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Abstract. Our main result can be described as follows. A subharmonic
function u in a suitable domain ß in R" is the difference of a Poisson
integral and a Green potential if and only if u divided by the distance to 3Í2
is in weak L, in Q.

Similar conditions are given for a harmonic function to be the Poisson
integral of an Lp function on 90. Iterated Poisson integrals in a polydisc are
also considered. As corollaries, we get weak L, characterizations of Hp
spaces of different kinds.

1. Introduction.A harmonic function u in, say, the unit ball U in R" is the
Poisson integral of a measure on 3U if and only if the integral of \u\ over the
sphere {\x\ = 1 - tj} is bounded as tj -» 0. In this paper, we shall prove that «
is of this type precisely when (1 - |xj)-1zz is in weak 7, of U. If instead u is
subharmonic, this last condition will characterize those zz which can be
written as the difference of a Poisson integral and a Green potential in U.
This result carries over to arbitrary bounded domains of class C(1,o), if
1 - \x\ is replaced by the distance to the boundary of the domain. This can
be applied to suitable powers \u\p of harmonic or holomorphic functions u,
yielding weak Lx characterizations of Poisson integrals of L functions on the
boundary and of Hp spaces. More generally, we may have Orlicz spaces
instead of Lp spaces here. In particular, a holomorphic function u in the unit
disc U c C is in Hp(U),p > 0, if and only if (1 - |^r|)—'¡«l^ is in weak 7„ or
equivalently (1 — |z|)-1//,h is in weak L .

Quite similar results hold for a half-space. In that case, we also give
analogous characterizations of Poisson integrals of classes of functions and
measures defined by means of weight functions on the boundary. In a
polydisc, the class of zz-harmonic functions which are iterated Poisson
integrals of measures on the distinguished boundary has a characterization of
the same type. This time, spaces slightly larger than weak 7, are involved,
and there is again a corollary about Hp spaces.
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180 PETER SJOGREN

The main tool used in the proofs is a theorem about convolutions of the
kernel |x|~" in R" which was proved in Sjögren [7]. In §3, we state this result
and give a simpler proof of it. Poisson integrals for bounded domains are
studied in §4, where we give the main result together with its applications to
Lp and Hp spaces. In §5, we state the corresponding results for a half-space.
The proofs of these theorems, which constitute §6, are analogous to those of
§4, although technically more complicated. §6 is therefore less detailed. In §7,
the iterated Poisson kernel of a polydisc is studied.

Some of our present results were given in the preliminary report Sjögren
[10].

2. Preliminaries. We will work in R", n > 2, and denote by |7i| the
Lebesgue measure of E c R". If / is a real-valued measurable function in a
domain ß c R", the distribution function of/is defined by

A/(a) = |{xefi:|/(x)|>«}|,      a > 0.
We let/* be its decreasing rearrangement, defined by

f*(t) = inf{a: Xj(a) < t),      0<t <|ß|.
If E c ß is measurable, it is well known that

(2.1) \jdx<(mf*(t)dt.
Je Jq

For more details about these notions, see Stein and Weiss [12, Section V: 3].
The space A(ß), usually called weak L,(ß), consists of those / which satisfy
f*(t) < const • t~\ 0 < t < |ß|. Letting ||/||A be the smallest such constant,
we obtain a quasi-norm on A(ß); in fact, ||/+ g||A < 2(||/||A + \\g\\j¿.
Equivalently, A(ß) can be defined by the inequality Xj(a) < const • a~l, a >
0, with the same constant.

In the sequel, we shall denote by C many different constants, indicating if
necessary which variables C depends on. The relation /~ g means C < f/g
< C with constants of this type (/ and g axe equivalent). In the rest of this
section, C may be chosen to depend only on the domain ß described below.

Let 8cR" be a bounded domain of class C(1,a). We put 5(x) =
dist(x, 3ß) for x E ß, and let P(x,y) and G(x,y) be the Poisson kernel and
the Green's function, respectively, of ß. If X is a (finite Radon) measure on
3 ß, its Poisson integral is defined by

PX(x)=f P(x,y)dX(y),      x E ß.
•'30

For suitable functions/ on 3ß, we write Pf for the Poisson integral of the
measure fdS. Here dS is the area measure on 3ß. From Theorem 2.3 in
Widman [13], it follows that

(2.2) P(x,y)< C8(x)\x-y\-".
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POISSON INTEGRALS, GREEN POTENTIALS, AND Hp SPACES 181

The Green potential of a positive measure p in ß is given by

Gp(x)=ÍG(x,y)dp(y).
Ja

This potential is superharmonic (i.e., ^+00) precisely when u belongs to the
class MQ of positive measures in ß for which Gp < 00 a.e. As shown in [13],
G(x0, x) ~8(x)'ú we let x approach 3ß and keep x0 E ß fixed. This implies
that A/jj consists of all u for which J8 dp < 00.

