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Abstract: The paper proposes the concept of a weak Berge

equilibrium. Unlike the Berge equilibrium, the moral ba-

sis of this equilibrium is the Hippocratic Oath "First do

no harm". On the other hand, any Berge equilibrium is a

weak Berge equilibrium. But, there are weak Berge equi-

libria, which are not the Berge equilibria. The properties

of the weak Berge equilibrium have been investigated. The

existence of the weak Berge equilibrium in mixed strate-

gies has been established for �nite games. The weak Berge

equilibria for �nite three-person non-cooperative games

are computed.

Keywords: three-person game, non-cooperative game,

Berge equilibrium, weak Berge equilibrium

1 Introduction

Awide class of economic, social andpolitical processes are

well describedby themethods of game theory.Often,when

making decisons, participants in such processes can not

agree among themselves that they are modelled by using

non-cooperative games. Certainly, the most well-known

concept of a solution in the theory of non-cooperative

games was proposed by John Nash in 1950 in [1]. For

this work in 1994 he was awarded the Nobel Prize in Eco-

nomics.

However, the application of the Nash equilibrium con-

cept in the modelling of real socio-economic and political

con�icts, in some cases, leads to paradoxical results, such

as the "prisoner’s dilemma". One of the �rst who has no-

ticed this was Claude Berge in [2]. In this book, Berge pro-

posed a new concept of equilibrium, according to which,

players are divided into coalitions, while players of one
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coalition can work together to maximize the payo�s of

players of another coalition. Apparently, a crushing review

byMartin Shubik [3] on the book of Berge [2], led to the fact

that Claude Berge switched his attention from game the-

ory to other areas of mathematics. After decades, based on

Berge’s ideas, V.I. Zhukovsky [4, 5] and K.S.Weisman [6, 7]

suggested a new altruistic concept of equilibriumwhich is

calledBerge equilibrium. In this concept, the players act on

the principle of "One for all and all for one!" from Alexan-

der Dumas’s novel "The Three Musketeers". Another inter-

pretation of the Berge equilibrium is [8] the Golden Rule

of morality: "Treat others the way you want to be treated".

The development of the Berge equilibrium concept is de-

scribed in details in the review [9]. It is worth noting that

the Berge equilibrium solves such well known paradoxes

in game theory as the "Prisoner’s Dilemma", "Battle of the

sexes" andmany others. Also the use of Berge equilibrium

is possible to applications in economics [10].

At the same time, the Berge equilibrium concept has

some drawbacks. One of these drawbacks is that the Berge

equilibrium rarely exists in pure strategies. Moreover, in

N-person games (N ≥ 3) with a �nite set of strategies,

the Berge equilibrium may not exist in the class of mixed

strategies. Such examplewas constructed, in particular, in

[11]. The lack of Berge equilibrium might be caused by the

fact that it is often impossible to follow the Golden Rule

of morality in relation to all players at the same time. For

example, if the goals of two players are opposite, then the

third player will not be able to apply the Golden Rule to

them simultaneously. In this case, increasing the payo� of

one player, simultaneously reduces the payo� of the other.

In this paper, we introduce the concept of weak equi-

librium according to Berge (theWeak Berge Equilibrium or

theWBE). Unlike the Berge equilibrium, this concept is not

based on the Gold Rule of morality. The weak Berge equi-

librium concept is based on the Hippocratic oath "First do

no harm!". Here, we will assume that, making a decision,

each player adheres to the situation, one-sided deviation

that can cause harm to one of the other players. Further,

in Section 2, the concept of weak Berge equilibrium is for-

malized, some of its properties are studied and su�cient

conditions for the existence of such an equilibrium in N-
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person games are given. In Section 3, a numerical WBE

approximate search method based on [12–14] is proposed,

andnumerical simulation results are given for �nite games

of three person.

