
≤ ‖yk − p‖2 ,

which yields that for every k ∈ N,

∥

∥yk − Jck A yk

∥

∥

2
− ‖yk − p‖2 + ‖yk+t − p‖2 ≤ −

∥

∥Jck A yk − p
∥

∥

2
+ ‖yk+t − p‖2

=
〈

yk+t − p −
(

Jck A yk − p
)

, yk+t − p +
(

Jck A yk − p
)〉

≤
∥

∥yk+t − Jck A yk

∥

∥ (‖yk+t − p‖+ ‖yk − p‖) ,

where in the last inequality we use the Cauchy-Schwarz inequality, the nonexpansiveness of Jck A, and
p ∈ zer A = Fix Jck A. Hence,

(∀k ∈ N)
∥

∥yk − Jck A yk

∥

∥

2
≤ ‖yk − p‖2 − ‖yk+t − p‖2 +

∥

∥yk+t − Jck A yk

∥

∥ (‖yk+t − p‖+ ‖yk − p‖) ,

which ensures yk − Jck A yk → 0, since the existence of limk→∞ ‖yk − p‖ yields ‖yk − p‖2 −‖yk+t − p‖2 →
0 and the boundedness of (‖yk+t − p‖+ ‖yk − p‖)k∈N

.
Moreover, in consideration of (∀k ∈ N) ‖yk − yk+t‖ ≤

∥

∥yk − Jck A yk

∥

∥+
∥

∥Jck A yk − yk+t

∥

∥, we reach
the last required convergence by using yk − Jck A yk → 0 and yk+t − Jck A yk → 0. �
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The following result will play an essential role to prove the weak convergence of the generalized
proximal point algorithm.

Fact 2.18. [1, Lemma 2.47] Let (yk)k∈N be a sequence in H and let C be a nonempty subset of H. Suppose
that every weak sequential cluster point of (yk)k∈N belongs to C, that is, Ω ((yk)k∈N) ⊆ C, and that (∀z ∈ C)
limk→∞ ‖yk − z‖ exists in R+. Then (yk)k∈N converges weakly to a point in C.

The following Proposition 2.19 is inspired by the Step 2 of the proof of [13, Theorem 5.1]. The
following result is critical to prove the strong convergence of generalized proximal point algorithms.

Proposition 2.19. Let (yk)k∈N be a bounded sequence in H and let u ∈ H. Set Ω as the set of all weak
sequential cluster points of (yk)k∈N. Suppose that Ω ⊆ zer A. Then

lim sup
k→∞

〈u − Pzer A u, yk − Pzer A u〉 ≤ 0.

Proof. By the definition of lim sup, there exists a subsequence (yki
)i∈N of (yk)k∈N such that

lim sup
k→∞

〈u − Pzer A u, yk − Pzer A u〉 = lim
i→∞

〈

u − Pzer A u, yki
− Pzer A u

〉

. (2.15)

Because (yk)k∈N is bounded, without loss of generality (otherwise take a subsequence of (yki
)i∈N), we

assume that yki
⇀ ȳ for some ȳ ∈ Ω ⊆ zer A. Hence, due to [1, Proposition 3.16] and Fact 2.9(v),

lim
i→∞

〈

u − Pzer A u, yki
− Pzer A u

〉

= 〈u − Pzer A u, ȳ − Pzer A u〉 ≤ 0. (2.16)

Combine (2.15) and (2.16) to obtain the required inequality. �

3 Generalized proximal point algorithms

Recall that

A : H → 2H is a maximally monotone operator.

In the rest of this work, u ∈ H and x0 ∈ H are arbitrary but fixed, and the generalized proximal point
algorithm is generated by conforming the following recursion:

(∀k ∈ N) xk+1 = αku + βkxk + γk Jck A(xk) + δkek, (3.1)

where (∀k ∈ N) ek ∈ H, ck ∈ R++, and {αk, βk, γk, δk} ⊆ R. From now on,

Ω is the set of all weak sequential cluster points of (xk)k∈N.

In this section, we investigate the boundedness and asymptotic regularity of (xk)k∈N; after that, we
demonstrate the equivalence of the boundedness of (xk)k∈N and zer A 6= ∅.

Boundedness

Lemma 3.1. Set (∀k ∈ N) Tk := 2 Jck A − Id. Then (∀k ∈ N) Tk is nonexpansive and Fix Tk = zer A.
Moreover,

(∀k ∈ N) xk+1 =
(

βk +
γk

2

)

xk +
γk

2
Tk(xk) + αku + δkek.

11



Proof. Based on Fact 2.9(iii)&(iv) and [1, Proposition 4.4], (∀k ∈ N) Tk is nonexpansive and Fix Tk =
Fix Jck A = zer A. In consideration of (3.1),

(∀k ∈ N) xk+1 = αku + βkxk + γk Jck A(xk) + δkek

= αku + βkxk +
1

2
γk(xk + Tkxk) + δkek

=
(

βk +
γk

2

)

xk +
γk

2
Tk(xk) + αku + δkek,

which implies directly the desired equality. �

The following inequalities will be used frequently later.

Lemma 3.2. Let p ∈ zer A. Set (∀k ∈ N) Tk := 2 Jck A − Id. Then the following hold.

(i) (∀k ∈ N) ‖xk+1 − p‖ ≤
(
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣

)

‖xk − p‖+ ‖αku + δkek − (1 − βk − γk)p‖.

(ii) Denote by (∀k ∈ N) ξk :=
(∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣

)2
, φk := 1 − βk − γk, ϕk := 1 − αk − βk − γk,

F(k) := ‖δkek − ϕku‖, and G(k) := F(k) + 2
∥

∥

(

βk +
γk
2

)

(xk − p) + γk
2 (Tk(xk)− p) + φk (u − p)

∥

∥.

Then (∀k ∈ N) ‖xk+1 − p‖2 ≤ ξk ‖xk − p‖2 + 2φk 〈u − p, xk+1 − p − δkek + ϕku〉+ F(k)G(k).

(iii) Set (∀k ∈ N) M(k) := ‖αku + δkek − (1 − βk − γk)p‖. Suppose infk∈N γk(βk + γk) ≥ 0. Then

(∀k ∈ N) ‖xk+1 − p‖2 ≤ (βk +γk)
2 ‖xk − p‖2 −γk(2βk +γk)

∥

∥xk − Jck A xk

∥

∥

2
+ 2M(k) ‖xk+1 − p‖.

(iv) (∀k ∈ N) ‖xk+1 − p‖2 ≤
(∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣

)2
‖xk − p‖2 + 2 〈αku + δkek − (1 − βk − γk) p, xk+1 − p〉.

Proof. Let k ∈ N.
(i): In view of Lemma 3.1,

‖xk+1 − p‖ =
∥

∥

∥

(

βk +
γk

2

)

xk +
γk

2
Tk(xk) + αku + δkek − p

∥

∥

∥

=
∥

∥

∥

(

βk +
γk

2

)

(xk − p) +
γk

2
(Tk(xk)− p) + αku + δkek − (1 − βk − γk) p

∥

∥

∥

≤
∣

∣

∣
βk +

γk

2

∣

∣

∣ ‖xk − p‖+
∣

∣

∣

γk

2

∣

∣

∣ ‖Tk(xk)− p‖+ ‖αku + δkek − (1 − βk − γk) p‖

≤
(∣

∣

∣
βk +

γk

2

∣

∣

∣
+
∣

∣

∣

γk

2

∣

∣

∣

)

‖xk − p‖+ ‖αku + δkek − (1 − βk − γk) p‖ ,

where in the last inequality we used the nonexpansiveness of Tk and the fact that p ∈ zer A = Fix Tk.
(ii): Applying Lemma 3.1 in the first equality and the last inequality, and employing Fact 2.6 in the

first and second inequalities, we obtain that

‖xk+1 − p‖2

=
∥

∥

∥

(

βk +
γk

2

)

(xk − p) +
γk

2
(Tk(xk)− p) + (1 − βk − γk) (u − p) + δkek − (1 − αk − βk − γk) u

∥

∥

∥

2

≤
∥

∥

∥

(

βk +
γk

2

)

(xk − p) +
γk

2
(Tk(xk)− p) + φk (u − p)

∥

∥

∥

2
+ F(k)G(k)

≤
∥

∥

∥

(

βk +
γk

2

)

(xk − p) +
γk

2
(Tk(xk)− p)

∥

∥

∥

2
+ 2φk 〈u − p, xk+1 − p − δkek + ϕku〉+ F(k)G(k)

≤
(
∣

∣

∣
βk +

γk

2

∣

∣

∣
+
∣

∣

∣

γk

2

∣

∣

∣

)2
‖xk − p‖2 + 2φk 〈u − p, xk+1 − p − δkek + ϕku〉+ F(k)G(k).

(iii): According to Fact 2.9(iii)&(iv) and [1, Proposition 4.4],
〈

xk − p, Jck A(xk)− xk

〉

= −
〈

xk − p, (Id− Jck A)(xk)− (Id− Jck A)p
〉

(3.3a)

≤ −
∥

∥(Id− Jck A)(xk)− (Id− Jck A)p
∥

∥

2
(3.3b)

= −
∥

∥xk − Jck A xk

∥

∥

2
. (3.3c)
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Utilizing infk∈N γk(βk + γk) ≥ 0 in the last inequality, we establish that

‖xk+1 − p‖2

(3.1)
=
∥

∥(βk + γk)xk + γk

(

Jck A(xk)− xk

)

+ αku + δkek − p
∥

∥

2

=
∥

∥(βk + γk)(xk − p) + γk

(

Jck A(xk)− xk

)

+ αku + δkek − (1 − βk − γk)p
∥

∥

2

≤
∥

∥(βk + γk)(xk − p) + γk

(

Jck A(xk)− xk

)
∥

∥

2
+ 2M(k) ‖xk+1 − p‖ (by Fact 2.6)

= (βk + γk)
2 ‖xk − p‖2 + γ2

k

∥

∥Jck A(xk)− xk

∥

∥

2
+ 2γk(βk + γk)

〈

xk − p, Jck A(xk)− xk

〉

+ 2M(k) ‖xk+1 − p‖

(3.3)
≤ (βk + γk)

2 ‖xk − p‖2 − γk(2βk + γk)
∥

∥xk − Jck A xk

∥

∥

2
+ 2M(k) ‖xk+1 − p‖ .

(iv): Apply Lemma 3.1 and Fact 2.6 in the following first equality and first inequality, respectively,
and employ the nonexpansiveness of Tk and the fact that p = Tk(p) in the second inequality to observe
that

‖xk+1 − p‖2

=
∥

∥

∥

(

βk +
γk

2

)

xk +
γk

2
Tk(xk) + αku + δkek − p

∥

∥

∥

2

=
∥

∥

∥

(

βk +
γk

2

)

(xk − p) +
γk

2
(Tk(xk)− p) + αku + δkek − (1 − βk − γk) p

∥

∥

∥

2

≤
∥

∥

∥

(

βk +
γk

2

)

(xk − p) +
γk

2
(Tk(xk)− p)

∥

∥

∥

2
+ 2 〈αku + δkek − (1 − βk − γk) p, xk+1 − p〉

≤
(∣

∣

∣
βk +

γk

2

∣

∣

∣
+
∣

∣

∣

γk

2

∣

∣

∣

)2
‖xk − p‖2 + 2 〈αku + δkek − (1 − βk − γk) p, xk+1 − p〉 .