Again fixing an xQ E ß, we let 8, = {x £ 8: G(x0, x) > tj} for small
n > 0, which is a family of domains approximating ß. From the property of
G just stated, it follows that 8(x) ~ tj for x E Sß,,. Further, the surfaces 3ß,,
are uniformly of class C(1,a), in view of [13, Theorems 2.4 and 2.5]. We
denote by dSv the area measure of 9ß . From [13], it also follows that the
Poisson kernel 7n of ñn satisfies

(2.3) 7„(*0, -)~1
on 98,,, so that the harmonic measure of ß,, at x0 is equivalent to dSn,
uniformly in n.

The Green's function of ß,, is given by
Gv(x,y) = N(x - y) - h?(y),      x,y E Q„,

where N is the Newtonian kernel and h? the harmonic function in ß„ which
equals N(x — •) on_9fi,,. We call hx the corresponding function in ß; it
satisfies hx E C(1,a)(ß). From now on, we fix x E ß. It follows that the C(U)
norm of the restriction of h]¡ - hx to 3Q^ is bounded as n-»0, and that
/ij? — hx\düv together with its tangential derivatives can be made arbitrarily
small, uniformly on 3ß^,J)y taking 77 small enough. But this implies that the
C(,) norm pf h* — hx in Qv tends to 0 as tj -» 0, as can be seen e.g. from the
Poisson representation formula of h% — hx in terms of its restriction to 3ß^.
Thus,

sup |grad>,( G„ (x, y) - G (x, y)) | -» 0   as tj -^ 0.
j>eu,

Since Pv is a normal derivative of Gv, we conclude that 7 -» 7 as tj -» 0, in
the following sense: For any x E ß, we can make \Pv(x,y) — P(x, z)\
arbitrarily small by taking tj small and y e3ß^ and z E3ß sufficiently close
to each other.

3. An auxiliary theorem. The results of this section hold in all dimensions
n > 1. If p is a finite positive measure in R", we put U* — r~" * p, where
r = |jc| and the convolution is defined at each point in R", with values in
[0, 00].

Definition. A closed set 7 c R" is called a convolution set if U11 E A(R")
for any finite positive measure p with supp ¡1 c 7.
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182 PETER SJÖGREN

Remark. If F is a convolution set, there is a constant CF such that
Hí/HIa < Cpll/ill for such ¡i. To see this, notice that if there is no such
constant, we can, by positive homogeneity, find a sequence ( (i¡) with 2|| p¡\\ <
oo but sup|| U*\\A - oo. Considering u = 2 p¡, we see that F is not a convolu-
tion set.

The following geometrical characterization of convolution sets was given in
Sjögren [7], and similar results for more general kernels can be found in
Sjögren [8]. In the sequel, all cubes will be open and have sides parallel to the
axes.

Theorem 1. A closed set F is a convolution set if and only if there is an e > 0
with the following property: Any cube Qx in R" contains a cube Q2 which is
disjoint with F and such that the ratio between the sides of Q2 and Qx equals e.

In one dimension, this condition means, roughly speaking, that F is con-
tained in a Cantor set with constant ratio. The proof we shall give is a
simplification of that of [7]. The cubes in the theorem could of course be
replaced by balls, but cubes are more useful in the proof.

Proof. If the geometrical condition is not satisfied, we can, for any TV, find
a cube Q such that if we divide Q into N" equal subcubes in the obvious way
(divide each edge into N equal parts, etc.), then all these subcubes intersect F.
Now choose a probability measure p supported by F and having a point mass
N ~" in each of these subcubes. Then a simple lower estimation of i/'i in Q
shows that || fy||A > c log N, with c > 0. By the above remark, F is therefore
not a convolution set, since Af is arbitrary.

Conversely, assume the condition satisfied, and let M be the smallest
integer > 2e~x. In this proof, C will denote different constants depending
only on n and e (or M). Let ftbea positive finite measure supported by F.
For a > 0, we must prove

(3.1) |{x:£/"(x)>a}|<Ca-,||/i||.

With /„ a negative integer, we let Q0 be the cube of side Af-'0 centered at the
origin. Then it is of course enough to derive an estimate for {{U11 > a) n
Q0\, similar to (3.1) and uniform in /0.

Divide <2o mt0 M" subcubes of sides A/"'0-1. At least one of these
subcubes will be disjoint with F, in view of the hypothesis and the choice of
Af. Pick such a subcube, and call it a hole of order /0 + 1. Each of the
remaining M" — 1 subcubes is now divided into M" cubes of sides A/-'0-2.
Among these, we pick one which does not intersect F, and call it a hole of
order /0 + 2, thus getting M" - 1 such holes. The process is then continued
with the remaining cubes of sides A/-'0-2, and so on. In this way, we obtain
holes of all orders / > i0+ 1, which are all disjoint with F. Since there are
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POISSON INTEGRALS, GREEN POTENTIALS, AND Hp SPACES 183

(Mn - iy~'o~l holes of order y, the holes together exhaust Q0, up to a null
set.

Next, we divide each hole into subcubes called pieces, whose sides are
equivalent to their distances from the boundary of the hole, as follows. Given
a hole Q of order j, we divide it into M" subcubes of sides M~J~X. Among
these subcubes, those whose closures do not intersect dQ are called pieces of
order j + I, and the remaining ones are divided into subcubes of sides
M~J~2. Among these, those whose closures do not intersect dQ are called
pieces of order y + 2, and the remaining ones are again subdivided, and so
on. We thus obtain pieces of all orders j > j0, where j0 = z0 + 2. Notice that
every piece is contained in precisely one hole, and that the distance from F to
a piece of order./ is at least M~J.