2 The concept of weak Berge

equilibrium

Let us consider a non-cooperative N-person game in nor-

mal form:

Γ = ⟨N, {Xi}i∈N, {fi(x)}i∈N⟩, (1)

where N = {1, 2, . . . , N} denotes the set of serial num-

bers of the players; the set of xi strategies of the i-th player

(i ∈ N) is denoted by Xi, where Xi ⊆ R
ni . As a result of

the players choosing their strategies, the strategy pro�le

is x = (x1, . . . , xN) ∈ X = X1 × X2 × . . . × XN ⊆ R
n (n =

n1 +n2 + . . .+nN). On the set of strategy pro�les X for each

player i (i ∈ N) the scalar payo� function fi(x) : X → Rwas

de�ned. The value of fi(x) realized on the strategy pro�le

chosen by the players x ∈ X is called the payo� of the i-th

player.

The game Γ is played as follows. Each player i (i ∈

N), without entering into a coalition with other players,

chooses his strategy xi ∈ Xi. As a result of this choice, the

strategy pro�le is x = (x1, . . . , xN) ∈ X. After that, each

player i gets his payo� fi(x).

Thus, when making a decision, the player is forced to

focus not only on his payo� function, but also on the pos-

sible choice of the other participants in the game.

Further, (yi , x−i) denotes the strategy pro�le

(xi , . . . , xi−1, yi , xi+1, . . . , xN), which was obtained from

the strategy pro�le x by replacing the strategy of the i-th

player xi on yi.

The most popular concept of a solution in the theory

of non-cooperative games is the Nash equilibrium.

De�nition 1. A strategy pro�le xe = (xe1, . . . , x
e
N) ∈ X is

called a Nash equilibrium (NE) in the game (1) if for every

x ∈ X the system of inequalities

fi(x
e) ≥ fi(xi , x

e
−i) (i ∈ N) (2)

is true.

The Nash equilibrium strategy pro�le xe ∈ X is stable with

respect to deviation of an individual player from his strat-

egy which enters in xe. Applying the concept of the Nash

equilibrium, the player proceeds from his own sel�sh mo-

tives. He only cares about his payo�, without taking into

account the interests of other players. However, this ap-

proach leads to a number of paradoxes, such as the Tucker

problem in the classic game "Prisoner’s Dilemma".

Example 1. Let us consider the Prisoner’s Dilemma game.

Two criminals are arrested on suspicion of a crime, but the

police do not have direct evidence. Therefore, the police,

have isolated them from each other, and o�ered them the

same deal: if one testi�es against the other, but he keeps

silence, the �rst one is released for helping the investiga-

tion, and the second gets 10 years – the maximum term of

imprisonment. If both are silent, their deed goes through

a lighter article, and each of them are sentenced to a year

in prison. If both testify against each other, each receives

aminimum period of 2 years. Every prisoner can choose to

keep silence or testify against another. However, none of

them knows exactly what the other will do. The Nash equi-

librium in this game dictates players to testify against each

other, although silence will be more bene�cial for them.

Thus, the players’ egoism in the Prisoner’s Dilemma

leads them to the most unpro�table solution.

The opposite approach to the concept of equilibrium,

based on altruism, is called the Berge equilibrium.

De�nition 2. A strategy pro�le xB = (xB1 , . . . , x
B
N) ∈ X is

called a Berge equilibrium (BE) in the game (1), if for each

x ∈ X the system of inequalities

fi(x
B) ≥ fi(x

B
i , x−i) (i ∈ N) (3)

is true.

The di�erence between Nash and Berge equilibria is that,

in a Nash equilibrium, each player directs all e�orts to in-

crease individual payo� asmuch as possible. The antipode

of (2) is (3), where each player strives to maximize the pay-

o�s of the other players, ignoring its individual interests.

Such analtruistic approach is intrinsic to kindred relations

and occurs in religious communities. The elements of such

altruism show up in charity, sponsorship, and so on.

In Example 1, players receive the best result if they use

the Berge equilibrium, thus the Berge equilibrium solves

the Tucker problem in the Prisoner’s Dilemma.

Property 1. A Berge equilibrium in game (1) with N = =

{1, 2} coincides with a Nash equilibrium if both players in-

terchange their payo� functions and then apply the concept

of Nash equilibrium to solve the game.

In view of Property 1, all results concerning the Nash equi-

librium in the two-player game are automatically trans-

ferred to the Berge equilibrium (of course, with an "in-
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terchange" of the payo� functions as described by Prop-

erty 1).

