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ABSTRACT. Several weak base (in the sense of A. V. Arhangel'skiT)

metrization theorems are established, including a weak base generalization of

the Nagata-Smirnov Metrization Theorem.

1. Introduction. The notion of a symmetrizable space was introduced in

[4, p. 125] by A. V. Arhangel'skiï in order to study the problem of the metriza-

tion of quotient images of metrizable spaces. The idea of a weak base was then

introduced in the study of symmetrizable spaces [4, p. 129].  In [10], T. Ho-

shina showed that every compact Hausdorff space with a point countable weak

base is metrizable. This result was generalized by T. Shiraki who showed that a

regular M ""-space is metrizable if and only if it has a point countable weak base

[18].  Also, R. Hodel has established a weak base generalization of the Alexan-

droff-Urysohn metrization theorem [9] .In §2 we establish several weak base

metrization theorems including a weak base generalization of the Nagata-Smirnov

Theorem.

Let G be a collection of subsets of a space X. If x Eg for some g EG,

then we define St(;t, G) = \J{g: x Eg E G } and St2(x, G)= U{St(;>, G):

y E St(x, G )}.   We assume throughout the paper that all topological spaces are

Tx. Also, we let N denote the set of all positive integers.

2. Weak bases and metrization.  In this section we sharpen many well-

known metrization theorems, including the Nagata-Smirnov Theorem, by essen-

tially replacing the notion of an open basis by that of a weak base.

A collection B of subsets of a space X is said to be a weak base for X pro-

vided that to each x EX, there exists BXEB such that (i)x is in b for every b in

Bx; (ii) if a and b are in Bx, then there exists c in Bx with c C a n 6; (iii) a sub-

set F of X is closed if and only if given x E X - F, there exists b in Bx with b

fl F = 0. The concept of a weak base is due to A. V. Arhangel'skiï [4, p. 129].

If to each x E X we assign a collection Bx of supersets of {x} such that

B ~ U {Bx: x E X} is a weak base by virtue of the collections Bx, i.e., the
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collections Bx satisfy conditions (i), (ii) and (hi) of the preceding paragraph, then

we say that the collection Bx is a local weak base at x for each x in X.

Let GX,G2, . . . be a sequence of coverings of a space X such that Gn + X

refines Gn for all n; if Bx - {St(x, Gn): n E N } is a local weak base at x for

each x EX, i.e., if B =[J {Bx : x 6 X} is a weak base by virtue of the collections

Bx, then the sequence Gx, G2, . . . is said to be a weak development for the

space X.   If each cover Gn consists of open sets, then Gx, G2, ... is a develop-

ment for X.

The proof of Theorem 3 of [6] carries over directly to prove the following

weak base Frink Metrization Theorem. F. Slaughter has essentially established the

same result and noticed, amongst others, the equivalence of Theorem 2.1 with the

Niemytzki-Wilson metrization theorem [19]. With respect to the Niemytzki-

Wilson metrization theorem, also see [7], [8], [12] and [13].

Theorem 2.1 (Frink). A necessary and sufficient condition that a space X

be metrizable is the following. For each x in X, there exists a decreasing sequence

{ Vn(x): nEN} = Bxof subsets of X such that Bx is a weak local base at x, that

is, B = \J {Bx: x E X} is a weak base by virtue of the collections Bx, and such

that the following condition holds: given a set Vn(x), there exists a natural num-

ber m = m(x, n)>n such that if Vm(x) r\Vm(y)^0, then Vm(y) C Vn(x).

The 'double sequence' theorem of Nagata [16] is an easy consequence of

Theorem 2.1.  In fact, we have the following weak base form of this theorem.

Theorem 2.2.  A space X is metrizable if and only if for each point x of X,

there exist two sequences {Un(x): nEN} and {Vn(x): nEN} of supersets of

{x} such that the following four conditions hold:  (i) for each x in X, {Un(x):

nEN} is a local weak base at x; (ii) given Vn(x), there exists a natural number

m = m(x, n) such that Um(x) C Vn(x); (hi) y not an element of Un(x) implies

that Vn(x) n Vn(y) = 0; (iv) y in Vn(x) implies that Vn(y) C Un(x).