Lemma 1. Let x E R", and takej > j0 and k < /. The Lebesgue measure of
the union of all pieces of order j whose distances from x are at most M~k does
not exceed CM ~nk(I - A/-")''-*.

This follows from some simple geometrical considerations. The main step is
the observation that those of the pieces considered which are contained in
holes of order z, with k < i < j, have a total measure of at most

A/-"*(l - A/-"),'~*A//->.
The details are left to the reader.

The number x > 0 will be determined later. Let (7f)f_, be an enumeration
of all the pieces, chosen so that the order f of Pr is nondecreasing in r. By
induction, we are now going to construct sets Fr, r = 0, 1, 2,..., and each
Fr will either be empty or a set of "forbidden" pieces lying close to Pr.
Starting with 70 = 0, we assume Fr defined for r < s. If Ps intersects
{IT* > a) and Ps does not belong to Ur<J7r (i.e., Ps is not forbidden), then
we define Fs = {Pr: r > s and dist(7f, Ps) < 2A/-i+x('-i>}.

In all other cases, we put Fs = 0.
With the Fr thus defined, we let v be the restriction of Lebesgue measure to

the union of all pieces Pr for which Fr is nonempty. Roughly speaking, this is
the union of all pieces which intersect {{y > a) and which are not for-
bidden. We claim that v satisfies

(i)|{i/*>a}nß0|< cn,
(ii) t/M > a/Consupp v,
(iii) U" < C on 7.

These three conditions imply

|{i/">a} n ß0|< C\\v\\ < Ca-xJu>tdp

= Ca-xjU'dp< CcT'll/iH,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



184 PETER SJÖGREN

in view of Fubini's Theorem. As we noticed above, this would prove (3.1),
and thus complete the proof of Theorem 1.

Before proving (i)-(m)> we make a few comments. Letting v' be the
restriction of Lebesgue measure to the set {IP > a) n ß0, we observe that v'
satisfies (i) and (ii) but not (iii). The same is true for the restriction v" of
Lebesgue measure to the union of all pieces intersecting { Uß > a}, which for
our purpose is equivalent to v'. Roughly speaking, (iii) is violated because v'
and v" have too much mass near supp p c F. When constructing v, we
therefore modify v" by taking away mass near F. This is why we introduce
the sets Fr of forbidden pieces, where no mass is placed. The Fr axe thus
constructed so that the resulting measure tends to avoid F, and therefore
satisfies (iii). Still, (i) and (ii) are preserved.

Proof of (i). The measure of { i/M > a} n ß0 is majorized by the measure
of the union of all pieces intersecting this set. Such a piece is either contained
in supp v or belongs to U Fr, by construction. Of course, |supp v\ = \\v\\, so
we need only estimate the measure of the union of all pieces in each Fr. If
Fr i= 0, the pieces of order/,/ > f, belonging to Fr all have a distance of at
most 2A2 ~F+xU-r) from pt anfj thus a distance of at most CM -?+*U-r) from
the center of Pr. Applying Lemma 1 C times, with points x suitably chosen,
we see that the total measure of these pieces is at most

CM~n?+xn(J-?\l - M-"){1+x)(J~r>.

This quantity must now be summed over/ > r.If x = x("> M) > 0 is small
enough, the series thus obtained will converge, with a sum dominated by
CM~nr = C\Pr\. Summing over r, we obtain C times the total Lebesgue
measure of all pieces Pr with Fr ¥= 0, i.e., C||i>||. This is the estimate needed
to end the proof of (i).

Proof of (ii). In each of the pieces forming supp v, there is some point x
with i/^x) > a. Since |x — y\ < C dist(x, supp u) for any y in the closure of
this piece, we have |x — z\~" < C\y — z\~" for z E supp p. Integrating with
respect to dp(z), we obtain (ii).

Proof of (iii). We fix z E F. Let p¡ be the part of v which is carried by
pieces of order/, so that v = 2JL,- jj.

Lemma 2.2/dist(z, supp vj) > M~p withp < /, then

U^(z)<C0(l-M-")J-p,

for some C0 = C0(n, e).

This is easily proved by means of Lemma 1, if we successively estimate the
contributions to U'j(z) from the pieces (of order/) whose distances from z axe
between M~p and M~p+X, between M~p+X and M~p+2, and so on. Notice
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that the lemma holds also for noninteger p, with a suitable C0.
Inequality (iii) will result from the following lemma, where C0 is the

constant of Lemma 2.

Lemma 3. For any j > j0, one can rearrange the sum Sx — 2y t/'Kz) so that
it becomes dominated term by term by the sum S2 = 2yo~JOC0(l — M~"Yk.

Proof. We use induction. The case j = j0 is clear by Lemma 2 with
j = p =jn, so suppose the assertion holds for y — 1. Let m > 0 be the integer
for which
(3.2) C0(l - Af-")m+1< 1/9 (z) < C0(l - M-")m.