Di�erences appear when N ≥ 3. So, the Berge equilib-

riummaynot exist in a �nite 3-person games. The example

of this is given in [11]. The following example is taken from

[11].

Example 2. Let us consider the following three-player

game in which each of the players has two pure strategies.

Pure strategies of the �rst, the second, and the third player

are denoted as A1, A2; B1, B2; C1, C2, respectively.

C1 :
A1

A2

B1 B2
(

(2, 1, 0) (1, 1, 1)

(2, 0, 1) (1, 0, 2)

)

,

C2 :
A1

A2

B1 B2
(

(1, 2, 0) (0, 2, 1)

(1, 1, 1) (0, 1, 2)

)

.

The left-hand matrix refers to the pure strategy C1
of the third player, while the right-hand matrix refers to

his/her pure strategy C2. Let usnote that this game is a very

special one: none of the players has any possibility to in�u-

ence their own payo�, even if they use any of their pure or

mixed strategies. On the contrary, players’ payo�s depend

exclusively on the choices of the remaining players.

One can easily check that the second and the third

players’ best support to any of the �rst player’s (pure or

mixed) strategies is a pair of pure strategies (B1, C1); the

�rst and the third players’ best support to any of the sec-

ond player’s (pure or mixed) strategies is a pair of pure

strategies (A1, C2); and �nally, the �rst and the second

players’ best support to any of (pure or mixed) strategies

of the third player is a pair of pure strategies (A2, B2). This

gamehasnoBerge equilibria, neither in pure, nor inmixed

strategies.

Next, we recall the concept of Pareto optimality, and

then formalize the Weak Berge Equilibrium.

De�nition 3. The alternative x* is a Pareto-maximal alter-

native in the N-criteria problem

⟨X, {fi(x)}i∈N⟩,

if the system of N inequalities

fi(x) ≤ fi(x
*) (i ∈ N),

with at least one strict inequality, is inconsistent.

The moral basis of the following de�nition is the Hippo-

cratic Oath "First do no harm!".

De�nition 4. Let us call the strategy pro�le xw =

(xw1 , . . . , x
w
n ) a weak Berge equilibrium (WBE), if for each

player i (i ∈ N) strategy xwi is Pareto-maximal alternative in

the N − 1-criteria problem

Γi = ⟨Xi , {fj(xi , x
w
−i)}j∈N\{i}⟩.

Let us compare to the game Γ an auxiliary game

Γ̃ = ⟨N, {Xi}i∈N, {gi(x)}i∈N⟩, (4)

where the set of playersNand the set of strategiesXi (i ∈ N)

are the same as in the game (1), and the payo� functions

gi(x) have the form

gi(x) =
∑

j∈N\{i}

fj(x). (5)

Lemma 1. The Nash equilibrium strategy pro�le in the

game (4) is a weak Berge equilibrium strategy pro�le in the

game (1).

Proof. Let xe is Nash equilibrium strategy pro�le in the

game Γ̃, i.e.,

gi(x
e
1, ..., x

e
i−1, xi , x

e
i+1, ..., x

e
n) ≤ gi(x

e) (i ∈ N). (6)

With regard to (5), the inequality (6) can be rewritten as

∑

j∈N\{i}

fj(xi , x
e
−i) ≤

∑

j∈N\{i}

fj(x
e) (i ∈ N). (7)

Suppose xe is not a WBE strategy pro�le, then there

exists a number i for which the system of inequalities is

consistent with

fj(xi , x
e
−i ≥ fj(x

e) (j ∈ N \ {i}), (8)

of which at least one inequality is strict.

Adding inequalities (8), we obtain

∑

j∈N\{i}

fj(xi , x
e
−i) >

∑

j∈N\{i}

fj(x
e) (i ∈ N),

that contradicts (7).

Similarly, the following lemma can be obtained.

Lemma 2. Let us suppose that in the auxiliary game (4) the

payo� function is

gi(x) =
∑

j∈N\{i}

αj fj(x) ∀αj > 0.

