WEAK L_{1} CHARACTERIZATIONS OF POISSON INTEGRALS, GREEN POTENTIALS, AND H^{p} SPACES
 BY
 Peter suögren

Abstract

Our main result can be described as follows. A subharmonic function u in a suitable domain Ω in \mathbf{R}^{n} is the difference of a Poisson integral and a Green potential if and only if u divided by the distance to $\partial \Omega$ is in weak L_{1} in Ω. Similar conditions are given for a harmonic function to be the Poisson integral of an L_{ρ} function on $\partial \Omega$. Iterated Poisson integrals in a polydisc are also considered. As corollaries, we get weak L_{1} characterizations of H^{p} spaces of different kinds.

1. Introduction. A harmonic function u in, say, the unit ball U in \mathbf{R}^{n} is the Poisson integral of a measure on ∂U if and only if the integral of $|u|$ over the sphere $\{|x|=1-\eta\}$ is bounded as $\eta \rightarrow 0$. In this paper, we shall prove that u is of this type precisely when $(1-|x|)^{-1} u$ is in weak L_{1} of U. If instead u is subharmonic, this last condition will characterize those u which can be written as the difference of a Poisson integral and a Green potential in U. This result carries over to arbitrary bounded domains of class $C^{(1, \alpha)}$, if $1-|x|$ is replaced by the distance to the boundary of the domain. This can be applied to suitable powers $|u|^{p}$ of harmonic or holomorphic functions u, yielding weak L_{1} characterizations of Poisson integrals of L_{p} functions on the boundary and of H^{P} spaces. More generally, we may have Orlicz spaces instead of L_{p} spaces here. In particular, a holomorphic function u in the unit disc $U \subset \mathbf{C}$ is in $H^{p}(U), p>0$, if and only if $(1-|z|)^{-1}|u|^{p}$ is in weak L_{1}, or equivalently $(1-|z|)^{-1 / p_{u}} u$ is in weak L_{p}.

Quite similar results hold for a half-space. In that case, we also give analogous characterizations of Poisson integrals of classes of functions and measures defined by means of weight functions on the boundary. In a polydisc, the class of n-harmonic functions which are iterated Poisson integrals of measures on the distinguished boundary has a characterization of the same type. This time, spaces slightly larger than weak L_{1} are involved, and there is again a corollary about H^{p} spaces.

[^0]The main tool used in the proofs is a theorem about convolutions of the kernel $|x|^{-n}$ in \mathbf{R}^{n} which was proved in Sjögren [7]. In §3, we state this result and give a simpler proof of it. Poisson integrals for bounded domains are studied in $\S 4$, where we give the main result together with its applications to L_{p} and H^{p} spaces. In §5, we state the corresponding results for a half-space. The proofs of these theorems, which constitute $\S 6$, are analogous to those of $\S 4$, although technically more complicated. $\S 6$ is therefore less detailed. In $\S 7$, the iterated Poisson kernel of a polydisc is studied.

Some of our present results were given in the preliminary report Sjögren [10].
2. Preliminaries. We will work in $\mathbf{R}^{n}, n \geqslant 2$, and denote by $|E|$ the Lebesgue measure of $E \subset \mathbf{R}^{n}$. If f is a real-valued measurable function in a domain $\Omega \subset \mathbf{R}^{n}$, the distribution function of f is defined by

$$
\lambda_{f}(\alpha)=|\{x \in \Omega:|f(x)|>\alpha\}|, \quad \alpha>0
$$

We let f^{*} be its decreasing rearrangement, defined by

$$
f^{*}(t)=\inf \left\{\alpha: \lambda_{f}(\alpha) \leqslant t\right\}, \quad 0<t<|\Omega| .
$$

If $E \subset \Omega$ is measurable, it is well known that

$$
\begin{equation*}
\int_{E} f d x \leqslant \int_{0}^{|E|} f^{*}(t) d t \tag{2.1}
\end{equation*}
$$

For more details about these notions, see Stein and Weiss [12, Section V: 3]. The space $\Lambda(\Omega)$, usually called weak $L_{1}(\Omega)$, consists of those f which satisfy $f^{*}(t)<$ const $\cdot t^{-1}, 0<t<|\Omega|$. Letting $\|f\|_{\Lambda}$ be the smallest such constant, we obtain a quasi-norm on $\Lambda(\Omega)$; in fact, $\|f+g\|_{\Lambda} \leqslant 2\left(\|f\|_{\Lambda}+\|g\|_{\Lambda}\right)$. Equivalently, $\Lambda(\Omega)$ can be defined by the inequality $\lambda_{f}(\alpha) \leqslant$ const $\cdot \alpha^{-1}, \alpha>$ 0 , with the same constant.

In the sequel, we shall denote by C many different constants, indicating if necessary which variables C depends on. The relation $f \sim g$ means $C \leqslant f / g$ $\leqslant C$ with constants of this type (f and g are equivalent). In the rest of this section, C may be chosen to depend only on the domain Ω described below.

Let $\Omega \subset \mathbf{R}^{n}$ be a bounded domain of class $C^{(1, a)}$. We put $\delta(x)=$ $\operatorname{dist}(x, \partial \Omega)$ for $x \in \Omega$, and let $P(x, y)$ and $G(x, y)$ be the Poisson kernel and the Green's function, respectively, of Ω. If λ is a (finite Radon) measure on $\partial \Omega$, its Poisson integral is defined by

$$
P \lambda(x)=\int_{\partial \Omega} P(x, y) d \lambda(y), \quad x \in \Omega
$$

For suitable functions f on $\partial \Omega$, we write Pf for the Poisson integral of the measure $f d S$. Here $d S$ is the area measure on $\partial \Omega$. From Theorem 2.3 in Widman [13], it follows that

$$
\begin{equation*}
P(x, y) \leqslant C \delta(x)|x-y|^{-n} \tag{2.2}
\end{equation*}
$$

The Green potential of a positive measure μ in Ω is given by

$$
G \mu(x)=\int_{\Omega} G(x, y) d \mu(y)
$$

This potential is superharmonic (i.e., $\neq+\infty$) precisely when μ belongs to the class M_{Ω} of positive measures in Ω for which $G \mu<\infty$ a.e. As shown in [13], $G\left(x_{0}, x\right) \sim \delta(x)$ if we let x approach $\partial \Omega$ and keep $x_{0} \in \Omega$ fixed. This implies that M_{n} consists of all μ for which $\int \delta d \mu<\infty$.

Again fixing an $x_{0} \in \Omega$, we let $\Omega_{\eta}=\left\{x \in \Omega\right.$: $\left.G\left(x_{0}, x\right)>\eta\right\}$ for small $\eta>0$, which is a family of domains approximating Ω. From the property of G just stated, it follows that $\delta(x) \sim \eta$ for $x \in \partial \Omega_{\eta}$. Further, the surfaces $\partial \Omega_{\eta}$ are uniformly of class $C^{(1, \alpha)}$, in view of [13, Theorems 2.4 and 2.5]. We denote by $d S_{\eta}$ the area measure of $\partial \Omega_{\eta}$. From [13], it also follows that the Poisson kernel P_{η} of Ω_{η} satisfies

$$
\begin{equation*}
P_{\eta}\left(x_{0}, \cdot\right) \sim 1 \tag{2.3}
\end{equation*}
$$

on $\partial \Omega_{\eta}$, so that the harmonic measure of Ω_{η} at x_{0} is equivalent to $d S_{\eta}$, uniformly in η.