Then dist(z, supp vj) < Mm+x~J, because of Lemma 2. On the other hand,
dist(supp vk, supp vj) > 2M~k+x(J~k) forj0 < k <j, by the construction of
the Fr. The triangle inequality then yields

dist(z, supp vk) > 2M~k+x(J-k) - Mm+x~J > M~k+^-k)

if —k + xU ~ k) > m + 1 ~"J> m particular if k < j -m - 1. Lemma 2
now implies U""(z) < C0(l - M-"f-u~k) for k =Jo,j0 + Í,... ,j - m - L
This means that we have estimated the firsty — m —jQ terms of Sx by the last
j— m—j0 terms of 5'2. Further, the induction assumption implies that the
terms U"k(z), k=j — m,... ,j — 1, are dominated, in some order, by the
first (and greatest) m terms of S2. To complete the induction, we need only
show that

U>>(z)< C0(l-M-")xm,

and this is a trivial consequence of the right-hand inequality of (3.2).
Lemma 3 is proved, and thus also Theorem 1.

4. Results for bounded domains. Let ß be a bounded domain of class C(l,a),
as in §2. If m is a subharmonic function in ß, we put w+ = max(t/, 0) and
u~ = m+ - u. It is elementary that u has a representation u = PX — Gp if
and only if

(4.1) fu+dSr) = 0(l)      as7j-»0.

Here it is assumed that X is a finite measure on 3ß and p E Ma. To prove
this equivalence, represent w as a Poisson integral minus a Green potential in
ßn and examine what happens when tj -» 0, considering (2.3). Then use the
convergence Pn -* 7 as tj -» 0 stated at the end of §2.

We will give another characterization of such u.

Theorem 2. A subharmonic function u in ß has a representation u — PX —
Gp, where X is a finite measure on 3ß and p E Ma, if and only if8~xu E A(ß).
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Remark. From the proof we give, it can be seen that for such u

\\8-xu\\A~\\X\\ + (8dp.
Ja

Similar equivalences between norms and quasi-norms hold also for all our
further results but will not be stated. The constants C depend only on ß in
this section.

Before proving Theorem 2, we give two corollaries.

Corollary 1. Let 1 < p < oo. A harmonic function u in ß is the Poisson
integral of a function in Lp(dQ) if and only if

(4.2) o-'lHfEAiß).
Here 2))(3ß) is defined by means of the area measure dS. To deduce this

corollary, notice that \u\p is subharmonic. Theorem 2 says that J\u\p dSn is
bounded as tj -» 0 if and only if (4.2) holds. The rest is standard.

Remark. Corollary 1 can be extended to Orlicz spaces. Let d> > 0 be an
increasing convex function on ]0,oo[ for which <b(t)/t->co as /->co, and
assume for simplicity that there exists a constant A such that <b(2t) < A<b(t)
for large t. Then a harmonic function « in ß is the Poisson integral of a
measurable function / on 3ß verifying /<f>(|/|) àS < oo if and only if
8-x<b(\u\)EA(Q).

Next, we apply Theorem 2 to Hp spaces. For n = 2, the space Hp(ß)
consists of all functions u which are holomorphic in ß and such that

(4.3) j\u\pdS^O(l),      n-+0.

Moreover, N(ti) is the space of holomorphic functions for which

/log» ¿s,
is similarly bounded. When n > 2, we define 27/'(ß) as the space of n-tuples
of functions u = (ux, ...,«„) in fi satisfying the generalized Cauchy-
Riemann equations and for which (4.3) holds true (see Stein [11, §VII: 3]).
Here |«| means the Euclidean norm of (t/„ .... un).

Corollary 2. (i) An n-tuple u = («,,... ,un) of functions satisfying the
generalized Cauchy-Riemann equations in ß (a holomorphic function in ß if
n = 2) is in Hp(ti), 0 < p > (n - 2)/(n - 1), if and only if 8 -x)u\p E A(ß).

(ii) For n = 2, a holomorphic function u in ß is in N(Q) if and only if
Ô-llog+|«|GA(Û).

In view of [11, Lemma, p. 217], the function \u\p is subharmonic for thesep,
and so is log+|w| for n = 2. Hence, this corollary follows at once from
Theorem 2.
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Proof of Theorem 2. We first prove that 8 ~ XPX and 8 ~ xGp are in A(ß), if
X and u are as in Theorem 2. Because (2.2), we have

\b{xyxPXIx)\ < CJ\x-y\-"d\X\(y) = Cr~" * \X\(x).
But A is supported by 3ß, which is a convolution set by Theorem I. Hence,
r~" * \X\ and thus also 8 ~XPX are in A(8).