Then the Nash equilibrium strategy pro�le in the

game (4) is the weak Berge equilibrium strategy pro�le in

the original game (1).
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Remark 1. To construct a WBE strategy pro�le in the

game (1), we can use the following algorithm:

1. compose the auxiliary game Γ̃;

2. construct the strategy pro�le xe which is the Nash

equilibrium strategy pro�le in the auxiliary game Γ̃;

3. the found strategypro�le xe will be theWBE strategy

pro�le in the original game Γ.

As an example, consider the game "Snowdrift" which

is proposed in [15].

Example 3. Let us consider the three-player Snowdrift

game which is shown in Table 1. The history of the game

lies in the fact that A, B and C are the drivers of three cars,

that got stuck in a snowdrift at night, each of them has a

shovel. If a solution is found for any one car, others can

use it. Every driver chooses to dig or wait (in the hope that

someone else will dig, or that a snowplowwill come to the

place of incident). Digging will cost 6 points, which are di-

vided equally between those who perform the work; pro-

vided that there is at least one digger. If the players dug

out by themselves of a snowdrift, then each player will get

4 points. Thus, if all three players dig, then everyone will

get 2 points. If two players dig, theywill get one point each,

and the third player will earn 4 points. If one player digs,

thenhis payo�will benegative−2, and thepayo�s of the re-

maining two players will be 4 points each. In the case that

the players do not dig, butwait until themorningwhen the

utilities arrive and clear the snow, their payo� will be zero.

Table 1: The three-player Snowdrift game.

C ś to wait

A∖B to wait to dig

to wait (0,0,0) (4,−2,4)

to dig (−2,4,4) (1,1,4)

C ś to dig

A∖B to wait to dig

to wait (4,4,−2) (4,1,1)

to dig (1,4,1) (2,2,2)

Here, A, B, C are the 3-dimensional matrices, which deter-

mine the payo�s of the players will be

A : A1 =

(

0 4

−2 1

)

, A2 =

(

4 4

1 2

)

;

B : B1 =

(

0 −2

4 1

)

, B2 =

(

4 1

4 2

)

;

C : C1 =

(

0 4

4 4

)

, C2 =

(

−2 1

1 2

)

.

The Nash equilibrium (NE) here will be (wait, wait, wait)

with payo�s (0, 0, 0).

Wewill now compile an auxiliary game, the payo�ma-

trices will be:

for the �rst player

A* = B + C : A*
1 =

(

0 2

8 5

)

, A*
2 =

(

2 2

5 4

)

;

for the second player

B* = A + C : B*1 =

(

0 8

2 5

)

, B*2 =

(

2 5

2 4

)

;

for the third player

C* = A + B : C*1 =

(

0 2

2 2

)

, C*2 =

(

8 5

5 4

)

.

The Nash equilibrium in the auxiliary game with matrices

A*, B*, C* will be (dig, dig, dig), respectively, the weak

Berge equilibrium (WBE) in the original game will also be

(dig, dig, dig) with payo�s (2, 2, 2).

Obviously, in this example, theWBE ismore pro�table

for all players than the NE.

Remark 2. In this game, the Berge equilibrium (BE) coin-

cides with the WBE.

Following to Lemma 1, it is possible to obtain su�cient

conditions for the existence of the WBE under the usual

restrictions for the game theory.

Theorem 1. In a non-cooperative N-person game Γ with a

�nite set of strategies, a weak Berge equilibrium strategy

pro�le in mixed strategies exists.

Theorem 2. If in a non-cooperative N-person game Γ, the

sets of strategies Xi are convex compacts, and the payo�

functions fi(x) are continuous in the aggregate of variables,

then in the game Γ aweak Berge equilibrium strategy pro�le

in mixed strategies exists.

3 The WBE in a �nite three-person

game

This section consists of two parts. In subsection 3.1, a �nite

3-person game is formalized and the 3LP-method for solv-

ing the �nite 3-persons game is described. In subsection
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3.2, the test results for computing the WBE in the �nite 3-

person game are presented.

3.1 The 3LP-method for solving the �nite

3-person game

Let us consider a non-cooperative three-person game.

