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Weak atomicity: A helpful notion in the construction of 
atomic shared variables 
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Abstract. A new class of 1-writer shared variables, called weakly atomic 
variables, is defined, and an elegant general method of constructing atomic 
variables from weakly atomic ones is presented in this paper. Four examples of 
atomic variable constructions that use this method are described. Two of these 
constructions are new. 

Weak atomicity provides an intermediate step between regularity and atom- 
icity. In addition to enabling new constructions, this concept helps to derive 
simple correctness proofs of the constructions. 
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shared variables. 

I. Introduction 

A shared variable is an abstraction of asynchronous interprocess (persistent) communica- 
tion, where the senders and the receivers are called the writers and the readers, respectively, 
and the states of the communication medium are the values of the shared variable. A writer 
writes, that is, puts a value in the variable, and a reader reads, that is, reports a value from 
the domain of the variable. Writing and reading are the only operations in a Read/Write 
variable (variable, for short, in this paper). In this paper, 'Write' and 'Read' are used as 
nouns, referring, respectively, to a write operation execution and a read operation execution, 
and 'write' and 'read' as verbs. 

Recent interest is on constructions of shared variables which have the following prop- 
erties: (i) the operation executions are not assumed to be atomic, that is, they are not 
instantaneous; and (ii) they are wait-free, that is, no operation execution waits for any 
other operation to finish its execution. The first property allows treating operation execu- 
tions uniformly, even when some operations are high level ones implemented using low 
level operations. The second property implies that each operation execution will take at 
most a fixed amount of time, irrespective of the presence of other operation executions and 
their relative speeds, and the (harmless) failure of one operation execution does not affect 
other operation executions. 
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The above two properties give rise to a classification of shared variables, depending on 
their output characteristics. Lamport (1986) defines three categories for 1-writer variables, 
using a precedence relation on operation executions defined as follows: for operation 
executions a and b, a precedes b, denoted a > b, if a finishes before b starts; a and b 
overlap if neither a precedes b nor b precedes a. We note that a 1-writer variable is written 
by one and only one process, and not by many processes mutually exclusively. In 1-writer 
variables, all the Writes are totally ordered by " >". (In this paper, we are concerned 

only with 1-writer variables.) 

DEFINITION 1 
(Awerbuch et al 1988) An execution of a shared variable construction (called a run in 
Awerbuch et al 1988) is a tuple (A, ~, rr), where A is a set of  operation executions 
(Reads and Writes) on the shared variable, > is a precedence relation on A and zr is a 
partial reading mapping from the set of Reads to the set of Writes in A, such that for Read 
r if zr(r) = w then r returns the value written by w, and if re(r) is undefined then r may 
return any value from the domain of the variable. [] 

DEFINITION 2 
A Read r in an execution (A, 

(i) re(r) is defined, 

(ii) r / > a ' ( r ) and  

(iii) for no Write w in A, rr(r) 

DEFINITION 3 

>, zr) is regular if 

~ w  >r .  [ ]  

(Awerbuch et al 1988) An execution (A, >, zr) on a shared variable is 

(a) safe if each Read in that execution that does not overlap with any Write is regular, 

(b) regular if each Read, whether it overlaps with a Write or not, is regular, and 

(c) atomic if it is regular and in addition there is a total order 
executions as follows: 

,~ on the set of operation 

(i) for a, b in A, if a > b then a ;, b; 

(ii) for each Read r in A, 7r(r) ,', r; and 

(iii) for each read r in A there is no Write w in A such that zr(r) >w >r .  [] 

DEFINITION 4 
(Awerbuch et al 1988; Lamport 1986) A shared variable is safe, regular or atomic if each 
execution on the variable is safe, regular or atomic, respectively. [] 

A shared variable is boolean or multivalued depending upon whether it can hold only 
boolean or any number of desired values. 

With these classifications we can define a hierarchy on shared variables, with 1-writer 
1-reader boolean safe variable in the lowest level and multiwriter multireader multivalued 
atomic variable in the highest level. Higher-level shared variables can be constructed from 
lower-level ones. Several such constructions have been proposed in the literature. 
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In this paper we consider wait-flee construction of 1-writer atomic variables from regular 
variables. We first state a proposition that describes the distinguishing property which 
makes a regular variable atomic. In 1-writer variables, the precedence relation > induces 
a total order on the Writes. We use the notation -< for the total order. That is, for Writes 
a andb,  a > b if and only if a -< b. W e a l s o u s e a  __ b to denotea  e q u a l s b o r  
a < b .  