As to 5 ~ 'Gp, we write

Gp(x) "(g{x, y) dp(y) = f +[ - ux(x) + u2(x).
J J\x-y\<S(x)/2     J\x-y\>S(x)/2

If \x-y\< 8(x)/2, we easily obtain 25(y)/3 < 8(x) < 28 (y) and thus
\x-y\< 8 (y). Hence,

(4.4) Í8(x)-Xux(x) dx < f Í8(y)-X ¿p(y) f G(x,y) dx.
JQ                                   J                          J\x-y\<8<y)

For zz > 3, we have G(x,y) < C\x - y\2~", and it follows that the inner
integral in the right-hand side of (4.4) is dominated by C5(y)2. To see that
this last conclusion holds also for zz = 2, we integrate the estimate

(4.5) G (x, y)<C (log|x - y | " ' + log 5 (y)) + C

for |jc — y| < 8(y). Inequality (4.5) can be proved by means of the expres-
sion for G in terms of the conformai mapping of ß onto the unit disc, see,
e.g., Hellwig [4, 1.3.6]. (In case ß is not simply connected, consider simply
connected subdomains of ß having part of the boundary in common with ß.)

In both cases, we thus obtain, from (4.4), fa8~xuxdx < CJ8dp. Since
p E Ma, the last integral is finite, so that 8 ~xux E 7,(ß) c A(ß).

To deal with u2, we choose a Borel map <p: ß ->3ß for which \q>(x) - x\ =
8 (x). Let dp* be the image of the measure 8dp under <p, i.e., define dp* by

ffdp*=jf°<p8dp
for any continuous function/on 3ß. Then dp* is a finite measure on 3ß. If
\x - y\ > 8(x)/2, we conclude from [13, Theorem 2.3] that

G(x,y) < C8(x)8(y)\x -yf< C8(x)8(y)\x - <p(y)\~",
since

\x - tp(y)\ <\x-y\ + 8(y) <\x-y\ + 8(x) +\x -y\< C\x -y\.
Hence,

8(Xyxu2(x) < CJ\x - <p(y)\~"8(y) dp(y) = cf\x - zf" dp*(z)
and Theorem 1 implies that 5-1w2eA(ß). Altogether then, 8~XPX and
8~xGp belong to A(ß).
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Conversely, suppose u is a subharmonic function with 8 ~ xu E A(ß). Then
the same is true of w+, and since we shall prove (4.1), it is no restriction to
assume u > 0 and ||5~'m||a = 1.

Fixp with 0 < p < 1. Denoting by B the ball with center x E ß and radius
5 (x)/2, we have

u(x)"< C\B\~lfupdy.

This is proved for harmonic functions in Fefferman and Stein [3, Lemma 2, p.
172], and their proof carries over to our case. The use of this inequality was
suggested to the author by Dr. B. Dahlberg. From our hypothesis it follows
that the decreasing rearrangement of (8 ~xuY is < t~p, so using (2.1) we get

u(x)"< C8(x)p\B\-x((8-1u)Pdy

< C8(x)p\Bfi fWrpdt < C8(x)p\B\~p.

This means that in ß
(4.6) u<C8x-".

Take r and tj small, with 0 < r < tj. It is well known that u remains
subharmonic if its values in ßn are replaced by those of the harmonic
function in ß^ which equals u on 3ß,. This implies that for x0 E ß,

fPv(xo,y)u(y) dS„(y) <fpr(x0,y)u(y) dSr(y),
and, in view of (2.3), we conclude

(4.7) ju dS„ < cfu dSr.

We now integrate (4.7) with respect to r ~ xdr, from an e > 0 to rj, getting

(4.8) f V1 drfudS^ cf    8~ xu dx,
h J •'SLAn,

since 5 ~ r on 3ßr and the measure drdSr is dominated by C times Lebesgue
measure. From the hypothesis and (4.6), it follows that the decreasing
rearrangement of the restriction of 8~lu to ße\ß, is dominated by
min(Ce~", t~l). Applying (2.1) to the last integral in (4.8), we obtain

(log e_1 + log tj) Ju dSv < CJ xnin(Ce-", t~x) dt < Clog e-1 + C.

If we divide by log e_1 and let e ->0, it follows that ju dSn < C, and this
completes the proof of Theorem 2.
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5. Results for a half-space. Let R"+ = {x E R": x„ > 0}. We write points in
R^ as x = (x', xn), and identify 9R^ with RB_1. The notations PX and Gp
will be used as in §4. The analogue of Theorem 2 for R+ reads as follows.

Theorem 3. Let u be a subharmonic function in R"+. A necessary and
sufficient condition for u to have a representation

u(x) - PX(x) - Gp(jc) + cxn

is that
(5.1) (1 + \x\)~nx-xu E A(R"+).

Here c ER, and X and p > 0 are such that PX and Gp converge, which
means

f    (1 +\x'\)~"d\X\(x') < oo   and    f (1 +\x\)~\ dp(x) < oo.

Of course, the term cxn can be interpreted as the Poisson integral of a point
mass at infinity. A necessary and sufficient condition for this term to vanish
is that, in addition to (5.1), JB(l + \x\)~"dx < oo for all e > 0, where
Bt = {x E R\: \u\ > exn). This is a restatement of an inequality proved by
Beurling [1] for n = 2. A proof based on Theorem 1 can be found in Sjögren
[7, Corollary 2]. For the bounded domain ß of §4, an analogous condition for
X({y}) = 0 for some fixedy G9ß, if u = PX - Gp, is that }BJx - y\~" dx <
oo for all e > 0, where Bt = {x G ß: \u(x)\ > e7(x,y)}. See Maz'ja [5],
Dahlberg [2], and Sjögren [9].