The Green's function of Ω_{η} is given by

$$
G_{\eta}(x, y)=N(x-y)-h_{x}^{\eta}(y), \quad x, y \in \Omega_{\eta},
$$

where N is the Newtonian kernel and h_{x}^{η} the harmonic function in Ω_{η} which equals $N(x-\cdot)$ on $\partial \Omega_{\eta}$. We call h_{x} the corresponding function in Ω; it satisfies $h_{x} \in C^{(1, \alpha)}(\bar{\Omega})$. From now on, we fix $x \in \Omega$. It follows that the $C^{(1, \alpha)}$ norm of the restriction of $h_{x}^{\eta}-h_{x}$ to $\partial \Omega_{\eta}$ is bounded as $\eta \rightarrow 0$, and that $h_{x}^{\eta}-h_{x} \mid \partial \Omega_{\eta}$ together with its tangential derivatives can be made arbitrarily small, uniformly on $\partial \Omega_{\eta}$, by taking η small enough. But this implies that the $C^{(1)}$ norm of $h_{x}^{\eta}-h_{x}$ in $\bar{\Omega}_{\eta}$ tends to 0 as $\eta \rightarrow 0$, as can be seen e.g. from the Poisson representation formula of $h_{x}^{\eta}-h_{x}$ in terms of its restriction to $\partial \Omega_{\eta}$. Thus,

$$
\sup _{y \in \Omega_{\eta}}\left|\operatorname{grad}_{y}\left(G_{\eta}(x, y)-G(x, y)\right)\right| \rightarrow 0 \quad \text { as } \eta \rightarrow 0 .
$$

Since P_{η} is a normal derivative of G_{η}, we conclude that $P_{\eta} \rightarrow P$ as $\eta \rightarrow 0$, in the following sense: For any $x \in \Omega$, we can make $\left|P_{\eta}(x, y)-P(x, z)\right|$ arbitrarily small by taking η small and $y \in \partial \Omega_{\eta}$ and $z \in \partial \Omega$ sufficiently close to each other.
3. An auxiliary theorem. The results of this section hold in all dimensions $n \geqslant 1$. If μ is a finite positive measure in \mathbf{R}^{n}, we put $U^{\mu}=r^{-n} * \mu$, where $r=|x|$ and the convolution is defined at each point in \mathbf{R}^{n}, with values in $[0, \infty]$.

Definition. A closed set $F \subset \mathbf{R}^{n}$ is called a convolution set if $U^{\mu} \in \Lambda\left(\mathbf{R}^{n}\right)$ for any finite positive measure μ with supp $\mu \subset F$.

Remark. If F is a convolution set, there is a constant C_{F} such that $\left\|U^{\mu}\right\|_{\Lambda} \leqslant C_{F}\|\mu\|$ for such μ. To see this, notice that if there is no such constant, we can, by positive homogeneity, find a sequence (μ_{i}) with $\Sigma\left\|\mu_{i}\right\|<$ ∞ but sup $\left\|U^{\mu}\right\|_{\Lambda}=\infty$. Considering $\mu=\Sigma \mu_{i}$, we see that F is not a convolution set.

The following geometrical characterization of convolution sets was given in Sjögren [7], and similar results for more general kernels can be found in Sjögren [8]. In the sequel, all cubes will be open and have sides parallel to the axes.

Theorem 1. A closed set F is a convolution set if and only if there is an $\varepsilon>0$ with the following property: Any cube Q_{1} in \mathbf{R}^{n} contains a cube Q_{2} which is disjoint with F and such that the ratio between the sides of Q_{2} and Q_{1} equals ε.

In one dimension, this condition means, roughly speaking, that F is contained in a Cantor set with constant ratio. The proof we shall give is a simplification of that of [7]. The cubes in the theorem could of course be replaced by balls, but cubes are more useful in the proof.

Proof. If the geometrical condition is not satisfied, we can, for any N, find a cube Q such that if we divide Q into N^{n} equal subcubes in the obvious way (divide each edge into N equal parts, etc.), then all these subcubes intersect F. Now choose a probability measure μ supported by F and having a point mass N^{-n} in each of these subcubes. Then a simple lower estimation of U^{μ} in Q shows that $\left\|U^{\mu}\right\|_{\Lambda}>c \log N$, with $c>0$. By the above remark, F is therefore not a convolution set, since N is arbitrary.

Conversely, assume the condition satisfied, and let M be the smallest integer $>2 \varepsilon^{-1}$. In this proof, C will denote different constants depending only on n and ε (or M). Let μ be a positive finite measure supported by F. For $\alpha>0$, we must prove

$$
\begin{equation*}
\left|\left\{x: U^{\mu}(x)>\alpha\right\}\right| \leqslant C \alpha^{-1}\|\mu\| . \tag{3.1}
\end{equation*}
$$

With i_{0} a negative integer, we let Q_{0} be the cube of side $M^{-i_{0}}$ centered at the origin. Then it is of course enough to derive an estimate for $\mid\left\{U^{\mu}>\alpha\right\} \cap$ $Q_{0} l$, similar to (3.1) and uniform in i_{0}.

Divide Q_{0} into M^{n} subcubes of sides $M^{-i_{0}-1}$. At least one of these subcubes will be disjoint with F, in view of the hypothesis and the choice of M. Pick such a subcube, and call it a hole of order $i_{0}+1$. Each of the remaining $M^{n}-1$ subcubes is now divided into M^{n} cubes of sides $M^{-i_{0}-2}$. Among these, we pick one which does not intersect F, and call it a hole of order $i_{0}+2$, thus getting $M^{n}-1$ such holes. The process is then continued with the remaining cubes of sides $M^{-i_{0}-2}$, and so on. In this way, we obtain holes of all orders $j \geqslant i_{0}+1$, which are all disjoint with F. Since there are
$\left(M^{n}-1\right)^{j-t_{0}-1}$ holes of order j, the holes together exhaust Q_{0}, up to a null set.

Next, we divide each hole into subcubes called pieces, whose sides are equivalent to their distances from the boundary of the hole, as follows. Given a hole Q of order j, we divide it into M^{n} subcubes of sides M^{-j-1}. Among these subcubes, those whose closures do not intersect ∂Q are called pieces of order $j+1$, and the remaining ones are divided into subcubes of sides M^{-j-2}. Among these, those whose closures do not intersect ∂Q are called pieces of order $j+2$, and the remaining ones are again subdivided, and so on. We thus obtain pieces of all orders $j \geqslant j_{0}$, where $j_{0}=i_{0}+2$. Notice that every piece is contained in precisely one hole, and that the distance from F to a piece of order j is at least M^{-j}.