Altogether, the proof is complete. �

We present sufficient conditions for the boundedness of (xk)k∈N in the remaining subsection.
Note that if (∀k ∈ N) {αk, βk, γk} ⊆ [0, 1] with αk + βk + γk = 1 (which is the case in many publica-

tions on generalized proximal point algorithms), then based on Proposition 3.3(ii) or Proposition 3.3(iii),
we deduce the classical statement: zer A 6= ∅ and ∑k∈N ‖δkek‖ < ∞ imply the boundedness of
(xk)k∈N.

Proposition 3.3. Suppose that zer A 6= ∅ and that one of the following holds.

(i) lim supk→∞

(
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣

)

< 1, supk∈N
|αk| < ∞, and supk∈N

‖δkek‖ < ∞.

(ii) (∀k ∈ N)
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1, and the following hold:

(a) (∀k ∈ N) |αk|+
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1 or ∑i∈N |αi| < ∞;

(b)
[

(∀k ∈ N
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣+ |δk| ≤ 1 and supi∈N
‖ei‖ < ∞

]

or ∑i∈N ‖δiei‖ < ∞;

(c) (∀k ∈ N)
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣+ |1 − βk − γk| ≤ 1 or ∑i∈N |1 − βi − γi| < ∞.

(iii) (∀k ∈ N) |αk|+
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1, ∑k∈N |1 − αk − βk − γk| < ∞, and ∑k∈N ‖δkek‖ < ∞.

(iv) (∀k ∈ N)
∣

∣βk +
γk
2

∣

∣ +
∣

∣

γk
2

∣

∣ + |δk| ≤ 1, supk∈N
‖ek‖ < ∞, ∑k∈N |1 − βk − γk − δk| < ∞, and

∑k∈N |αk| < ∞.

Then (xk)k∈N is bounded.
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Proof. Let p ∈ zer A. In view of Lemma 3.2(i),

(∀k ∈ N) ‖xk+1 − p‖ ≤
(
∣

∣

∣
βk +

γk

2

∣

∣

∣
+
∣

∣

∣

γk

2

∣

∣

∣

)

‖xk − p‖+ ‖αku + δkek − (1 − βk − γk)p‖ . (3.4)

(i): Note that (∀k ∈ N) |1 − βk − γk| ≤ 1+
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ and that lim supi→∞

(∣

∣βi +
γi
2

∣

∣+
∣

∣

γi
2

∣

∣

)

<

1 implies the boundedness of
(
∣

∣βi +
γi
2

∣

∣+
∣

∣

γi
2

∣

∣

)

i∈N
and (|1 − βi − γi|)i∈N. The desired result is clear

from (3.4) and Proposition 2.3(i) with (∀k ∈ N) tk = ‖xk − p‖, αk =
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣, βk ≡ 0, ωk ≡ 0,
and γk = ‖αku + δkek − (1 − βk − γk)p‖.

(ii): Clearly, there are eight cases to prove and it suffices to show the boundedness of (‖xk − p‖)k∈N

in each case. We prove only the following three cases and omit the similar proof of the remaining ones.
Case 1: Suppose that ∑i∈N |αi| < ∞, ∑i∈N ‖δiei‖ < ∞, and ∑i∈N |1 − βi − γi| < ∞.
Recall (3.4) and apply Proposition 2.3(ii) with (∀k ∈ N) tk = ‖xk − p‖, αk =

∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣, βk ≡ 0,
ωk ≡ 0, and γk = ‖αku + δkek − (1 − βk − γk)p‖ to obtain the required boundedness of (‖xk − p‖)k∈N

.
Case 2: Suppose that (∀k ∈ N) |αk|+

∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1,
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣+ |δk| ≤ 1, supi∈N
‖ei‖ <

∞, and
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣+ |1 − βk − γk| ≤ 1.
Denote by (∀k ∈ N) ξk := max{|αk|, |δk|, |1 − βk − γk|}. In view of the assumption above,

(∀k ∈ N)
∣

∣

∣
βk +

γk

2

∣

∣

∣
+
∣

∣

∣

γk

2

∣

∣

∣
+ ξk ≤ 1. (3.5)

On the other hand, clearly (3.4) forces

(∀k ∈ N) ‖xk+1 − p‖ ≤
(
∣

∣

∣
βk +

γk

2

∣

∣

∣
+
∣

∣

∣

γk

2

∣

∣

∣

)

‖xk − p‖+ |αk| ‖u‖+ ‖δkek‖+ |1 − βk − γk| ‖p‖

≤
(
∣

∣

∣
βk +

γk

2

∣

∣

∣
+
∣

∣

∣

γk

2

∣

∣

∣

)

‖xk − p‖+ ξk

(

‖u‖+ ‖p‖+ sup
i∈N

‖ei‖

)

,

which, connecting with (3.5) and applying Proposition 2.3(ii) with (∀k ∈ N) tk = ‖xk − p‖, αk =
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣, βk = ξk, ωk = ‖u‖+ ‖p‖+ supi∈N
‖ei‖, and γk ≡ 0, guarantees the boundedness of

(‖xk − p‖)k∈N.
Case 3: Suppose that (∀k ∈ N) |αk|+

∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1, ∑i∈N ‖δiei‖ < ∞, and
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣+
|1 − βk − γk| ≤ 1.

Denote by (∀k ∈ N) ηk := max{|αk|, |1 − βk − γk|}. Similarly with the proof of Case 2, we observe
that (∀k ∈ N)

∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣+ ηk ≤ 1, and that

(∀k ∈ N) ‖xk+1 − p‖ ≤
(
∣

∣

∣
βk +

γk

2

∣

∣

∣
+
∣

∣

∣

γk

2

∣

∣

∣

)

‖xk − p‖+ |αk| ‖u‖+ ‖δkek‖+ |1 − βk − γk| ‖p‖

≤
(∣

∣

∣
βk +

γk

2

∣

∣

∣
+
∣

∣

∣

γk

2

∣

∣

∣

)

‖xk − p‖+ ηk (‖u‖+ ‖p‖) + ‖δkek‖ ,

which, applying Proposition 2.3(ii) with (∀k ∈ N) tk = ‖xk − p‖, αk =
∣

∣βk +
γk
2

∣

∣ +
∣

∣

γk
2

∣

∣, βk = ηk,
ωk = ‖u‖+ ‖p‖, and γk = ‖δkek‖, ensures the boundedness of (‖xk − p‖)k∈N.

(iii)&(iv): As a consequence of (3.4), for every k ∈ N,

‖xk+1 − p‖ ≤
(
∣

∣

∣
βk +

γk

2

∣

∣

∣
+
∣

∣

∣

γk

2

∣

∣

∣

)

‖xk − p‖+ |αk| ‖u − p‖+ |1 − αk − βk − γk| ‖p‖+ ‖δkek‖ ; (3.6a)

‖xk+1 − p‖ ≤
(∣

∣

∣
βk +

γk

2

∣

∣

∣
+
∣

∣

∣

γk

2

∣

∣

∣

)

‖xk − p‖+ |δk| ‖ek − p‖+ |1 − βk − γk − δk| ‖p‖+ |αk| ‖u‖ . (3.6b)

Hence, we obtain (iii) (resp. (iv)) by invoking (3.6a) (resp. (3.6b)) and applying Proposition 2.3(ii) with
(∀k ∈ N) tk = ‖xk − p‖, αk =

∣

∣βk +
γk
2

∣

∣ +
∣

∣

γk
2

∣

∣, βk = αk (resp. βk = δk), ωk = ‖u − p‖ (resp. ωk =
‖ek − p‖), and γk = |1 − αk − βk − γk| ‖p‖+ ‖δkek‖ (resp. γk = |1 − βk − γk − δk| ‖p‖+ |αk| ‖u‖).

Altogether, the proof is complete. �
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The following result is motivated by the Step 1 in the proof of [2, Theorem 1].

Proposition 3.4. Suppose that zer A 6= ∅, that (∀k ∈ N) αk ∈ ]0, 1] and αk +
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1, and

that δkek
αk

→ 0 and
1−αk−βk−γk

αk
→ 0. Then (xk)k∈N is bounded.

Proof. Let p ∈ zer A. Set (∀k ∈ N) Tk := 2 Jck A − Id. Because δkek
αk

→ 0 and
1−αk−βk−γk

αk
→ 0, there exists

M ∈ R++ such that

(∀k ∈ N) ‖x0 − p‖ ≤ M and ‖u − p‖+

∥

∥

∥

∥

δkek

αk

∥

∥

∥

∥

+

∣

∣

∣

∣

1 − αk − βk − γk

αk

∣

∣

∣

∣

‖p‖ ≤ M.

We prove

(∀k ∈ N) ‖xk − p‖ ≤ 2M. (3.7)

by induction below.
The basic case of (3.7) follows immediately from the definition of M. Suppose that (3.7) holds for

some k ∈ N. Employ Lemma 3.2(iv) in the first inequality and use the assumption (∀k ∈ N) αk +
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1 in the second inequality below to observe that

‖xk+1 − p‖2

≤
(∣

∣

∣
βk +

γk

2

∣

∣

∣
+
∣

∣

∣

γk

2

∣

∣

∣

)2
‖xk − p‖2 + 2 〈αku + δkek − (1 − βk − γk) p, xk+1 − p〉

=
(
∣

∣

∣
βk +

γk

2

∣

∣

∣
+
∣

∣

∣

γk

2

∣

∣

∣

)2
‖xk − p‖2 + 2αk

〈

u − p +
δkek

αk
−

1 − αk − βk − γk

αk
p, xk+1 − p

〉

≤ (1 − αk)
2 ‖xk − p‖2 + 2αk M ‖xk+1 − p‖ ,

which, utilizing the induction hypothesis in the inequality below, entails that

‖xk+1 − p‖2 ≤ 4 (1 − αk)
2 M2 + 2αk M ‖xk+1 − p‖ .

This guarantees that

(‖xk+1 − p‖ − αk M)2 ≤ 4 (1 − αk)
2 M2 + (αk M)2.

Moreover, the inequality above ensures that

‖xk+1 − p‖ ≤ αk M +
(

4 (1 − αk)
2 M2 + (αk M)2

)
1
2
≤ M (αk + (2 (1 − αk) + αk)) = 2M.

Therefore, (3.7) holds, which ensures the desired boundedness of (xk)k∈N. �

Asymptotic regularity

In this section, we shall provide sufficient conditions for xk − Jck A xk → 0 or Ω ⊆ zer A.

Proposition 3.5. Suppose that (xk)k∈N is bounded. Then the following assertions hold.

(i) Suppose that one of the following holds.

(a) zer A 6= ∅.

(b) lim infk→∞ |γk| > 0, supk∈N
|αk| < ∞, supk∈N

|βk| < ∞, and supk∈N
‖δkek‖ < ∞.

Then (Jck A xk)k∈N is bounded.
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(ii) Suppose that αk → 0, βk → 0, γk → 1, and δkek → 0. Then xk+1 − Jck A xk → 0.

(iii) Suppose that ck → ∞, αk → 0, βk → 0, γk → 1, and δkek → 0. Then xk+1 − Jck A xk → 0 and
∅ 6= Ω ⊆ zer A.

Proof. (i): If zer A 6= ∅, then via Fact 2.9(iii)&(iv), for every p ∈ zer A,

(∀k ∈ N)
∥

∥Jck A xk

∥

∥− ‖p‖ ≤
∥

∥Jck A xk − p
∥

∥ =
∥

∥Jck A xk − Jck A p
∥

∥ ≤ ‖xk − p‖ .

