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The cross section for the proton weak capture reactidtp,e” v.)2H is calculated with wave functions
obtained from a number of modern, realistic high-precision interactions. To minimize the uncertainty in the
axial two-body current operator, its matrix element has been adjusted to reproduce the measured Gamow-Teller
matrix element of tritiumB decay in model calculations using trinucleon wave functions from these interac-
tions. A thorough analysis of the ambiguities that this procedure introduces in evaluating the two-body current
contribution to thepp capture is given. Its inherent model dependence is in fact found to be very weak. The
overlap integralA?(E=0) for the pp capture is predicted to be in the range 7.05—7.06, including the axial
two-body current contribution, for all interactions considel&&D556-281@8)06908-§

PACS numbd(s): 21.30~x, 21.45+v, 25.10+s, 95.30.Cq

[. INTRODUCTION be measured in terrestrial laboratories, was first given by
Bethe and Critchfield1], who showed that the associated
. rate was large enough to account for the energy released by
The proton weak capture on protons is the most fundag,e gyn. Since then, a series of calculations has refined their
mental process in stellar nucleosynthesis: it is the first réaGyiginal estimate by either computing the required wave
tion in the pp chain converting hydrogen into helium, and fynctions more accuratelj2—5] or by using more realistic
the principal source for the production of energy and neutrimodels for the nuclear transition operaf@—8. We here
nos in main-sequence stars. The theoretical description @fontribute to this effort by providing an integrated study of
this hydrogen-burning reaction, whose cross section cannghese two aspects with emphasis on a reliable estimate of
their associated theoretical uncertainties.
This paper is divided into seven sections and an appendix.
* Also Institut fr Kernphysik, Technische Hochschule Darmstadt, In Sec. Il we set up the framework for the present study, by
D-64289 Darmstadt, Germany. providing expressions for thep fusion cross section and the
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required matrix elements and by summarizing the currencomparable to those obtained for neutron decHl]. As a
“best” values for the various coupling constants, Fermiresult, the Fermi function is parametrized as

function, etc. In Secs. Il and IV we give a fairly detailed

description of, respectively, thep and deuteron wave func- f(E)=0.1441+9.0&), 2.3
tions, as obtained from modethigh-precision interactions.
The latter include, along with the short-range nuclear part,
complete treatment of electromagnetic effects up to onder
a being the fine-structure constant, and accurately reprodu : . .
the measured low-energyp scattering parameters and deu- The deuteron and even pariyp wave functions are writ-
teron properties. Sections V and VI deal with the calculation®n @S
of the pp cross section in the approximations, respectively, u(r) ~w(n)
in which only the one-body or both the one- and two-body \Ir(’;"(r):{—ycl)g"(r)jt—
parts of the axial current operator are retained. In Sec. VI we r r
also review the evidence, as obtained from an analysis of ;

ith E expressed in MeV. AE=0 the expression in Eg.
2.2) gives 0.148, which is about 3% larger than the more
@Accurate estimate from E.3).

Y|y, (2.4

o ] e _ da
tritium B decay, for the axial two-body componefiexplicit () (ry=47m2 LY (R) — i (1K
expressions for them are listed in the AppendBecause of v (1) W\/—LgeanL LML( ) kr xu(rik)
their model dependence, we adopt the phenomenological ap- ~ o
proach of adjusting the cutoff masses in the meson-nucleon XYim (1) 7ol (2.5

vertices and\ to A axial coupling constant so as to obtain
agreement with the experimental value for the Gamow-TeIIewhereyﬂ’g"(F) are the normalized eigenfunctions of the two-
matrix element in tritiumg decay. The question of how this nucleon orbital angular momentulm spin S, and total an-
pfocedu_re impacts thpp cross section is als_o examined. gular momentund with projectionM; 772"8 andg#"T denote,
F.lnally, in Sec. VIl we summarize our cong:lusmns, and Pro-respectively, the eigenstates of the sgiand isospirT with
vide our “best” value for thepp overlap integral at zero projectionsM s and M. The deuteroru(r) andw(r), and
energy. pp x.(r;k) radial wave functions are obtained from solu-
tions of a Schrdinger equation with nuclear and electromag-
Il. CROSS SECTION netic interactions, the latter including corrections from
The spin-averaged total cross section for thevacuum polarizati(_)n, magnetic moment, tyvo—photon_ ex-
IH(p.e* .)2H reaction can be written in the forf] change, and Darwin-Foldy terms. A discussion of the inter-
vove actions and radial wave functions is given in Secs. Ill and IV
) below. Here, it suffices to say thg (r;k) behaves asymp-

1 G !
a(E):(2 5 IV mgf(E)EM: [(d,M|A_|pp)|2. totically as
T rel,n.r. .
e (2.2 XL(r;k)r:m cos S F (kr)+sin 6 G (kr), (2.6

Here Gy is the vector coupling constant for which the value Where 3, is the phase shift, anBi, andG,_ are the regular
Gy=(1.149 39-0.000 65)< 10 ° GeV 2, as obtained and irregular Coulomb functions.
from a recent ana|ysi3 offtt values for Supera”owed The nuclear axial current operator consists of one- and
0*—0" transitiong9], is usedm, is the electron mass and two-body components
Urel,n.r. 1S thepp relative velocity. The process is mdu_ced.by A AL AD 27
the axial-vector part of the weak interaction Hamiltonian, a~ Ma a o .
and consequently only even parjtyp states contribute to the
matrix element.

The naive expression for the Fermi functibfE) is given
by AP=—g,> o7 ., (2.9

|

wherea= = is an isospin index, and

1 .
f(E)z—sf S(E+Am—E,—E.)peEEdEdE, i+ = (T xFiT /2. 2.9
me

The ratio of the axial to vector coupling constants,
2.2 gAzGA/GV, is Faken to bt{llj 1.2654+0.0042 by averag-

ing values obtained, respectively, from the beta asymmetry

in the decay of polarized neutrons (1.2626.0033)[12,13,
whereAm=2m,—m;=0.931 25 MeV[10] (m, andmg are  and ft(n) and ft(0"—0"), and gx=[2ft(0"—0")/
the proton and deuteron masses, respectiyély k2/mp is  ft(n)—1]/3=1.2681-0.0033[11]. The form of the axial
the c.m. incident energy, and the energy of the recoilingwo-body current operator depends on the dynamical model
deuteron is neglected. A more refined treatment of the phas&sed to construct it. However, the need for such a term is
space factor includes the effect of Coulomb focusing of thébased on an analysis of tritiur decay. This evidence as
emittede® wave function 3] as well as radiative corrections well as the impact of the ambiguities associated with the
to the cross section. The latter have not actually been calcdorm of A on the pp fusion cross section is discussed
lated for the present reaction but have been estimated to bHelow in Sec. VI.