Lemma 1. Let $x \in \mathbf{R}^{n}$, and take $j \geqslant j_{0}$ and $k \leqslant j$. The Lebesgue measure of the union of all pieces of order j whose distances from x are at most M^{-k} does not exceed $C M^{-n k}\left(1-M^{-n}\right)^{j-k}$.

This follows from some simple geometrical considerations. The main step is the observation that those of the pieces considered which are contained in holes of order i, with $k \leqslant i<j$, have a total measure of at most

$$
M^{-n k}\left(1-M^{-n}\right)^{i-k} M^{i-j}
$$

The details are left to the reader.
The number $\chi>0$ will be determined later. Let $\left(P_{r}\right)_{r=1}^{\infty}$ be an enumeration of all the pieces, chosen so that the order \bar{r} of P_{r} is nondecreasing in r. By induction, we are now going to construct sets $F_{r}, r=0,1,2, \ldots$, and each F_{r} will either be empty or a set of "forbidden" pieces lying close to P_{r}. Starting with $F_{0}=\varnothing$, we assume F_{r} defined for $r<s$. If P_{s} intersects $\left\{U^{\mu}>\alpha\right\}$ and P_{s} does not belong to $U_{r<s} F_{r}$ (i.e., P_{s} is not forbidden), then we define $F_{s}=\left\{P_{r}: r>s\right.$ and $\left.\operatorname{dist}\left(P_{r}, P_{s}\right) \leqslant 2 M^{-\bar{s}+\chi(\bar{r}-\bar{s})}\right\}$.

In all other cases, we put $F_{s}=\varnothing$.
With the F_{r} thus defined, we let ν be the restriction of Lebesgue measure to the union of all pieces P_{r} for which F_{r} is nonempty. Roughly speaking, this is the union of all pieces which intersect $\left\{U^{\mu}>\alpha\right\}$ and which are not forbidden. We claim that ν satisfies
(i) $\left|\left\{U^{\mu}>\alpha\right\} \cap Q_{0}\right| \leqslant C\|\nu\|$,
(ii) $U^{\mu}>\alpha / C$ on supp ν,
(iii) $U^{\nu} \leqslant C$ on F.

These three conditions imply

$$
\begin{aligned}
\left|\left\{U^{\mu}>\alpha\right\} \cap Q_{0}\right| & \leqslant C\|\nu\| \leqslant C \alpha^{-1} \int U^{\mu} d \nu \\
& =C \alpha^{-1} \int U^{\nu} d \mu \leqslant C \alpha^{-1}\|\mu\|
\end{aligned}
$$

in view of Fubini's Theorem. As we noticed above, this would prove (3.1), and thus complete the proof of Theorem 1.

Before proving (i)-(iii), we make a few comments. Letting ν^{\prime} be the restriction of Lebesgue measure to the set $\left\{U^{\mu}>\alpha\right\} \cap Q_{0}$, we observe that ν^{\prime} satisfies (i) and (ii) but not (iii). The same is true for the restriction $\nu^{\prime \prime}$ of Lebesgue measure to the union of all pieces intersecting $\left\{U^{\mu}>\alpha\right\}$, which for our purpose is equivalent to ν^{\prime}. Roughly speaking, (iii) is violated because ν^{\prime} and $\nu^{\prime \prime}$ have too much mass near supp $\mu \subset F$. When constructing ν, we therefore modify $\nu^{\prime \prime}$ by taking away mass near F. This is why we introduce the sets F_{r} of forbidden pieces, where no mass is placed. The F_{r} are thus constructed so that the resulting measure tends to avoid F, and therefore satisfies (iii). Still, (i) and (ii) are preserved.

Proof of (i). The measure of $\left\{U^{\mu}>\alpha\right\} \cap Q_{0}$ is majorized by the measure of the union of all pieces intersecting this set. Such a piece is either contained in supp ν or belongs to $\cup F_{r}$, by construction. Of course, $|\operatorname{supp} \nu|=\|\nu\|$, so we need only estimate the measure of the union of all pieces in each F_{r}. If $F_{r} \neq \varnothing$, the pieces of order $j, j \geqslant \bar{r}$, belonging to F_{r} all have a distance of at most $2 M^{-\bar{r}+\chi(j-r)}$ from P_{r}, and thus a distance of at most $C M^{-\dot{r}+x(j-r)}$ from the center of P_{r}. Applying Lemma $1 \dot{C}$ times, with points x suitably chosen, we see that the total measure of these pieces is at most

$$
C M^{-n \bar{r}+x n(j-\bar{r})}\left(1-M^{-n}\right)^{(1+x)(j-\bar{r})}
$$

This quantity must now be summed over $j \geqslant \bar{r}$. If $\chi=\chi(n, M)>0$ is small enough, the series thus obtained will converge, with a sum dominated by $C M^{-n \bar{r}}=C\left|P_{r}\right|$. Summing over r, we obtain C times the total Lebesgue measure of all pieces P_{r} with $F_{r} \neq \varnothing$, i.e., $C\|\nu\|$. This is the estimate needed to end the proof of (i).

Proof of (ii). In each of the pieces forming supp ν, there is some point x with $U^{\mu}(x)>\alpha$. Since $|x-y| \leqslant C \operatorname{dist}(x, \operatorname{supp} \mu)$ for any y in the closure of this piece, we have $|x-z|^{-n} \leqslant C|y-z|^{-n}$ for $z \in \operatorname{supp} \mu$. Integrating with respect to $d \mu(z)$, we obtain (ii).

Proof of (iii). We fix $z \in F$. Let ν_{j} be the part of ν which is carried by pieces of order j, so that $\nu=\sum_{j=j_{0}}^{\infty} \nu_{j}$.

Lemma 2. If $\operatorname{dist}\left(z, \operatorname{supp} \nu_{j}\right) \geqslant M^{-p}$ with $p \leqslant j$, then

$$
U^{\nu_{j}}(z) \leqslant C_{0}\left(1-M^{-n}\right)^{j-p}
$$

for some $C_{0}=C_{0}(n, \varepsilon)$.
This is easily proved by means of Lemma 1 , if we successively estimate the contributions to $U^{\nu}(z)$ from the pieces (of order j) whose distances from z are between M^{-p} and M^{-p+1}, between M^{-p+1} and M^{-p+2}, and so on. Notice
that the lemma holds also for noninteger p, with a suitable C_{0}.
Inequality (iii) will result from the following lemma, where C_{0} is the constant of Lemma 2.

Lemma 3. For any $j \geqslant j_{0}$, one can rearrange the sum $S_{1}=\Sigma_{j_{0}}^{j^{v}} U^{v_{k}}(z)$ so that it becomes dominated term by term by the sum $S_{2}=\Sigma_{0}^{j-j_{0}} C_{0}\left(1-M^{-n}\right)^{x k}$.