Hence, the boundedness of (xk)k∈N implies the boundedness of (Jck A xk)k∈N.

Assume (i)(b) holds. Then α̂ := supk∈N
|αk| < ∞, β̂ := supk∈N

|βk| < ∞, L := supk∈N
‖δkek‖ < ∞,

and M := supk∈N
‖xk‖ < ∞. Take γ̄ ∈ R++ such that 0 < γ̄ < lim infk→∞ |γk|. Then there exists

N ∈ N such that

(∀k ≥ N)
∥

∥Jck A xk

∥

∥

(3.1)
=

∥

∥

∥

∥

1

γk
(xk+1 − αku − βkxk − δkek)

∥

∥

∥

∥

≤
1

γ̄

(

M + α̂ ‖u‖+ β̂M + L
)

,

which shows the boundedness of (Jck A xk)k∈N.
(ii): Due to (i), (Jck A xk)k∈N is bounded. Then apply (3.1) to deduce that

(∀k ∈ N)
∥

∥xk+1 − Jck A xk

∥

∥ ≤ ‖αku + βkxk + δkek‖+ |γk − 1|
∥

∥Jck A(xk)
∥

∥ ,

which, by ‖αku + βkxk + δkek‖+ |γk − 1|
∥

∥Jck A(xk)
∥

∥→ 0, necessitates that xk+1 − Jck A xk → 0.
(iii): In view of [1, Lemma 2.45], the boundedness of (xk)k∈N ensures Ω 6= ∅. Hence, the required

result is clear from (ii) and Proposition 2.16(ii). �

The idea of the following proof is motivated by the proof of [9, Theorem 1].

Proposition 3.6. Suppose that (xk)k∈N is bounded and that (∀k ∈ N)
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1, ∑k∈N |αk| < ∞,

∑k∈N |1 − βk − γk| < ∞, ∑k∈N ‖δkek‖ < ∞, and γk → 1. Then the following statements hold.

(i) xk − Jck A xk → 0.

(ii) If infk∈N ck > 0 or ck → ∞, then ∅ 6= Ω ⊆ zer A.

Proof. (i): Note that ∑k∈N |1 − βk − γk| < ∞ and γk → 1 entail βk → 0. In view of Proposition 3.5(i),
our assumptions guarantee that (Jck A xk)k∈N is bounded. Then by Proposition 2.15, there exists a max-

imally monotone operator Ã : H → 2H such that

zer Ã 6= ∅,
(

Ω ∩ zer Ã
)

⊆ zer A, and (∀k ∈ N) Jck A xk = Jck Ã xk. (3.8)

Let p ∈ zer Ã. Because Ã is maximally monotone, via Lemma 3.2(i) and (3.8),

(∀k ∈ N) ‖xk+1 − p‖ ≤
(
∣

∣

∣
βk +

γk

2

∣

∣

∣
+
∣

∣

∣

γk

2

∣

∣

∣

)

‖xk − p‖+ ‖αku + δkek − (1 − βk − γk)p‖ ,

which, combining with the assumption and Fact 2.5, guarantees that limk→∞ ‖xk − p‖ exists in R+.
Using the maximal monotonicity of Ã again and noticing that (∀k ∈ N) ck ∈ R++, via Fact 2.9(iii)&(iv)

and Definition 2.8(i), we observe that (∀k ∈ N)
∥

∥

∥
Jck Ã xk − p

∥

∥

∥

2
+
∥

∥

∥
(Id− Jck Ã)xk

∥

∥

∥

2
≤ ‖xk − p‖2, which

implies that for every k ∈ N,

∥

∥

∥
xk − Jck Ã xk

∥

∥

∥

2
− ‖xk − p‖2 + ‖xk+1 − p‖2 ≤ −

∥

∥

∥
Jck Ã xk − p

∥

∥

∥

2
+ ‖xk+1 − p‖2

=
〈

xk+1 − p + p − Jck Ã xk, xk+1 − p + Jck Ã xk − p
〉

≤
∥

∥

∥
xk+1 − Jck Ã xk

∥

∥

∥

(

‖xk+1 − p‖+
∥

∥

∥
Jck Ã xk − p

∥

∥

∥

)

.
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Hence,

(∀k ∈ N)
∥

∥

∥
xk − Jck Ã xk

∥

∥

∥

2
≤ ‖xk − p‖2 − ‖xk+1 − p‖2 +

∥

∥

∥
xk+1 − Jck Ã xk

∥

∥

∥

(

‖xk+1 − p‖+
∥

∥

∥
Jck Ã xk − p

∥

∥

∥

)

.

This together with Proposition 3.5(ii), the existence of limk→∞ ‖xk − p‖, and the boundedness of (xk)k∈N

and (Jck Ã xk)k∈N leads to xk − Jck Ã xk → 0, which, due to (3.8), forces xk − Jck A xk → 0.
(ii): Note that the boundedness of (xk)k∈N forces Ω ((xk)k∈N) 6= ∅. Furthermore, based on (i), the

required inclusion follows immediately from the assumption and Proposition 2.16(i)&(ii). �

The following result is inspired by the proof of [17, Theorem 4] which improves the strong conver-
gence of the regularization method for the proximal point algorithm in [14, Theorem 3.3].

Proposition 3.7. Suppose that (xk)k∈N is bounded and that (∀k ∈ N) βk +γk ≤ 1, αk → 0, lim supk→∞ |βk| <
1, 1 − αk − βk − γk → 0, 0 < lim infk→∞ 1 − βk −

γk
2 ≤ lim supk→∞ 1 − βk −

γk
2 < 1, δkek → 0, and

1 − ck
ck+1

→ 0. Then the following hold.

(i) (Jck A xk)k∈N is bounded.

(ii) xk − Jck A(xk) → 0.

(iii) If infk∈N ck > 0 or ck → ∞, then ∅ 6= Ω ⊆ zer A.

Proof. (i): According to our assumption, it is easy to see that

1

2
lim inf

k→∞
|γk| = lim inf

k→∞

∣

∣

∣
1 − βk −

γk

2
− (1 − αk − βk − γk)− αk

∣

∣

∣

≥ lim inf
k→∞

∣

∣

∣
1 − βk −

γk

2

∣

∣

∣
− lim sup

k→∞

|1 − αk − βk − γk| − lim sup
k→∞

|αk|

= lim inf
k→∞

∣

∣

∣
1 − βk −

γk

2

∣

∣

∣
> 0.

This combined with our assumptions and Proposition 3.5(i) entails the boundedness of (Jck A xk)k∈N.
(ii): Denote by (∀k ∈ N) ηk := 1 − βk −

γk
2 . Inasmuch as 0 < lim infi→∞ ηi ≤ lim supi→∞ ηi < 1 and

lim supk→∞ |βk| < 1, without loss of generality, we assume that

(∀k ∈ N) ηk ∈ ]0, 1] and |βk| < 1,

which, in connection with (∀k ∈ N) βk + γk ≤ 1, implies that

(∀k ∈ N) 1 +
γk

2
=
(

1 − βk −
γk

2

)

+ βk + γk ≤ 2 and
γk

2
+ 1 ≥ 1 − βk ≥ 1 − |βk| > 0.

Hence, (∀k ∈ N) γk ∈ ]−2, 2] and (γi)i∈N is bounded.
Set (∀k ∈ N) Tk := 2 Jck A − Id. Bearing Lemma 3.1 in mind, we observe that

(∀k ∈ N) xk+1 = (1 − ηk)xk + ηkyk, (3.9)

where (∀k ∈ N) yk := 1
ηk

( γk
2 Tk(xk) + αku + δkek

)

. Note that for every k ∈ N,

‖yk+1 − yk‖ ≤

∥

∥

∥

∥

γk+1

2ηk+1
Tk+1(xk+1)−

γk

2ηk
Tk(xk)

∥

∥

∥

∥

+

∣

∣

∣

∣

αk+1

ηk+1
−

αk

ηk

∣

∣

∣

∣

‖u‖+

∥

∥

∥

∥

δk+1

ηk+1
ek+1 −

δk

ηk
ek

∥

∥

∥

∥

. (3.10)

17



Moreover, apply Fact 2.11(ii) and recall that (∀k ∈ N) Tk is nonexpansive in the following second
inequality to see that for every k ∈ N,

∥

∥

∥

∥

γk+1

2ηk+1
Tk+1(xk+1)−

γk

2ηk
Tk(xk)

∥

∥

∥

∥

(3.11a)

≤
|γk+1|

2ηk+1
‖Tk+1(xk+1)− Tk(xk+1)‖+

|γk+1|

2ηk+1
‖Tk(xk+1)− Tk(xk)‖+

∣

∣

∣

∣

γk+1

2ηk+1
−

γk

2ηk

∣

∣

∣

∣

‖Tk(xk)‖ (3.11b)

≤
|γk+1|

2ηk+1

∣

∣

∣

∣

1 −
ck

ck+1

∣

∣

∣

∣

‖Tk+1(xk+1)− xk+1‖+
|γk+1|

2ηk+1
‖xk+1 − xk‖+

∣

∣

∣

∣

γk+1

2ηk+1
−

γk

2ηk

∣

∣

∣

∣

‖Tk(xk)‖ . (3.11c)

Because (∀k ∈ N) |βk| < 1 and βk + γk ≤ 1, for every k ∈ N, if γk+1 ≤ 0, then |γk+1|+ γk+1 + 2βk+1 =
2βk+1 ≤ 2; otherwise, |γk+1|+ γk+1 + 2βk+1 = 2(γk+1 + βk+1) ≤ 2. This together with the equivalence

(∀k ∈ N) |γk+1|
2ηk+1

= |γk+1|
2−2βk+1−γk+1

≤ 1 ⇔ |γk+1| + γk+1 + 2βk+1 ≤ 2 implies that (∀k ∈ N) |γk+1|
2ηk+1

≤ 1.

Then combine (3.10) and (3.11) to obtain that

(∀k ∈ N) ‖yk+1 − yk‖ ≤ ‖xk+1 − xk‖+ Λ(k), (3.12)

where (∀k ∈ N) Λ(k) := |γk+1|
2ηk+1

∣

∣

∣
1 − ck

ck+1

∣

∣

∣ ‖Tk+1(xk+1)− xk+1‖+
∣

∣

∣

γk+1

2ηk+1
− γk

2ηk

∣

∣

∣ ‖Tk(xk)‖+
∣

∣

∣

αk+1

ηk+1
− αk

ηk

∣

∣

∣ ‖u‖+
∥

∥

∥

δk+1

ηk+1
ek+1 −

δk
ηk

ek

∥

∥

∥
.

Note that the boundedness of (xk)k∈N and (Jck A xk)k∈N implies that (‖Tk+1(xk+1)− xk+1‖)k∈N
and

(‖Tk(xk)‖)k∈N are bounded. Combine this with 0 < lim infk→∞ ηk and the boundedness of (γk)k∈N to
deduce the boundedness of (yk)k∈N.