E+Am 2

-X|,

(E+Am)/m
:f edxx\/xz—l(

1

e
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Selection rules for a vector operator restrict the sum over xL(0:k)=0,
L in the initial capture state, Eq2.5), to the valued. =0
and 2. However, th& =2 contribution is negligible at very xu(r:K) ~ FL(kr)C,+G(kr)C,, (3.2
r—oo

low energies. Indeed, the initi& andD-wave channel con-

tributions to the matrix element of the dominakif) opera-  ith F, andG, the standard regular and irregular Coulomb
tor are proportional to, respectively, functions [14]. The potentialV(r) can be divided into a
long-range electromagnetic paMg, and a short-range
dr u(r rK :J dru(r)Fo(kr), 21 nuclear par_l\/N. Thg coefficientsC, an_dCz contaln.all t_he
jo (Nxo(r:k) 0 (NFo(kr) (2.19 necessary information about the partial wave, which is usu-
ally expressed in terms of the phase slfft

J;drwmm(r;k)z f:drmez(kr), (211 tansS=C,C; . 33

In a practical calculation, the Schtimger equation3.2) is
integrated out to some large in comparison with the range
of the short-rangéi.e., nuclear force. The numerical wave
function is then matched to the asymptotic form of E2}2),
and the corresponding phase shift is defined to be the phase
. shift of the nuclear force with respect to Coulomb wave
j dr w(r)F,(kr) functions. Following the notation of Refl15], we have

0

where they, (r;k) radial wave functions have been replaced
with their asymptotic forms by setting, =0, which is ap-
propriate for the energy range under consideration Kare
few keV). It is then easily seen that

1 1 added the superscri@, for Coulomb.
o =2 I+=|| 1+ ﬁ However, in reality the electromagnetic interactionpip
f dru(r)Fo(kr) g g scattering is much more complicated than just the simple
0 Coulomb interaction. This leads to some practical problems
3 in applying the scenario of integrating the Sdttirmer equa-
f dryrw(r)ls(2yamyr) tion, matching to Coulomb functions, and extracting the
X 0 , phase shift. This will be discussed below.
* — The full interaction, up to second order in the fine-
fo dryru(n)14(2yampr) structure constank~1/137, is given byf15-17

(2.12 Vem(PP)=Ver+Veot Vit Vi +Vor, (34

Where;= alvgny, | are modified Bessel functions, and where
the asymptotic expressions, valid in the regime where

n>kr, have been used for the, [14]. The ratio above is Vo — Fe(r) 3
found to be roughly 0.000 13 in the limit, ,,—0 (corre- camd T (3.5
sponding ton— ).
Finally, the dependence &f, upon the momentum trans- al Fe(r) Fe(r)
fer g=—p.—p,, Wherep, andp, are the outgoing lepton Verm=——— (A+k2)T+ (At k?)
momenta, is ignored in Eq2.8), because of the very low 2mpl
energies involved. AE=0 the kinetic energy available to aa'[Fe(r))?
the final state is only about 420 keV, and the finite momen- ~—— , (3.6
tum transfer correction to the matrix element AfY for Mol T
S-wave capture can be estimated to be approximately ,
(qrg)?=(0.0042f, whereq=420 keV andry=2 fm is the vazz_a a—lvp(r) 3.7)
root-mean-square radius of the deuteron—a tiny correction, 37 r '
indeed.
a L2 F(r)
l. pp WAVE FUNCTION VMM__4_rn’23Mp graNor ot —5=S,
The. Iow—energypp scattering is described by the radial o F(r)
Schradinger equation — —(4up—1) l:—3L .S, (3.9
p

d? L(L+1)

— +k2— ————mV(r) | x.(r;k)=0, (3.1

dr? r2 P _ o

Vpr=——F4(r). (3.9

am
p

with x (r;k) the radial wave functionm, the proton mass,

andL the orbital angular momentum. The c.m. relative mo-Here theF<(r), Fs(r), Fi(r), andFs(r) are functions rep-

mentumk is given by k2=mpT|ab/2. The boundary condi- resenting the finite size of the nucleon charge distribution. In

tions for the wave function are the limit of point nucleons,Fc(r)=F(r)=F(r)=1,
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whereasF 5(r)=4m6°(r). Their explicit r dependence is
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including the point-nucleon limit ofV, also inV, the

given in Ref.[16]. The various contributions are described asasymptotic wave function can be expressed in terms of non-

follows.
The Coulomb interactiol ¢, contains a well-known18]
energy dependence through=2ka/(myv ) . However, at

the extreme low energies of interest to astrophysical calculaT
tions (a few keV), this energy dependence is negligible, and

we can setr’ =« for all practical purposes.
The two-photon-exchange interactidf, behaves like

1/r2, and so we immediately have the problem that, in prin-
ciple, we have to integrate out to infinitely large distances

before we can match to Coulomb functions.
The vacuum polarization potentisll,, describes the aug-

mentation of the photon propagator by an electron-positro

pair. In the limit of point protongFc(r)=1], the vacuum
polarization integral is given bj19]

1

1+ —
2x2

2_1)\1/2
DT (310
X

ee]
va(r)=f dx e 2me’
1

with m,=0.511 MeV the electron mass. Including the finite-
size effect, we get the more complicated expression as giv
by Bohannon and Hell€rl7], where the exponential is re-
placed by

e 2merx_> D4( X) e~ 2mgrx

—[D*x)+ %pD3(X)+ %(pﬂ)z)Dz(X)

+ 4i8(3p+3p2+p3)D(X) e’ (3.11)
where p=br, D(X)=[1-(2mx/b)?]", and b
=4.27 fm 1. As a matter of fact, the simple multiplication
of Eqg. (3.10 with F¢(r) as an approximation to the inclu-
sion of finite-size effect§and which was adopted in Ref.
[16]) already closely resembles the exact treatm@ntl)

where the finite-size effect is properly folded into the inte-

gral.
The magnetic moment interactidf),,, arises as a conse-

integerL’ Coulomb functions, wherk'’ satisfies

L'(L'+1)=L(L+1)—aa’'. (3.12
The asymptotic behavior of the wave function is now given
by

xL(N)~FL(krCy+G(kr)C,, (3.13

with F_(kr)=F_(kr) and similarly forG, (kr). The advan-
tage is clear immediately: we only have to integrate out to

ﬁistances large with respect to the nuclear interaction, which

is only about 20 fm. But we have to bear in mind that now
the phase shift i9S17E2, ., Where it should be under-
stood implicitly that the superscript refers to the interactions
in the point-nucleon limit, while the interaction denoted by
the subscript includes also thghort-rangg finite-size ef-
fects. To make this clear explicitly, we have here separated
off the finite-size effects by writing them symbolically as
being due to some short-range potentigk. In this nota-

&on, the phase shift with respect to Coulomb functions, as

defined in Eq(3.3), now reads

SC1 sC1 _ sC1+C2 4 sCl
= OC1+c2+Fs+N~ OC1+Ca+Fs+NT OC1+c2
_ sC1+C2
=0c1+C2+FsiNT AL, (3.14

wherep, can be easily expressed in terms of the standard
Coulomb phase shiftr, as

(3.15

The next step is to also include the vacuum polarization.
The case where we only have the Coulomb and vacuum po-
larization has been discussed in detail by Durfdd] and
Heller [21], who derive expressions for the relevant
asymptotic wave functions and vacuum polarization phase
shift 7.= 651, \p. Although the vacuum polarization poten-
tial exhibits an exponential falloff, the small value of the
electron mass means that the Sclinger equation has to be

pL:(TL/_O'L_(L’_L)W/Z.

quence of the nonvanishing value of the proton magnetigntegrated out to several hundred Fermi before the potential

moment,u,=2.792 8314, while the Darwin-Foldy ternvpg

has dropped to sufficiently small values, and it is only then

is a short-range potential, describing the finite size of thahat the numerical solution can be properly matched to the

proton, whereF 4(r)— 4 53(r) in the limit of point protons.

Now that we have defined the full long-range electromag-

asymptotic solution.
The presence oV, considerably worsens the situation.

netic interaction, we can return to the question of how, inSince the 17> behavior ofVc, is of longer range than the

practice, to integrate the Schlioger equation and extract
the phase shift. We will restrict ourselvesSavaves, and so

exponential decay o¥\p, the Schrdinger equation has to
be integrated out to distances whefgs is negligibly small

the tensor and spin-orbit terms in the magnetic moment ings compared t&/c,. It is only then that we can match the

teraction vanish. It is convenient to define a phase sijft
which is the phase shift of the solution of the poteniiél
with respect to the solution with the potent\alas the inter-

numerical solution to the proper asymptotic solution and de-
fine the phase shift. Unfortunately, because of the slow fall-
off of the vacuum polarization and the small magnitude of

action. The well-known application of this procedure is thethe two-photon-exchange contribution, we now have to inte-

situation whereV is the Coulomb potential anwV is the
Coulomb plus nuclear potential, and the phase shijft
=62, is obtained by matching the numerical solution to
Coulomb wave functions as in E3.2).