Proof. We use induction. The case $j=j_{0}$ is clear by Lemma 2 with $j=p=j_{0}$, so suppose the assertion holds for $j-1$. Let $m \geqslant 0$ be the integer for which

$$
\begin{equation*}
C_{0}\left(1-M^{-n}\right)^{m+1}<U^{\nu}(z) \leqslant C_{0}\left(1-M^{-n}\right)^{m} \tag{3.2}
\end{equation*}
$$

Then $\operatorname{dist}\left(z, \operatorname{supp} \nu_{j}\right)<M^{m+1-j}$, because of Lemma 2. On the other hand, $\operatorname{dist}\left(\operatorname{supp} \nu_{k}, \operatorname{supp} \nu_{j}\right) \geqslant 2 M^{-k+x(j-k)}$ for $j_{0} \leqslant k<j$, by the construction of the F_{r}. The triangle inequality then yields

$$
\operatorname{dist}\left(z, \operatorname{supp} \nu_{k}\right) \geqslant 2 M^{-k+x(j-k)}-M^{m+1-j} \geqslant M^{-k+x(j-k)}
$$

if $-k+\chi(j-k) \geqslant m+1-j$, in particular if $k \leqslant j-m-1$. Lemma 2 now implies $U^{v_{k}}(z) \leqslant C_{0}\left(1-M^{-n}\right)^{x(j-k)}$ for $k=j_{0}, j_{0}+1, \ldots, j-m-1$. This means that we have estimated the first $j-m-j_{0}$ terms of S_{1} by the last $j-m-j_{0}$ terms of S_{2}. Further, the induction assumption implies that the terms $U^{v_{k}}(z), k=j-m, \ldots, j-1$, are dominated, in some order, by the first (and greatest) m terms of S_{2}. To complete the induction, we need only show that

$$
U^{y}(z) \leqslant C_{0}\left(1-M^{-n}\right)^{x m}
$$

and this is a trivial consequence of the right-hand inequality of (3.2).
Lemma 3 is proved, and thus also Theorem 1.
4. Results for bounded domains. Let Ω be a bounded domain of class $C^{(1, \alpha)}$, as in §2. If u is a subharmonic function in Ω, we put $u^{+}=\max (u, 0)$ and $u^{-}=u^{+}-u$. It is elementary that u has a representation $u=P \lambda-G \mu$ if and only if

$$
\begin{equation*}
\int u^{+} d S_{\eta}=O(1) \quad \text { as } \eta \rightarrow 0 \tag{4.1}
\end{equation*}
$$

Here it is assumed that λ is a finite measure on $\partial \Omega$ and $\mu \in M_{\Omega}$. To prove this equivalence, represent u as a Poisson integral minus a Green potential in Ω_{η} and examine what happens when $\eta \rightarrow 0$, considering (2.3). Then use the convergence $P_{\eta} \rightarrow P$ as $\eta \rightarrow 0$ stated at the end of $\S 2$.

We will give another characterization of such u.
Theorem 2. A subharmonic function u in Ω has a representation $u=P \lambda-$ $G \mu$, where λ is a finite measure on $\partial \Omega$ and $\mu \in M_{\Omega}$, if and only if $\delta^{-1} u \in \Lambda(\Omega)$.

Remark. From the proof we give, it can be seen that for such u

$$
\left\|\delta^{-1} u\right\|_{\Lambda} \sim\|\lambda\|+\int_{\Omega} \delta d \mu
$$

Similar equivalences between norms and quasi-norms hold also for all our further results but will not be stated. The constants C depend only on Ω in this section.

Before proving Theorem 2, we give two corollaries.
Corollary 1. Let $1<p<\infty$. A harmonic function u in Ω is the Poisson integral of a function in $L_{p}(\partial \Omega)$ if and only if

$$
\begin{equation*}
\delta^{-1}|u|^{p} \in \Lambda(\Omega) \tag{4.2}
\end{equation*}
$$

Here $L_{p}(\partial \Omega)$ is defined by means of the area measure $d S$. To deduce this corollary, notice that $|u|^{p}$ is subharmonic. Theorem 2 says that $\int|u|^{p} d S_{\eta}$ is bounded as $\eta \rightarrow 0$ if and only if (4.2) holds. The rest is standard.
Remark. Corollary 1 can be extended to Orlicz spaces. Let $\phi>0$ be an increasing convex function on $] 0, \infty$ [for which $\phi(t) / t \rightarrow \infty$ as $t \rightarrow \infty$, and assume for simplicity that there exists a constant A such that $\phi(2 t)<A \phi(t)$ for large t. Then a harmonic function u in Ω is the Poisson integral of a measurable function f on $\partial \Omega$ verifying $\int \phi(|f|) d S<\infty$ if and only if $\delta^{-1} \phi(|u|) \in \Lambda(\Omega)$.

Next, we apply Theorem 2 to H^{p} spaces. For $n=2$, the space $H^{p}(\Omega)$ consists of all functions u which are holomorphic in Ω and such that

$$
\begin{equation*}
\int|u|^{p} d S_{\eta}=O(1), \quad \eta \rightarrow 0 \tag{4.3}
\end{equation*}
$$

Moreover, $N(\Omega)$ is the space of holomorphic functions for which

$$
\int \log ^{+}|u| d S_{\eta}
$$

is similarly bounded. When $n>2$, we define $H^{p}(\Omega)$ as the space of n-tuples of functions $u=\left(u_{1}, \ldots, u_{n}\right)$ in Ω satisfying the generalized CauchyRiemann equations and for which (4.3) holds true (see Stein [11, §VII: 3]). Here $|u|$ means the Euclidean norm of (u_{1}, \ldots, u_{n}).

Corollary 2. (i) An n-tuple $u=\left(u_{1}, \ldots, u_{n}\right)$ of functions satisfying the generalized Cauchy-Riemann equations in Ω (a holomorphic function in Ω if $n=2)$ is in $H^{p}(\Omega), 0<p \geqslant(n-2) /(n-1)$, if and only if $\delta^{-1}|u|^{p} \in \Lambda(\Omega)$.
(ii) For $n=2$, a holomorphic function u in Ω is in $N(\Omega)$ if and only if $\delta^{-1} \log +|u| \in \Lambda(\Omega)$.

In view of [11, Lemma, p. 217], the function $|u|^{p}$ is subharmonic for these p, and so is $\log ^{+}|u|$ for $n=2$. Hence, this corollary follows at once from Theorem 2.

Proof of Theorem 2. We first prove that $\delta^{-1} P \lambda$ and $\delta^{-1} G \mu$ are in $\Lambda(\Omega)$, if λ and μ are as in Theorem 2. Because (2.2), we have

$$
\left|\delta(x)^{-1} P \lambda(x)\right| \leqslant C \int|x-y|^{-n} d|\lambda|(y)=C r^{-n} *|\lambda|(x) .
$$

But λ is supported by $\partial \Omega$, which is a convolution set by Theorem 1 . Hence, $r^{-n} *|\lambda|$ and thus also $\delta^{-1} P \lambda$ are in $\Lambda(\Omega)$.