In addition, by some easy algebra, it is not difficult to verify that

∣

∣

∣

∣

γk+1

2ηk+1
−

γk

2ηk

∣

∣

∣

∣

=
1

2ηk+1ηk
|γk+1(1 − βk)− γk(1 − βk+1)| ;

γk+1(1 − βk)− γk(1 − βk+1) = γk+1 (1 − αk − βk − γk)− γk (1 − αk+1 − βk+1 − γk+1) + γk+1αk − γkαk+1;
∣

∣

∣

∣

αk+1

ηk+1
−

αk

ηk

∣

∣

∣

∣

≤
|αk+1|+ |αk|

ηk+1ηk
;

∥

∥

∥

∥

δk+1

ηk+1
ek+1 −

δk

ηk
ek

∥

∥

∥

∥

≤
‖δk+1ek+1‖+ ‖δkek‖

ηk+1ηk
,

which, connecting with the assumption, yields limk→∞ Λ(k) = 0. This and (3.12) necessitate

lim sup
k→∞

‖yk+1 − yk‖ − ‖xk+1 − xk‖ ≤ 0.

Employing (3.9) and applying Fact 2.4 with (∀k ∈ N) uk = xk, αk = ηk, and vk = yk, we know that the
inequality above leads to

yk − xk → 0 and ‖xk+1 − xk‖
(3.9)
= ηk ‖yk − xk‖ → 0. (3.13)

Notice that the assumptions lim supk→∞ |βk| < 1 and (∀k ∈ N) |βk| < 1 ensure the boundedness of
(

1
1−|βk|

)

k∈N

. Furthermore, for every k ∈ N,

∥

∥xk − Jck A xk

∥

∥ ≤ ‖xk − xk+1‖+
∥

∥xk+1 − Jck A xk

∥

∥

(3.1)
= ‖xk − xk+1‖+

∥

∥αku + βkxk + γk Jck A(xk) + δkek − Jck A xk

∥

∥

≤ ‖xk − xk+1‖+ |αk|
∥

∥u − Jck A xk

∥

∥+ |βk|
∥

∥xk − Jck A xk

∥

∥+ ‖δkek‖+ |ϕk|
∥

∥Jck A xk

∥

∥ .
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The inequalities above ensure that

(∀k ∈ N)
∥

∥xk − Jck A xk

∥

∥ ≤
1

1 − |βk|

(

‖xk − xk+1‖+ |αk|
∥

∥u − Jck A xk

∥

∥+ ‖δkek‖+ |ϕk|
∥

∥Jck A xk

∥

∥

)

,

which, employing (3.13) and the assumption, guarantees that xk − Jck A xk → 0.
(iii): This is clear from (ii) and Proposition 2.16. �

The following Proposition 3.8 is inspired by [8, Lemma 3.2]. Moreover, if (∀k ∈ N) αk ≡ 0, δk ≡ 1,
γk ∈ ]0, 2[, and βk = 1 − γk, then Proposition 3.8(i)&(ii)&(iii) reduce to [8, Lemma 3.2].

Proposition 3.8. Suppose that zer A 6= ∅, that (∀k ∈ N)
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1 and γk(βk + γk) ≥ 0, and
that ∑i∈N |αi| < ∞, ∑i∈N |1 − βi − γi| < ∞, and ∑i∈N ‖δiei‖ < ∞. Then the following statements hold.

(i) ∑
∞
k=0 γk(2βk + γk)

∥

∥xk − Jck A xk

∥

∥

2
< ∞.

(ii) If ∑k∈N γk(2βk + γk) = ∞ and infk∈N γk(2βk + γk) ≥ 0, then lim infk→∞

∥

∥xk − Jck A(xk)
∥

∥ = 0.

(iii) Suppose that lim infk→∞ γk(2βk + γk) > 0. Then xk − Jck A(xk) → 0.

(iv) Suppose that lim infk→∞ γk(2βk + γk) > 0 and that infk∈N ck > 0 or ck → ∞. Then ∅ 6= Ω ⊆ zer A.

Proof. The assumption and Proposition 3.3(ii) imply the boundedness of (xk)k∈N.
(i): Let p ∈ zer A. Set (∀k ∈ N) M(k) := ‖αku + δkek − (1 − βk − γk)p‖. According to Lemma 3.2(iii),

for every k ∈ N, γk(2βk +γk)
∥

∥xk − Jck A xk

∥

∥

2
≤ (βk +γk)

2 ‖xk − p‖2 −‖xk+1 − p‖2 + 2M(k) ‖xk+1 − p‖ ≤

‖xk − p‖2 − ‖xk+1 − p‖2 + 2M(k) ‖xk+1 − p‖, which, combining with the assumption, derives

k

∑
i=0

γi(2βi + γi)
∥

∥xi − Jci A xi

∥

∥

2
≤ ‖x0 − p‖2 + 2

k

∑
i=0

M(i) ‖xi+1 − p‖ ≤ ‖x0 − p‖2 + 2L1L2 < ∞,

where L1 := supk∈N
‖xk − p‖ < ∞ and L2 := ∑k∈N M(k) < ∞. This verifies (i).

(ii): According to the assumption and (i),

∞ >

∞

∑
k=0

γk(2βk + γk)
∥

∥xk − Jck A xk

∥

∥

2
≥ lim inf

k→∞

∥

∥xk − Jck A(xk)
∥

∥ ∑
k∈N

γk(2βk + γk),

which, noticing ∑k∈N γk(2βk + γk) = ∞, forces lim infk→∞

∥

∥xk − Jck A(xk)
∥

∥ = 0.
(iii): As a consequence of η := lim infk→∞ γk(2βk + γk) > 0, there exists N ∈ N such that (∀k ≥ N)

γk(2βk + γk) ≥
η
2 > 0. Hence, for every k ≥ N

k

∑
i=0

γi(2βi + γi)
∥

∥xi − Jci A
xi

∥

∥

2
≥

N−1

∑
i=0

γi(2βi + γi)
∥

∥xi − Jci A
xi

∥

∥

2
+

η

2

k

∑
i=N

∥

∥xi − Jci A
xi

∥

∥

2
.

Combine this with (i) to obtain that ∑
∞
i=N

∥

∥xi − Jci A
xi

∥

∥

2
< ∞, which yields xk − Jck A(xk) → 0.

(iv): This is immediate from (iii) and Proposition 2.16. �

The following proof is motivated by [8, Theorem 3.6].

Proposition 3.9. Suppose that zer A 6= ∅, that (∀k ∈ N)
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1, γk(βk + γk) ≥ 0, γk(2βk +
γk) ≥ 0, and |βk + γk| |γk| ≤ max{1 − |βk| , 2 − 2

∣

∣βk +
γk
2

∣

∣}, that ∑k∈N |αk| < ∞, ∑k∈N |1 − βk − γk| <
∞, ∑k∈N γk(2βk +γk) = ∞, and ∑k∈N ‖δkek‖ < ∞, and that c̄ := infk∈N ck > 0 and ∑k∈N |ck+1 − ck| < ∞.
Then xk − Jck A(xk) → 0 and ∅ 6= Ω ⊆ zer A.
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Proof. Note that, via Proposition 3.3(ii) and Proposition 3.8(ii), our assumptions force that (xk)k∈N is
bounded and that

lim inf
k→∞

∥

∥xk − Jck A xk

∥

∥ = 0. (3.14)

Combining this with Proposition 2.16(i) and the assumption c̄ := infk∈N ck > 0, we know that it
suffices to show that limk→∞

∥

∥xk − Jck A xk

∥

∥ = 0.
Set (∀k ∈ N) Tk := 2 Jck A − Id. Denote by (∀k ∈ N) sk :=

∥

∥xk − Jck A xk

∥

∥. Then

(∀k ∈ N) ‖xk − Tkxk‖ = 2
∥

∥xk − Jck A(xk)
∥

∥ = 2sk. (3.15)

Due to Proposition 3.5(i), (Jck A xk)k∈N and (Tkxk)k∈N are bounded. Hence, ŝ := supk∈N
sk < ∞. In

view of Lemma 3.1, (∀k ∈ N) Tk is nonexpansive and xk+1 =
(

βk +
γk
2

)

xk +
γk
2 Tk(xk) + αku + δkek,

which ensures that for every k ∈ N,

‖xk+1 − Tk+1xk+1‖

=
∥

∥

∥

(

βk +
γk

2

)

(xk − Tkxk) + (βk + γk)(Tk(xk)− Tk+1xk+1) + αku + δkek − (1 − βk − γk)Tk+1xk+1

∥

∥

∥

≤
∣

∣

∣
βk +

γk

2

∣

∣

∣
‖xk − Tkxk‖+ |βk + γk| ‖Tk(xk)− Tk+1xk+1‖+ ‖αku + δkek − (1 − βk − γk)Tk+1xk+1‖ .

Set (∀k ∈ N) F1(k) := ‖αku + δkek − (1 − βk − γk)Tk+1xk+1‖. Then we establish that for every k ∈ N,

‖xk+1 − Tk+1xk+1‖ ≤
∣

∣

∣
βk +

γk

2

∣

∣

∣ ‖xk − Tkxk‖+ |βk + γk| ‖Tk(xk)− Tk+1xk+1‖+ F1(k). (3.16)

Similarly, via (3.1), we get that for every k ∈ N,

∥

∥

∥
xk+1 − Jck+1A xk+1

∥

∥

∥
≤ |βk|

∥

∥xk − Jck A xk

∥

∥+ |βk + γk|
∥

∥

∥
Jck A xk − Jck+1A xk+1

∥

∥

∥
+ F2(k), (3.17)

where (∀k ∈ N) F2(k) :=
∥

∥

∥
αku + δkek − (1 − βk − γk) Jck+1A xk+1

∥

∥

∥
.

Furthermore, using (3.1) again, we observe that for every k ∈ N,

‖xk+1 − xk‖ =
∥

∥αku + βkxk + γk Jck A(xk) + δkek − xk

∥

∥ ≤ |γk|
∥

∥xk − Jck A xk

∥

∥+ G1(k), (3.18a)
∥

∥xk+1 − Jck A xk

∥

∥ =
∥

∥αku + βkxk + γk Jck A(xk) + δkek − Jck A xk

∥

∥ ≤ |βk|
∥

∥xk − Jck A xk

∥

∥+ G2(k), (3.18b)

where G1(k) := ‖αku + δkek − (1 − βk − γk)xk‖ and G2(k) :=
∥

∥αku + δkek − (1 − βk − γk) Jck A xk

∥

∥.
Let k ∈ N. We have exactly the following two cases.
Case 1: ck ≤ ck+1. Then invoking Fact 2.11(i) in the following equality, using the nonexpansiveness

of Tk in the first inequality, and employing
∥

∥

∥
xk − Jck+1A xk+1

∥

∥

∥
≤ ‖xk − xk+1‖+

∥

∥

∥
xk+1 − Jck+1A xk+1

∥

∥

∥
in

the second inequality below, we get that

‖Tk(xk)− Tk+1(xk+1)‖

=

∥

∥

∥

∥

Tk(xk)− Tk

(

ck

ck+1
xk+1 +

(

1 −
ck

ck+1

)

Jck+1A xk+1

)
∥

∥

∥

∥

+

(

1 −
ck

ck+1

)

∥

∥

∥
xk+1 − Jck+1A xk+1

∥

∥

∥

≤
ck

ck+1
‖xk − xk+1‖+

(

1 −
ck

ck+1

)

∥

∥

∥
xk − Jck+1A xk+1

∥

∥

∥
+

(

1 −
ck

ck+1

)

∥

∥

∥
xk+1 − Jck+1A xk+1

∥

∥

∥

≤ ‖xk − xk+1‖+ 2

(

1 −
ck

ck+1

)