If we are to includeVc, in W, we run into the problem

grate out to much larger distances. Even at a distance of
2000 fm the vacuum polarization has only dropped to about
1% of the two-photon exchange.

The scenario of getting thpp wave function for a par-

ticular nuclear interactioVy in the S wave in the presence

that we have to integrate out to infinitely large distancesof the full electromagnetic interactiovgy, is now as follows.
before we can match to Coulomb functions. However, byWe integrate the Schdinger equation out to a distance of
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3000 fm, where the numerical solution is matched to the

electromagnetic wave functiofig(kr) andGg(kr). The lat-
ter are defined to be the solutions of the Sclimger equa-
tion in the presence of the point-nucle@i+C2+ VP in-

teraction. This procedure, therefore, determines the phase d? 2

2

__72

e u(r)=m{ Voo r)u(r)+ VoA w(r)],

6 —
shift M of the nuclear plus full electromagnetic interaction | g,z 7 (2 W(r)=m[Vagr)u(r) +VaAr)w(r],

with respect to the point-nucleddl+ C2+ VP interaction. 4.2

It should be stressed that this phase shiftasthe same as

the phase shift of the nuclear interaction in the presence Gfherem is twice the reduced mass of proton and neutron,
only the Coulomb interactiona&N). The relation between e,

these electromagnetic wave functions and the standard Cou-

lomb wave functiong-¢(kr) andGgy(kr) is given by —  2mpm, 42
S omptmy’ 4.2
F cospot+7h)  SiN(pot+7y) | [ F _ o ,
_O :( . Po ? Po ? 0 , All NN potentials applied in this study use consistently the
Go —sin(po+79) Ccopo+ 7))\ Go latest, very accurate, values for nucleon mag$gk namely,

(3.16
m,=938.272 31 MeV, 4.3

with py and 7} the two-photon-exchange and vacuum polar-

ization S\wave phase shifts, respectively. The prime in the m,=939.565 63 MeV, (4.4

vacuum polarization is to indicate that this is the vacuum, .

polarization phase shifin the presence of y, which is MPIying

slightly different from what is defined in Reff20,21]. Note —

that the numerical wave function is now properly normalized m=938.918 52 MeV. (4.9

as in Eq.(3.2), since¢=6"M+pg+ 75. , o _ _
It should be pointed out that at extreme low enerdis For th_eNN potential acting n particular partial waves, we

few keV), 55M is almost zero, ang, is of the order of a few have introduced the convenient shorthand notatskfas(r)

times 10 deg, whereasr) rapidly drops from about E<351|\f|331>= AVoz(f)E<351|\A/|3D1>, etc., where(r[>Sy)

—1072 deg at 10 keV to—10"° deg at 2 keV, and s6° =Y (r) and(r|*D;)=Y3Y(r). The quantityy=ik is dis-

exhibits a change of sign and goes through zero as a functiotussed below.

of energy. Hence, it is not recommended to use the normal- The radial wave functions are properly normalized to

ization as advocated by Kamionkowski and Bahcall in Ref.unity,

[5], i.e.,

_ fmdr[uz(r)+w2(r)]=1. (4.6)
Xo(r:K), = Col[Go(kr) +cotsoFo(kr)],  (3.17) 0

The asymptotic behavior of the wave functions for large val-
with C, the Gamow penetration factor. In their cads, ues ofr is
there is no problenfalthough &€ is very small and cat
becomes very largebecause they did not includé-,. Fur- u(r)~Age™ ",
thermore, with this normalizatio(8.17), the overlap integral
A, defined below, requires knowledge of the scattering
lengtha,,, where the presence &, andV; in the full w(r)~Ape "
electromagnetic interaction defines a rather complicated
effective-range functiofl5]. On the other hand, the normal- .
ization (3.2) advocated here allows for an immediate substi-Vhere As and Ap are known as the asymptotis- and
tution of the numerical wave functiotas obtained from D-state normahza’qons, respectively. In addition, one defines
solving the Schidinger equationinto the expression fon  the “D/S-state ratio” n=Ap/As.
as defined by Salpet¢2], without having to worry about a Other deuteron parameters of interest are the quadrupole
phase shift which goes through zero at these extreme lofoment
energies and without having to define a complicated

effective-range function. dez—lofxdrr2w(r)[\/§u(r)—w(r)], 4.8
0

3
1+ ——

(«yr)Jr (yr)?|’ 42

IV. DEUTERON WAVE FUNCTION the root-mean-square or matter radius

The deuteron is the bound state of protons and neutrons in 2
the couple_d381+3Dl two—rjucleon system. For a given local fd=£ fwdr rLud(n) +wi(n]l (4.9
NN potentialV(r), the radial wave functiong(r) andw(r) 2\ Jo
for the deuterorg andD states, respectively, can be obtained
from the coupled Schinger equation and theD-state probability
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o 5 momenta to discretize the integrals on the RHS produces a
Pp= fo drw(r). (4.10  matrix equation that is solved easily by the matrix-inversion
method[22].

The relevant Fourier transforms linking the configuration-

Similar to scattering, the deuteron equation, Eq), is
g 9 B4 space and the momentum-space approaches are

solved numerically by integrating out to some large5 fm
in our cas¢ and matching the numerical waves to their 2 re
asymptotic forms, Eq4.7), producingAg, Ap, andy from Vi (q,9)= —f drr?2
which the predicted deuteron binding energy is extracted. mJo

As mentioned, in the Schdinger equation, Eq4.1), the

interaction between the two nucleons is represented by a lo- xf dr'r'gL(an Voo (rr)ju(a'r),
cal potentialV(r), with r=r,—r, the relative displacement 0
between nucleons 1 and 2. However, in general, Xi¢ (4.15

potentialV is nonlocal, i.e.V=V(r,r"), wherer is the dis-

tance between the two ingoing nucleons andhe one be-  with V/(r,r")|joca= 8(r —=r")V L (r)/rr’ if the potential
tween the outgoing nucleons. A local potential can then beés local and

written asV(r,r")|ca= 6(r —r’)V(r). For the more general

case of a nonlocal potential, the coupled Sdimger equa- u(r) 2 (= ,
tion reads N7/, dg ofj(an) (), (4.16
d? — (= with ug(r)=u(r), u,(r)=w(r), andj, the spherical Bessel
ﬁ_yz u(r):mjO dr'rr’[Voo(r,ru(r’) functic;)ns. 2 :
Since high reliability and precision are an important as-
+Voo(r,ryw(r’)], pect of our present investigation, we have calculated the deu-
teron wave functions for some local potentials both ways:
d2 6 e first, by solving Eq.(4.1) directly and, second, by solving
— y2— - w(r)=mj dr'rr’[Voo(r,r u(r’) Eq. (4.14) by matrix inversion and then performing the trans-
dr r 0 formation, Eq.(4.16), numerically. We find agreement be-
FVo(F,r ()] (4.11) tween the resulting deuteron waves to at least six significant

digits for anyr in the range 0.05—-14 fm. This establishes the
(Jeliability of our numerical methods. It also implies that in
cases where we use the momentum-space approach and Eq.

solved by a combination of finite-difference, integral- :
discretization, and matrix-inversion techniques (4.16), as for the nonlocal potentials, our deuteron waves are
f ) of the highest numerical precision.