As to $\delta^{-1} G \mu$, we write

$$
G \mu(x)=\int G(x, y) d \mu(y)=\int_{|x-y|<\delta(x) / 2}+\int_{|x-y|>\delta(x) / 2}=u_{1}(x)+u_{2}(x) .
$$

If $|x-y|<\delta(x) / 2$, we easily obtain $2 \delta(y) / 3<\delta(x)<2 \delta(y)$ and thus $|x-y|<\delta(y)$. Hence,

$$
\begin{equation*}
\int_{\Omega} \delta(x)^{-1} u_{1}(x) d x \leqslant \frac{3}{2} \int \delta(y)^{-1} d \mu(y) \int_{|x-y|<\delta(y)} G(x, y) d x \tag{4.4}
\end{equation*}
$$

For $n>3$, we have $G(x, y) \leqslant C|x-y|^{2-n}$, and it follows that the inner integral in the right-hand side of (4.4) is dominated by $C \delta(y)^{2}$. To see that this last conclusion holds also for $n=2$, we integrate the estimate

$$
\begin{equation*}
G(x, y)<C\left(\log |x-y|^{-1}+\log \delta(y)\right)+C \tag{4.5}
\end{equation*}
$$

for $|x-y|<\delta(y)$. Inequality (4.5) can be proved by means of the expression for G in terms of the conformal mapping of Ω onto the unit disc, see, e.g., Hellwig [4, I.3.6]. (In case Ω is not simply connected, consider simply connected subdomains of Ω having part of the boundary in common with Ω.)

In both cases, we thus obtain, from (4.4), $\int_{\Omega} \delta^{-1} u_{1} d x<C \int \delta d \mu$. Since $\mu \in M_{\Omega}$, the last integral is finite, so that $\delta^{-1} u_{1} \in L_{1}(\Omega) \subset \Lambda(\Omega)$.

To deal with u_{2}, we choose a Borel map $\varphi: \Omega \rightarrow \partial \Omega$ for which $|\varphi(x)-x|=$ $\delta(x)$. Let $d \mu^{*}$ be the image of the measure $\delta d \mu$ under φ, i.e., define $d \mu^{*}$ by

$$
\int f d \mu^{*}=\int f \circ \varphi \delta d \mu
$$

for any continuous function f on $\partial \Omega$. Then $d \mu^{*}$ is a finite measure on $\partial \Omega$. If $|x-y| \geqslant \delta(x) / 2$, we conclude from [13, Theorem 2.3] that

$$
G(x, y) \leqslant C \delta(x) \delta(y)|x-y|^{-n} \leqslant C \delta(x) \delta(y)|x-\varphi(y)|^{-n}
$$

since

$$
|x-\varphi(y)| \leqslant|x-y|+\delta(y) \leqslant|x-y|+\delta(x)+|x-y| \leqslant C|x-y| .
$$

Hence,

$$
\delta(x)^{-1} u_{2}(x) \leqslant C \int|x-\varphi(y)|^{-n} \delta(y) d \mu(y)=C \int|x-z|^{-n} d \mu^{*}(z)
$$

and Theorem 1 implies that $\delta^{-1} u_{2} \in \Lambda(\Omega)$. Altogether then, $\delta^{-1} P \lambda$ and $\delta^{-1} G \mu$ belong to $\Lambda(\Omega)$.

Conversely, suppose u is a subharmonic function with $\delta^{-1} u \in \Lambda(\Omega)$. Then the same is true of u^{+}, and since we shall prove (4.1), it is no restriction to assume $u \geqslant 0$ and $\left\|\delta^{-1} u\right\|_{\Lambda}=1$.

Fix p with $0<p<1$. Denoting by B the ball with center $x \in \Omega$ and radius $\delta(x) / 2$, we have

$$
u(x)^{p} \leqslant C|B|^{-1} \int_{B} u^{p} d y
$$

This is proved for harmonic functions in Fefferman and Stein [3, Lemma 2, p. 172], and their proof carries over to our case. The use of this inequality was suggested to the author by Dr. B. Dahlberg. From our hypothesis it follows that the decreasing rearrangement of $\left(\delta^{-1} u\right)^{p}$ is $\left\langle t^{-p}\right.$, so using (2.1) we get

$$
\begin{aligned}
u(x)^{p} & \leqslant C \delta(x)^{p}|B|^{-1} \int_{B}\left(\delta^{-1} u\right)^{p} d y \\
& \leqslant C \delta(x)^{p}|B|^{-1} \int_{0}^{|B|} t^{-p} d t \leqslant C \delta(x)^{p}|B|^{-p}
\end{aligned}
$$

This means that in Ω

$$
\begin{equation*}
u \leqslant C \delta^{1-n} \tag{4.6}
\end{equation*}
$$

Take r and η small, with $0<r<\eta$. It is well known that u remains subharmonic if its values in Ω_{η} are replaced by those of the harmonic function in Ω_{η} which equals u on $\partial \Omega_{\eta}$. This implies that for $x_{0} \in \Omega$,

$$
\int P_{\eta}\left(x_{0}, y\right) u(y) d S_{\eta}(y)<\int P_{r}\left(x_{0}, y\right) u(y) d S_{r}(y)
$$

and, in view of (2.3), we conclude

$$
\begin{equation*}
\int u d S_{\eta} \leqslant C \int u d S_{r} \tag{4.7}
\end{equation*}
$$

We now integrate (4.7) with respect to $r^{-1} d r$, from an $\varepsilon>0$ to η, getting

$$
\begin{equation*}
\int_{\varepsilon}^{\eta} r^{-1} d r \int u d S_{\eta} \leqslant C \int_{\Omega_{\varepsilon} 1 \Omega_{\eta}} \delta^{-1} u d x \tag{4.8}
\end{equation*}
$$

since $\delta \sim r$ on $\partial \Omega_{r}$ and the measure $d r d S_{r}$ is dominated by C times Lebesgue measure. From the hypothesis and (4.6), it follows that the decreasing rearrangement of the restriction of $\delta^{-1} u$ to $\Omega_{\varepsilon} \backslash \Omega_{\eta}$ is dominated by $\min \left(C \varepsilon^{-n}, t^{-1}\right)$. Applying (2.1) to the last integral in (4.8), we obtain

$$
\left(\log \varepsilon^{-1}+\log \eta\right) \int u d S_{\eta} \leqslant C \int_{0}^{C} \min \left(C \varepsilon^{-n}, t^{-1}\right) d t \leqslant C \log \varepsilon^{-1}+C
$$

If we divide by $\log \varepsilon^{-1}$ and let $\varepsilon \rightarrow 0$, it follows that $\int u d S_{\eta} \leqslant C$, and this completes the proof of Theorem 2.
5. Results for a half-space. Let $\mathbf{R}_{+}^{n}=\left\{x \in \mathbf{R}^{n}: x_{n}>0\right\}$. We write points in \mathbf{R}_{+}^{n} as $x=\left(x^{\prime}, x_{n}\right)$, and identify $\partial \mathbf{R}_{+}^{n}$ with \mathbf{R}^{n-1}. The notations $P \lambda$ and $G \mu$ will be used as in $\S 4$. The analogue of Theorem 2 for \mathbf{R}_{+}^{n} reads as follows.