∥

∥

∥
xk+1 − Jck+1A xk+1

∥

∥

∥

(3.18a)
≤ |γk|

∥

∥xk − Jck A xk

∥

∥+ G1(k) + 2

(

1 −
ck

ck+1

)

∥

∥

∥
xk+1 − Jck+1A xk+1

∥

∥

∥
.
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Applying this result, (3.15), and (3.16) in the first inequality below and employing |βk + γk| ≤
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1 and 2
∣

∣βk +
γk
2

∣

∣+ |βk + γk| |γk| ≤ 2
(
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣

)

≤ 2 in the second inequality below, we
get that

2sk+1
(3.15)
= ‖xk+1 − Tk+1xk+1‖

≤ 2
∣

∣

∣
βk +

γk

2

∣

∣

∣
sk + |βk + γk|

(

|γk| sk + G1(k) + 2

(

1 −
ck

ck+1

)

sk+1

)

+ F1(k)

≤ 2sk + 2

(

1 −
ck

ck+1

)

sk+1 + F1(k) + G1(k),

which implies that

sk+1

ck+1
≤

sk

ck
+

F1(k) + G1(k)

2c̄
. (3.19)

Case 2: ck+1 < ck. We claim that

sk+1 ≤ sk +

(

1 −
ck+1

ck

)

sk + F1(k) + F2(k) + G1(k) + G2(k). (3.20)

Case 2.1: Assume that |βk + γk| |γk| ≤ 1 − |βk|, i.e., |βk|+ |βk + γk| |γk| ≤ 1. Applying Fact 2.10 in
the first equality, utilizing the nonexpansiveness of Jck A in the first inequality, and employing (3.18a)
and (3.18b) in the second inequality, we deduce that

∥

∥

∥
Jck A xk − Jck+1A xk+1

∥

∥

∥

=

∥

∥

∥

∥

Jck+1A

(

ck+1

ck
xk +

(

1 −
ck+1

ck

)

Jck A xk

)

− Jck+1A xk+1

∥

∥

∥

∥

≤
ck+1

ck
‖xk − xk+1‖+

(

1 −
ck+1

ck

)

∥

∥Jck A xk − xk+1

∥

∥

≤ |γk|
ck+1

ck

∥

∥xk − Jck A xk

∥

∥+ |βk|

(

1 −
ck+1

ck

)

∥

∥xk − Jck A xk

∥

∥+
ck+1

ck
G1(k) +

(

1 −
ck+1

ck

)

G2(k).

Combine this with (3.17) and some easy algebra to get that

sk+1 ≤ |βk| sk + |βk + γk|

((

|γk|
ck+1

ck
+ |βk|

(

1 −
ck+1

ck

))

sk +
ck+1

ck
G1(k) +

(

1 −
ck+1

ck

)

G2(k)

)

+ F2(k)

≤ (|βk|+ |βk + γk| |γk|) sk + |βk + γk|

(

1 −
ck+1

ck

)

(|βk| − |γk|) sk + G1(k) + G2(k) + F2(k)

≤ sk +

(

1 −
ck+1

ck

)

sk + G1(k) + G2(k) + F2(k),

which, using |βk| − |γk| ≤ |βk + γk| ≤
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1 and the assumption |βk|+ |βk + γk| |γk| ≤
1 in the last inequality, verifies (3.20).

Case 2.2: Assume that (∀k ∈ N) |βk + γk| |γk| ≤ 2 − 2
∣

∣βk +
γk
2

∣

∣, i.e., 2
∣

∣βk +
γk
2

∣

∣+ |βk + γk| |γk| ≤ 2.
Similarly with the proof of Case 1 above, we have that

‖Tk(xk)− Tk+1(xk+1)‖ ≤ |γk|
∥

∥xk − Jck A xk

∥

∥+ G1(k) + 2

(

1 −
ck+1

ck

)

∥

∥xk − Jck A xk

∥

∥ . (3.21)
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Invoking (3.16), (3.15), and (3.21) in the first inequality and using the assumptions |βk + γk| ≤
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1 and 2
∣

∣βk +
γk
2

∣

∣+ |βk + γk| |γk| ≤ 2 in the last inequality below, we observe that

2sk+1
(3.15)
= ‖xk+1 − Tk+1xk+1‖

≤ ‘2
∣

∣

∣
βk +

γk

2

∣

∣

∣
sk + |βk + γk|

((

|γk|+ 2

(

1 −
ck+1

ck

))

sk + G1(k)

)

+ F1(k)

≤
(

2
∣

∣

∣
βk +

γk

2

∣

∣

∣
+ |βk + γk| |γk|

)

sk + 2 |βk + γk|

(

1 −
ck+1

ck

)

sk + F1(k) + G1(k)

≤ 2sk + 2

(

1 −
ck+1

ck

)

sk + F1(k) + G1(k),

which confirming (3.20) as well.
Therefore, in both subcases, the claim is true and we have that

sk+1

ck+1
≤

sk

ck+1
+

ck − ck+1

ckck+1
sk +

F1(k) + F2(k) + G1(k) + G2(k)

2c̄
(3.22a)

=
sk

ck
+ sk

(

1

ck+1
−

1

ck
+

ck − ck+1

ckck+1

)

+
F1(k) + F2(k) + G1(k) + G2(k)

2c̄
(3.22b)

=
sk

ck
+

ck − ck+1 + ck − ck+1

ckck+1
sk +

F1(k) + F2(k) + G1(k) + G2(k)

2c̄
(3.22c)

≤
sk

ck
+ 2

ck − ck+1

c̄2
ŝ +

F1(k) + F2(k) + G1(k) + G2(k)

2c̄
. (3.22d)

Furthermore, by assumptions, ∑k∈N |ck+1 − ck| < ∞, ∑k∈N F1(k) < ∞, ∑k∈N F2(k) < ∞, ∑k∈N G1(k) <
∞, and ∑k∈N G2(k) < ∞. Hence, applying Fact 2.5, (3.19), and (3.22), we obtain that in both cases,
limk→∞

sk
ck

exists in R+. Clearly, (3.14) and (3.15) necessitate lim infk→∞ sk = 0. These results imply

that limk→∞
sk
ck

= lim infk→∞
sk
ck

≤ lim infk→∞
sk
c̄ = 0 and that lim supk→∞ sk = lim supk→∞

sk
ck

ck ≤

limk→∞
sk
ck

supk∈N
ck = 0 since

∑
i∈N

|ci+1 − ci| < ∞ ⇒ sup
k∈N

ck < ∞.

Recall that, via (3.14) and (3.15), lim infk→∞ sk = lim infk→∞

∥

∥xk − Jck A xk

∥

∥ = 0.
Altogether, limk→∞

∥

∥xk − Jck A xk

∥

∥ = limk→∞ sk = 0. �

The following result is inspired by the proof of [8, Theorem 4.1].

Proposition 3.10. Suppose that zer A 6= ∅ and (xk)k∈N is bounded, that ∑i∈N |αi+1 − αi| < ∞ or (∀k ∈ N)

|γk| 6= 1 with limk→∞
|αk+1−αk|
1−|γk+1|

= 0, that (∀k ∈ N) |γk| ∈ [0, 1] with αi + γi → 1, ∑i∈N(1 − |γi|) = ∞,

and ∑i∈N |(αi+1 + γi+1)− (αi + γi)| < ∞, that αk → 0, ∑k∈N |βk| < ∞, and ∑k∈N ‖δkek‖ < ∞, and that
c̄ := infk∈N ck > 0 and ∑k∈N |ck+1 − ck| < ∞. Then xk − Jck A(xk) → 0 and ∅ 6= Ω ⊆ zer A.

Proof. Because c̄ = infk∈N ck > 0, via Proposition 2.16(i), it suffices to prove xk − Jck A(xk) → 0.
Because (xk)k∈N is bounded and zer A 6= ∅, due to Proposition 3.5(i), (Jck A xk)k∈N is bounded.

Notice that for every k ∈ N,
∥

∥xk − Jck A xk

∥

∥ ≤ ‖xk − xk+1‖+
∥

∥xk+1 − Jck A xk

∥

∥ and that

∥

∥xk+1 − Jck A xk

∥

∥

(3.1)
≤

∥

∥αk(u − Jck A xk)
∥

∥+ |αk + γk − 1|
∥

∥Jck A xk

∥

∥+ ‖βkxk‖+ ‖δkek‖ → 0.

Hence, it remains to show that xk − xk+1 → 0.
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Clearly, ∑k∈N |ck+1 − ck| < ∞ leads to ĉ := supk∈N
ck < ∞. In view of Fact 2.10, for every k ∈ N,

∥

∥

∥
Jck+1A xk+1 − Jck A xk

∥

∥

∥
=

∥

∥

∥

∥

Jck A

(

ck

ck+1
xk+1 +

(

1 −
ck

ck+1

)

Jck+1A xk+1

)

− Jck A xk

∥

∥

∥

∥

(3.23a)

≤
ck

ck+1
‖xk+1 − xk‖+

∣

∣

∣

∣

1 −
ck

ck+1

∣

∣

∣

∣

∥

∥

∥
Jck+1A xk+1 − xk

∥

∥

∥
. (3.23b)

Set (∀k ∈ Nr {0}) M(k) := |γk| |ck − ck−1|
∥

∥Jck A xk − xk−1

∥

∥+ ĉ |αk + γk − αk−1 − γk−1|
∥

∥

∥
Jck−1A xk−1

∥

∥

∥
+

ĉ ‖βkxk − βk−1xk−1 + δkek − δk−1ek−1‖. Based on the assumption, it is clear that ∑
∞
k=1 M(k) < ∞. Due

to (3.1), (∀k ∈ N r {0}), ‖xk+1 − xk‖ ≤ |αk − αk−1|
∥

∥

∥
u − Jck−1A xk−1

∥

∥

∥
+ |γk|

∥

∥

∥
Jck A xk − Jck−1A xk−1

∥

∥

∥
+

|αk + γk − αk−1 − γk−1|
∥

∥

∥
Jck−1A xk−1

∥

∥

∥
+ ‖βkxk − βk−1xk−1 + δkek − δk−1ek−1‖, which, via (3.23), implies

ck ‖xk+1 − xk‖ ≤ |γk| ck−1 ‖xk − xk−1‖+ ĉ |αk − αk−1|
∥

∥

∥
u − Jck−1A xk−1

∥

∥

∥
+ M(k). (3.24)

If ∑i∈N |αi+1 − αi| < ∞ (resp. (∀k ∈ N) |γk| 6= 1 with limk→∞
|αk+1−αk|
1−|γk+1|

= 0) is satisfied, then, by (3.24),

applying Proposition 2.3(iii) with (∀k ∈ N r {0}) tk = ck−1 ‖xk − xk−1‖, αk = |γi|, βk = ωk ≡ 0,

and γk = ĉ |αk − αk−1|
∥

∥

∥
u − Jck−1A xk−1

∥

∥

∥
+ M(k) (resp. βk = 1 − |γk|, ωk = ĉ|αk−αk−1|

1−|γk|

∥

∥

∥
u − Jck−1A xk−1

∥

∥

∥
,

and γk = M(k)), we obtain that limk→∞ ck ‖xk+1 − xk‖ = 0, which, in connection with infk∈N ck > 0,
guarantees that xk+1 − xk → 0. Therefore, the proof is complete. �

Equivalence of boundedness and non-emptiness of sets of zeroes

Theorem 3.11(i) reduces to the equivalence proved in [9, Theorem 1] when (∀k ∈ N) γk = δk ≡ 1 and
αk = βk ≡ 0 and infk∈N ck > 0.