Alternatively, one may consider the two-nucleon system . . . .
y y y The deuteron is a pole in th8 matrix atk=ivy. The

in momentum space, where the deuteron wave function is '™ ~ g _ .
relativistic relationship betweef and the deuteron binding

This system of coupled integro-differential equations is the

iven b
g 4 energyBy is given by[10]
Moy — AV 1M/ Ayq 70
Vq (@) =[¢o(d) Vo1 () + ¥(q) V31 (A)]&o, (4.12 J5=my=my+m,—By= \/mer_ P+ me—72,
with the normalization (4.17
. wheremy denotes the deuteron rest mass. Notice that this
da 2l v2(a) + 2 -1 41 equation determinethe correct empiricaly, since nature is
fo aalvsla+ vl .13 relativistic. We note that ilNN scattering we use the rela-

tivistic relationship betweek and T,,,, which implies that

The momentum-space Schlinger equation that corre- the c.m. kinetic energ¥ is related tok according to
sponds to Eq(4.11) consists of two coupled integral equa-
tions Vs=Mmp+my+T=ym3+k>+Jma+k2.  (4.18

m w0 Thus, consistency with the scattering problem requires the
tho(q) =~ ﬁf dg'q"?[Vod(d,a") ¢0(a’) use of Eq.(4.17) to determiney. The formal solution of Eq.
Y +q°Jo 4.17is
+VoAa,9") 2(q")],
02d,9") ¢2(d)] ,}/2:[4msmﬁ_(mg_mg_mﬁ)Z]/‘]_ms, (4.19

m ” d, usingByq=2.224 575 MeV andic=197.327 053 MeV
- _ da’a’v .q’ ’ and, d
ZC)) 72+qu0 a'a"“TVao(a,a") ¢o(q’)

fm, the accurate numerical value fgrcomes out to be
+Vo)(4,9") (a1 (4.14 y=0.231538 0 fm™. (4.20

Considering a finite set of discrete arguments for the funcTo obtain some pedagogical insight ingd, one may rewrite
tions on the left-hand sidébHS) and using the same set of Eq.(4.19 in factorized form
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4m§72:[(mn+ mp)z—mﬁ][mﬁ—(mn— mp)Z] Here A= (o, — 03)/2, andF,(r) is a short-range function
representing the finite size of the neutron charge distribution
=Bgy(4m—By)(mj— om?), (4.21)  (for details, see Ref.16]). Because th&wave expectation
. values for the tensor and spin-orbit operators vanish, the
where we introduce the average nucleon mass, long-range 1r° parts do not contribute fdr=0. ForL+0,
e m we make the approximation thatEy, =6y (or SEm.
=—P 1_-93891897 MeV, (422 =Sy in terms of theS matrix). This means that in our cal-
2 culations the asymptotic behavior of the deuteron wave func-

tions still satisfies Eq94.7) and (4.14).

The interaction(4.26) is included only in the case of the
Argonne AV18NN potential [16] where it contributes 18
( 5m2) keV to the deuteron binding energy, mostly from the mag-

and the nucleon mass differen@m=m,—m,=1.293 32
MeV, and usedny=2m-—Bgy. From this we get

(4.23 netic moment par¥/y(np) of the interaction. One would
expect that the inner part of the deuteron wave function is
affected by the inclusion or omission ¥gy(np) (the outer

and rewriting twice the reduced nucleon méss Eq.(4.2]  part is essentially insensitive since it is ruled pywhich is

in terms of the average mass identical for all potentials Fortunately, it turns out that the

quantitative effect is very small, as will be demonstrated be-

— m? low. Thus, also models that do not include the electromag-
m=m| 1- am?| (424 netic interaction between protons and neutrons can be con-
sidered as sufficiently reliable for our study.
we finally obtain Since alNN potentials are fitted to the value gfgiven
in Eq. (4.20, they all accurately describe the empirical deu-
, — By| 1—&mZ/m3 teron binding epergde:2.224 575(9) MeV 23], via the
y :de(l— T)ﬁ relativistic relation Eq.(4.17. The other deuteron param-
M/ 1-o6m/(4m") eters, as well as théS, scattering lengtha, and effective
B Sm2 ranger,, are listed in Table I. Predictions are given for the
~mBy| 1— _d( 1— _) five high-precisiorNN potentials that we focus on, namely,
4m m? AV18 [16], CD-Bonn[30], Nijm-I [31], Nijm-Il [31], and

Reid93[31]. Notice that not all quantities in Table | are
~mB (1_ E) (4.29 independent. For example, the deuteron effective rgnge
d 4m/’ ' =p(—By,—By) is related toAg, 7, andy by

The approximations involved in E¢4.25 are good to 1 part ) ;
in 10°. Therefore, this equation reproduces the exact value As(1+7n%)
for v to all digits given in Eq(4.20. One can now identify

the termmBy as the nonrelativistic approximation & and ~ For our present investigation, essentially odly is of rel-
the factor (1- B4/4m) as the essential relativistic correction. evance(besidesy). However,Ag (and p4) cannot be mea-
In most calculations of the past, the nonrelativisfiovas  sured directly. The empirical information given in the last

used, y,= /EBd=0.231 606 6 fml. The difference be- column of Table | onAg and py are model-dependent ex-
tween y,, and the correcty, Eq. (4.20, leads to a small trapolations of low-energy data. Therefore, to trust the pre-

difference (0.03% in the overlap integralh? (see below. dictions for Ag by our NN potentials, it is important that

Although the difference is rather small, we believe onetN€S& models reproduce accurately all measured low-energy

should use the relativistically correct value, E4.20. data, which is confirmed by Table I. The only exceptions are
Besides the strong interaction, there is also a nonvanisfie deuteron matter radiug and the quadrupole moment

ing electromagnetic interaction between protons and neuQd, Which are both underpredicted by all potential models.
trons that can be written 446] There are, however, meson-exchange current contributions

and relativistic corrections fory and Q4 which may make
Vem(np)=Vei(np) +Vym(np), (4.26  up for the discrepancief32,33. The D-state probability,
Pp, that is listed in the bottom row of Table I, is not an
where observable. It is, however, an interesting theoretical quantity
in studies of the nuclear force. The lower value Ry pre-
Vey(np)=af Fnp(r) dicted by CD-Bonn is a reflection of the nonlocal nature of
cu{np L this potential which is based upon relativistic meson field
theory [30,34. Meson-exchange Feynman diagrams are, in
2 Fy(r) general, nonlocal expressions that are represented in momen-
Mpin §F5(r)¢rl- o+ —3812 tum space in analytic form.
r Finally, in Fig. 1, we display the deuteron wave functions
F produced by the fiv&l N potential models. Major differences
@ 1s(T) (L-S+L-A). (427  are, again, related to whether the models are local or nonlo-

_m ﬁ'un r3 cal. While the central potentials of AV18, Nijm-Il, and

p

= ) 4.2
1-ypq (429

o
VMM(”D)I—W
p'Th
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TABLE I. Triplet S-wave low-energy scattering parameters and deuteron properties.

AV18 CD-Bonn Nijm-I Nijm-11 Reid93 Empirical
a, (fm) 5.419 5.419 5.418 5.420 5.422 5.419°
r.=p(0,0) (fm) 1.753 1.752 1.751 1.753 1.755 1.782
pa=p(—Bg,—By) (fm) 1.767 1.764 1.762 1.764 1.769 1.768°
Ag (fm~1? 0.8850 0.8845 0.8841 0.8845 0.8853 0.88458
n 0.0250 0.0255 0.0253 0.0252 0.0251 0.0256
rq (fm) 1.967 1.966 1.967 1.968 1.969 1.9755 ¢
Qq (fm?) 0.270 0.270 0.272 0.271 0.270 0.2855°
Pp (%) 5.76 4.83 5.66 5.64 5.70 —
aReferencd 24].
bReference$25,26.
‘Referencd27].
dReferencd 28].

*Reference$29,25.