Theorem 3. Let u be a subharmonic function in \mathbf{R}_{+}^{n}. A necessary and sufficient condition for u to have a representation

$$
u(x)=P \lambda(x)-G \mu(x)+c x_{n}
$$

is that

$$
\begin{equation*}
(1+|x|)^{-n} x_{n}^{-1} u \in \Lambda\left(\mathbf{R}_{+}^{n}\right) \tag{5.1}
\end{equation*}
$$

Here $c \in R$, and λ and $\mu \geqslant 0$ are such that $P \lambda$ and $G \mu$ converge, which means

$$
\int_{\mathbf{R}^{n-1}}\left(1+\left|x^{\prime}\right|\right)^{-n} d|\lambda|\left(x^{\prime}\right)<\infty \quad \text { and } \quad \int_{\mathbf{R}_{+}^{n}}(1+|x|)^{-n} x_{n} d \mu(x)<\infty
$$

Of course, the term $c x_{n}$ can be interpreted as the Poisson integral of a point mass at infinity. A necessary and sufficient condition for this term to vanish is that, in addition to (5.1), $\int_{B_{2}}(1+|x|)^{-n} d x<\infty$ for all $\varepsilon>0$, where $B_{\varepsilon}=\left\{x \in \mathbf{R}_{+}^{n}:|u|>\varepsilon x_{n}\right\}$. This is a restatement of an inequality proved by Beurling [1] for $n=2$. A proof based on Theorem 1 can be found in Sjögren [7, Corollary 2]. For the bounded domain Ω of $\S 4$, an analogous condition for $\lambda(\{y\})=0$ for some fixed $y \in \partial \Omega$, if $u=P \lambda-G \mu$, is that $\int_{B_{e}}|x-y|^{-n} d x<$ ∞ for all $\varepsilon>0$, where $B_{\varepsilon}=\{x \in \Omega:|u(x)|>\varepsilon P(x, y)\}$. See Maz'ja [5], Dahlberg [2], and Sjögren [9].

We next give a Λ characterization of Poisson integrals of measures on \mathbf{R}^{n-1} which do not increase too fast at infinity. Let $M_{\gamma}, \gamma>0$, be the class of Radon measures λ on \mathbf{R}^{n-1} with $\int\left(1+\left|x^{\prime}\right|\right)^{-\gamma} d|\lambda|\left(x^{\prime}\right)<\infty$. Similarly, we denote by $L_{p, \gamma}$ the class of measurable functions f on \mathbf{R}^{n-1} for which $\int\left(1+\left|x^{\prime}\right|\right)^{-\gamma}\left|f\left(x^{\prime}\right)\right|^{p} d x^{\prime}<\infty$.

Theorem 4. Let u be harmonic in \mathbf{R}_{+}^{n}, and suppose $1<p<\infty$. A necessary and sufficient condition for u to be the Poisson integral of a measure in M_{γ}, $0<\gamma<n$, or a function in $L_{p, \gamma}, 0<\gamma \leqslant n$, is that $(1+|x|)^{-\gamma} x_{n}^{-1} u \in \Lambda\left(\mathbf{R}_{+}^{n}\right)$ or $(1+|x|)^{-\gamma} x_{n}^{-1}|u|^{p} \in \Lambda\left(\mathbf{R}_{+}^{n}\right)$, resp.

As proved in [10], this result can be extended to classes of measures defined by more general weight functions.

Again, our results have corollaries about H^{p} spaces, of which only one will be stated. We define $H^{p}\left(\mathbf{R}_{+}^{n}\right)$ as in Stein [11, p. 220] and apply the case $\gamma=0$ of Theorem 4.

Corollary 3. Part (i) of Corollary 2 holds also for $\Omega=\mathbf{R}_{+}^{n}$ (and $\delta(x)=$ x_{n}).

Let us finally remark that Theorem 3 has an analogue in $\mathbf{R}^{n}, n \geqslant 3$. A subharmonic function u in \mathbf{R}^{n} has a representation $u=$ const $-r^{2-n} * \mu$ if and only if $(1+|x|)^{-n} u \in \Lambda\left(\mathbf{R}^{n}\right)$. Here we assume $\int(1+|x|)^{2-n} d \mu(x)<\infty$, so that the Newtonian potential $r^{2-n} * \mu$ of $\mu \geqslant 0$ is superharmonic. The proof is quite simple and will not be given.
6. Proofs of Theorems 3 and 4. In this section, the constants C depend only on n.

Proof of Theorem 3. Taking λ and μ as in the statement of the theorem, we must show that the functions $(1+|x|)^{-n} x_{n}^{-1} P \lambda=C(1+|x|)^{-n_{r}-n} * \lambda$ and $(1+|x|)^{-n} x_{n}^{-1} G \mu$ are in $\Lambda\left(\mathbf{R}_{+}^{n}\right)$. For $x \in \mathbf{R}_{+}^{n}$ with $|x|>1$, we write

$$
r^{-n} * \lambda(x)=\int\left|x-y^{\prime}\right|^{-n} d \lambda\left(y^{\prime}\right)=\int_{\left|y^{\prime}\right|<|x| / 2}+\int_{|x| / 2<\left|y^{\prime}\right|<2|x|}+\int_{2|x|<\left|y^{\prime}\right|}
$$

In this last sum, we use Theorem 1 to deal with the second term, and simple estimates for the other two terms. Since the case $|x|<1$ can be similarly treated, we conclude $(1+|x|)^{-n_{r}} r^{-n} * \lambda \in \Lambda\left(\mathbf{R}_{+}^{n}\right)$.

As to $G \mu$, we proceed as in the proof of Theorem 2 . The only essential difference is that the mapping $\varphi: \mathbf{R}_{+}^{n} \rightarrow \mathbf{R}^{n-1}$ must now have the property $|\varphi(x)| \sim|x|$, in addition to $|\varphi(x)-x| \sim x_{n}$. We can take, e.g., $\varphi\left(x^{\prime}, x_{n}\right)=$ $|x| x^{\prime} /\left|x^{\prime}\right|$ for $\left|x^{\prime}\right| \neq 0$ and $\varphi\left(0, x_{n}\right)=\left(x_{n}, 0, \ldots, 0\right)$. The details are left to the reader.

Since of course $u=c x_{n}$ satisfies (5.1), we have proved the necessity part of Theorem 3.

For the converse, we start by studying the Poisson kernel P_{r} of the half-ball $H_{r}=\left\{x \in \mathbf{R}_{+}^{n}:|x|<r\right\}$. By means of a reflection, P_{r} can be calculated explicitly, but we only need the following properties of $P_{r}(x, y)$. It is understood that $x \in H_{r}$ and $y \in \partial H_{r}$.
(a) $P_{r}(x, y) \leqslant C r^{-n-1} x_{n} y_{n}$ for $|x|<r / 2$ and $y_{n}>0$.
(b) $P_{r}(x, y)=C r^{-n-1} x_{n} y_{n}+O\left(r^{-n-2} x_{n} y_{n}\right)$ as $r \rightarrow \infty$, uniformly for $|x|<$ r_{0} and $y_{n}>0$, any fixed r_{0}.
(c) If $P(x, y)=C x_{n}|x-y|^{-n}$ is the Poisson kernel of R_{+}^{n}, then $P_{r}(x, y)<$ $P(x, y)$ for $y_{n}=0$.
(d) $P_{r}(x, y) \rightarrow P(x, y)$ as $r \rightarrow \infty$ for each x and y with $y_{n}=0$.

