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Abstract: This paper is devoted to the weak and strong estimates for the linear and multilinear fractional
Hausdorff operators on the Heisenberg group H". A sharp strong estimate for Tg is obtained. As an
application, we derive the sharp constant for the product Hardy operator on H". Some weak-type (p, q)
(1 £ p < oo) estimates for Ty g are also obtained. As applications, we calculate some sharp weak constants
for the fractional Hausdorff operator on the Heisenberg group. Besides, we give an explicit weak estimate
for Tgb under some mild assumptions on @. We extend the results of Guo et al. [Hausdorff operators on

s

the Heisenberg group, Acta Math. Sin. (Engl. Ser.) 31 (2015), no. 11, 1703-1714] to the fractional setting.
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1 Introduction

The Hausdorff operator was first introduced in [1] with summability of number series. As is well known,
the Hausdorff operator includes many famous operators such as the Hardy operator, the adjoint Hardy
operator, the Cesaro operator and the Hardy-Littlewood-Polya operator (see the examples below). In parti-
cular, the Hardy operator, as a kind of very important average operator, is deeply studied by many math-
ematicians. Researchers have built a relatively complete and mature theory about the Hardy-type operator.
Naturally, the study on the Hausdorff operator is of great significance. In recent years, the Hausdorff
operator and its variations have been widely studied by many researchers. In [2,3], Chen et al. considered
the boundedness properties of the Hausdorff operator on the Euclidean spaces, such as the Lebesgue spaces
L?, the Hardy spaces H? and the Herz-type spaces. For the sake of convenience, one can refer to [4-8] for
more details of the recent progress on the Hausdorff operators. In 2015, Gao et al. [9] studied the bounded-
ness properties of the (fractional) Hausdorff operators on the Lebesgue spaces L? with powers. It is the
starting point of our research.

We first recall the definition of the classical one-dimensional Hausdorff operator. For a given locally
integrable function ®(y) defined on R = (-c0, 00), the one-dimensional Hausdorff operator is defined by
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ho(f)(x) =

j ‘D(X/y)f( )dy, x€R.

0
Correspondingly, the n-dimensional Hausdorff operator (see [10]) is given by

Y(x/lyD

ly"

(oo = |

n

———f(y)dy, x¢€R", (1.1)

where ¥ is a radial function.

1
————X1.00) (It]), then we get the one-
IB(O, |£) ">

dimensional and the n-dimensional Hardy operator, respectively,

Note that if we take d(t) = %)((1’00) (t) for t > 0 and ¥(¢t) =

H(f)(x) = % j fyde,

H(F) () = WOlefmw
yl<Ix]

here and throughout the paper, B(0, |x|) is an open ball centered at the origin with radius |x| and |B(0, |x|)| is

the volume of the ball B(0, |x|).

In the past few years, most work on the Hardy operator mainly focused on the n-dimensional Euclidean
spaces R", and we refer to [11-15] for many discussions on the Hardy operators. A natural question is
whether the techniques for the investigation of the Hardy operator in R" can be used in different underlying
spaces. It is a remarkable fact that the Heisenberg group, denoted by H", arises in two fundamental but
different settings in analysis: in connection with the Fourier transform, pseudodifferential operators and
related matters [16]. Recently, Fu and Wu [17] proved a sharp estimate for the n-dimensional Hardy operator
on the Heisenberg group H". As we observed earlier, the Hausdorff operators are generalization of the Hardy
operators. It is therefore natural to ask whether one can obtain the best constants for the high-dimensional
and multilinear Hausdorff operators on the Heisenberg group.

2 Basic properties of the Heisenberg group

The Heisenberg group H" is R¥" x R with group law

n

X-y=|x+ yls X + Y2,--~aX2n + y2na Xon+1 t y2n+] +2 Z (ijP’Hj - ijn+}')
j=1

for x = (X, ..., Xon, %ons1)s ¥ = Vo -vvs Yos Yonsr) € R? x R,

We can see that the identity element on H" is 0 € R?"*! and the inverse element of x is —x. The Haar
measure on H" coincides with the Lebesgue measure on R¥* x R!.