Proof. If {x} is an open set, then we may suppose that Un(x) = Vn(x) =

{x} for « = 1, 2, ... ; conditions (i), (ii), (iii), and (iv) are still valid. Given x in

X and a natural number n, define Hn(x) = Vx(x) n • • • n Vn(x).

Let Hn(x) be given.  By (ii), we have Un(x) C V¡(x) for i = 1, 2, . . . , n.

Let k = max{«f: i = 0, 1.n} where n0 = n.   If {x} is not open, we may

choose m in A so that Um(x) is a proper subset of f] {U¡(x): i = 1, 2, . . , , k}.

Then m> k> n and we have Um(x) C Hn(x) for some m> n.  If {x} is open,

then clearly there is m > n with Um(x) C Hn(x). As a first consequence, it fol-

lows that {H¡(x): i G A} is a weak local base at x.

Let Hn(x) be given. Choose a natural number k > n such that Uk(x) C

Hn(x). Choose a natural number m > k such that Um(x) C Hk(x). We have
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Hm&) c Umix) c #*(*) c Uk(x) C Hnix). Suppose that Hmiy) n Hm{x)±ç6.

If y is not in i/m(x), then Vm(x) n KM(^) = 0 so that ffm(x) n /7m(j0 = 0;

it follows that y is in Umix). Since i/m(x) C Hkix) C Ffc(x), we have that y is

in rfc(jc). It foUows that Vkiy) C Uk(x) C tf„(x).  But /r^C^) C tffc(>0 C

Ffc(7) so that #m(.>0 C ¿/„(x). The weak local bases {HJpc): n6iV] satisfy the

conditions of Theorem 2.1, so that X is metrizable, completing the proof.

J. Nagata has given an elegant proof of the Nagata-Smirnov Theorem by use

of the 'double sequence' theorem [17, p. 194] ; actually however, Nagata's proof

established the stronger result below.

Theorem 23 (J. Nagata).  A necessary and sufficient condition that a

regular space X be metrizable is that the following two conditions be satisfied:

(1)  The space X has an open basis which may be represented as a sequence

Gx, G2, . . . ,of closure preserving collections;

(2) { Vnix): nEN} is a neighborhood basis for each x in X where Vnix)

= X ifx £Gfor every GEGn and otherwise Vnix) = C\{G: x EG EGn}.

In [5] it is shown that a regular space is metrizable if and only if it has a

a-hereditarily closure-preserving open base. An advantage of Theorem 2.3 over

the classical Nagata-Smirnov Theorem may be seen in the ease with which the

Burke-Engelking-Lutzer Theorem may be derived from Theorem 2.3. For the

details, see [14].

We shall now establish a weak base version of Theorem 2.3.

Theorem 2.4.  A necessary and sufficient condition that a space X be

metrizable is that X have a sequence Gx, G2, . . .  of closure-preserving covers

which satisfy the following two conditions:

(1) Let Vnix) = [~\{G:xEGEGn};then{ Vnix): nEN} is a local

weak base at x for each x EX.

(2) For each x in X there exists H¡ix) in G¡ such that x is a member of

H¡ix) for all i and such that if Vnix) is given, then there exists a natural number

m = min, x)for which cl(¿/m(x)) C Vnix).

Proof. Since the necessity of the condition follows easily from Stone's

theorem that every metric space is paracompact [20], we need only prove the

sufficiency of the condition.

IfxEXandn is a natural number, let Wnix) = X - \J{c\iV): x $Êcl(f)

and V E Gn}. If diHmix)) C VH{x), then define UHm(x) = Vnix) and Vnm{x)

= Hmix) n Wmix); if c\iHmix)) is not contained in K„(x), then define Unmix)

= XandVnmix)=Vnix)nWmix).