Assume u is subharmonic and satisfies (5.1) with quasi-norm 1. To begin with, we consider the subharmonic function $v=u^{+}$. The reasoning leading to (4.6) carries over to \mathbf{R}_{+}^{n}, and yields

$$
\begin{equation*}
v(x) \leqslant C x_{n}^{1-n}(1+|x|)^{n} . \tag{6.1}
\end{equation*}
$$

Let H_{r}^{η} be the translate of H_{r} with center at $(0, \eta), \eta>0$, and P_{r}^{η} the associated Poisson kernel. Of course,

$$
v(x) \leqslant \int_{\partial H_{r}^{\eta}} P_{r}^{\eta}(x, y) v(y) d S(y)
$$

for $x \in H_{r}^{\eta}$. Integrating with respect to $r^{-1} d r$, we get
(6.2) $v(x) \leqslant(\log R)^{-1} \int_{R}^{R^{2}} r^{-1} d r \int_{\partial H_{r}} P_{r}^{\eta}(x, y) v(y) d S(y)=\int_{y_{n}>\eta}+\int_{y_{n}=\eta}$
for $x \in H_{R}^{\eta}$ and R large. Here we have separated that part of the double integral involving the values of v in $\left\{y_{n}>\eta\right\}$ from that dealing with $\left\{y_{n}=\eta\right\}$.

Lemma 4. With the above notations, we have for small η, large R, and $x \in H_{R}^{\eta}, \int_{y_{n}>\eta} \leqslant C x_{n}$.

Proof. From (a), we see that

$$
\int_{y_{n}>\eta} \leqslant C(\log R)^{-1}\left(x_{n}-\eta\right) \int_{D} r^{-1} r^{-n-1}\left(y_{n}-\eta\right) v(y) d y
$$

where $r^{2}=\left|y^{\prime}\right|^{2}+\left(y_{n}-\eta\right)^{2}$ and $D=H_{R^{2}}^{\eta^{2}} \backslash H_{R}^{\eta}$. For $y \in D$, we have $r \sim|y|$ $\sim|y|+1$, and $r^{-1} \leqslant C y_{n}^{-1}$. Hence,

$$
\int_{y_{n}>\eta} \leqslant C(\log R)^{-1} x_{n} \int_{D}\left(y_{n}-\eta\right) r^{-1}(1+|y|)^{-n} y_{n}^{-1} v(y) d y
$$

Put $D_{j}=\left\{y \in D: 2^{-j-1}<\left(y_{n}-\eta\right) r^{-1} \leqslant 2^{-j}\right\}, j=0,1, \ldots$ Then

$$
\begin{align*}
& \int_{D_{j}}\left(y_{n}-\eta\right) r^{-1}(1+|y|)^{-n} y_{n}^{-1} v(y) d y \tag{6.3}\\
&<2^{-j} \int_{D_{j}}(1+|y|)^{-n} y_{n}^{-1} v(y) d y .
\end{align*}
$$

The integrand in the right-hand side of this inequality belongs to Λ and is at most $C 2^{n j} R^{-n}$ in D_{j}, because of (6.1). Applying (2.1), we see that both sides of (6.3) are majorized by $C 2^{-j}(1+j+\log R)$, since of course $\left|D_{j}\right| \leqslant C R^{2 n}$. Summing over j, we easily obtain the lemma.

Lemma 5. For any $R_{0}>0$, there is an $\varepsilon_{0}>0$ such that, for $0<x_{n}<\varepsilon_{0}$,

$$
\int_{\left|x^{\prime}\right|<R_{0}}\left(1+\left|x^{\prime}\right|\right)^{-n} v\left(x^{\prime}, x_{n}\right) d x^{\prime} \leqslant C .
$$

Proof. We may assume $R_{0}=2^{k}$, where k is a natural number. Take $R=2^{k+2}$, and let j be an integer with $0 \leqslant j \leqslant k$. For $\eta<x_{n}$ and x_{n} small, we obtain from (6.2)

$$
\begin{align*}
& \int_{2^{\prime-1}<\left|x^{\prime}\right|<2^{\prime}}\left(1+\left|x^{\prime}\right|\right)^{-n} v\left(x^{\prime}, x_{n}\right) d x^{\prime} \tag{6.4}\\
& \quad=\int\left(1+\left|x^{\prime}\right|\right)^{-n} d x^{\prime} \int_{y_{n}>\eta}+\int\left(1+\left|x^{\prime}\right|\right)^{-n} d x^{\prime} \int_{y_{n}=\eta}
\end{align*}
$$

Here, the first term on the right-hand side is dominated by $C 2^{-j} x_{n}$, because of Lemma 4. The estimate (c) will apply to the weighted average of P_{r}^{η} occurring in (6.2), so the last term in (6.4) is at most
$C 2^{-n j}\left(x_{n}-\eta\right) \int_{2^{\prime-1}<\left|x^{\prime}\right|<2^{j}} d x^{\prime} \int_{\left|y^{\prime}\right|<R^{2}}\left(\left|x^{\prime}-y^{\prime}\right|^{2}+\left(x_{n}-\eta\right)^{2}\right)^{-n / 2} v\left(y^{\prime}, \eta\right) d y^{\prime}$.
Now change the order of integration, and separate the integral over $A_{j}=\left\{y^{\prime}\right.$: $\left.2^{j-2}<\left|y^{\prime}\right|<2^{j+1}\right\}$ from that over the rest of $\left\{\left|y^{\prime}\right|<R^{2}\right\}$. After some calculations, and after summing over $1 \leqslant j \leqslant k$, we get

$$
\begin{aligned}
\int_{\left|x^{\prime}\right|<R_{0}} & \left(1+\left|x^{\prime}\right|\right)^{-n} v\left(x^{\prime}, x_{n}\right) d x^{\prime} \\
< & C x_{n}+C \int_{\left|y^{\prime}\right|<2 R_{0}}\left(1+\left|y^{\prime}\right|\right)^{-n} v\left(y^{\prime}, \eta\right) d y^{\prime} \\
& +C R^{2 n} x_{n} \int_{\left|y^{\prime}\right|<R^{2}}\left(1+\left|y^{\prime}\right|\right)^{-n} v\left(y^{\prime}, \eta\right) d y^{\prime}
\end{aligned}
$$

(The modifications needed for the integral over $\left|x^{\prime}\right|<\frac{1}{2}$ are easy.) Now integrate this inequality with respect to $\eta^{-1} d \eta$ over $\left[\varepsilon, x_{n}\right]$, as in (4.8). If we apply (2.1), together with (6.1) and the hypothesis, to the volume integrals thus obtained, it follows that

$$
\begin{aligned}
& \left(\log \varepsilon^{-1}+\log x_{n}\right) \int_{\left|x^{\prime}\right|<R_{0}}\left(1+\left|x^{\prime}\right|\right)^{-n} v\left(x^{\prime}, x_{n}\right) d x^{\prime} \\
& \quad<C x_{n}\left(\log \varepsilon^{-1}+\log x_{n}\right)+C \log \varepsilon^{-n}+C\left(1+x_{n} \log \varepsilon^{-n}\right) g\left(R_{0}\right)
\end{aligned}
$$

for some function g. This implies Lemma 5 with $\varepsilon_{0}=1 / g\left(R_{0}\right)$ (cf. the end of §4).