H™" is a homogeneous group with dilations

8:x = (1, 1%, ..., Pon, TXons1), T > 0.
For any measurable set E ¢ H", denoted by |E| the measure of E, one has
|6.E)| = r9E|, d(6,x) = rx,

where Q = 2n + 2 is the so-called homogeneous dimension. And we rule the norm

m )2 i
2 2
IxXln = [z XiJ + Xonat | -
i=1
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Then the distance on the Heisenberg group H" is defined by
dex,y) = ly™ - xn.

For x € H", r > 0, the ball with center x and radius r on H" is given by

Bx,r)={y e H" : d(x,y) < 1},
and its sphere is defined by

Sx,r)={y e H" : d(x,y) = 1}
Thanks to the previous definitions, we obtain immediately that

IB(x, )| = |B(O, )| = vor€,

where v is the volume of the unit ball B(0, 1) on H", and

i (2)

T T+ 1)r("7“)'

The unit sphere S(0, 1) is often simply denoted by S2-!, and the area of S?! is wg = Qvy. The reader is
referred to [16,18] for more details.

3 Estimates for multilinear Hausdorff operators on central Morrey
space with power weight
In 2012, Chen et al. [5] first introduced the multilinear Hausdorff operator on Euclid spaces. The m-linear

Hausdorff operator is defined as follows.
For a locally integrable function @ defined on R" x---x R", we denote

CD[L X X j
H G foree S0 = | & H'ﬁ”l z el
i=1 Vi

R™x--- xR"

Hfl(y])d)ﬁdyz - dy,,

Zhao et al. studied the m-linear Hausdorff operator on the Heisenberg group H" in [19]:

Definition 3.1. Let @ be a locally integrable function on m-fold space H" x---x H", m € N. The m-linear
Hausdorff operator is defined by
cD((sb,lElX, ceey 6|Ym ‘;IX)

Tcgl(fiy’fm)(x) = Hm |y|Q
i=1VVilh

H"x---xH"

Hfi(yj)d)ﬁ < dyy,
=1

This study is based on central Morrey space with power weight, so we give the definition of central
Morrey space with power weight on H",

Definition 3.2. Let1 < p < 00, -1/p < A < 0, w = w(x) = |x|}, a > 0. The central Morrey space with power
weight BP (H", |x|2dx) is defined by

BPAH™, [xifdx) = {f € LE(M™, |xfdx) : < +oo},

W52 1, e e

loc

where

Sl

f FOO PP I
,R)

DA n a =su na p)l+pd
WA llg24m ey R>0 w(B(0, R))”’M
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It is worth noting that, when A = —1/p, the central Morrey space turns to be the Lebesgue space.

Our first main result is a strong estimate for the m-linear Hausdorff operators on the central Morrey
space with power weight. In particular, if we replace the central Morrey space with Lebesgue space, the
result is sharp.

Denote by p’ = (p1, P25 ..., Pm) With 1 < pj < ocoforl<j<m.

Theorem 3.1. Let meN, E’:(al,...,am), 1<p<oo, 1<pj<oo, -1/p; <A <0, i=1,...,m, a; = 0,
i=0,1,...,mand1/p=1/py +--+ 1/pmy A=A+ + Ay, Qo /P = @1/pP1 + -+ + Qp/ Pm. If @ is a non-negative,
radial function, and

i=1

(o) o0 0 m
C‘D,F,? = wén J‘ J‘ I (:D(rl, Tyeons rm) H ri*(/\i(ai+o)+1) drldrz drm < 00, (3.1)
0 0 0

then for f; € Bpi”li([l-ln, |x[% dx), we have
m
178 Fis oo S e (o ar) < Coop =11 illgri (y4m s . 3.2)
i=1
Moreover, the constant (3.1) in (3.2) is the best possible when Aip; =---= Appm and oy = -+- = Q.