Reid93 are stricly local, the Nijm-I central force includes Aﬂzt::(AxtiAy)/\/E andA,_o=A,, C, is the Gamow

momentum-dependent terms which give rise to nonlocahenetration factor, and the overlap integral is conventionally
structures in the equivalent configuration-space potentiagefined ag2]

This affects the deutero8 wave and is the reason why the _

u(r) generated by CD-Bonn and Nijm-I are so simi(large N e'd (=

solid and dashed curves in Fig) and differ from the other A(E)=(¥"12) C_okfo dru(r)xo(r:k). (5.2
three potentials. The Nijm-1 tensor potential is strictly local,

similar to AV18, Nijm-Il, and Reid93, which explains why The constanty is defined in Eq(4.20, and the wave func-
these four potentials generate very simiarwaves. The ion Yo is normalized as in E¢(2.6). Because the solar fu-

CD-Bonn tensor potential is nonlocal. sion reaction actually occurs at energies of only a few keV,
the phase shiff, is extremely small, and so the exponential
V. AXIAL ONE-BODY CURRENT CONTRIBUTION e'% can conveniently be approximated by unity. Note that

) ) ) ) when we adopt the normalization as advocated by Kamion-
Using the wave functions as defined in Eq8.4) and  kowski and Bahcal[5], Eq. (3.17), we find
(2.5 and ignoring théd -wave contribution in the initial scat-

tering state, we find that the matrix element of ld®mi- 2 s [ _
nan) one-body part of the axial current is given by A(E)=(appy°/2) fo dru(r)xo(r;k), (5.3
el (e where the scattering len is defined as
<d’M|A5})|Pp>:5M,M‘/16”9ATJO dru(r)xo(r;k) g lengty,,

1
327 — 5= lim Ckcotéy. (5.4)
=\ —39aCoA(E), (5.1 PP k=0
Y

Equation (5.3 coincides with the definition of the overlap
integral given by Kamionkowski and Bahc@$l]. However,
as stated in our discussion on thp wave function, it is not
at all trivial to calculate the correct scattering length,
when electromagnetic interactions other than the point-
particle Coulomb interaction are present.
In the following, we will present our results for the over-
lap integral using realistipp and deuteron wave functions.
/f By realistic we mean that these wave functions were ob-
,,f,// ] tained by solving the scattering and bound-state equations
,,f’/ v using the recent high-precisidfN potential models, the pa-
//// / rameters of which were fitted to give an almost optimal de-
o0 L2 , ‘ scription of theNN scattering data up to laboratory energies
0 1 2 3 4 of 350 MeV (i.e., y?/data=1). The fiveNN models we con-
r (m) sider consist of the AV18 Argonne moddl6], the CD-Bonn
FIG. 1. Deuteron wave functions: large curvegr); small ~model[30], two Nijmegen models, Nijm-I and Nijm-[I31],
curves,w(r). The solid, dashed, dash-dotted, dotted, and longand a regularized update of the Reid soft-core potefRibl
dashed curves are generated from the CD-Bonn, Nijm-I, Nijm-1l, The AV18 potential was fitted including all finite-size effects
Reid93, and AV18 potentials, respectively. in the full electromagnetic potential of E(.4), whereas the

where A(),, ; are the spherical components @),

o
S

Fed
S

u(r), w(r) (fm"®)
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TABLE Il. Square of the overlap integral (E,,) at various Finally, for the AV18 potential we can also study the
laboratory energies for the fivlIN potential models. The zero- finite-size effects and the effect ¥, (np) in the deuteron
energy results are obtained by extrapolating the preceding resultsgalculation. Neglecting the finite-size effects underestimates
A?(0) by only 0.08%, as shown in the table. Simply remov-
NN model Ref. 5keV 4keV 3kev 2keV 0keV ing Vew(np) changes the binding energy ®y(trunc)=
AV1S [16] 7.002 6.995 6.987 6.980 6.965 — 2-242227 MeV, and hence the asymptotic behavior of the
CD-Bonn  [30] 7.022 7.014 7.007 6.999 6.985 dezutert_)n wave function. The consequence of this is that
A<4(0) increases by 0.03, almost a 0.5% effect. However, if

Nijm | [31] 7.002 6.994 6.987 6.979 6.965 X ) . . S
Nijm I [31] 7.008 7.000 6993 698 6.971 we first refit the binding enerdly.e., make a modified AV18
Reid93 [31] 7011 7.003 6996 6.989 6974 potential which does not includégy(np), but which does

have the proper asymptotic deuteron wave fundtitren the
difference inA?(0) is only 0.001. Hence, the inclusion of
other four potentials used the point-particle approximationVew(np) under the restriction that the potential model cor-
i.e., Fe(r)=Fy(r)=Fs(r)=1 and F4r>0)=0. Further- rectly fit the experimental binding energy has only a small
more, the AV18 potential is the only model which includes effect on the overlap integral, as we alluded to earlier.
the electromagnetic interactiqr.26 also in the deuteron.

In Table 1l we show the results forA?(Egp) VI. BEYOND THE AXIAL ONE-BODY CURRENT
(E=E/2) as calculated from Eq5.2). The integral was CONTRIBUTION
cut off atr =50 fm, which is valid since beyond this distance . . . .
the deuteron wave function has become extremely small, and ' this section we review the procedure leading to the

so the contribution to the overlap integral becomes neg"_experlmental determination of the Gamow-Tel({&T) ma-

gible. The results are shown for laboratory kinetic energied"X €lémentin tritiumg decay, and demonstrate the inability

of 5, 4, 3, and 2 keV, which are extrapolated to define thePf calculations based on axial one-body currents and realistic
result at zero energy.’ For each model we use the deuterdl@ve functions from modern interactions to correctly predict

and pp scattering wave functions of that particular model, tNiS value. After a brief discussio_n of the a>§ial two-body
The dependence on the particuN model is found to be current operator;, we address the issue of their model depen-
rather small. Taking the average over all five models we ﬁndden_ce_ by adopting the phenomenolo_glcal approach of con-
A2(0)=6.975+0.010. Leaving out the CD-Bonn model, stralnlng_them to reproduce the experimental value of’tie
which is quite different from the other models in that it is the GT matr|>§ elgment. We then calculate these Fvyo-b_ody cur-
only model with nonlocal tensor interactions, we find an'€Nt contributions to thep weak capture, examining in par-
even smaller model dependence wiA(0)=6.970+0.005. ticular the question of how their associated uncertainties af-

We again want to stress that théd&l models were fitted fect thepp cross section.
including the full electromagnetic potential, and so the wave
functions have to be calculated in the presence of this same A. Tritium B decay
electromagnetic interaction. Truncating it, for example by Evidence for the presence of axial two-body current con-
only including the standard Coulomb interaction, will triputions to weak transitions comes from tjfedecay of
modify the wave function and, hence, the overlap integral. Inritium. Its half-life can be expressed as
Table Il we show the effect oi?(E) for different trunca-
tions of the electromagnetic part of the interaction. For the K/G\Z/
nuclear interaction we take the AV18 potential as an ex- (1+6p)t= 2 2 2
ample. The other models show a similar trend. We consider F(F)*+fa gA(GT)
four different truncations of the electromagnetic interaction
all for point-particle protons. The effect &, is seen to be

6.

‘wheredg=1.9% is the so-called outer radiative correctibn,

' AR is the half-life, andfy, andf, are Fermi functions calculated
rather _smaII. neglecting it mcreasAs?_(O) b_y only 0.0035, by Towner, as reported by Simpsp8b], to have the values
which is a 0.05% effect. The proper inclusion of the vacuum P iy : ;

Lo T . . Lo 2.8355<107° and 2.850% 10 °, respectively. The experi-
polarization is much more important: neglecting it causes an S 2
almost 1% increase. mental value for the combinatidt/Gy, is (6146.6-0.6) s,

as obtained by Hardgt al.[9]. This value is actually 0.15%
TABLE IIl. Square of the overlap integrak (E,,) at various larger than that used by Simpsg85], (6137.23.6) s, in
laboratory energies for four different truncations of the electromaghis *H B-decay analysis. Finally,F) and(GT) denote the
netic interaction(all for point-particle protons The nuclear inter- reduced matrix element of the Fermi and GT operators,
action is the AV18 potentidl16]. The result for the full interaction  which in the one-body limit are given by, respectively,
with finite-size contributions is included for comparison.