Γ3 = ⟨{1, 2, 3}, {Xi}i=1,2,3, {fi(x)}i=1,2,3⟩.

The strategy pro�le xw = (xw1 , x
w
2 , x

w
3 ) is the WBE strategy

pro�le, if and only if

1) the strategy xw1 is the Paretomaximumalternative in

the two-criterial problem

⟨X1, {f2(x1, x
w
2 , x

w
3 ), f3(x1, x

w
2 , x

w
3 )}⟩;

2) the strategy xw2 is the Paretomaximumalternative in

the two-criterial problem

⟨X2, {f1(x
w
1 , x2, x

w
3 ), f3(x

w
1 , x2, x

w
3 )}⟩;

3) the strategy xw3 is the Paretomaximumalternative in

the two-criterial problem

⟨X3, {f1(x
w
1 , x

w
2 , x3), f2(x

w
1 , x

w
2 , x3)}⟩.

Let us compose an axillary game for the game Γ3

Γ̃3 = ⟨{1, 2, 3}, {Xi}i=1,2,3, {gi(x)}i=1,2,3⟩,

where, according to (5)

g1(x) = f2(x) + f3(x), (9)

g2(x) = f1(x) + f3(x),

g3(x) = f1(x) + f2(x).

TheNash equilibrium strategy pro�le in Γ̃3will be theWBE

strategy pro�le in the original game, Γ3.

Below, a �nite non-cooperative 3-person game Γ3 is

de�ned with three sets X, Y, Z of strategies of the �rst,

second, and third player respectively, where X = {x =

(x1, . . . , xm)
T ∈ R

m : xTem = 1, x ≥ 0m}, Y = {y =

(y1, . . . , yn)
T ∈ R

n : yTen = 1, y ≥ 0n}, Z = {z =

(z1, . . . , zl)
T ∈ R

l : zTel = 1, z ≥ 0l}, ω = (x, y, z) ∈

R
m+n+l, together with their payo� functions as follows

fx(ω) =

m
∑

i=1

n
∑

j=1

l
∑

k=1

aijkxiyjzk ,

fy(ω) =

m
∑

i=1

n
∑

j=1

l
∑

k=1

bijkxiyjzk ,

fz(ω) =

m
∑

i=1

n
∑

j=1

l
∑

k=1

cijkxiyjzk .

Here, one has (aijk), (bijk), (cijk) is the players’ 3-

dimensional payo� tables (without any loss of generality

one can assume that all the entries of those tables are pos-

itive real numbers); the vector ωT = (xT , yT , zT), ω ∈ Ω =

X × Y × Z ⊂ R
m+n+l
+ . Next, for p = m, n, l, we de�ne the vec-

tors 0p = (0, . . . , 0)T ∈ R
p
+, ep = (1, . . . , 1)T ∈ R

p, as well

as Rp
+ is the nonnegative orthant of the Euclidean space

R
p. The symbol T denotes the operation of transposition

of a vector (matrix).

Following the algorithm in remark 1, we construct the

functions (9).

gx(ω) = fy(ω) + fz(ω) =

m
∑

i=1

n
∑

j=1

l
∑

k=1

(bijk + cijk)xiyjzk ,

gy(ω) = fx(ω) + fz(ω) =

m
∑

i=1

n
∑

j=1

l
∑

k=1

(aijk + cijk)xiyjzk ,

gz(ω) = fx(ω) + fy(ω) =

m
∑

i=1

n
∑

j=1

l
∑

k=1

(aijk + bijk)xiyjzk .

Introduce the Nash function G(ω) = δx(ω) + δy(ω) + δz(ω),

where

δx(ω) = max
x′∈X

g(x′, y, z) − g(ω),

δy(ω) = max
y′∈Y

g(x, y′, z) − g(ω),

δz(ω) = max
z′∈Z

g(x, y, z′) − g(ω).

The function G(ω) is an analogue of the Nash function de-

�ned for the bi-matrix games [16]. As the above–de�ned

payo� functions are linear with the respect to each vari-

able x, y, z (when the other two variables are �xed), the

auxiliary game Γ̃3 is convex, hence the set of Nash points

Ω* is non-empty (but not necessarily convex).