Proof. We merely give the proof with the case m = 2 for the sake of clarity in writing, and the same is true for
the general case m > 2.

Lety; € H", j =1,2.Fory; # 0, let yl = 6|y|h1y] For any f; € B” ’([H" Ix[y dx), set
1 ! U
0= | 5(8) @
Iy ln=1
It is easy to see that grisa radial function. By the definition of 8

D()y,;1%; By, 1X)

Té(gﬁ,gfz)(X)Z 30 81185y, dy dy,
AN AR
H"xH"
(81X, O)y,5x) Fr 1 N
= _[ Wu wo j £(8yy1y;) dy;dydy,
H"xH" = 1} =1
1 D(8y, 1%, 8y, ;1X) 2
=— j — b2 ] _[ £ (81,1,;) dy}dy,dy,
Q i Yali sl = et
T T D6, 6,1x) L
I j j J %[H f,((S,]yI)rQ 1]dr1dr2 dy, dy,
yin=1 byh=1 o b
(8, 11X, by, 1X)
— P ()f () dyydys = T3 (R, fo) (0).
. |y1 |h |)’2|h
We use Holder’s inequality to bound ||gf]_ Nl 371 (™, ¥ dc) by
21 %h

185 e (bam 1 e,
pj p%]
1 1
“sup| | ” j JACRAL AT

r>0 | W(B(0, R))1*PY
B(O,R) 1yjn=1
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L] i
P}
* o 3| o BT I I i By, P I dy, | Ixf9 dx
~ wq g0 | W(B(O, R))PA | i Gy dy; || | I
B(O,R) |y]'|h:1 |yj‘h:1
B
b If;(8,y:) |Pi dy; |r%+Q-1dx'dr
/p, R>0 w(B(O, R))l*l’l"i jlorY; ;
0 IXh=1 | lyjlh=1
1
b
= 1 Iz T .
e LT T T
B(O,R)
Hence,
; 2
1Ts(fis ) ”Bp,/l([l-ln,lxlgo dx) - ||T¢)(gf1, gfz)”Bp,A(Hn’legodx)
Ifi ||Bp1,/u(u4n,lx\g1dx) If2 ||BP2,A2(|]-|",|X\Z2 dx) [F43 ||BPI’A1(D-I",|XI‘,’1‘1dx) gy, ”B”'AZ(H",\XW ax)

which implies that the operator T2 and its restriction to the radial functions have the same operator norm on
gt (H™, |x|% dx). Consequently, without loss of generality, it suffices to fulfill the proof of the theorem by
assuming that f; € B L x|y dx) (j = 1, 2) are non-negative radial functions.

By the coordinate transform, one can check that

T2 f)(x) = j j il tZ)ﬁ(IXIh/tl)ﬁ(IXIh/tz)dtldtz

We use Minkowski’s integral inequality and Holder’s inequality to estimate

2
”TCD (flsz) ”B'Pvﬁ([HnylxlzodX)

P

, 1 I T T Dt ) ]
= t t)dgde odx
T = A ) dtde | b
O,R 0 0
(ool e) %
2 1 J. CD(tl’ tZ) I a
< - - —_—2 27 t t)[P|x|%dx | dtdt
wWo 1Sel>1(l? w(B(O,R))l/p*A tt, illxln /) f(Ixln / )] |x1y, 1dh
0 B(O,R)

IN

o0 0
o, ), .
wé_[ j 1, 12 A1(a1+Q)t N(@+Q) 4t dt, Il ,,1,\1(['_' I dx) (12 pzAz(lH X2 dx)
bt
0 0

Thus,
[ lee]
DTG5 050 a1 s 7272 (14, e ) 82 (1, o ) S 90 j _[ D(t, ) WO (RO 4y iy,
0 0

Next, we need to prove the converse inequality. When ;p; = Lp, #+ -1land ¢ =---= a,,, wedenotea = a,
and take

A A
i) = XD px) = x|+ @.