PROPOSITION 1 
(Awerbuch et al 1988; Lamport 1986) A 1-writer multireader multivalued regular shared 
variable is atomic if it has the additional property that, in each execution on that variable, 
f o r a n y t w o  Readsr  a n d /  such tha t r  > r' ,rc(r) <_zr(/). [] 

In a regular variable, it is possible that for r. r I such that r > / ,  zr( /)  -< yr(r). This 
situation is called new-old inversion. Proposition 1 identifies "no new-old inversion" as the 
single additional property that is required of a regular variable to become atomic. Different 
techniques have been employed to overcome new-old inversion in the literature, for ex- 
ample, in the constructions of Lamport (1986, Construction 5), Vidyasankar (1991), and 
Bums & Peterson (1988). There is no uniformity in the techniques, and each construction 
warrants a different, and sometimes involved, proof of correctness. 

In this paper, we first identify a general method of converting regular variable construc- 
tions to atomic ones. This method is conceptually simple, but is difficult to implement. 
We then show that for a new class of regular variables, called weakly atomic variables, 
the implementation of this method is easier. Now the construction of weakly atomic vari- 
ables from regular variables appears to be a much simpler problem. Some regular variable 
constructions that have appeared in the literature are also weakly atomic. Some others are 
convertible to weakly atomic ones in simple manner. Thus, with the identification of weak 
atomicity as a possible intermediate step between regularity and atomicity, the problem of 
constructing atomic variables from regular ones is simplifed. 

This paper is organized as follows. The above mentioned general method of converting 
regular variable constructions to atomic ones, the weak atomicity concept, and a general 
method of converting weakly atomic variable constructions to atomic variable ones are 
described in § 2. We then take, in § 3, four weakly atomic variable constructions and 
derive atomic variable constructions from them using the general method. Two of these 
weakly atomic variable constructions have been obtained by slightly modifying the regular 
variable constructions of Lamport (1986, Construction 4), Chaudhuri & Welch (1990). 
The resulting atomic variable constructions are new. The other two weakly atomic vari- 
able constructions have been obtained the other way, from atomic variable constructions 
in the literature. Here our intention is to illustrate that the weak atomicity concept can 
provide better insight into some existing atomic variable constructions, and also simplify 
the correctness proofs. Section 4 concludes the paper. 

2. Weak atomicity 

In an execution, we define a Read r to be dependable if  for all Reads r' such that r > / ,  
:r (r) _-< 7r (r'). In an execution on a regular variable, some Reads are dependable, some are 
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not. If all Reads, in all executions, are dependable then, by proposition 1, the variable is 
atomic. 

Let us consider the following method of converting regular variable constructions to 
atomic ones. Let V be a regular variable and read(V) and write(V) denote the Read and 
Write operations on V. We define a Read operation read*(V) on V as follows: 

It consists of a sequence of one or more read (V) executions and returns the value 
read in one of them such that read*(V) is dependable; that is, if R is a read*(V) 
execution, then for any other read*(V) execution R'  such that R ~ R I, zr(R) _~ 
rr(R'). 

This means that if R consists of read(V) executions rl,  r2, - . - ,  rn and returns the value 
! ! 

read by ri for some i, and R r consists of r~l , r 2, . . . ,  r m and returns the value read by rj for 

some j ,  then 7r(ri) ~ 7r(rj). 
There are two problems with this approach: (i) the number of times read(V) is executed 

by a read*(V) execution must be bounded by a constant for the wait-freedom property, 
and (ii) the check for dependability must be feasible. Both these problems are difficult 
in general. In the following, we define a special class of regular variables, called weakly 
atomic ones, for which these problems appear to be easier to solve. 

First we introduce some additional terminology and state a basic property. For operation 
executions a and b on a shared variable, a --,- b will mean that a starts before b finishes. 
That is, if a --,- b, then either a precedes b or it overlaps b; in other words, b / > a. We 
also assume that if b / > a, then a --,- b. That is, we assume global time model (Lamport 
1986). 

PROPOSITION 2 
(Lamport 1986) For operation executions b and  c on a shared variable, and  any operat ion 

executions a and  d, i f  a > b --,- c > d, then a > d. 

P r o o f  The implication follows by the transitivity of (i) a finishes before b starts, (ii) b 
starts before c finishes and (iii) c finishes before d starts. [] 

PROPOSITION 3 
Consider  an execution on a 1-writer mul t ireader  mul t ivalued regular variable. Suppose  r 

and  r ~ are Reads  such that r > r ~ and  zr(r) ~ zr(rt). Then f o r  any R e a d  r ~ such that 

r I > r", zr(r) -< zr(rfl). 