We next give a A characterization of Poisson integrals of measures on R"-1
which do not increase too fast at infinity. Let My, y > 0, be the class of
Radon measures X on R"-1 with /(l + \x'\)~y d^Kx1) < oo. Similarly, we
denote by 7j,y the class of measurable functions / on R"-1 for which
/(l + \x'\)-T\f(x')\p dx' < oo.

Theorem 4. Let u be harmonic in R"+, and suppose 1 < p < oo. A necessary
and sufficient condition for u to be the Poisson integral of a measure in My,
0 < y < n, or a function in Lpy, 0 < y < n, is that (I + \x\)~yx~lu E A(R"+)
or (I + \x\yyx-x\u\p e A(Rn+), resp.

As proved in [10], this result can be extended to classes of measures defined
by more general weight functions.

Again, our results have corollaries about Hp spaces, of which only one will
be stated. We define HP(R\) as in Stein [11, p. 220] and apply the case y = 0
of Theorem 4.

Corollary 3. Part (i) of Corollary 2 holds also for ß = R^ (and 8(x) =
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Let us finally remark that Theorem 3 has an analogue in R", n > 3. A
subharmonic function u in R" has a representation u = const - r2-" * p if
and only if (1 + \x\)~"u E A(R"). Here we assume /(l + |x|)2_n dp(x) < oo,
so that the Newtonian potential r2~" * p of p > 0 is superharmonic. The
proof is quite simple and will not be given.

6. Proofs of Theorems 3 and 4. In this section, the constants C depend only
on/z.

Proof of Theorem 3. Taking X and p as in the statement of the theorem,
we must show that the functions (1 + \x\)~"x~xPX = C(l + \x\)~nr~" * X
and (1 + IxlrV^M are in A(R+). For x £ Rn+ with |x| > 1, we write

r-"*X(x)=f|x-/|-"i/X(/) = /' +Í +f
J -VKM/2    J\x\/2<\y'\<2\x\     J2\x\<\y'\

In this last sum, we use Theorem 1 to deal with the second term, and
simple estimates for the other two terms. Since the case |x| < 1 can be
similarly treated, we conclude (I + \x\)~nr~n *X E A(R+).

As to Gp, we proceed as in the proof of Theorem 2. The only essential
difference is that the mapping <p: R^. -»R"-1 must now have the property
|<p(x)| ~ |x|, in addition to |tp(x) - x| ~ x„. We can take, e.g., <p(x', x„) =
|x|x'/|x'| for |x'| i- 0 and <p(0, x„) = (x„, 0,..., 0). The details are left to the
reader.

Since of course u = cx„ satisfies (5.1), we have proved the necessity part of
Theorem 3.

For the converse, we start by studying the Poisson kernel Pr of the half-ball
Hr = {x E R+ : |x| < r). By means of a reflection, Pr can be calculated
explicitly, but we only need the following properties of Pr(x, y). It is under-
stood that x E Hr and y E 322r.

(a) Pr(x,y) < Cr-n-xx„yn for |x| < r/2 and v„ > 0.
(b) Pr(x,y) - Cr-"-xx„yn + 0(r~"~2x„yn) as r-* oo, uniformly for |x| <

/•„ and yn > 0, any fixed r0.
(c) If P(x,y) = Cxjx - v|~" is the Poisson kernel of R^, then Pr(x,y) <

7>(x,v)forv„ = 0.
(d) Pr(x, y) -* P(x,y) as r -» oo for each x and y with y„ = 0.
Assume u is subharmonic and satisfies (5.1) with quasi-norm 1. To begin

with, we consider the subharmonic function v = u+. The reasoning leading
to (4.6) carries over to R+, and yields

(6.1) o(x)< Cx^O+lxl)".

Let Hp be the translate of Hr with center at (0, rj), rj > 0, and P? the
associated Poisson kernel. Of course,
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v(x)<[   P?(x,y)v(y)dS(y)

for x G H¡?. Integrating with respect to r~xdr, we get

(6.2)  v(x) < (log 7)"' (R2r-X dr f   P? (x,y)v(y) dS(y) - f      +(

for ïËf/J| and 7 large. Here we have separated that part of the double
integral involving the values of v in {yn > tj} from that dealing with
{yn = l}-

Lemma 4. With the above notations, we have for small tj, large R, and
x E Hl /Ä>, < Cxn.

Proof. From (a), we see that

/      < C(log7)-1(^-T,)fz--1r-''-,(yfl-T,My)izy,
Jy»> i jd

where r2 = \y'\2 + (yn - tj)2 and D = H^\ H%. Fory G 7, we have r ~ \y\
~ \y\ + 1, and r~x < Cy~x. Hence,

/      < C(log7)-1x„/(yn - Tj)r-'(1 +\yf "y-xv(y) dy.
Jy„>i Jo

Put Dj = {y E D: 2~J~X < (yn - r¡)r~x < 2^},y = 0, 1,.... Then

[(yn-v)r-x(l + \y\yny-xv(y)dy
(6.3)

<2-j((l + \y\)-ny-'v(y)dy.
JDj

The integrand in the right-hand side of this inequality belongs to A and is
at most C2"-'7 ~" in Dj, because of (6.1). Applying (2.1), we see that both sides
of (6.3) are majorized by C2~J(l +j + log 7), since of course |7,| < C72\
Summing overy, we easily obtain the lemma.