Theorem 3.11. Suppose that (∀k ∈ N)
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1, that ∑k∈N |αk| < ∞, ∑k∈N |1 − βk − γk| <
∞, and ∑k∈N ‖δkek‖ < ∞, and that one of the following statements holds.

(i) Suppose that γk → 1 and that infk∈N ck > 0 or ck → ∞.

(ii) Suppose that (∀k ∈ N) γk(βk + γk) ≥ 0, that lim infk→∞ γk(2βk + γk) > 0, and that infk∈N ck > 0
or ck → ∞. Assume that lim infk→∞ |γk| > 0 and supk∈N

|βk| < ∞.

(iii) Suppose that (∀k ∈ N) γk(βk + γk) ≥ 0, γk(2βk + γk) ≥ 0, and |βk + γk| |γk| ≤ max{1 − |βk| , 2 −
2
∣

∣βk +
γk
2

∣

∣}, that ∑k∈N γk(2βk + γk) = ∞, and that infk∈N ck > 0 and ∑k∈N |ck+1 − ck| < ∞.
Assume that lim infk→∞ |γk| > 0 and supk∈N

|βk| < ∞.

Then zer A 6= ∅ if and only if (xk)k∈N is bounded.

Proof. If zer A 6= ∅, then combine Proposition 3.3(ii) with the global assumptions to deduce the
boundedness of (xk)k∈N.

Suppose that (xk)k∈N is bounded. Due to Proposition 3.6, (i) necessitates zer A 6= ∅.
Suppose that (ii) or (iii) holds. Then, via Proposition 3.5(i), (Jck A xk)k∈N is bounded. Moreover,

apply Proposition 2.15 to ensure that there exists r ∈ R++ such that Ã := A + ∂ιB[0;r] is a maximally
monotone operator and that

zer Ã 6= ∅,
(

Ω ∩ zer Ã
)

⊆ zer A, and (∀k ∈ N) Jck A xk = Jck Ã xk. (3.25)

If (ii) (resp. (iii)) holds, then apply Proposition 3.8(iv) (resp. Proposition 3.9) with A replaced by Ã to
obtain that ∅ 6= Ω ⊆ zer Ã, which, in connection with (3.25), establishes that ∅ 6= Ω = (Ω ∩ zer Ã) ⊆
zer A. �
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Theorem 3.12. Assume that one of the following is satisfied.

(I) lim supk→∞

(
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣

)

< 1, supk∈N
|αk| < ∞, and supk∈N

‖δkek‖ < ∞.

(II) (∀k ∈ N)
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1, and the following hold:

(a) (∀k ∈ N) |αk|+
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1 or ∑i∈N |αi| < ∞;

(b)
[

(∀k ∈ N
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣+ |δk| ≤ 1 and supi∈N
‖ei‖ < ∞

]

or ∑i∈N ‖δiei‖ < ∞;

(c) (∀k ∈ N)
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣+ |1 − βk − γk| ≤ 1 or ∑i∈N |1 − βi − γi| < ∞.

(III) (∀k ∈ N) |αk|+
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1, ∑k∈N |1 − αk − βk − γk| < ∞, and ∑k∈N ‖δkek‖ < ∞.

(IV) supk∈N
‖ek‖ < ∞, ∑k∈N |αk| < ∞, ∑k∈N |1 − βk − γk − δk| < ∞, and (∀k ∈ N)

∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣+
|δk| ≤ 1.

(V) (∀k ∈ N) αk ∈ ]0, 1] and αk +
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1, δkek
αk

→ 0, and
1−αk−βk−γk

αk
→ 0.

Then the following statements hold.

(i) zer A 6= ∅ implies the boundedness of (xk)k∈N.

(ii) Suppose additionally that one of the following holds.

(a) ck → ∞, αk → 0, βk → 0, γk → 1, and δkek → 0.

(b) Suppose that (∀k ∈ N) βk + γk ≤ 1, αk → 0, lim supk→∞ |βk| < 1, 1 − αk − βk − γk → 0,
0 < lim infk→∞ 1 − βk −

γk
2 ≤ lim supk→∞ 1 − βk −

γk
2 < 1, δkek → 0, and 1 − ck

ck+1
→ 0, and

that infk∈N ck > 0 or ck → ∞.

(c) Suppose that ∑i∈N |αi+1 − αi| < ∞ or (∀k ∈ N) |γk| 6= 1 with limk→∞
|αk+1−αk|
1−|γk+1|

= 0, that (∀k ∈

N) |γk| ∈ [0, 1], that αk → 0 and αk + γk → 1, that ∑k∈N |(αk+1 + γk+1)− (αk + γk)| < ∞,

∑k∈N |βk| < ∞, ∑k∈N(1 − |γk|) = ∞, and ∑k∈N ‖δkek‖ < ∞, and that infk∈N ck > 0 and

∑k∈N |ck+1 − ck| < ∞.

Then zer A 6= ∅ if and only if (xk)k∈N is bounded.

Proof. (i): This is clear from Proposition 3.3 and Proposition 3.4.
(ii): In view of (i), it remains to prove that the boundedness of (xk)k∈N leads to zer A 6= ∅.
In the rest of the proof we assume that (xk)k∈N is bounded. Then via [1, Lemma 2.45], Ω 6= ∅.

If (ii)(a) (resp. (ii)(b)) is satisfied, then ∅ 6= Ω ⊆ zer A follows immediately from Proposition 3.5(iii)
(resp. Proposition 3.7(iii)).

Suppose that (ii)(c) is satisfied. Due to Proposition 3.5(i), (Jck A xk)k∈N is bounded. Then apply

Proposition 2.15 to ensure that there exists r ∈ R++ such that Ã := A + ∂ιB[0;r] is a maximally mono-
tone operator and that

zer Ã 6= ∅,
(

Ω ∩ zer Ã
)

⊆ zer A, and (∀k ∈ N) Jck A xk = Jck Ã xk. (3.26)

Furthermore, apply Proposition 3.10 with A replaced by Ã to obtain that ∅ 6= Ω ⊆ zer Ã, which,
connecting with (3.26), establishes that ∅ 6= Ω = (Ω ∩ zer Ã) ⊆ zer A. �
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4 Convergence of generalized proximal point algorithms

Because convergence implies boundedness, based on the equivalence of the boundedness of (xk)k∈N

and zer A 6= ∅ shown in Theorems 3.11 and 3.12, to study the convergence of (xk)k∈N, we always
assume zer A 6= ∅.

We first uphold our general assumptions and notations that

A : H → 2H is a maximally monotone operator with zer A 6= ∅,

that u ∈ H and x0 ∈ H are arbitrary but fixed, and that

(∀k ∈ N) xk+1 = αku + βkxk + γk Jck A(xk) + δkek, (4.1)

where (∀k ∈ N) ek ∈ H, ck ∈ R++, and {αk, βk, γk, δk} ⊆ R. Recall that

Ω is the set of all weak sequential cluster points of (xk)k∈N.

Weak convergence

Theorem 4.1. Suppose that (∀k ∈ N)
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1, that ∑k∈N |αk| < ∞, ∑k∈N |1 − βk − γk| < ∞,
and ∑k∈N ‖δkek‖ < ∞, and that one of the following statements holds.

(i) Assume that γk → 1 and that infk∈N ck > 0 or ck → ∞.

(ii) Assume that lim supk→∞ |βk| < 1 and 0 < lim infk→∞ 1 − βk −
γk
2 ≤ lim supk→∞ 1 − βk −

γk
2 < 1,

that 1 − ck
ck+1

→ 0, and that infk∈N ck > 0 or ck → ∞.

(iii) Assume that infk∈N γk(βk + γk) ≥ 0 and lim infk→∞ γk(2βk + γk) > 0, and that infk∈N ck > 0 or
ck → ∞.

(iv) Assume that infk∈N γk(βk + γk) ≥ 0 and infk∈N γk(2βk + γk) ≥ 0, that ∑k∈N γk(2βk + γk) =
∞, that (∀k ∈ N) |βk + γk| |γk| ≤ max{1 − |βk| , 2 − 2

∣

∣βk +
γk
2

∣

∣}, and that infk∈N ck > 0 and

∑k∈N |ck+1 − ck| < ∞.

Then (xk)k∈N converges weakly to a point in zer A.

Proof. According to Lemma 3.2(i),

(∀p ∈ zer A)(∀k ∈ N) ‖xk+1 − p‖ ≤
(
∣

∣

∣
βk +

γk

2

∣

∣

∣
+
∣

∣

∣

γk

2

∣

∣

∣

)

‖xk − p‖+ ‖αku + δkek − (1 − βk − γk)p‖ ,

which, combining with the global assumptions and Fact 2.5, ensures that (∀p ∈ zer A) limk→∞ ‖xk − p‖
exists in R+ and that (xk)k∈N is bounded.

Therefore, via Fact 2.18, it suffices to prove Ω ⊆ zer A under the assumption (i), (ii), (iii), or (iv).
If (i) is true, the desired inclusion is immediate from Proposition 3.6.
Note that (∀k ∈ N) βk +γk ≤ |βk + γk| ≤

∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣; ∑k∈N |αk| < ∞ and ∑k∈N |1 − βk − γk| <
∞ imply that αk → 0, 1− βk −γk → 0, and 1− αk − βk −γk → 0. As a consequence of Proposition 3.7(iii),
(ii) implies Ω ⊆ zer A.

In addition, it is easy to see that the required inclusion is also immediate from (iii) and Proposition 3.8(iv)
(or from (iv) and Proposition 3.9). �

Remark 4.2. We compare Theorem 4.1 with related existed results on the weak convergence of gener-
alized proximal point algorithms below.
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(i) Suppose that (∀k ∈ N) αk = βk ≡ 0 and γk = δk ≡ 1, and that infk∈N ck > 0 and ∑k∈N ‖ek‖ < ∞.
Then Theorem 4.1(i) reduces to the weak convergence proved in [9, Theorem 1].

(ii) The relaxed proximal point algorithm presented in [13, Algorithm 5.2] is a special case of the
scheme (4.1) with (∀k ∈ N) αk ≡ 0, βk ∈ [0, 1[, and γk = δk = 1 − βk. Because in the Step 2
of the proof of [13, Theorem 5.2], the author requires “repeating the proof of the second part of
step 2 of Theorem 5.1” and in the Step 2 of [13, Theorem 5.1], βk → 0 is a critical assumption, we
assume βk → 0 is a necessary assumption of [13, Theorem 5.2]. Therefore, Theorem 4.1(i) is also
a generalized result of [13, Theorem 5.2] which requires that (∀k ∈ N) αk ≡ 0, βk ∈ [0, 1 − δ] for
some δ ∈ ]0, 1[, βk → 0, and γk = δk = 1 − βk, and that ck → ∞ and ∑k∈N ‖ek‖ < ∞.

(iii) Consider (4.1) with (∀k ∈ N) αk ≡ 0, βk ∈ [0, 1], γk = 1 − βk, and δk ≡ 1. In this case (∀k ∈ N)
ηk := 1 − βk −

γk
2 = γk

2 , so 0 < lim infi→∞ ηi ≤ lim supi→∞ ηi < 1 follows immediately from
0 < lim infi→∞ γi ≤ lim supi→∞ γi < 2. Moreover, it is easy to see that c̄ := infk∈N ck > 0 and

ck+1 − ck → 0 imply that 1 − ck
ck+1

→ 0, since
∣

∣

∣
1 − ck

ck+1

∣

∣

∣
=
∣

∣

∣

ck+1−ck

ck+1

∣

∣

∣
≤ |ck+1−ck|

c̄ . Hence, we know

that Theorem 4.1(ii) improves [15, Theorem 3.2].