P r o o f  Suppose that rr(r) 2~ zr(r") .  Then, since all the Writes are totally ordered in the 
1-writer case, zr(r") -< zr(r). Now, since the variable is regular, zr(r ~) --,- r ~, by defini- 
tion 2(ii). Therefore we have zr(r t~) > zr(r) ) Jr(r ~) --,- r t ) r". This implies, 
by proposition 2, that zr(r ~t) ~ rr(r) > r". This violates part (iii) of definition 2, 
contradicting the regularity of r". [] 

We note that, if for the Reads r, r ~ such that r > r ~ in the above proposition, we 
only have zr(r) = zr(rl), then it is not necessarily true that for any r" that succeeds r ~, 
zr(r) 5 zr(rP~). (A counterexample is where r, r p and r" all overlap zr(r), and zr(r ') 
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immediately precedes rr(r), that is, there is no other Write in between zr(r") and zr(r). 
Here n ( r " )  is the most recently completed Write for r" ,  and hence r ~ can return the n ( r " )  
value without violating the regularity property.) We call those regular variables for which 
this property holds weakly atomic. 

DEFINITION 5 
A 1-writer regular shared variable is weakly atomic if the following property holds in each 
execution on that variable: if r and r '  are Reads such that r > r t and rr(r) = Jr (r~), then 
for any r f~ such that r ~ > r",  zr(r) ± zr(rH). [] 

Thus weakly atomic variables have the nice property that for a Read r in an execution, 
if for some Read r ~ that succeeds r, n ( r )  -< ~r(r'), then for all Reads r"  that succeed 
r ~, rr(r) ± zr(r"). Therefore a read*(V)  execution R could consist of  a sequence of  
one or more read(V)  executions rl,  r2, . . . ,  rn such that, for some i, yr(ri) ~ :rr(rn), 
returning the value read by ri. The following proposition implies that n needs to be at 
most 3. 

PROPOSITION 4 
Consider an execution on a 1-writer multireader multivalued regular variable, bbr any 
three Reads r, r' and r" such that r > r t .... > r", i f  zr(r') ;~ :r(r") then zr(r) <_ yr(r'). 

Proof  Assume the contrary. Then zr(r") -< rr(r') -< n ( r ) ,  that is, zr(r") > zr(r') > 
7r(r). Since ~r(r) --,- r, we have rr(r") > ~r(r') ~ n ( r )  --,- r > r ". It follows by 
proposition 2 that n ( r " )  > zr(r') ---+ r", contradicting the regularity of r". 

Therefore, in a weakly atomic variable, for any three Reads r, r ~ and r"  such that 
r > r r > r",  r t is dependable when rc(r') ~ re(r"), and r is dependable when 
zr(r') ~ zr(rt'). Hence the operation read*(V)  can be described as follows. 

Function read* (V): 

rl : vall := read(V)  ; 
re : val2 := read(V)  ; 
r3 : val3 := read(V)  ; 

i f~ ( r2 )  <__ ~(r3) then re turn  val2 else return vail.  

We note that the relation _ in the above function can be replaced by = also; this is 
justified by the following proposition. 

PROPOSITION 5 
Consider an execution on a 1-writer multireader multivalued regular variable. For any 
three Reads r, r' and r ~p such that r > r' > r", i f  zc(r t) ~ zr(rr'), then either 
Jr(r) -< rc(r') or re(r) <_ Jr(r"). 

Proof  Suppose both rr(r ~) and rr(r tl) precede re(r). Now either rc(r') precedes zr(r") 
or vice versa. In the former case, we have zr(r') > rr(r") > rr(r) --,~ r > r ' .  
This implies zr(r ~) > rr(r") > r ' ,  contradicting the regularity of  r p (part (iii) of  
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definition 2). In the latter case, we have : r ( r ' )  > :r(r') > :r(r) --,- r > r ' .  This 
implies 7r(r') > zr(r') > r ' ,  contradicting the regularity of r ' .  [] 

The above description of read* (V) is a schematic one-  proper code must be substituted 
for checking n(r2) ___ 7r (r3) (or rr(r2) = 7r (r3)) to get a complete function definition. The 
method of checking the condition depends on the variable V. Also, it may be possible to 
do the checking without actually performing r3. Then, the third Read can be eliminated 
in the read*(V) execution. Further optimization is also possible in some cases. These are 
illustrated in the constructions in the next section. 

DEFINITION 6 
For a read*(V) operation execution R returning 7r(ri) value, 7r(R) is defined to be 

7r(ri). [] 

3. Atomic variable constructions 

In this section, we present four atomic variable constructions derived from weakly atomic 
variable constructions using the general procedure described in § 2. The read*(V) descrip- 
tion involves specifying how the condition rc(ri) ~_ 7r(rj) or 7r(ri) = 7r(rj) is checked in 
the if statement. The write procedure and the read and read* functions are written in a 
Pascal-type language. The blocks are shown by indentation, rather than with 'begin's and 
'end's. 