We shall show that X is metrizable by showing that the sequences {Unmix):

n EN;m EN} and {Vnm: nEN;mEN} satisfy conditions(i),(ii), (iii)and (iv) of

Theorem 2.2.
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Let F be closed and x be a point of X not in F.  Choose Vn(x) with ^„(x)

n F = 0. There exists a natural number m with d(Hm(x)) C Vn(x). Then

Unm(x) = Vn(x) so that Unm(x) C\ F = 0. Now let A be a nonempty subset of

X such that if x is a point of X not in A, then there exist integers n and m, de-

pendent upon x and A, such that Unm(x) (~\A = 0. Since Unm(x) C\A=0,

we have t/„m(x) *= X.   It follows that Unm(x) = Vn(x). Since (K„(x): « € JV}

is a local weak base for each x in X, it follows that A is closed, completing the

proof that {Unm(x): n EN;m EN} is & local weak base at x for eachxinX,

i.e., condition (i) of Theorem 2.2 is satisfied.

Let Vnm(x) be given. We shall show that there exist integers/' and k such

that Ukj(x) C Vnm(x), thereby showing that condition (ii) of Theorem 2.2 is

satisfied. First suppose that Vnm(x) = Vn(x) n Wm(x). Since Wm(x) is open,

there exists a natural number i such that V¡(x) C Wm(x). Choose a natural num-

ber p such that ^(x) C Vn(x) D V¡(x) and then choose a natural number k such

that d(Hk(x)) C Vp(x). We have

Hk(x) C Vp(x) C F„(x) n Ff(x) C F„(x) n Wm(x) = V„m(x).

Since Kfc(x) C Hk(x), we have Kfc(x) C Vnm(x). Second, suppose that Vnm(x)

= Hm(x) n Wm(x). Choose a natural number i with V¡(x) C Wm(x) and choose

a natural number k so that Vk(x) C Ff(x) n Fm(x). Since Km(x) C //m(x), it

follows that

Ffc(x) C F,(» n Km(x) C Wm(x) n ffm(,) = F„m(x).

In either case, we have an integer k such that Vk(x) C Vnm(x). By condition

(2), there exists an integer/' such that cl(//y(x)) C Vk(x). Then, by definition,

we have Ukj(x) = Vk(x). It follows that Ukj(x) C Vnm(x), as desired.

Assume that^ is not a point of Unm(x). Then Unm(x) ±X whence

^n«M = ^«W n "BW and cl(//m(x)) C KB(x) = Unm(x) so that>- is not

in d(Hm(x)). Since ̂  is not in d(Hm(x)), we have d(Hm(x)) n ^(7) - 0.

Since F„m(x) C Fm(x) and V„m(y) C R/M(^), it follows that Vnm(x) n

^nm(^) = ^ showing that condition (iii) of Theorem 2.2 is satisfied.

Suppose that/ is an element of Vnm(x). Since Vnm(x) C Vn(x), we have

that y is also an element of Vn(x) so that Vn(y) C Vn(x). But K„m(j) C

Vn(y) so that K„m(j) C Vn(x) C i/„m(x), that is, condition (iv) of Theorem

2.2 is satisfied. The metrizability of A' now follows by Theorem 2.2, completing

the proof.

We shall now prove a weak base version of Morita's 'double starring' metri-

zation theorem [15]. In order to avoid multiple subscripts in the proof of The-

orem 2.5, we shall write sequences in functional notation; thus, we write x(ri)

instead of xn and x(«(i')) instead of xn-, etc.
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Theorem 2.5. A necessary and sufficient condition that a topological

space X be metrizable is that Xhave a weak development Gil), Gi2), . . . such

that ifBx = [St2ix, Gin)): n EN} for each xEX, then B = \J{BX: xEX}

is a weak base by virtue of the collections Bx.

Proof. The necessity of the condition is clear. To prove the sufficiency,

let Gil), G(2), ... be a weak development such that B = \J{BX: x E X} is a

weak base by virtue of the coUections Bx — {St2(x, Gin)): n EN}.