(iv) Note that if (∀k ∈ N) γk ∈ R+ and βk = 1−γk such that 0 < γ̄ := infk∈N γk ≤ γ̂ := supk∈N
γk <

2, then infk∈N γk(βk + γk) = infk∈N γk ≥ 0 and lim infk→∞ γk(2βk + γk) = lim infk→∞ γk(2 −
γk) ≥ lim infk→∞ γk lim infk→∞ 2 − γk ≥ γ̄(2 − γ̂) > 0. Therefore, we see that Theorem 4.1(iii)
covers [4, Theorem 3] in which the assumptions (∀k ∈ N) αk ≡ 0, γk ∈ R+ with 0 < γ̄ =
infk∈N γk ≤ γ̂ = supk∈N

γk < 2, βk = 1 − γk, and δk ≡ γk, infk∈N ck > 0, and ∑k∈N ‖ek‖ < ∞ are
required.

(v) Note that the generalized proximal point algorithms studied in [8, Section 3] are (4.1) satisfying
that 0 < infk∈N ck ≤ supk∈N

ck < ∞ and that (∀k ∈ N) αk ≡ 0, γk ∈ ]0, 2[, βk = 1 − γk, and
δk ≡ 1. In this case, the conditions infk∈N γk(βk + γk) ≥ 0, infk∈N γk(2βk + γk) ≥ 0,

∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1, and |βk + γk| |γk| ≤ max{1 − |βk| , 2 − 2
∣

∣βk +
γk
2

∣

∣} hold trivially. Moreover, since
(∀k ∈ N) γk(2 − γk) = γk(2βk + γk), thus ∑k γk(2 − γk) = ∞ is exactly ∑i∈N γi(2βk + γk) = ∞.
Therefore, we know that Theorem 4.1(iv) covers [8, Theorems 3.5 and 3.6].

Strong convergence

Note that based on Fact 2.9(v), the maximal monotoneness of A and the assumption zer A 6= ∅ above
guarantee that the projection Pzer A u is well-defined. In this subsection, we shall specify sufficient
conditions on coefficients of (4.1) for xk → Pzer A u. Notice that when u = 0 (resp. u = x0) in (4.1), the
strong limit Pzer A u of (xk)k∈N is the minimum-norm solution in zer A (resp. the closest point to the
initial point x0 onto zer A).

Proposition 4.3. Suppose that (xk)k∈N is bounded and that Ω ⊆ zer A. Suppose that (∀k ∈ N)
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1 with ∑i∈N 1 −
(
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣

)2
= ∞, and that one of the following holds.

(i) (∀k ∈ N) βk + γk ≥ 0 and
(
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣

)2
− βk − γk ≤ 0, ∑k∈N |1 − αk − βk − γk| < ∞, and

∑k∈N ‖δkek‖ < ∞.

(ii) (∀k ∈ N)
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ < 1, supk∈N

1−βk−γk

1−(|βk+
γk
2 |+|

γk
2 |)

2 < ∞, ∑k∈N |1 − αk − βk − γk| < ∞, and

∑k∈N ‖δkek‖ < ∞.

(iii) (∀k ∈ N) αk ∈ [0, 1] and αk +
(∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣

)2
≤ 1, ∑k∈N |1 − αk − βk − γk| < ∞, ∑k∈N ‖δkek‖ <

∞.
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(iv) (∀k ∈ N)
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ < 1 and αk ≥ 0, supk∈N

αk

1−(|βk+
γk
2 |+|

γk
2 |)

2 < ∞, ∑k∈N |1 − αk − βk − γk| <

∞, and ∑k∈N ‖δkek‖ < ∞.

(v) (∀k ∈ N) αk ∈ ]0, 1] and αk +
(∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣

)2
≤ 1, δkek

αk
→ 0, and

1−αk−βk−γk

αk
→ 0.

(vi) (∀k ∈ N)
∣

∣βk +
γk
2

∣

∣ +
∣

∣

γk
2

∣

∣ < 1 and αk ∈ R++, supk∈N

αk

1−(|βk+
γk
2 |+|

γk
2 |)

2 < ∞, δkek
αk

→ 0, and

1−αk−βk−γk

αk
→ 0.

Then xk → Pzer A u.

Proof. Because Ω ⊆ zer A and (xk)k∈N is bounded, due to Proposition 2.19, we get that

lim sup
k→∞

〈u − Pzer A u, xk − Pzer A u〉 ≤ 0. (4.2)

Set p := Pzer A u and (∀k ∈ N) Tk := 2 Jck A − Id. Since zer A 6= ∅, due to Proposition 3.5(i), we know
that (Jck A xk)k∈N and (Tkxk)k∈N are bounded.

Denote by (∀k ∈ N) ξk :=
(∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣

)2
, φk := 1 − βk − γk, ϕk := 1 − αk − βk − γk, F(k) :=

‖δkek − ϕku‖, and G(k) := F(k) + 2
∥

∥

(

βk +
γk
2

)

(xk − p) + γk
2 (Tk(xk)− p) + φk (u − p)

∥

∥. Because p =
Pzer A u ∈ zer A, via Lemma 3.2(ii)&(iv), we have that for every k ∈ N,

‖xk+1 − p‖2 ≤ ξk ‖xk − p‖2 + 2φk 〈u − p, xk+1 − p − δkek + ϕku〉+ F(k)G(k); (4.3a)

‖xk+1 − p‖2 ≤ ξk ‖xk − p‖2 + 2αk 〈u − p, xk+1 − p〉+ 2 〈δkek − ϕkp, xk+1 − p〉 . (4.3b)

We separate the remaining proof into the following three cases.
Case 1: Assume (i) or (ii) is satisfied. Note that (∀k ∈ N) 0 ≤ 1 − βk − γk ≤ 1 ⇔ 0 ≤ βk + γk ≤ 1

and that (∀k ∈ N) βk + γk ≤
∣

∣βk +
γk
2

∣

∣ +
∣

∣

γk
2

∣

∣ ≤ 1. Exploiting ∑k∈N |1 − αk − βk − γk| < ∞ and

∑k∈N ‖δkek‖ < ∞, we know that ϕk → 0, δkek → 0, and 〈u − p, δkek − ϕku〉 → 0, that supk∈N
G(k) < ∞,

and that ∑k∈N F(k)G(k) < ∞. Moreover, combining ϕk → 0 and δkek → 0 with (4.2), we observe that

lim sup
k→∞

2 〈u − p, xk+1 − p − δkek + ϕku〉 ≤ 0. (4.4)

If (i) (resp. (ii)) holds, then using (4.3a) and applying Proposition 2.3(iii) (resp. Proposition 2.3(iv))

with (∀k ∈ N) tk = ‖xk − p‖2, αk = ξk, βk = φk, ωk = 2 〈u − p, xk+1 − p − δkek + ϕku〉, and γk =
F(k)G(k), we obtain the required convergence.

Case 2: Assume (iii) or (iv) is true. If (iii) (resp. (iv)) holds, employing (4.3b) and applying Proposition 2.3(iii)

(resp. Proposition 2.3(iv)) with (∀k ∈ N) tk = ‖xk − p‖2, αk = ξk, βk = αk, ωk = 2 〈u − p, xk+1 − p〉,
and γk = 2 〈δkek − ϕk p, xk+1 − p〉, we get the required convergence.

Case 3: Assume (v) or (vi) is true. In view of (4.3b), for every k ∈ N,

‖xk+1 − p‖2 ≤ ξk ‖xk − p‖2 + 2αk

(

〈u − p, xk+1 − p〉+

〈

δkek

αk
−

ϕk

αk
p, xk+1 − p

〉)

. (4.5)

Because (xk)k∈N is bounded, δkek
αk

→ 0 and
1−αk−βk−γk

αk
→ 0 yield

〈

δkek
αk

− 1−αk−βk−γk

αk
p, xk+1 − p

〉

→ 0.

This in connection with (4.2) leads to

lim sup
k→∞

2

(

〈u − p, xk+1 − p〉+

〈

δkek

αk
−

ϕk

αk
p, xk+1 − p

〉)

≤ 0.

If (v) (resp. (vi)) is true, then utilizing (4.5) and applying Proposition 2.3(iii) (resp. Proposition 2.3(iv))

with (∀k ∈ N) tk = ‖xk − p‖2, αk = ξk, βk = αk, ωk = 2
(

〈u − p, xk+1 − p〉+
〈

δkek
αk

− ϕk

αk
p, xk+1 − p

〉)

,

and γk ≡ 0, we get the desired convergence.
Altogether, the proof is complete. �
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Note that Propositions 3.3 and 3.4 provide sufficient conditions for the boundedness of (xk)k∈N, that
Propositions 3.5 to 3.10 specify conditions for Ω ⊆ zer A, and that Proposition 4.3 present conditions
for the strong convergence under the assumptions of the boundedness of (xk)k∈N and Ω ⊆ zer A.
Clearly, combining these results, we are able to deduce many sufficient conditions for the strong con-
vergence of the generalized proximal point algorithm generated by the scheme (4.1). For simplicity,
we present only some easy sufficient conditions for the strong convergence below.

Theorem 4.4. Suppose that ∑i∈N 1 −
(
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣

)2
= ∞ and that one of the following holds.

(i) Assume that (∀k ∈ N) |αk|+
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1, βk +γk ≥ 0, and
(
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣

)2
− βk −γk ≤

0, that ∑k∈N |1 − αk − βk − γk| < ∞ and ∑k∈N ‖δkek‖ < ∞, and that αk → 0, βk → 0, γk → 1, and
ck → ∞.

(ii) Assume that (∀k ∈ N) |αk|+
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1, βk +γk ≥ 0, and
(
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣

)2
− βk −γk ≤

0, that ∑k∈N |1 − αk − βk − γk| < ∞ and ∑k∈N ‖δkek‖ < ∞, that αk → 0, lim supk→∞ |βk| < 1,
0 < lim infk→∞ 1− βk −

γk
2 ≤ lim supk→∞ 1− βk −

γk
2 < 1, and 1− ck

ck+1
→ 0, and that infk∈N ck > 0

or ck → ∞.

(iii) Assume that (∀k ∈ N) |αk| +
∣

∣βk +
γk
2

∣

∣ +
∣

∣

γk
2

∣

∣ ≤ 1, βk + γk ≥ 0,
(
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣

)2
− βk −

γk ≤ 0, |γk| ∈ [0, 1], that ∑k∈N |(αk+1 + γk+1)− (αk + γk)| < ∞, ∑k∈N |1 − αk − βk − γk| < ∞,

∑k∈N |βk| < ∞, ∑k∈N(1 − |γk|) = ∞, and ∑k∈N ‖δkek‖ < ∞, that ∑k∈N |αk+1 − αk| < ∞ or

(∀k ∈ N) |γk| 6= 1 with limk→∞
|αk+1−αk|
1−|γk+1|

= 0, that αk → 0 and αk + γk → 1, and that infk∈N ck > 0

and ∑i∈N |ck+1 − ck| < ∞.