In the proofs we use the following notation. For an operation execution a on the variable 
V, a [x] denotes the execution of the suboperation of a on the (sub)variable x; the argument 
is expanded as Ix = value] to indicate the value that is read or written. For an atomic 
variable y, the total ordering imposed on the operation executions on y will be denoted 

',,y; the subscript y will be omitted if it is clear from the context. For two operation 
executions a and b on y, we recall from definition 3 that if a ~ b then a ',, b. The 
property that if a ',, b then a -- ,- b is easy to verify. 

3.1 Lamport 's  Construction (Lamport 1986) (with atomic bits) 

The construction of Lamport [(Lamport 1986): Construction 4] implements 1-writer mul- 
tireader multivalued regular variable from 1-writer multireader boolean regular variables. 
Lamport has shown in the same paper that even if the boolean variables (bits) are atomic, 
that construction does not implement an atomic variable. We show that when the bits 
are atomic, the same construction implements a weakly atomic variable. Then we define 
read*(V) to get an atomic variable construction. 

The bits are vl, v2 , - . . ,  Vn. The construction uses unary encoding in which a value k 
is denoted by zeroes in bits 1 through k - 1 and a one in bit k. To write the value k, the 
writer first sets bit k to one and then sets bits k - 1 through 1 to zero, writing from right 
to left. A reader reads the bits from left to right (1 to n) until it finds a one. The write and 
read operations for V and the read operation read*(V) are as follows. We assume that the 
initial values of all the variables are zeroes, and that the first operation execution on V is 
an initializing Write that does not overlap with any Read. 
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Construction 1. 
Procedure wri te(V)  writing value k: 

wri t e  1 in vk; 

for  i : =  k - 1 s tep  - 1  unt i l  1 d o  w r i t e  0 
in vi. 

Function read(V)" 

for  k : =  1 unt i l  n d o  
val :=  read(vk);  

i f  val = 1 t h e n  r e t u r n  k and exit.  
(* zr(r) is w, where n(r[v~]) = w[vk] *) 

Function r e a d *  (V): 

rl • kl:= read(V)  • 

r2 " k2:= read(V)  • 
r3 " k3:= read(V)  • 

if  k2 < k3 then r e tu rn  k2 else r e tu rn  kl. 

The regularity of  V0 even when the bits are regular, has been shown in Lamport (1986). 

In the following, we show the regularity of V (with atomic bits) to make this subsection 

self-contained, and then show the weak atomicity of  V and the dependability of  read*(V)  

operations. 

Lemma 1. Suppose r is a Read of V returning value k and 7r(r) is w. Then there is no 
Write w ~ such thatfor some 1, 1 _< k, W[Vl] - ->  w'[vl] ~ r[v/]. 

Proof Suppose on the con t ra~  that the statement of the lemma does not hold. Let w' be the 

latest Write succeeding u,, and I the largest index such that w[vl] ~ w~[vl] ---~ r[vl]. 
For the case l = k, we get a contradiction to rr(r[v~.]) = w[v~]. For l < k and w' 

writing 1 in vt, our choice of  w ~ implies that r should read 1 from vt, contradicting the 
assumption that it reads 0. In the remaining case, for 1 < k and w ~ writing 0 in vl, we 

have W'[VI+I] > W'[U/] ~" r[vt] ~ r[vz+,],  implying wlvt+l]  ~ w'[vt+l] ----~ 
r[vl+t ], which contradicts the choice o f / .  [] 

Lemma 2. The variab!e V is regular: 

Proof Let r be a Read in an execution of V. We show that all the three properties of 

definition 2 are satisfied for r. Suppose r reads 0 from vl . . . . .  vk- i ,  and 1 from vk. It 

is a simple exercise to show that there is such a k. Then rr(r) is defined ~s the Write w 

such that Jr(r[vk]) = w[vk]. From the atomicity, and hence the regularity, of vt, we have 

r[t,k] / ~ w[vk]. Hence it follows that r -~--~ w. That there is no Write w I such that 

w -----~ o / - - ~  r follows from lemma 1. [] 

Lemma 3. For read(V)  executions ra and rb such that ra 
respectively i f k  < k ~ then rc(ra) 5 rc(rh). 

rh, reading values' k and k r 
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Proof Suppose that k _< U, but yr(rb) -< rC(ra). Denote 7r(ra) a s  Wa, and rr(rb) as Wb. 
Then we have wb[vk] ~ Wa[Vk] ~ ra[Vk] ~ rb[Vk], which contradicts lemma 1 
(with rb as r). [] 

Lemma 4. The variable V is weakly atomic. 