We shall first show that if a sequence {xin)} converges to x, then given any

natural number m, {xin)} is eventually in the set St(x, Gim)). Let {xin)} con-

verge to x and define S = {x} U {xin): n E N}. Suppose that S is not closed.

Then there exists a point y not in S such that St(j>, Gin)) n S =£ 0 for all nat-

ural numbers n; that is, there exists a subsequence {x(i'(n))} of {xin)} with

x{i{n)) in St(^, Gin)) for each natural number n. Now let A = {y} U (x(i(n)):

n G A'} and suppose that A is not closed. Then there exists a point z not in A

such that St(z, Gin)) n A =£ 0 for all natural numbers n; that is, Jc(i(n(/))) E

St(z, Gij)) for j EN.  We also have x(i(n(f))) in the set St(>-, G(n(/))) for all

/ E N.  Since n(/) >/, it follows that St(^, G(n(/))) C St(j, £?(/)) so that

St(z, Gif)) nStiy, G{f)) ¥=0 for ally SA/.  Since z and y are distinct, this is

clearly impossible and necessarily the set A is closed. But (x(i'(n))} converges to

x and x is not in A, so that the set A cannot be closed; this contradiction shows

that the set S must be closed.

Now suppose that there exists a natural number m and a subsequence

{x(n(i'))} of {xin)} such that x(n(i)) is not an element of St(x, c7(m)) for each

natural number i, that is, suppose that {x{n)} is not eventually in the set

St(x, G{m)) for some m. Since {x{n)} converges to jc, necessarily {x(n(i))} con-

verges to x. By the argument of the previous paragraph, the set B = {x} U

{x{nii)): i EN} is closed. But x(n(i)) not being in St(x, Gim)) for all i e N then

impUes that the set B - {x} is also closed, which contradicts the fact that

{xinii))} converges to x. It follows that the sequence {xin)} is eventually in the

set St(jt, Gim)) for any natural number m, that is, {xin)} converges to x if and

only if {xin)} is eventuaUy in every set St(jc, Gim)), m EN.

We shall now show that the space X is first countable. Given a point x in X

and a natural number n, let H = X - St2(x, Gin)) and let F = {y: St2iy, GQ))

n H =£ 0 for all i £ N}. Assume that F is not closed. Then there is a point z

not in F with St(z, G(/)) C\F^0 for each natural number i, that is, there exists

a sequence {/(/)} in F with /(i) e St(z, C(i')) for all i E N.  Given a definite

/(/), there exists a sequence {n(/)> in H such that n(/) is in St2(/(i), G(f)) for

each natural number/. Then {«(/)} converges to /(i) so that {A(/)} is eventually

in any set St(/(i), G(&)) for each natural number k.  Thus there exists a subse-
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quence {h(j(k))} of {h(j)} such that h(j(k)) is in St (/(î), G(k)) for ail kEN.

In particular, we have h(j(i)) in St(/(¡), G(i)). Since f(i) is an element of

St(z, G(i)) for all natural numbers i, we have h(j(i))int(St2(z, G(i)) for all í GN.

But then, by the definition of F, we have z in F, which contradiction shows that

the set F must be closed.  It follows that x E int(St2(x, G(n))), that is, the space

Xis first countable.

Suppose that x is not in int(St(x, G(n))). Then, since X is first countable,

there exists a sequence {a(i)} in X - St(x, G(n)) with {a(i)} convergent to x. It

follows that there exists a subsequence {a(i(/))} of {a(i)} with a(i(j)) E

St(x, G(j)) for all /' E N, which is a contradiction.  It follows that x is in

int(St(x, G(n))) for all x in X and all natural numbers n.

For each x in X and natural number n, let Vn(x) = St(x, G(n)). Given a

set Vn(x), since x is in int(Kn(x)), there exists a natural number m> n such

that St2(x, G(m)) C Vn(x); similarly, there exists a natural number k> m such

that St2(x, G(k)) C Fm(x).  If Vk(x) n Ffc(j>/) =£ 0, then it is easy to show that

Vk(y) C Vn(x). That X is metrizable now follows by Theorem 2.1, completing

the proof.