_/3 3
Vem(pp) 5keV 4keV 3keV 2keV OkeV <F>—< He EI Ti+ H>' (6.2
\ 7.060 7.051 7.043 7.035 7.019
Vei+Ve, 7063 7.055 7.047 7.039 7.023 (GTy=(%Hel|S oyr . ||3H). 63
Vei+Vyp 6.993 6985 6.978 6.971 6.956 i '
Ve, +Veo+Vyp 6996 6989 6981 6.974 6.960
Full 7.002 6.995 6.987 6.980 6.965 Simpson [35] reports the experimental value (1134.6

+3.1) s for the combination (& 6g)tfy . In order to extract
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a value for the tritium GT matrix element, it is necessary to TABLE IV. One-body and two-bodyA 7 contributions to the

calculate the Fermi matrix element. If the trinucleons wereGamow-Teller matrix element of tritiunB decay, obtained with

pure totalT=1/2, M= +1/2 states, then the Fermi matrix various combinations of modern two- and three-nucleon interac-
element would just be one. However, charge-symmetr;ﬁions in CHH and 42-channel Faddeev calculations,.the former for
breaking (CSB) and charge-independence breakif@iB) the AV18/UIX model onIy._ The one-body results obFalned from Eq.
and, more importantly, electromagnetic effects in the nuclea®-6 are also quoted, while those under the heading “total” give
interaction lead to a small correction. In the present studytn® sum of the one-bodffirst column andA contributions.

such a correction is calculated usifg and *He wave func-

tions obtained with the correIated—hyperspherical—harmoni('f'am'lton'an One-body ~ Eq6.6 Am Total
(CHH) method[36] from the AV18 two-nucleon interaction av1s 0.924 0.925 0.0507 0.975
(including electromagnetic termand the Urbana UIX three- av1s/T™ 0.925 0.925 0.0546  0.980
nucleon interactioi37]. We find, neglecting isospin admix- av18/Uix 0.922 0.923 0.0560 0.979
turesT=3/2 (the probability of T=3/2 components irfHe
has been estimated to be about 0.00L6% CD-Bonn 0.935 0.935 0.0427  0.977
CD-Bonn/TM 0.937 0.937 0.0435 0.980
(F)?=1-¢€=0.9987. (6.9 -
Nijm | 0.926 0.927 0.0507 0.977
The present value fog is about twice that obtained by Saito Nijm I/TM 0.928 0.927 0.0534  0.981
et al.[38] in a (convergedl Faddeev calculation based on the
older Argonnev .4 two-nucleon[39] and Tucson-Melbourne N!!m I 0.926 0.927 0.0504  0.976
(TM) three-nucleorf40] interactions and phenomenological Nijm II/TM 0.927 0.927 0.0534 0.981
CSB and CIB terms constrained to reproduce the observeflgigg3 0.925 0.926 00514 0977
mass difference i®H and ®He. However, the individual Reido3/TMm 0.926 0.926 0.0549 0981

binding energies are underpredicted by this Hamiltonian
model by about 3%. In contrast, the present AV18/UIX CHH
wave functions reproduce the experimental binding energiegherePg, Py, andPg are the probabilities of th&-, D-,

of both systems within less than 10 keincidentally, the and S’-wave components in théH state. Use of such a
variational CHH and “exact” Faddeey4l] and Green’s relation implicitly assumes isospin symmetry—namely, that
function Monte Carld42] methods produce trinucleon bind- 3H and ®He form an isodoublet—and also ignores the con-
ing energies all within a few keV of each othelt is unclear  tribution of P-wave components. However, corrections to
at this point whether the difference in values calculated Eq.(6.6) appear to be very small, a few parts in a thousand.
here and in Ref[38] is to be ascribed to binding energy  Third, the results listed in Table IV indicate that modern
effects or to differences in the treatment of the electromaginteractions lead to predictions for the GT matrix element of
netic, CSB, and CIB interaction®r both. We note that tritium in the range,/3x (0.923-0.937), and therefore to an
Simpson uses the value=0.0006 in line with the estimate underestimate of the experimental value ranging, in relative

of Saitoet al. terms, from 2.1% for CD-Bonn/TM to 3.7% for AV18/UIX.
Using the measured half-life, and the valuBgGZ

= (61466t 06) S, fA/fV: 1005 29,< F>2: 09987, aanA B. Axial tWO-bOdy current model

=1.2654+0.0042, the “experimental” GT matrix element ) ]

is obtained: For the axial two-body current operator we use a slightly

expanded version of the conventional and p-meson ex-
(GT)|exp= V3(0.957+0.003, (6.5
TABLE V. The S-, S'-, P-, andD-state percent probabilities in
where the\/3 is from a Clebsch-Gordan coefficient. 3H wave functions. The results for the AV18/UIX model are from
The experimental GT matrix element is compared withRef.[36].
predictions from a number of modern Hamiltonians with ——
various combinations of realistic two- and three-nucleon in-Hamiltonian S S P D
teractions in Table I\/_..\.Ne also glvelln Table V the calcu- AV1S 90.10 133 0.066 8.51
lated percent probabilities of thg-, S'-, P-, and D-wave
. . AV18/TM 89.96 1.09 0.155 8.80
components in theH wave function[36,41. A few com-
. . . . . AV18/UIX 89.51 1.05 0.130 9.31
ments are in order. First, the model Hamiltonians with the

TM three-nucleon interaction are all designed to reproduc&Dp-Bonn 91.62 1.34 0.046 6.99
the experimentaPH binding energy in Faddeev calculations cp-Bonn/TM 91.74 1.21 0.102 6.95
by adjusting the cutoff mass in the TM forp#l]. As already
pointed out, the two-nucleon interactions employed in theNiim | 90.29 1.27 0.066 8.37
present work are of high precision, and produce fitpmp  Nim I/TM 90.25 1.08 0.148 8.53
andnp scattering data up to laboratory energies of 350 MeVNijm I 90.31 1.97 0.065 8.35
with a x? per datum in the range 1.03—-1.09. i 1TM 90.22 107 0.161 8.5
Second, in Table IV we also quote the results obtainers\‘J : : : '
using the relation Reid93 90.21 1.28 0.067 8.44
Reid93/TM 90.09 1.07 0.162 8.68

(GT)=3(Ps+Pp/3—Pg/3), (6.6)
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TABLE VI. Contributions to the Gamow-Teller matrix element reproduce the experimental binding energies of the trinucle-
of tritium B decay, obtained with the CHH AV18/UIX trinucleon ons in a 34-channel Faddeev calculat[@?]. The cumula-
wave functions. The cutoff massed ,=4.8 fm™ and A, tive value for the calculated GT matrix element {8
=6.8 fml .arg gggg |r_1|_;]he aX|at|) t‘(’j"o'bOdﬁ opet:atprsaTbhe cumula-x 0,964, about 0.7% larger than experiment. A slight adjust-
tive result s 0.9636. The two-body results obtained by retainingment jn the cutoff masses ., and A, or NA axial coupling
only the contributions of th@ =1 pairs in trittum are also given (or both is thus required to bring theory and experiment into
(column labeledT =1). perfect agreement. We will return to this point later, in Sec.