Proof Suppose for read(V) operation executions r and r t such that r > r p, 7r(r) = 
zr(rr). We show that for any r rt such that r t ~ r", 7r(r) ± rr(r"). Denote zr(r) as w and 
rr(r") as w t~. Let k and k ~ be the values written by w and w rp, respectively. If k < U ~, 
then by lemma 3, rr(r) ± rr(r"). So assume k" < k. Suppose zr(r ~) -< Jr(r). Then 
w" ~ w[vk] 'r r[vk] ~ r ~ implies w" ~ r ~ (by the property that if a ~. b 
then a --,- b, and by proposition 2). Then w"[vk,, = 1] --4- r'[vk,, = 0] implies that 
there exists some w "  such that wPt[Vk,, ] '.. w"P[vk,, = 0] ~. rt[vk,,]. This implies 
w"[vk,,] ~ wm[vk,,] ~, r"[vk,,], contradicting lemma 1 (with r" as r). [] 

Theorem 1. Construction 1, with write(V) and read*(V), implements an atomic vari- 
able. 

Proof The dependability of read*(V) follows from the weak atomicity of V, by lemma 4, 
and (i) from lemma 3, when k2 is returned, and (ii) from proposition 5 and the fact that if 
k2 5 ~ k3 then 7r(r2) ~ 7r(r3), when kl is returned. [] 

3.2 Tree Construction (Chaudhuri & Welch 1990) (with atomic bits) 

The construction of Chaudhuri & Welch (1990) implements 1 -writer multireader multival- 
ued regular variable from 1-writer multireader boolean regular variables, in a way different 
from that of Lamport's in the above subsection. We show that, here also, when the boolean 
variables are atomic, the same construction implements a weakly atomic variable. Then 
we define read*(V) to get an atomic variable construction. 

The shared variables (bits) are the internal nodes of a binary tree, whose leaves corre- 
spond to the values being written. The tree represents a sort of binary search conducted by 
the Reads to find the value written. The Reads take a path from the root to a leaf, whereas 
the Writes follow the path starting from a leaf to the root. The path in the tree taken by a 
Read, along with the values read from the internal nodes, uniquely defines the value read 
from the tree. In the following, we describe these operations in more detail. 

A Write, writing a value v, writes into the set of variables which form the path between 
the root and the leaf labelled v, as follows: 

• The first internal node written is the parent of the leaf labelled v. If the leaf node is the 
left/right child, the value written is 0/1. 

• The ith internal node written is the parent of the (i - 1)st node. If the (i - 1)st node 
is the left/right child, the value written is 0/1. 

• The last node written is the root. 

A Read reads the set of variables which form the path from the root to a leaf labelled v, 
for some v. It subsequently returns v. 
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The root node is the first node read. 

Suppose the ith node read has value 0/1. Then, if its left/right child is a leaf, then the 
value v, where v is the label of the leaf, is returned. Otherwise, the left/fight child of 
the ith node is the (i + 1)st node read. 

For the case where the variables and values form a complete  binary tree, we describe 
the algorithm formally. Let Vm Vm- l • " " vl be the binary representation of  the n-ary value 
v, where m = log n and n is a power of 2. The root variable is labelled ~. For each variable 
labelled with the binary string l, the strings l0 and l 1 are the labels of its left and right 
children, respectively. We assume that the initial values of all the variables are zeroes, and 
that the first operation execution on V is an initializing Write that does not overlap with 
any Read. The operations are as follows. (The notation Vm " "  Vm refers to the variable vm 

and Vm • • • 1)m+l refers to the root variable 6.) 

Construction 2. 

Procedure  write(V) writing value 1) = 1)m1)m-1 " ' "  1)1" 

for p :=  1 to m do 
write  1)p in variable vm . . .  Vp+,. 

Funct ion read ( V ): 

for  p :=  m step - 1 unti l  1 do  
Vp :=  read variable Vm • • • 1)p+1 

return V m • .  • V l .  

(* zr(r) is w, where 7r(r[1)m.. .  1)2]) = tO[Vm' ' .  1)2]*) 

Funct ion read* (V): 

rl :k l  := read(V)  ; 

r2 : k2 := read(V) ; 
r3 : k3 := read(V) ; 

i f  k2 = k3 then  return k2 else return k l. 

The regularity of V has been shown in Chaudhuri & Welch (1990) with regular bits. In 
the following, we show the regularity with atomic bits. 

L e m m a  5. Suppose  r is a R e a d  o f  V returning value k and 7r(r) is w. Then there is no 

Write w f such that f o r  some node x, in the path f r o m  the root to the lea f  representing k, 

w[x]  ~, w'[x] ~, r[xl .  