It is easy to see that

a+Q

. 1/p
”fl ||BP1'A1([|_|",|X‘de) (1 + Alpl) 1{ wg

a+Q
j , e ||sz-/12([,_|n’|x‘%dx) 1+ Apy) 1/Pz£ j .

Wq



DE GRUYTER Estimates for Hausdorff operators =— 321

Then we have
T3(fi» £5)00) = Cop 2.

The aforementioned estimate gives that

A

a+Q

T30 ) g gy = ool + Ap)l/l’[w—} ,
Q

Consequently, we conclude that

o0 0
2 2 —(M(a+Q)+1) 1~ (a+Q)+1)
"TCD||Bpl'h([l—|",|x|ﬁdx)><BpZ'AZ([l~I",le‘i,‘dx)HBP'A([l-l",Ix\zdx) > W) I jCD(tl, L) 15 dt de,.
0 O

When Ajp; = Lp, = -1and og =--- = a,,, We also denote a = a;, and take

1 1
a+Q+y a+Q+q

fixGo) = Ixl, 7 Xixppon X)s For(x) = Ixly b2 Xixtpo1y X)-

By a similar calculation, we can get
k k
2 _1y1 9 ax-14B-1
@ H", |x][f P Sx[fdx)— S Ix[h = s 1k 2 14482,
(T o1, i oy < L2147, [ de) - L2, xSy = (KTK)Pwg f J‘(D(tl L) H* dadt
00

Consequently, letting k — oo, we conclude that

o0 00
a+Q_; a+Q
I P, () < L2047, [ ) — L™, iy > W _[ _[(D(tl, )’ P dads.
0 0

This finishes the proof of Theorem 3.1. O
Remark 3.2. If we take a; =---= a,, = 0, A; = —1/p;, then Theorem 3.1 covers Theorem 1.5 in [19].

To deal with the multilinear setting, we use the method of rotation which is inspired by the work of [19].
In fact, this method is very useful to compute the operator norm of many average operators. We will give an
application to product Hardy-type operator.

The rectangular product operator was defined in [20] by

m

m it
7—{ (f)(X) - [El[ IB(O, |Xl|)|J | I I f()/h,'.!ym)dyl dyma

ni<ln [Vl <1Xm|

where x = (X, X,..., X;n) € R™ x R™ x---x R™ with [T, [x;| # 0. In the following, we also use |x|h7 = |aly...
Ixml‘,f'" and dx = dx; --- dx,, for short. We will consider the rectangular Hardy-type operator on H" similar to
that defined in [20].

Definition 3.3. Let f be a locally integrable function on m-fold product space H" x---x H™. For m € N, the
m-linear rectangular Hardy-type operator is defined by

m ot
%(f)(x)—(]_[ |B(O,|Xi|h)|j | | rommdn - ay,

i=1
1 ln<baln [V n<Xm |n

Our next result is based on central product Morrey space with power weight on H™.
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Definition 3.4. Let 1 < p <co, meN¥, -1/p < A; <0, A= (A,..., Ap), wi(X) = IXily, >0, 1< i< m.
The central product Morrey space with power weights B” (H" x ---x H™, |x|,;7dx) is defined by

. ,A — —
BP ([H” X oo x H, |x|f dx) ={fe Lloc([H" X x HT, |x|,°,‘dx) : ”f”B"”(H"x---xua",|x|,;7dx) < +oo},

where

=

1 —
WFllgos gpn o gy = SUD : j j IF GO P IxIE dx
B (W x W) T p 0 i | TI, i(B(O, Ry))H+P sinr s
s IN]. y\m

Theorem 3.3. Letm € N, 1< p <00, -1/p < Ai< 0, A=Ay Aw), @ = (..., A), O < @ < Qlp - 1) and
i=1..,mlIffe Bp”‘(ﬂ—l" XX HM, lefdx), then we have

m
Q
m, . N I . .
IR 2 v e ax) < [H @+ QA + QJ'V"B”(H"x--«H",xm‘dxr G3)
Moreover, the constant (I—L 1 m) in (3.3) is sharp.