Total T=1 Vil

To test the model dependence, we have calculated the
One-body 0.9218 leading A7 contribution with 42-channel Faddeev wave
A 0.0560 0.0291 functions obtained from the Hamiltonian models discussed
Ap —0.0213 —0.0111 earlier, and the results are listed in Table IV. Both the one-
P 0.0070 0.0035 body andA 7 contributions show a strong correlation with
=S 0.0044 0.0025 the D-state probability in the trinucleon wave functions,
pS —0.0043 _0.0021 which is obviously related to the deuter@istate probabil-

ity predicted by the underlying two-nucleon interaction, as is
evident from Tables | and V. This correlation is a direct

change model first described by Chemtob and 4] consequence of the dominant contributions due To

) — e . T— 3 3 — 3 it
These are two-body currents associated with excitation of * ~So=1=0 "$,-"D; (T=0 °D,) transitions for the
intermediateA resonances byr and p exchanges, therp one-body (A7) component. This has been verified explicitly

mechanism, and the contasfNN and pNN interactions. In by including only the above channels in the Faddeev evalu-

the tables, these operators are denoted, respectivelysras ation of the GT matrix element. As a result, the sum of the

Ap, mp, =S, andpS. Explicit expressions for them are listed ©N€-pody andAw contributions turns out to be essentially
in the Appendix for completeness. Here we only note that model independent, as indicated in Table IV. Such a conclu-

the (nonloca) momentum-dependent terms in the p, and sion i_s a!so expec_ted to hold when the remaining two-body
7p operators are retained in contrast to R88]; (i) mono- contributions are included. Th_us, to r_eproduce the experi-
pole form factors are included at theNN andpNN vertices mental GT matrix element, a single adjustment of the cutoff

with cutoff masses\ , and A ,, respectively; andiii) there massesA . and A, Of Ona IN the ax'|al tyvo-body current
is significant uncertainty in the leading= andAp contri- operators should suffice for all Hamiltonian models consid-

butions, since theN to A transition axial coupling is not ered.

- We now turn to thepp capture. We only quote results,
known [44]. In the model adopted here, the latter is related . .
within t[he]quark model to thpe nucleog, , namely, gy presented in Table VII, corresponding to the AV18 and CD-

Bonn interactions. The values calculated with these two
=(62/5)g,.

models, which give the two extremes for the one-body con-

. The present approach consi_sts of using the simpl_es_t PO%bution, 6.966 and 6.992 respectively, at zero energy, are
sible two-body operators that give an adequate description O’Eithin Iéss than 0.2% Whén all two-boéy current contrii:)u-

the longest-range mechanisms and of adjusting the cuto ; .
> ) Lo ions are included. Thus, the two-body part of the axial cur-
massewithin a given Hamiltonian modedo as to reproduce lead . f the AV d CD-B
the experimentaPH GT matrix element. The contributions rent leads to an increase of the . 8 and CD-Bonn one-
due 1o exchanaes of heavier mesons éuch aniHd5.46 body results, amounting, respectively, to 1.6% and 1.1%,
or renormalizaﬁons effects, arisin frczm’ isobar aidmix'tur,es consistently with the findings of the earlier studj.
’ 9 Having demonstrated the model independence of theoret-

in the nuclear wave functiorigl4], are neglected. However, ical predictions for the GT matrix element aqb weak

in the next subsection it is ar_gued that thesg ap.proxmatlonéapture cross section, we now want to address the issue of
are not expected to have an impact in any significant way o

. - Bow ambiguities in the axial two-body currents might affect
t_he theoretical predictions for thep We?k capture Cross sec- this conclusion. To this end, it is useful to decompose the GT
tion once the two-body current model is constrained to fit th

natrix elemen
GT matrix element of tritium. atrix element as
3H>

;J O,.+(ij)Pi(ij)

; 0,..(i})

3
C. Axial two-body current contributions to the pp capture < He
and 3H GT matrix element

In Table VI we quote the contributions to the GT matrix =<3He
element obtained with the CHH AV18/UIX trinucleon wave

functions from the individual components of the axial cur-

rent operators listed in the Appendix. The small differences +<3He
between the present results and those reported in &edre

due to the slightly different values used fokx, (A,

=4.80 fm ! in the present work versus,=4.65 fm *in  WhereO_, is thez component of any axial two-body cur-
Ref. [8]) and, presumably to a lesser extent, to the fact théent operator, andPg , are projection operators ovéi=0
older calculations were based on a different Hamiltoniarand 1 two-nucleon states:

model, consisting of the Argonne,, two-nucleon and . =

Urbana-VIII three-nucleon interactions, which, however, did Po(ij)+P1(ij)=1, (6.9

s

3H>, (6.7

gj 0,4 (ij)P(ij)
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0.03 , ‘ ’ in Eq. (6.7) are expected to be of about the same size. This
can be seen from Table VI, where the sums of The0 and
0.02 | 1 andT=1 alone contributions to the GT matrix element
from the individual components of the two-body operators
—.E 0.01 | are listed.
= It is interesting to define the two-body densities:
< 000
-0.01 | ] Sl
" ™ po<x;GT>=<3HeiE<j 8(x=1ij)O;,, (i} )PG(i}) 3H>,
-0.02 0 1 2 3 4 (6.12
x (fm)
FIG. 2. Gamow-Tellefsolid lineg and pp (dashed linestwo- _ B
body densities. Note that aip curves have been rescaled by a po(X;pPpP)={ PP ; O(X=T1ij)Og+(i])|d,0),
single factor, as explained in the text. ! (6.13
PI(ij)= w (6.9  such that
In Eq.(6.7) most of theT=0 (T=1) contribution is coming o
from conversion of apn T,5=0,1 (hnT,S=1,0) pair in fo dx po(x)=0 contribution. (6.14

SH to app T,5=1,0 (pnT,S=0,1) pair in He, for ex-

ample,
<3He

:<3He

These densities are shown in Fig. 2, where thgx;pp)

curves have been rescaled bgiagle factor R obtained by
3H> matching the maximum of the GT aqp A densities. As

can be seen from Fig. 2, the GT ap@ densities overlap in

; 0,..(i))PI(i})

the regionx<2 fm. Of course, at largex values the
3H>, (6.10  po(x;GT) is significantly smaller than theq(x;pp), O
=xS,Am,mp, because of the increased binding in the tri-
since the numbers of,S=0,0 andT,S=1,1 pairs in the nucleons.fTEis‘§caI1pg |s tohbe_expected, since"it is a conse-
trinucleons are much smaller than those wit}s=0,1 and ?ouretnhiae (?alct:ulleat:dCTa g:g 0 tl)eag(\jll_f_)rsrzolr% gzri]re:jﬁsi/rigg;g;ved
T,S=1,0 [48]. It is now easy to see that, ifneglecting functi . I [A’,S]' ’ Fi 3 d’4pF. I h
isospin-symmetry breaking  corrections|3He)=Q|3H), o ncrons IN NUCIELEC], SEE FIgs. 5 ahd 4. Finally, we snow
WhEreQ= 7, 7,7y is the isospin-flip operator, then in Fig. 5 thEpA.w(X). densities obtained with the AV18 and
1xf2xt3x CD-Bonn Hamiltonians for the GT arplp matrix elements.
In this case, both th=0 andT=1 contributions are in-
<3He 3H> cluded in the GT densities—namely, they have been calcu-
= < 3He

ZJ P3(i])0, + (ij )PI(i})

lated by removing the isospin projector in E6.12. Note
that the pp densities have been rescaled by a fad®or
=39.0 obtained by matching the maximum of the AV18 GT
and pp densities. However, this rescaling also makes the
CD-Bonn GT andpp densities very closésee Fig. 5, dem-
since the matrix element is read commutes withP7, Q>  onstrating that theR factor has only a very weak model
=1, andOL =0 . Thus, theT=0 andT=1 contributions dependence.

2} P3(ij)0,, . (i) )Pi(ij)

Ej PI(ij)O,+ (i])P&(ij)

3H>, (6.1

TABLE VII. Square of the overlap integral (E,,) at various lab energies for the AV18 and CD-Bonn
interactions. The zero-energy results are obtained by linear extrapolation of tHegg=e8 and 5 keV. The
cutoff masses\ ,.=4.8 fm ! and A,=6.8 fm * are used in the axial two-body operators. The two-body
contributions are added successively in the given order.