Proo f  Suppose on the contrary that the statement of the lemma does not hold. Let w f 
be the latest Write succeeding w, and x be the farthest node from the root such that 
w[x] ~, w'[x]  : ~ r [ x ] . I f x i s t h e p a r e n t o f t h e l e a f r e p r e s e n t i n g k ,  wege tacon t rad ic t ion  

to zr (r [x l) = w[x]. In the remaining case, assume without loss of  generality that w writes 
0 in x. If  w ~ writes 1 in x, our choice of w r implies r should read 1 from x and go to a 
leaf different from the one representing k, a contradiction. If w f writes 0 in x, we have 
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w'[x0] - - ÷  w'[x] ---> r[xl 
contradicts the choice of x. 

r[xO], implying w[xO] ---;. w'[x0] ',, r[xO], which 
[] 

Lemma 6. The variable V is regular. 

Proof Let r be a Read in an execution of V. It is straightforward to verify the first two 
properties of definition 2 for r. The third property follows from lemma 5. [] 

Lemma 7. For read(V) executions ra and rb such that ra 
respectively, i fk  = U then re(ra) ~ re(rb). 

rb, reading values k a~zd k ~ 

Proof Suppose k = U, but re(rb) -< re(ra). Denote re(ra) as wa, and re(rb) as wb. Then, 
if the parent of the leaf representing value k is the node x, we have wt,[x] ~- Wa [x] • > 
ra[x] > rb[x], which contradicts lemma 5 (with rt, as r). [] 

Lemma 8. The variable V is weakly atomic. 

Proof Suppose for read(V) executions r and r '  such that r ~ r r, re(r) = re(r1). We 
show that for any r tt such that r '  > r", re(r) _~ re(r"). Denote re(r) as w and re(r") 
as w". Let k and k" be the values written by w and w", respectively. If k = k ~t, then by 
lemma 7, re(r) ___ re(r'~). Assume that k t' is different from k. Suppose re(r ~) -< re(r). 

Let y be the parent of the leaf representing k. Then, from w ~t > w[y] ~, r[y] ~ r ~, 
we have w ~' ~ r ~. Now }et x be the boolean variable farthest from the root common to the 
paths from the root to the leaves representing k and U'. Without loss of generality, assume 
that k is in the left subtree rooted at x and k ~t is in the right subtree. Then w~[x = 1] ~-~ 
r~[x = 0] implies there exists some w t~1 such that wtt[x] ----5. w'"[x = 0] ~ r~[x]. This 
implies w"lx] ~ w ' [x ]  - -~  r~'[x], contradicting lemma 5 (with r I~ as r). [] 

Theorem 2. Construction 2, with write(V) and read*(V) ,  implements an atomic vari- 
able. 

Proof The dependability of read*(V) follows from the weak atomicity of V, by lemma 8, 
and (i) from lemma 7, when k2 is returned, and (ii) from proposition 5 and the fact that if 
k2 ~ k3 then re(r2) 5 ~ re(r3), when k~ is returned. [] 

3.3 Alternating Write construction (Vidyasankar 1989) 

With write(V) and read*(V), this is an atomic variable construction from Vidyasankar 
(1989). The underlying weakly atomic variable construction is brought out to provide 
more insight into the atomic variable construction. Here read*(V) is an optimized ver- 
sion. 

Here all the variables are 1-writer multireader ones. The multivalued variable V is 
composed of a boolean atomic variable c and two multivalued regular variables B0 and B1, 
called buffers, which are used alternately for writing successive new values. Immediately 
after Bi is written, c is set to i. (We denote the boolean values as 0 and 1.) Thus c contains 
the index of the buffer Bi which was written by the most recent Write. 
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The writer uses a local (not shared) boolean variable cl. It is assumed that the initial 
value of cl is either 0 or 1, and the first operation execution on V is an initializing Write 
that does not overlap with any Read. 

Construction 3. 
Procedure write(V) writing value newval: 

cl := ",cl; 
write  newval in Bc,; 
write  cl in c. 

Function read(V): 

read k from c; 
read and return val from Bk. 

Function read* (V): 

read kl from c; 
read val 1 from B~,; 
read k2 from c; 
i f  ke = kl then  return val  1 
else 

read val2 from Bk2; 
read k3 from c; 
if k3 = k2 then return val2 
else (* k3 = k~ *) return vai l .  

A direct proof of construction 3, with write(V) and read*(V), is given in Vidyasankar 
(1989). Here we give a proof using the weak atomicity concept. 

We note that in this construction, for a Read r that reads and returns the value from Bi, 
re(r) = w, where 7r(r[Bi]) = w[Bi]. 

Lemma 9. For a Read r in an execution on V, ~(r[c]) < 7r(r). 