The following theorem may now be established from Theorem 2.5.

Theorem 2.6.   The following are equivalent for a space X.

(1) 77ze space X is metrizable.

(2) 77ie space X has a weak development Gx, G2, . . . such that ifxEV

where V is open, then there exists a neighborhood Uofx and a natural number

n for which St(U, Gn) C V.

(3) 77ie space X has a weak development Gx, G2, . . . such that if A C V

where A is compact and V is open, then St(A, Gn)C V for some n.

Proof.  That (1) implies (2) and (2) implies (3) are obvious. Therefore,

assume that Gx, G2, . . . is a weak development which satisfies condition (3).

Suppose that Gx, G2, . . . does not satisfy the double starring condition of

Theorem 2.5. Then there exists x in F where Fis open such that St2(x, Gn) is not

contained in V for all nEN. For each natural number n, there exists Hn in Gn such

that St(x, Gn)C\ Hn¥: 0 and Hn is not a subset of V.  Let xn be an element of

St(x, Gn)nHn for all n EN.   There exists a natural number M such that x„ G

F for all n > Af.   Let S = {x} U {xn: n >M}. We have S C V and S is com-

pact.  By condition (3), we must have St(S, Gm) C V for some m EN, which is

a contradiction since Hm C St(5, Gm). It follows that Gx, G2, . . . must satisfy

the double starring condition of Theorem 2.5, completing the proof.

The antecedents of Theorem 2.6 are as follows: F. B. Jones showed that a

regular space is metrizable if and only if it has a development satisfying condition

(3) of Theorem 2.6 [11] ; A. V. Arhangel'skfl [2] and A. H. Stone [21] showed

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



WEAK BASES AND METRIZATION 343

that a T0 -space is metrizable if and only if it has a development which satisfies

condition (2) of Theorem 2.6.

A weak base B for a space X is said to be strongly uniform provided that if

K C V where K is compact and V is open, then only finitely many members of

B simultaneously meet both K and X - V. In [3], Arhangel'skil showed that a

Hausdorff space is metrizable if and only if it has a strongly uniform open base.

This theorem, for weak bases, is an easy consequence of Theorem 2.6.

Theorem 2.7.  A topological space X is metrizable if and only ifX has a

strongly uniform weak base.

Proof.   Let B - {Bx: x E X} be a strongly uniform weak basis for the

space X, where Bx is a local weak base at x for each x in X.   If x is an element

of X such that {x} is open, then let Vnix) = {x} for each natural number n. If

{x} is not open, let Vnix) be the intersection of n distinct elements of Bx.  Let

Gn = {Vnix): x EX}. The sequence Gx, G2, ... is easily seen to be a weak

development for X.   Let A E V where A is compact and V is open.  Since B is

strongly uniform, only finitely many members of B meet both A and X - V, say

m members of B. Then St(4, Gm + X) C V, for if this is not true, then there

exists 7Y= Vm + xix)EGm + x such that H n A ¥=0 and H n iX - V)J=0.

But Vx{x), V2{x), . . . , Vm + Xix) are m + 1 distinct members of B, each of

which meets both A and X - V, which is a contradiction. Consequently,

St(4, Gm + X) E V and X is metrizable by Theorem 2.6. The converse follows

easily from A. H. Stone's theorem that every metric space is paracompact, com-

pleting the proof.

A weak base B for a space X is said to be regular provided that if x E V

where V is open, then there exists an open set U such that x EU E V and only

finitely many members of B simultaneously meet both U and X - V.   In [1]

Arhangel'skil showed that a topological space X is metrizable if and only if it has

a regular open basis. The following is almost immediate from Theorem 2.7.

Theorem 2.8. A topological space X is metrizable if and only if X has a

regular weak basis.
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