Since G(ω) ≥ 0 for all ω ∈ Ω, and G(ω) = 0 if, and

only if ω is the Nash equilibrium of the game Γ̃3, one can

�nd theNash equilibriumstrategypro�le of game Γ̃3 as the

global minimum (equalling zero) of the function G(ω) on

Ω.

Now we turn to the approximately numerical method

for the construction of the WBE in Γ3. In [12] the al-

gorithm for approximately solving �nite non-cooperative

three-person games (3LP) was proposed. The testing re-

sults illustrating the e�ciency of applying this algorithm

can be found in [13, 14].

Next we denote ãijk = bijk + cijk, b̃ijk = aijk + cijk, c̃ijk =

aijk + bijk and dijk = ãijk + b̃ijk + c̃ijk = 2(aijk + bijk + cijk).



132 | K. Kudryavtsev and U. Malkov

Set the iteration counter t = 0. As a starting strat-

egy, one can use any pair of the players’ pure strategies

(the total number of such pairs is mn + ml + nl); for ex-

ample, �x a pair of strategies {y(0), z(0)} with the compo-

nents y(0)1 = 1, y(0)j = 0 (j = 2, . . . , n), z(0)1 = 1, z(0)
k

= 0

(k = 2, . . . , l), and solve successively (for t = 0, 1, . . .)

the triple problem Px(x
(t+1), y(t), z(t)), Py(x

(t+1), y(t+1), z(t)),

Pz(x
(t+1), y(t+1), z(t+1)), where

Px(x, y
′
, z′) :

m
∑

i=1

(

n
∑

j=1

l
∑

k=1

dijky
′
jz

′
k

)

xi − β − γ → max
x,β,γ

,

m
∑

i=1

(

l
∑

k=1

b̃ijkz
′
k

)

xi − β ≤ 0, j = 1, . . . , n,

m
∑

i=1

(

n
∑

j=1

c̃ijky
′
j

)

xi − γ ≤ 0, k = 1, . . . , l,

xTem = 1, x ≥ 0m , β, γ ∈ R
1
+.

If x* is an optimal solution of this problem, then we set

x′ := x*; next we solve:

Py(x
′
, y, z′) :

n
∑

j=1

(

m
∑

i=1

l
∑

k=1

dijkx
′
iz

′
k

)

yj − α − γ → max
y,α,γ

,

n
∑

j=1

(

l
∑

k=1

ãijkz
′
k

)

yj − α ≤ 0, i = 1, . . . ,m,

n
∑

j=1

(

m
∑

i=1

c̃ijkx
′
i

)

yj − γ ≤ 0, k = 1, . . . , l,

yTen = 1, y ≥ 0n , α, γ ∈ R
1
+.

Again, if y* is an optimal plan for the above problem, then

put y′ := y*, and continue solving:

Pz(x
′
, y′, z) :

l
∑

k=1

(

m
∑

i=1

n
∑

j=1

dijkx
′
iy

′
j

)

zk − α − β → max
z,α,β

,

l
∑

k=1

(

m
∑

i=1

b̃ijkx
′
k

)

zk − α ≤ 0, j = 1, . . . , n,

l
∑

k=1

(

n
∑

j=1

c̃ijky
′
j

)

zk − β ≤ 0, i = 1, . . . ,m,

zTel = 1, z ≥ 0l , α, β ∈ R
1
+.

Now that z* is an optimal solution of that problem, we de-

note z′ := z*.

The optimal objective function values Gt = G(ω(t+1))

are monotone non-increasing by t. The iteration process

continues until the value Gt stabilizes, that is, for some t*,

the di�erence Gt* − Gt*+1 becomes small enough. In addi-

tion, if Gt* = 0, it means that an (exact) Nash point has

been found. If the value Gt* is positive but small enough,

an approximate solution of the game is reported. Other-

wise, select a new pair of the initial strategies and start

the process again (probably, having altered the order of the

solved problems Px, Py, Pz).