Proof Assume without loss of generality that r reads 0 from c. Denoting zr(r[c]) as wc, 
we have Wc[BO] > Wc[C] ~, r[c] ~ riB0], implying wc[Bo] ) r[B0]. From the 
regularity of Bo, it follows that wc <_ zr(r). [] 

Lemma 10. The variable V is regular, 

Proof Let r be a Read in an execution on V. The first two properties of definition 2 
follow from the regularity of the buffers. For the third property, suppose there is a Write 
w r such that Jr (r) > w: > r. Denoting zr (r) as w, we have w[c] ~ w:[c] ~ r[c], 
implying w -< zr(r[c)), that is, 7r(r) -< 7r(r[cl), contradicting lemma 9. The assertion 
follows. [] 

Lemma 11. For read(V) executions r and r t such that r 
respectively, from c, if  k = k I then zr(r) ~_ rr(r'). 

) r: reading values k and U, 
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Proof Suppose on the contrary that rr(r') -< rr(r). Denote rr(r) as w and n(r t) as w'. 
Assume without loss of generality that k = k' = 0, that is, both w and w' write in buffer 
Bo and write 0 in c. Since no two consecutive Writes write in the same buffer, there is a 
Write w", such that w' > w" > w, writing in Bl and writing 1 in c. Then we have 
w'[c] > w"[c] > w[B0] --,- r[B0] > r'[c], implying that w' -< rr(r'[c]), that is, 
rr(r') -< rr(r'[c]), contradicting lemma 9.  [] 

Lemma 12. The variable V is weakly atomic. 

Proof. Suppose for read(V) executions r and r' such that r > r', rr(r) = n(r'). We 
show that for any r" such that r' > r", zr(r) -< Jr(r"). Denote zr(r) as w and re(r") 
as w". Let k and k" be the values that r and r" read, respectively, from c. If k = k", 
then, by lemma 11, n(r) <_ rr(r"). Suppose k and k" are different. Assume without loss 
of generality that k is 0 and k" is 1. 

First we claim that w[c] ~. r'[c]. For, suppose on the contrary that rt[c] ~ w[c]. 
Since rZ reads 0 from c, w writes 0 in c, and two consecutive Writes write different values 
in c, it follows that r'[c] ~ toPic], where w p is the Write immediately preceding w. 
Then we have riB0] > r'[c] .~ wP[c] > w[Bo], implying riB0] > w[B0]. This 
contradicts the regularity of Bo. 

Since r '  > r", we have w[c] ',. r'[c] > r"[c], that is, w[c] 7 r"[c]. That is, 
w[c = 0] ~ r"[c = 1], implying that, if w s is the Write that immediately follows w, 
w[c = 0] > w s[c = 1] ~ r"[c = 1]. That is, w -< n(r"[c]). Therefore, if w" -< w, 
then w" -< n (r"[c]), contradicting lemma 9. 

The assertion follows. [] 

Theorem 3. Construction 3, with write(V) and read*(V) ,  implements an atomic vari- 
able. 

Proof. The dependability of read*(V) follows from lemmas 11 and 12. [] 

3.4 An Optimal I-Reader atomic variable construction 

Here, the resulting atomic variable construction, consisting of write(V) and read*(V) 
operations, is a slight variation of that of Burns & Peterson (1988). However, the approach 
of deriving the atomic variable, by identifying the weakly atomic variable V and using 
a general method to get read*(V) operation, is new. This approach facilitates a simple 
correctness proof. 

This is a 1-writer 1-reader atomic variable construction from regular variables. A mul- 
tivalued regular buffer b and two boolean regular variables RC and WC are used. The 
operations are given in the following. The variables lr, lw, savebuff and savebuffl are 
local variables. All the variables could have any initial values. We assume an initializing 
Write that precedes all other operation executions on V. Here also, the read*(V) is an 
optimized version. 

Construction 4. 
Procedure write(V) writing value newval: 
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write newval in b; 
read Ir from RC; 

write -, lr in W C. 

Function read(V): 

read l w from W C ; 

i f  lw  = R C  then return savebuff value 
else 

write l w in R C ; 

read savebuff from b; 
return savebuff value. 

Function read * (V): 

read 1 w from W C; 
if lw = RC  then return savebuff value 
else 

write l w in R C ; 

read savebuff from b; 
read l w from W C ; 

if lw = R C  then return savebuff value 
else 

write l w in R C; 
read savebuffl from b; 
read l w from W C ; 

i f  lw  = R C  then savebuff : -  savebuffl; 

return savebuff value. 

Lemma 13. The variable V is regular. 