Lemma 5. For any 70 > 0, there is an e0 > 0 such that, for 0 < x„ < e0,

f        {l+\x'\)~av(x',xa)dx'<C.
•Vl<*o

Proof. We may assume 70 = 2k, where k is a natural number. Take
R-2k+2, and let y be an integer with 0 < y < A;. For tj < xn and xn small,
we obtain from (6.2)

f (l+\x,\)~nv(x',xm)dx'(6.4)        }»-l<W<»

= f(l+\x'\)~ndx'f      + f(l+\x'\)~ndx'f     .
J Jyn>v    J Jy.-v
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Here, the first term on the right-hand side is dominated by C2~Jxn, because
of Lemma 4. The estimate (c) will apply to the weighted average of P?
occurring in (6.2), so the last term in (6.4) is at most

C2-*ixn - t,)/ dx'J        (|x' - y'|2 + (x„ - r,)2)""/2o(/, rj) dy'.
J2J-l<\x'\<2J      J\y'\<Riy' '

Now change the order of integration, and separate the integral over A} = {y'\
2j~2 < | v'| < 2J+X) from that over the rest of {\y'\ < R2}. After some
calculations, and after summing over 1 < / < k, we get

X (l+|x'|)    v(x',xn)dx>
\x'\<Ra

<Cx„ + cf (l+\y'\)"'v(y',r¡)dy'
J\y'\<2Ro

+ CR2"xf        (l+\y'\)~"v(y',r¡)dy'.

(The modifications needed for the integral over |x'| < £ are easy.) Now
integrate this inequality with respect to rj ~ 'ifrj over [e, x„], as in (4.8). If we
apply (2.1), together with (6.1) and the hypothesis, to the volume integrals
thus obtained, it follows that

(log e"1 + log x„) f        (1 + |x'|)~"t>(x', x„) dx'
J\x'\<R0

< Cx^loge"1 + log x„) +Clog e"" + C(l + x^oge-")*^,,),

for some function g. This implies Lemma 5 with e0 = l/g(R¿) (cf. the end of
§4).

End of Proof of Theorem 3. As before, u is subharmonic and satisfies
(5.1). We put ft = Am, in the sense of distributions. Picking an x E R^ with
w(x) finite, we have

«(x) = (log2î)-,(   r-ldrf   P?(x,y)u(y) dS(y)
JR J9H?

- (log Ry'f^r-1 drf G," (x, v) dp(y) = 7, - J2
Jr jh?

if R is large and rj > 0 small. Here G? is the Green's function of H?.
Consider the positive part of /,, i.e., the quantity obtained by replacing u by
u+ in Jx. Lemmas 4 and 5 imply that this part is bounded for rj < e0 = e0(^)'
From (6.5), it then follows that J2 and the negative part of Jx axe bounded for
tj < e0. By monotonie convergence, we see that ¡G(x,y) dp(y) < oo, and so
p is as required. Lemma 5 and the boundedness of the negative part of Jx
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imply that the restriction of u to {y: y„ = tj) converges locally weakly to a
measure X on R"-1, for some sequence tj, -> 0. Further, X satisfies

/(l + |y'|)-fl</|A|(y')<oo.

Now let tj -* 0 in (6.5), through the sequence just chosen, and then 7 -» oo.
Then J2 will tend to Gp(x), and the part of Jx which involves (y„ = tj} tends
to PX(x), in view of (c) and (d). The remaining part of /, therefore tends to a
harmonic function h. From Lemma 4 and inequality (b), it can be seen that h
must be proportional to x„. In the limit, (6.5) therefore yields the searched-for
representation of u, and Theorem 3 is proved.

As to Theorem 4, the necessity part is proved like that of Theorem 3, in the
case of My. For Lpy we note that 17/1' < P\f\p because of Holder's
inequality, and then apply the Mr case. The proof of the sufficiency part is a
modification of the proof just given (for v we take |zz| and I«!', respectively).

7. The iterated Poisson integral. For n > 2, we consider the unit polydisc

U" - {z = (zx, ...,zn)E C: |z,.|< 1, i - 1,..., «}.
Let T" = {z: \z¡\ = 1, i = 1,..., n} be its distinguished boundary. If X is a
(finite Radon) measure carried by T", we denote by

PX(z) = f P(zx,tx)...P(zn,tn)dX(t)

the iterated Poisson integral of X. Here of course t = (tx,..., t„), and 7(z,-, t¡)
is the Poisson kernel of the unit disc. Then PX is zz-harmonic in U", i.e., PX is
continuous there and harmonic in any one variable z¡, if the other z, are kept
fixed. We put 8(z) - 11,(1 - kl) for z G U".