3.2 Test results for the 3LP-algorithms for

�nding the WBE

We tested the algorithms �nding the weak Berge equilib-

rium in the �nite 3-persons games by making use of the

personal computer with the processor Intel(R) Core(TM)

i5-3427U (CPU @ 1.80GHz 2.300 GHz, memory 4.00 GB, 4

cores). The test codes were written in the MatLab. A series

of 10 games was solved for each triple n,m, l.

We investigated 2 cases: an independent matrices and

a mutually dependent matrices. In the �rst case (indepen-

dent matrices) we used pseudo-random counters to gener-

ate independently the elements of the tables aijk, bijk, cijk
(1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ l).

For the game with mutually dependent matrices, we

�rst used a pseudo-random counters to generate indepen-

dently the elements of the auxiliary tables a′ijk, b
′
ijk, c

′
ijk

(1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ l). At the second stage, we

constructed the mutually dependent payo� tables by the

formulas

aijk = a′ijk − λ
b′ijk + c

′
ijk

2
+ 1,

bijk = b′ijk − λ
a′ijk + c

′
ijk

2
+ 1,

cijk = c′ijk − λ
a′ijk + b

′
ijk

2
+ 1

for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ l, where 0 < λ ≤ 1
2 is a

covariance coe�cient.

We solved games up to the dimension dim = m = n =

k = 100. For comparison, using 3LP-algorithm, we calcu-

lated the Nash equilibrium for the same games.

Table 2 reports the results of the 3LP-algorithm solving

the set of test games (5 series with 10 instances in each)

with independent matrices. The algorithm switched to the

next initial pair of strategies after having made dim itera-

tions.

Here in Table 2, the following notation is used: dim =

m = n = k are the game’s sizes (dimension); NE — the

number of initial (starting) point when searching for a

Nash equilibrium;WBE—number of starting points when

searching for a weak Berge equilibrium; tNE — the total

amount of time to search a Nash equilibrium for the se-

ries of 10 games (sec); tWBE— the total amount of time to

search a weak Berge equilibrium for the series of 10 games

(sec).

Also in Table 3, for mutually dependent cases, the fol-

lowing notation is used: dim = m = n = k are the game’s

sizes (dimension);WBE—number of starting points when

searching for a weak Berge equilibrium; tWBE — the total

amount of time to search a weak Berge equilibrium for the
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Table 2: The results of solving 5 series of games of ten problems

with independent matrices

dim NE WBE tNE tWBE

20 327 85 745.85 129.88

40 230 59 539.28 99.34

60 169 40 404.43 88.1

80 129 28 373.14 92.03

100 159 41 904.85 162.62

series of 10 games (sec); itn - the total number of steps of

3LP algorithm. Covariance coe�cient λ = 0, 4was used in

the calculation of Table 3.

For mutually dependent cases, we have given the re-

sults only for the WBE, so when calculating the NE for

these problems took anunacceptable time or theywere not

solved at all.

Table 3: The results of solving 5 series of games of ten problems

with mutually dependent matrices

dim itn WBE tWBE

20 3173 479 1106.49

40 6532 814 2101.15

60 12826 1415 5134.66

80 10306 1017 5564.54

100 16725 1527 13049.09

It is easy to see from the reported results (see Ta-

ble 2 and Table 3), that the reciprocal dependence of the

payo� matrices a�ect much to solve a problem by the

3LP-algorithm. The reciprocal dependence su�ciently in-

creases the complexity of problems.

It is also clear that, the searchWBE ismuch faster than

the searching NE. This is most likely due to a pure strategy

weak Berge equilibrium existing more often than a pure

strategy Nash equilibrium.

4 Conclusion

In this paper, we formalized conception of the weak Berge

equilibrium. The WBE follows the Hippocratic oath "First

do no harm!". This conception is more often realized in

practice than the Berge equilibrium conception. In con-

trast to the NE, the WBE always exists for every �nite N-

person games. As an example, we found the WBE in the

�nite three-person games using 3LP-algorithm.

In our opinion, the properties of the weak Berge equi-

librium should be studied in more detail. In the future,

the authors plan to study equilibrium in linear-quadratic

games. Also we plan to develop a numerical method for

�nite 3-person games based on the Germeier convolution

[17].
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