Proof  Consider a Read r in an execution of V. It may return a value either from buffer b, 
or from savebuff without reading b. Let r ° be the most recent Read equal to or preceding 
r, which reads from b. Then n(r )  is rr(r °) which equals rr(r°[b]), and this is defined by 
the regularity of b. If r ~ n ( r ) ,  then r ° ~ 7r(r°), and hence r°[b] ~ :r(r°[b]), 

a contradiction to the regularity of b. Therefore property (ii) of definition 2 is satisfied 
for r. For property (iii), suppose there is a Write w' such that rr(r) ~ w' ~ r. Now 
rr(r °) ~ w' ~ r ° would imply n(r°[b]) ~ w'[b] ~ r°[b], contradicting the 
regularity of b. Thus property (iii) is satisfied for r °. Suppose r ~ r °. Then, from the 
above discussion, we have w~[b] / ~ r°[b]. That is, r°[b] --,- w'[b]. Then r°[RC] 

r°[b] --,- w~[b] ~ w'[RC] ~ w '[WC] ~ r[WC] implies r will find W C  ~ RC.  

(Note that by our choice of r °, no Read in between r ° and r writes R C  since it does not 
read b.) Hence r will read b, contradicting the assumption that it returns savebuff value 
without reading b. [] 

Lemma 14. Consider three Reads r, r I and r" such that r 

b, then ~r(r) -'< zr(r"). 

r' > r". I f  r I' reads from 
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Proof Suppose on the contrary that Jr(r") ~ zr(r). Denote rr(r) as w and zr(r ft) as 
w 't. Then w H ~ w. We claim that there cannot be any other Write in between w 
and w ~'. For, if there is one, say w ~", then w ~ ~ w r" ~ w --,- r .~ r"  implies 
w" -----+ w"' ~ r";  then the assumption that zr(r Ip) is w '~ contradicts the regularity of  
V. Also, again from the regularity of  r",  w / ~ r ~', that is, r"  --,- w. In fact, we have 
r~[b] --~ w[b], since r"  reads b. From w" ~ w --,- r ~ r ' ,  we have w 'r ~ r ' .  
Therefore, w"[b] ~ w"[WC] ~ r'[WC] ~ r"[WC] ~ r"[b]-- , -w[b]  
w[WC]. That is, wt'[WC] ~ r~[WC] ~ r"[WC] ~ w[WC]. Thus both r '  and r rr 
read the same value of  WC. Since r '  would have made sure that RC = WC, r t~ would 
certainly find that RC = WC, and hence would not read the buffer b, contrary to the 
assumption. [] 

Lemma 15. The variable V is weakly atomic. 

Proof ConsiderthreeReadsr, rr andrr~ suchthatr ~ r' ~ rP~andzr( r )=  zr(r ' ) .Let  
r ° be a Read such that (i) it is the most recent Read equal to or preceding r f/, (ii) it succeeds 
r r and (iii) it reads from b. From lemma 14, zr(r) -< re(r°), and of  course rc(r °) = zr(r"). 
If no such r ° exists, then r"  returns the same savebuff value as was returned by r ' .  That 
is, zr(r) = zr(r"). [] 

Theo rem 4. Construction 4, with wri te(V)  and r e a d * ( V ) ,  implements an atomic vari- 
able. 

Proof. The assertion follows from lemma 15 and the observation that read*(V)  specifi- 
cation is according to the general procedure, described in § 2, with some simplification. 
Nevertheless, we give a detailed proof showing that new-old inversion does not occur with 
read*(V)  executions. 

Consider a read*(V)  execution R. It starts with the first r ead(V)  execution, say r. 
If  it returns savebuff value (line 2 of the procedure), which is the value returned by the 
predecessor read*(V)  execution, then clearly there is no new-old inversion. Suppose r 
is performed to completion and the next read(V)  execution, say r t, is started. If savebuff 
value is returned, we have zr(r) = zr(r I) and the weak atomicity (lemma 15) justifies the 
return of  this value. In the remaining case, r I is performed to completion, saving the value 
read from b in savebuffl, and a third read(V)  execution, say r",  is started. If  r"  were to 
return savebuffl value, then again due to weak atomicity, R can return savebuffl value. 
If  r "  were to read from b, then R returning the value read by r is justified by lemmas 14 
and 15. (Hence r 'r need not read b at all, since that value is not going to be used in 
any way.) [] 

The optimality of the atomic variable construction, with respect to the shared space 
requirement, has been shown in Bums & Peterson (1988). 



Construction of atomic shared variables 259 

4. Discussion 

The weak atomicity concept provides a general intermediate step in the construction of 
atomic variables from regular ones. It facilitates new constructions, and simplifies the 
correctness proofs. 

Lamport (1986) has shown that there is no construction of atomic variable from regular 
ones in which only the writer writes. Since we are able to construct atomic variables from 
weakly atomic ones without the necessity of the readers writing, it follows that there is no 
construction of weakly atomic variable from regular ones in which only the writer writes. 

Sibsankar Haldar's comments on the earlier versions of this paper and the reports of two 
anonymous referees helped to improve the presentation considerably, 
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