Proof of Theorem 3.3. We give the proof only in the case m = 2. Following the method of Theorem 3.1,
we can easily obtain the upper bound

m
2 - -
I ”BP’A([I-I"X---X[I-I",lxlfl‘dx)—»Bp‘A([l-l"x---x[l-l",lx\,ﬁ‘dx) l_[ o+ Q)/\ + Q

i=1
On the other hand, when A; # -1/p, i = 1, 2, we set

fa, %) =Ix |(ha1+Q)/11 1% |§1a1+Q)/11.

Since
R2(f) (4, %) = 1 : 1 J I f v yo)dydy, = ﬁ # f (a, %),
IB(O, xln)| [B(O, x2ln)l i (@ + QA +Q
Yiln<aln 1y2ln<ix2|n
we obtain

m
Q
2 N - -
”m "BP’A([I-I"X...X[I-I",lfofdx)HBp’A([I-I"x...x[I-I“,lxlﬁ'dx) 2 [H (0(1' + Q)Al + Q]

When A; = -1/p, i=1,2, weset0 < &< min{l, Pw-1VQ-a (p-1Q- az}, and

’
p p
_a1+Q az+Q+
f: 0a, %) = Ixq |h 1 |h X(1x <1, 152 h<1} (%, X%).
By a similar calculation, we can get
2
2 . . Q
IR o (s, g o) 2 (1, g ) 2 [1 )

i=1 Q - T + &
Consequently, by letting € — 0%, we obtain

2
Q
2 - 2
IR o (s, g ) 2 (s, g ) 2 [l = ol
i1 T,
3

We finish the proof of Theorem 3.3. O
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Remark 3.4. If we take & = 6, A; = =1/p, then Theorem 3.3 covers Theorem 1.8 in ref. [19].

4 Weak-type estimates for the fractional Hausdorff operators on
the Heisenberg group and applications

Now we define the fractional Hausdorff operators on H" as follows.

Definition 4.1. Let ®@ be a locally integrable function on H" and O < § < Q. The n-dimensional fractional
Hausdorff operator is given by

D(8yyx)
Top 00 = | = 2E=p()dy.
o vy

In [19], the authors obtained the strong-type (p, p) estimate for § = 0. We refer readers to [21,22] for
more details of Hausdorff operators on the Heisenberg group. It is known that the strong-type (p, p) esti-
mate implies the weak-type (p, p) estimate. On the other hand, it is natural to ask whether it is possible to
relax the condition on the function ®. Inspired by the result of [7], we derive a better upper bound for
the weak estimate of the operator Ty on the Heisenberg group with the non-radial function ®. Note that
the weak estimate holds under weaker assumptions than those in the strong estimate. The best constant
for weak estimate is not yet to be determined and will be investigated in the future.

To state our results, we need to introduce more notations. Let 1 < p < co and denote by p’ the expo-
nent conjugate to p, that is, let 1/p’ + 1/p = 1 with the agreement that 1/co = 0.

For a non-negative measurable function w = w(x) defined on H", the weighted weak Lebesgue space
LP*° (H") is given by the set of all measurable functions f on H" satisfying

1/p
Il @ = Sup A j woodx | < co.

xeH™:|f(x)[>A}

For x e H", 1< p, g < co, we let X' = §,1,, and

00 v
Ky(x') = fl@(étx')w’t(mf”*dr . K) = sup|®(6x)[t 7.
0

t>0

Our first main result is an explicit power weighted weak-type estimate for the high-dimensional Hausdorff
operators on the Heisenberg group.