(iv) Assume that (∀k ∈ N) αk ∈ ]0, 1] and αk +
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1, and that αk → 0, βk → 0, γk → 1,
δkek
αk

→ 0,
1−αk−βk−γk

αk
→ 0, and ck → ∞.

Then xk → Pzer A u.

Proof. If (i) (resp. (ii) or (iii)) holds, the boundedness of (xk)k∈N comes from Proposition 3.3(iii); Ω ⊆
zer A follows from Proposition 3.5(iii) (resp. Proposition 3.7(iii) or Proposition 3.10); and the strong
convergence is clear from Proposition 4.3(i).

If (iv) is satisfied, employing Proposition 3.4 and Proposition 3.5(iii), we establish the bounded-
ness of (xk)k∈N and Ω ⊆ zer A, respectively. Then the strong convergence follows immediately from
Proposition 4.3(v). �

Theorem 4.5(i) is inspired by the proof of [16, Theorem 3.1] and illustrates that comparing with the
closest point to the initial point x0 onto zer A, the minimum-norm solution in zer A is easier to find in
some circumstances.

Theorem 4.5. Denote by (∀k ∈ N) ξk :=
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣. Suppose that (∀k ∈ N) ξk < 1, that ∑i∈N 1 −

ξ2
k = ∞, that lim supk→∞ |βk| < 1, 0 < lim infk→∞ 1− βk −

γk
2 ≤ lim supk→∞ 1− βk −

γk
2 < 1, δkek

1−βk−γk
→

0, and 1 − ck
ck+1

→ 0, that supk∈N

1−βk−γk

1−ξ2
k

< ∞, and that infk∈N ck > 0 or ck → ∞. Suppose further that one

of the following holds.

(i) u = 0, ∑k∈N |1 − βk − γk − δk| < ∞, supk∈N
‖ek‖ < ∞, (∀k ∈ N) ξk + |δk| ≤ 1 and αk ≡ 0, and

1 − βk − γk → 0.

(ii) supk∈N
‖ek‖ < ∞, ∑k∈N |αk| < ∞, ∑k∈N |1 − βk − γk − δk| < ∞,

1−αk−βk−γk

1−βk−γk
→ 0, and (∀k ∈ N)

ξk + |δk| ≤ 1.

(iii) (∀k ∈ N) |αk|+ ξk ≤ 1, αk → 0,
1−αk−βk−γk

1−βk−γk
→ 0, ∑k∈N ‖δkek‖ < ∞, and ∑k∈N |1 − αk − βk − γk| <

∞.
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Then xk → Pzer A u.

Proof. We separate the proof into the following three steps.
Step 1: If the assumption (i) or (ii) (resp. (iii)) holds, then combining the assumptions with Proposition 3.3(iv)

(resp. Proposition 3.3(iii)) and Proposition 3.7(iii), we deduce that (xk)k∈N is bounded and that Ω ⊆
zer A.

Step 2: Denote by (∀k ∈ N) φk := 1 − βk − γk, ϕk := 1 − αk − βk − γk,

F(k) := ‖δkek − ϕku‖ and G(k) := F(k) + 2
∥

∥

∥

(

βk +
γk

2

)

(xk − p) +
γk

2
(Tk(xk)− p) + φk (u − p)

∥

∥

∥
.

Note that (∀k ∈ N) βk +γk ≤
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ < 1. Because p := Pzer A u ∈ zer A, due to Lemma 3.2(ii),
we have that for every k ∈ N,

‖xk+1 − p‖2 ≤ ξ2
k ‖xk − p‖2 + 2φk 〈u − p, xk+1 − p − δkek + ϕku〉+ F(k)G(k). (4.6)

Because δkek
1−βk−γk

→ 0 and supk∈N
G(k) < ∞, any one of the assumptions (i), (ii), and (iii) ensures that

for every k ∈ N,

F(k)G(k)

φk
=

∥

∥

∥

∥

δkek

φk
−

ϕk

φk
u

∥

∥

∥

∥

G(k) ≤

(

‖δkek‖

1 − βk − γk
+

|ϕk|

1 − βk − γk
‖u‖

)

sup
k∈N

G(k) → 0,

which, connecting with Proposition 2.19, entails that

lim sup
k→∞

2 〈u − p, xk+1 − p − δkek + ϕku〉+
F(k)G(k)

φk
≤ 0.

Step 3: Considering (4.6) and applying Proposition 2.3(iv) with (∀k ∈ N) tk = ‖xk − p‖2, αk =

ξ2
k , βk = φk, ωk = 2 〈u − p, xk+1 − p − δkek + ϕku〉 + F(k)G(k)

φk
, and γk ≡ 0, we obtain the required

results. �

Notice that none of the sums of

αk + βk + γk, βk + γk, or βk + γk + δk

in the particular examples of Example 4.6 is 1. Therefore, none of the examples in Example 4.6 is
covered in previous papers in the literature.

Example 4.6. Suppose that zer A 6= ∅ and that one of the following holds.

(i) (∀k ∈ N) αk = 1
k+3 , βk = 1

k+2 , γk = k
k+2 , δk ≡ 1, ck = k, and ‖ek‖ ≤ 1

(k+2)2 . (Employ

Theorem 4.4(i).)

(ii) u = 0, (∀k ∈ N) αk ≡ 0, βk = γk ≡ k+1
2(k+2) , δk = 1

k+3 , ck ≡ c ∈ R++, and ek → 0. (Apply

Theorem 4.5(i).)

(iii) (∀k ∈ N) αk = 1
k+3 , βk = γk = k

2(k+2) , δk ≡ 1, ck ≡ c ∈ R++, and ‖ek‖ ≤ 1
(k+2)2 . (Adopt

Theorem 4.5(iii).)

Then xk → Pzer A u.

To end this paper, we compare our conditions for the strong convergence of generalized proximal
point algorithm with that of related references in the remark below.
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Remark 4.7. (i) The modified proximal point algorithm in [13, Algorithm 5.1] is (4.1) with u =
x0 and (∀k ∈ N) αk ∈ [0, 1], βk = 0, and γk = δk = 1 − αk. In this case, the conditions

(∀k ∈ N) |αk| +
∣

∣βk +
γk
2

∣

∣ +
∣

∣

γk
2

∣

∣ ≤ 1, βk + γk ≥ 0, and
(∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣

)2
− βk − γk ≤ 0,

∑k∈N |1 − αk − βk − γk| < ∞, and βk → 0 hold trivially; moreover, αk → 0 implies that γk → 1;

furthermore, since (∀k ∈ N) 1 −
(∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣

)2
= 1 − (1 − αk)

2 ≥ αk, thus ∑k∈N αk = ∞

necessitates ∑i∈N 1 −
(∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣

)2
= ∞.

Hence, it is clear that Theorem 4.4(i) covers [13, Theorem 5.1].

(ii) The contraction proximal point algorithm in [15] is (4.1) satisfying that (∀k ∈ N) {αk, βk, γk} ⊆
]0, 1[ with αk + βk + γk = 1 and δk ≡ 1. In this case, it is trivial that (∀k ∈ N) |αk|+

∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ ≤ 1, βk + γk ≥ 0,
(∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣

)2
− βk − γk ≤ 0, and |1 − αk − βk − γk| = 0. Since (∀k ∈

N) 1 −
(∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣

)2
≥ αk, thus ∑k∈N αk = ∞ leads to ∑i∈N 1 −

(∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣

)2
= ∞.

Moreover, because (∀k ∈ N) 1 − βk −
γk
2 = 1

2 + αk
2 − βk

2 , the assumptions αk → 0 and 0 <

lim infk→∞ βk ≤ lim supk→∞ βk < 1 in [15, Theorem 3.3] necessitate 0 < lim infi→∞ 1 − βk −
γk
2 ≤

lim supi→∞ 1 − βk −
γk
2 < 1. In addition, it is easy to see that ck+1 − ck → 0 and infk∈N ck > 0

guarantee 1 − ck
ck+1

→ 0.

Hence, Theorem 4.4(ii) generalizes [15, Theorem 3.3].

(iii) As stated in [2, Page 637], the expression (∀k ∈ N) yk+1 = Jck A ((1 − αk)yk + αku + ek) can be
rewrite as (∀k ∈ N) xk+1 = αk+1u + (1 − αk+1) Jck A(xk) + ek+1, where (∀k ∈ N) xk := (1 −
αk)yk + αku + ek. Hence, (4.1) with (∀k ∈ N) αk ∈ ]0, 1[, βk = 0, γk = 1 − αk, and δk = 1 is
the generalized proximal point algorithm studied in [2], [14], and [17]. Note that in this case

the conditions (∀k ∈ N) |αk| +
∣

∣βk +
γk
2

∣

∣ +
∣

∣

γk
2

∣

∣ ≤ 1, βk + γk ≥ 0, and
(∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣

)2
−

βk − γk ≤ 0, ∑k∈N |1 − αk − βk − γk| < ∞, and lim supk→∞ |βk| < 1 hold trivially; because

(∀k ∈ N) 1 − βk −
γk
2 = 1 − 1

2 (1 − αk) = 1−αk
2 , αk → 0 implies directly limk→∞ 1 − βk −

γk
2 =

1
2 ∈ ]0, 1[; furthermore, similarly with our statement in (i) above, ∑k∈N αk = ∞ implies ∑i∈N 1 −
(
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣

)2
= ∞.

Therefore, we know that Theorem 4.4(ii) and Theorem 4.4(iv) improve [17, Theorem 4] and [2,
Theorem 1], respectively. Moreover, because actually [17, Theorem 4] refines [14, Theorem 3.3],
Theorem 4.4(ii) naturally improves [14, Theorem 3.3] as well.

(iv) The contraction-proximal point algorithm is (4.1) with (∀k ∈ N) αk ∈ ]0, 1], βk = 0, γk =
1 − αk, and δk = 1. Repeating some analysis presented in (iii) and noticing that now (∀k ∈ N)

|(αk+1 + γk+1)− (αk + γk)| = 0, |βk| = 0, and |αk+1−αk|
1−|γk+1|

=
∣

∣

∣

αk+1−αk

αk+1

∣

∣

∣
=
∣

∣

∣
1 − αk

αk+1

∣

∣

∣
, we observe

easily that Theorem 4.4(iii) covers [8, Theorem 4.1].

(v) The proximal point algorithm with error terms studied in [16] is (4.1) such that u = 0, (∀k ∈ N)
αk ≡ 0 and {βk, γk, δk} ⊆ ]0, 1[ with βk + γk + δk = 1. In this case, it is trivial that (∀k ∈ N)
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣ < 1 and
∣

∣βk +
γk
2

∣

∣+
∣

∣

γk
2

∣

∣+ |δk| ≤ 1, and that ∑k∈N |1 − βk − γk − δk| < ∞. In

this case, δk → 0 and ek → 0 imply that supk∈N

1−βk−γk

1−(|βk+
γk
2 |+|

γk
2 |)

2 < ∞, supk∈N
‖ek − p‖ < ∞,

and δkek
1−βk−γk

→ 0; moreover, since (∀k ∈ N) 1 − βk −
γk
2 = 1

2 − βk

2 + δk
2 , thus δk → 0 and 0 <

lim infi→∞ βi ≤ lim supi→∞ βi < 1 necessitate that 0 < lim infk→∞ 1 − βk −
γk
2 ≤ lim supk→∞ 1 −

βk −
γk
2 < 1.

Therefore, Theorem 4.5 generalizes [16, Theorem 3.1]
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