To characterize iterated Poisson integrals, we need spaces which are
slightly larger than A. For k > 0, we let Ak(U") be the space of measurable
real-valued functions in U" satisfying

/*(/) < const • r'(log(2 + i-1))*,      0 < t <\Un\.

Equivalently, these spaces may be defined by the inequality

Xf(a) < const • o_,(log(2 + a))k,      a > 0.

Of course, Xj and /* are defined by means of 2zz-dimensional Lebesgue
measure in U".

Theorem 5. Let u be an n-harmonic function in U". A necessary and
sufficient condition for u to be the iterated Poisson integral of a measure on V
or of a function in I^ÇF), \<p < oo, zj that 8~xu G A"-X(U") or 8 -x\u\p G
Att-\Un),resp.
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The measure used in the definition of Lp(T") is ithe product of « ordinary
arc measures on T. We state Theorem 5 only for a polydisc, although the
proof easily carries over to finite products of domains ß,- c R"1 satisfying the
hypotheses of §4.

Corollary 4. A holomorphic function u in U" is in HP(U"), 0 < p < oo, if
and only if8~x\u\p E A"-'^").

Here HP(U") defined as in, e.g., Rudin [6, §3.4]. This corollary follows
from Theorem 5 and its proof, applied to the «-subharmonic function I«!'.

Proof of Theorem 5. Necessity. The Lp result follows from the result for
measures, as in the proof of Theorem 4. To prove that 8~XPX E A"~X(U")
for a measure X on T", we use induction. Observe first of all that this amounts
to showing that the convolution (J[\z¡\~2) * X is in A"-1. The case n = 1 is
contained in Theorem 1, so assume the assertion holds for « — 1. We
consider first the case when X is given by an integrable function, dX(t) =
/((?,,..., 8„)dBx ... dBn, where B¡ = arg t¡. We may assume / > 0 and
ff(B) dB = 1. (AU integrals in any B¡ are taken from 0 to 2ir.)

For z E U", we have

8~lPX(z) -/% - tf2f(Bx, ...,Bn)dBx... dBn

(7.1) = />, - tx\~2 dBxJ II |*, - tf2f(Bx, ...,B„)dB2... dB„
J J i>\

= f\zx-txf2d9xF(Bx,z2,...,zn),
say. Keeping (z2,..., zn) fixed, we see from this equation and Theorem 1
that 8~uPX(-,z2,.. . ,zn) is in A(U). The corresponding quasi-norm is
dominated by CJF(BX, z2,..., zn) dBx, because of the remark in the begin-
ning of §3. Putting ¡F dBx = G(z2,..., z„), we thus have for a > 0

(7.2) m2{zx E U: 8~xPX(zx,..., zn) > a) < Ca~xG(z2,..., zn),

where w, is/-dimensional Lebesgue measure.
Clearly,

(7.3) G(z2,..., zn) -/ E \zt - If2 dB2... dBnff(Bx, ...,9n) dBx.
J i>\ J

But Jf(9)dBx can be considered as an integrable function on T"_I, with
integral 1. Because of the induction hypothesis, (7.3) implies that G is in
An-2(U"-X). Since trivially G < II(>1(1 - |z,.|r2, we have G < «**-« on the
set B = {(z2,..., zn): 1 - \z,\ > a~x, 1 = 2,...,«}. From (7.2) and
Fubini's Theorem, we deduce
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(7.4) m2n{z EU X B: 8~xPX(z) > a} < C«"1 (G dm2n_2.

But (2.1) and the properties of G just stated imply

(7.5)  fBG dm2n-2 < c/0Cmin(«2(,,"i)' '_ioog(2+<-,)r2) *

< C(log(2 + a))n_1.

Together with the trivial inequality m2n(U" \(U x B)) < Co-1, (7.4H7.5)
imply

m2n{z E Un:8~xPX(z) > a} < Ca~x(log(2 + a))"~l.

This completes the induction for absolutely continuous measures X. The
general case then follows by an obvious limiting process. The necessity part
of the theorem is thus proved.

Sufficiency. Suppose that u is zz-harmonic in U", and that 8~xu E
An"1(i/B). We follow closely the corresponding part of the proof of Theorem
2. The inequality from [3] used there is now applied to |tz| in suitable
polydiscs, and yields

\u(z)\<C8(z)-x(log(2 + 8(z)-x))tt~\

For 0 < tj < r, < 1, / - 1,..., n, we have (0¡ = arg t¡)

jfjU(T,r)| dB <fju(rxtx, r2t2,..., r„Q\ dB,

since |w| is /z-subharmonic. If we integrate this inequality with respect to
(TJ(1 - r¡)~x)drx .. .dr„ over tj < r, < 1 - e, we obtain a 2/z-dimensional
integral on the right-hand side (cf. (4.8)). Essentially as in §4, we deduce that
iiy\u(r}t)\ d0 is bounded as tj -» 0, dividing by (log e"')" this time. This means
that u is the iterated Poisson integral of a measure, as required. (See [6,
Theorem 2.1.3(e)].) To deal with the case when 8~x\u\p E A"~X(U"), we carry
out the same reasoning for \u\p. This ends the proof of Theorem 5.
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