y+Q a+

Theorem 4.1. Let 1<p, g<oco, 0<f<Q, y>-Q, acR, —Q -B. I Ky() € L (SQY), then
p

for fe LP(H", |x|3dx), we have

1 1
[ q U
I s Dl o < IKOlisey - (;25)" - w8 Wlrartiga

Proof. Using the Holder’s inequality, we have

CI)((Slyli”{)
|To,p(f) 00| = ——a 5 S WA | < 18O gimy e g, g
. D’lh
H
h ) - " . . . L y+Q
where g, (y) = lelh , for y e H". By using the spherical coordinates and the equality T =
Vln

a+Q
p

— B, we can get
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, 1
p v
(D((S| |-1X) _a
ls Ol = | [ | =i | ay
. |)’|h
H
(o) i a
(:D(‘Sr’lx) a ?
— -3 Q-1 !
I I o rr| r%ldrdy
0 Iy'lh=1
I v
:wé” I |q)(5r,lx)|p’rQ—(Qfﬁ>p’flfap’/pdr
0
(% v
- of | [ 1@ e pr-eg
0
Ly g
- wév I, q '[ |D6,x") P t@/p+Q-pr'-Q-14;
0
1 _y«Q
< wf Ixly T IKp( )l 5oy«
i, _rQ
Let M = wf IKy(- )l 501 If lzp@im, ixi@ax) - Then |[To g(f) (x)| < Mix],, @ . So we have
i
1o, 201 = supA | jxl]dx
*'h >0
T ke To £ 00 15 A)
é
< supA J |x]dx
A>0
_y+Q
{xelH”:MIth q >/I}
1
q
=supd| [ ¥ o jC0bfx
A>0 i {Mlxlh g >/I}
H
i
- _%a_ -1yq
s
%
_ _Ya_
- M(Mj .
Therefore, we conclude that
L 7
" w
1o s igpory < Uy (125 ) Wit -
We are done. O

Remark 4.2. If we take a = y, then Theorem 4.1 covers Theorem 1 in [23].

As is well known, the Hausdorff operator includes many famous operators such as the Hardy operator
and the adjoint Hardy operator. As a simple application of Theorem 4.1, we consider the fractional Hardy
operator Hg and its adjoint operator H on H":
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1

B
1-£
1BO, IXln)™e =,

%dy, X e HA\(O).
oy BOs VIl e

Hpf (x) = f(y)dy, xeH"\{0},

Hpf(x) =

When § = 0, we often use H and H* instead.

Corollary 4.3. Let -Q < a < O andy > —Q. Then
(@) "7’("Ll([H",Ix\f,‘dx)HL‘l"‘g’lf’(H") =1

X

> * _Q
(i) I1H ”Ll([I-I",IxI%dx)ﬁLli’IZ’(ﬂ-l )= Qe

Proof. The upper bound can be easily obtained by Theorem 4.1 when we choose = 0 and suitable
functions ®. Therefore, it is sufficient to show that the upper bound is sharp.

(i) Taking fo(x) = Xiixin<1) (x). Since -Q < a < 0, we can get
Wq

Q+a

Ifollram, ixgax) =

Moreover, we have

X2, if Ixlp > 1;
Hfox) =41 "
1, if |x]p < 1.
Therefore,
a Wq —a/Q
1Hfo "LI}("?([I—I") = supAa [x[pdx = sup A .
h A>0 Q + aoa<
{xeH™:|Hfo(x) [>A}
Note that a < 0, we can get
Wq
Hfo ”L&“i,"([l—l") “Q+a fo llt@m, x(z cx) -

So we obtain

"WHLl([I-I",lxlﬂdx)—»L""a’["([l-l") =1

|x

(ii) Take fo(y) = |y|;"(y+Q))(ﬂy|h21} (v), where k > 1. Since y > —Q, we can get

_ Wa
ol jxiz ax) = Qrpk-1
Moreover, we have
-k(Q+y)
%gl) <mf i > 3
Hfo(x) = iR iR
k(%ﬁ.y), lf |X|h < 1
Therefore,
Quq Q 1
* Loy = x = = - 7 n .
el =supd [ = 280 €1 D

{xeH™:|H fox) |>A}

So we achieve the desired result by letting k — co. O
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Next, we consider the weak-type weighted estimates for the multilinear fractional Hausdorff operator

T(D’F inH™, TcD,F is defined as follows:

Definition 4.2. Let @ be a locally integrable function on H"x---x H™" and F =By By 0< B <Q,
i =1,..., m. The multilinear fractional Hausdorff operator is given by
DSy, X5 -+ By, X)

Q-p;
T, byl

Ty 5 fiseoos f) 00) = f

H"

—

Theorem 4.4.LetmeN, 1<p, g<o00,1<p;<oo,y>-Q, B =(B,....B,), 0<B,<Q, a;eR,i=1,...,m

and1/p=1/p1 + -+ 1/Pm, % = Z;ﬁl(“i;o —ﬁi). IfK5(+) € L°(S21), then for f; € LPi (H™, |x|}i dx), we have

1oom
n —=( - co b & ! ’ p-’
||T£F(ﬁ’ﬁ""’fm)"LIZ"f(H ) < 1K)l s (y+Q) Ewo

1 m
CTT Wil @i s
i=1

where x # 0, x' = §,;1x and

(o) (ee) (o)
KOe) = | [ | [ ] ] 106800
0 o \o
” ” %
py py Pm
SL+Q-B, )p;-Q-1 22+Q-B,)p,-Q-1 i +Q-By )P —Q-1
X sl(”1 B ds, sz(”’2 :)p: ds, s,(,,"’" bn) dsp,
To prove Theorem 4.4, we first prove the following lemma. Define B(x) by
1
, £ Pm
12} Py
p
_ q’“lvﬂﬁl"’“"‘slymlg“‘) _% 1 Py _;72
B(x) = m—o—/z;h/llh ody | sl dy, | ...dy,
H" H" H" = Dt
Lemma 4.5. Letting p, p; and K3 be as in Theorem 4.4, we can obtain
mo oy
B(x) = Kz(x') [Jwg’ I, T .
j=1
Proof. For simplicity, we only present the proof in the case m = 2.
Using the spherical coordinates, we have
) 1 2 IZ
o6, 6, ) _al "
& % Oy 1 X)L -5
Boo=| [ ||| || dn | e |y
H" H" Hi:1 |y] |h
. 1/p,
B ) /p;
2 R * Dy 1
' D8, -1, X', 6,11, X)) _@ [F1 _
1/p; _ _ x| x|,
= l_[ wQ/pl j Al I ! 1rothﬁl,0—l§z —nodn | n” dr,
i1 1
J 0 0

2
=11 wé“’" - bo(x).

j=1
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Assume $; = 17x|n, S» = 15 |x|x, and then

n=sxXlh, n=sxl, dn=-lxlhs;?ds;,  dn = —|xlps;?ds,.
Thus, we have
B =y B P A [ [ 060, s pistiee e, freniaty,
0 0
_y+Q

= Ixl, T Kp(x").
Therefore, we finish the proof of Lemma 4.5. O
Next, we will provide the proof of Theorem 4.4.
Proof of Theorem 4.4. Using Holder’s inequality, we can obtain
. m
ngl? (s foreoos fi) QO1 < BOO [T I lers g i a -

’ i=1

By Lemma 4.5 and Ky(-) € L*(S?™"), there holds

_& m i’ m
ITgF(ﬁ,fz,...,fm)(x)l < Iy T IRy Ollpmgsey - [T @d" - TT Wl (s it ax)-

j=1 i=1
Thus, for any A > 0,

T (fi Foreo ) Loy
| o (i, fm)"LIZ‘% k)

supA I Ixl¥ dx

A>0 - 1
“Tmﬁv(ﬁ:fz:---:fm)(x)b }

< supA '[ |x[% dx
A>0 L
_r+Q m o p m
Ixly @ AR Olleoiga-ty - T, g T, Wil (s o a0y >A
1 m i, m
[0} q D;
= 5 Olsen (2% ) TT @8- TT Wil oo
i=1 i=1
Therefore, we get the desired result. O

e A S :

Remark 4.6. If we take § = 0, a = 0, g = p, then Theorem 4.4 covers Theorem 1.6 in [19].
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