5 keV 4 keV 3 keV 0 keV
AV18 CD-Bonn AV18 CD-Bonn AV18 CD-Bonn AV18 CD-Bonn

One-body 7.002 7.022 6.995 7.014 6.987 7.007 6.965 6.985

+7S 7.015 7.024 7.007 7.016 6.999 7.009 6.977 6.987
+pS 7.005 7.018 6.997 7.010 6.990 7.003 6.967 6.981
+Am 7.138 7.126 7.130 7.118 7.122 7.111 7.099 7.089
+Ap 7.090 7.092 7.083 7.084 7.075 7.077 7.052 7.055

+ap 7.114 7.097 7.107 7.089 7.099 7.082 7.076 7.060
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0.06 |
I 1
.08 | —— 'S, VBS |
0 \ - *He 0.05 |
NG oL
0.06 | 2\ g 004
o~ ) \\\ T
e W £ 003}
= AN =
X 0.04 | N 1 < 002 |
2 N
e AN 0.01
0.02 | AR 1
/ AN S 0.00
2 \‘\\~\~\ =~ 4
0.00 & ' . =i x(fm)
o 1 2 3 4 o _
FIG. 5. Gamow-Teller(solid lineg and pp (dashed linesA
x (fm) densities obtained with the AV18 and CD-Bonn Hamiltonians. Note

that the Gamow-Teller densities include both fhe0 andT=1
contributions—namely, they have been calculated by removing the
isospin projectoiPy(ij) in Eq. (6.12. The pp densities have been
rescaled by a single fact®=39.0, obtained by matching the maxi-
um of the AV18 Gamow-Teller andp densities.

FIG. 3. TheT,S=1,0 pair distribution functions for various nu-
clei; see Ref[48]. Note that the curves have been renormalized to
the peak height of thé%0 density.

The discussion above shows that two-body contributions”
to thepp capture are essentially independent O.f the speglﬁ out 0.1%. This is in part compensated by the correct rela-
dynamical model adopted as long as the latter is constraing

i i th . tal val f the GT matrix el istic treatment of the deuteron wave numbgr which
rgernetpro uce the expenmental value of the matrix € e'gives a net 0.03% reduction in the cross section. Including

just the axial one-body operator, the five models differ by
only 0.3% in the calculated cross section.
VIl. CONCLUSIONS The biggest remaining uncertainty is in the contribution of
axial two-body currents, which can increase the cross section
. . . .~ by about 1-1.5%. Three concerns were expressed at the
proton weak capture using five modern high-precision g ent workshop on solar fusion rafds] regarding the use

nucleon-nucleon potentials. All these models give excellenfc o | nown tritium B-decay rate to predict the axial two-
fits to elasticNN scattering data with &%/datum near 1 and body current contribution to thep fusion reactioni(1) the

reproduc_e measured_ deuteron properties very well. We_ hfivﬁ']odel dependence of the one-body contribution to the GT
paid particular attention to details of the electromagnetic in

: ‘matrix element and the resulting uncertainty in the extracted
teraction and the proper treatment of the low-engrgyscat-

teri Ui A ted befofs! th iy ant two-body current contribution to that matrix elemeiig)
efing solutions. As noted befo[&] the most important cor- two-body currents coupling’,T,=1,0 pairs toT,T,=1,1

reciﬂon to the stanldqrd tC.ZOUIO'E.b rllnte(rjactlontﬁetween prm?ngairs, which can contribute to the tritium GT matrix element
IS theé vacuum polarization, which reduces the cross Sectiog, ;; 4 1o thepp capture; and3) isobar and contact terms

by about 1%. We have shown that other fine details of the, | give different contributions to the GT apg-capture

electromagnetic interaction increase the cross section b|¥1atrix elements, and thus knowledge of their sum in the GT

may not be sufficient to predict their sum in the capture
matrix element.

Our detailed calculations show that these concerns do not
influence the prediction of thpp-capture rate. In particular,
(1) the model dependence in the one-body contribution to the
GT matrix element comes mostly from that in tBestate
probabilities. Because of the small@rstate predicted by the
CD-Bonn potentialTable V), the corresponding prediction
for this contribution is larger by about 1% able 1V). How-
ever, the prediction obtained with this potential for the
pp-capture rate via one-body currents is also larger by about
0.3% (Table Il) because of the smalld) state in the deu-
teron(Table ). The axial two-body currents are necessarily
weaker in the CD-Bonn model because they strongly couple
the S and D states. In fact the sum of one- and two-body
current contributions is much less model dependent than ei-

FIG. 4. TheT,5=0,1 Mg=0, +1 pair distribution functions ther as can be seen from Tables IV and \(B) The axial
for given angles? between the spin-quantization axis and the rela-two-body currents do not couple tigT,=1,0 pairs to the
tive position vector of the two nucleons and for various nuclei; seel , T,=1,1 pairs in any significant way, as the discussion in
Ref.[48]. Note that the curves have been renormalized to the peathe preceding section makes cle@). The two-body currents
height of the deuteroMs==1 #=0 density. are large at small interparticle distances where nuclear forces

We have calculated the axial matrix element for proton-

0.008 r . ;
0.006

0.004 |

PV, (x,8)(fm™)

0.002

0.000 G
0
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dominate over binding energies. In this region the pair wave ACKNOWLEDGMENTS
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APPENDIX: THE AXIAL TWO-BODY CURRENT OPERATORS

For completeness, we list here the momentum-space expressions for the axial two-body currents used in the present work.
(1) Axial 7-exchangeA-excitation current:

AR (A= — 2 g ETIAL 2K )[4 7 o ki— (11X 7)a XK ]+i=] (A1)
T 254 m2(my—m) m2+k2 7 kAR AT TR
(2) Axial p-exchangeA-excitation current:
4 gi(1+x,)? f2(k)
2 . _ p p P N
A(a,i)j(qvAp)_z_SgA m2(m,—m) m§+kj2{4 Tja (07XK) XK= (11X 7)) 5 01 X[ (07XKj) XK [} +i=]. (A2)
(3) Axial -exchangegpair) current:
2
ga fonn 0-K; . . , .
AL TS) =5~ B Tk {(mX 7)) Xk =7y dlation X (PP T (A3)
T T ]

(4) Axial p-exchanggpair) current:

92(1+x,)? f2(k))
8m®  mi+k

Az (;pS)=—0a (77,4l (0 K;) X K; =i [ 07X (07X k}) ] X (pi+p )}
+ (1 X 7)aldoi- (o7Xk)) +i(oyx k) X (pi+p{) — [0y X (07X Kkj) XK} +i=]. (A4)
(5) Axial p current:

o K
(M2+k?)(m2 +k?)

2
Af?,—(q;wm:—gAg—n’j Fo(k) f (k) (mX 7)ol (1+ k) o X ki=i(pi+p{) ] +i=]. (A5)

Hereq is the total momentum transferk; +k; , kj(;) is the momentum transfer to nucleon(j), p; andp; are the initial and

final momenta of nucleon, andf (k) =pion (p-meson-nucleon monopole vertex form factor. The quark model has been
used to relate theeNA, pNA, and axialNA couplings to, respectively, theNN, pNN, andg, couplings. The expression for

7S represents the conventional pair current operator given in the literature. It is obtained with pseudoscalar pion-nucleon
coupling. With pseudovector coupling the pion momentinin the first term in brackets would be replaced by the external
momentuny and an additional termp{+ p) would appear with the isospin structurg X 7;) ,. Furthermore, theS operator

includes only those terms which are proportional toJr(;ap)Z. Finally, m_., m,, m, andm, are, respectively, the pion,
p-meson, nucleon, andl masses.

p
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