End of Proof of Theorem 3. As before, u is subharmonic and satisfies (5.1). We put $\mu=\Delta u$, in the sense of distributions. Picking an $x \in \mathbf{R}_{+}^{n}$ with $u(x)$ finite, we have

$$
\begin{align*}
u(x)= & (\log R)^{-1} \int_{R}^{R^{2}} r^{-1} d r \int_{\partial H_{r}^{\eta}} P_{r}^{\eta}(x, y) u(y) d S(y) \\
& -(\log R)^{-1} \int_{R}^{R^{2}} r^{-1} d r \int_{H_{r}^{\eta}} G_{r}^{\eta}(x, y) d \mu(y)=J_{1}-J_{2} \tag{6.5}
\end{align*}
$$

if R is large and $\eta>0$ small. Here G_{r}^{η} is the Green's function of H_{r}^{η}. Consider the positive part of J_{1}, i.e., the quantity obtained by replacing u by u^{+}in J_{1}. Lemmas 4 and 5 imply that this part is bounded for $\eta<\varepsilon_{0}=\varepsilon_{0}(R)$. From (6.5), it then follows that J_{2} and the negative part of J_{1} are bounded for $\eta<\varepsilon_{0}$. By monotonic convergence, we see that $\int G(x, y) d \mu(y)<\infty$, and so μ is as required. Lemma 5 and the boundedness of the negative part of J_{1}
imply that the restriction of u to $\left\{y: y_{n}=\eta\right\}$ converges locally weakly to a measure λ on \mathbf{R}^{n-1}, for some sequence $\eta_{i} \rightarrow 0$. Further, λ satisfies

$$
\int\left(1+\left|y^{\prime}\right|\right)^{-n} d|\lambda|\left(y^{\prime}\right)<\infty
$$

Now let $\eta \rightarrow 0$ in (6.5), through the sequence just chosen, and then $R \rightarrow \infty$. Then J_{2} will tend to $G \mu(x)$, and the part of J_{1} which involves $\left\{y_{n}=\eta\right\}$ tends to $P \lambda(x)$, in view of (c) and (d). The remaining part of J_{1} therefore tends to a harmonic function h. From Lemma 4 and inequality (b), it can be seen that h must be proportional to x_{n}. In the limit, (6.5) therefore yields the searched-for representation of u, and Theorem 3 is proved.

As to Theorem 4, the necessity part is proved like that of Theorem 3, in the case of M_{γ}. For $L_{p, r}$ we note that $|P f|^{p} \leqslant P|f|^{p}$ because of Hölder's inequality, and then apply the M_{γ} case. The proof of the sufficiency part is a modification of the proof just given (for v we take $|u|$ and $|u|^{p}$, respectively).
7. The iterated Poisson integral. For $n \geqslant 2$, we consider the unit polydisc

$$
U^{n}=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbf{C}^{n}:\left|z_{i}\right|<1, i=1, \ldots, n\right\} .
$$

Let $T^{n}=\left\{z:\left|z_{i}\right|=1, i=1, \ldots, n\right\}$ be its distinguished boundary. If λ is a (finite Radon) measure carried by T^{n}, we denote by

$$
P \lambda(z)=\int_{\mathbf{T}^{\mathbf{x}}} P\left(z_{1}, t_{1}\right) \ldots P\left(z_{n}, t_{n}\right) d \lambda(t)
$$

the iterated Poisson integral of λ. Here of course $t=\left(t_{1}, \ldots, t_{n}\right)$, and $P\left(z_{i}, t_{i}\right)$ is the Poisson kernel of the unit disc. Then $P \lambda$ is n-harmonic in U^{n}, i.e., $P \lambda$ is continuous there and harmonic in any one variable z_{i}, if the other z_{j} are kept fixed. We put $\delta(z)=\Pi_{i}\left(1-\left|z_{i}\right|\right)$ for $z \in U^{n}$.

To characterize iterated Poisson integrals, we need spaces which are slightly larger than Λ. For $k \geqslant 0$, we let $\Lambda^{k}\left(U^{n}\right)$ be the space of measurable real-valued functions in U^{n} satisfying

$$
f^{*}(t)<\text { const } \cdot t^{-1}\left(\log \left(2+t^{-1}\right)\right)^{k}, \quad 0<t<\left|U^{\eta}\right|
$$

Equivalently, these spaces may be defined by the inequality

$$
\lambda_{f}(\alpha) \leqslant \text { const } \cdot \alpha^{-1}(\log (2+\alpha))^{k}, \quad \alpha>0 .
$$

Of course, λ_{f} and f^{*} are defined by means of $2 n$-dimensional Lebesgue measure in U^{n}.

Theorem 5. Let u be an n-harmonic function in U^{n}. A necessary and sufficient condition for u to be the iterated Poisson integral of a measure on \mathbf{T}^{n} or of a function in $L_{p}\left(T^{n}\right), 1<p<\infty$, is that $\delta^{-1} u \in \Lambda^{n-1}\left(U^{n}\right)$ or $\delta^{-1}|u|^{p} \in$ $\Lambda^{n-1}\left(U^{n}\right)$, resp.

The measure used in the definition of $L_{p}\left(\mathbf{T}^{n}\right)$ is ithe product of n ordinary arc measures on T. We state Theorem 5 only for a polydisc, although the proof easily carries over to finite products of domains $\Omega_{i} \subset \mathbf{R}^{n_{i}}$ satisfying the hypotheses of $\S 4$.

Corollary 4. A holomorphic function u in U^{n} is in $H^{p}\left(U^{n}\right), 0<p<\infty$, if and only if $\delta^{-1}|u|^{p} \in \Lambda^{n-1}\left(U^{n}\right)$.

Here $H^{p}\left(U^{n}\right)$ defined as in, e.g., Rudin [6, §3.4]. This corollary follows from Theorem 5 and its proof, applied to the n-subharmonic function $|u|^{p}$.

Proof of Theorem 5. Necessity. The L_{p} result follows from the result for measures, as in the proof of Theorem 4. To prove that $\delta^{-1} P \lambda \in \Lambda^{n-1}\left(U^{n}\right)$ for a measure λ on T^{n}, we use induction. Observe first of all that this amounts to showing that the convolution $\left(\Pi\left|z_{i}\right|^{-2}\right.$) ${ }^{*} \lambda$ is in Λ^{n-1}. The case $n=1$ is contained in Theorem 1, so assume the assertion holds for $n-1$. We consider first the case when λ is given by an integrable function, $d \lambda(t)=$ $f\left(\theta_{1}, \ldots, \theta_{n}\right) d \theta_{1} \ldots d \theta_{n}$, where $\theta_{i}=\arg t_{i}$. We may assume $f \geqslant 0$ and $\int f(\theta) d \theta=1$. (All integrals in any θ_{i} are taken from 0 to 2π.)

For $z \in U^{n}$, we have

$$
\begin{aligned}
& \delta^{-1} P \lambda(z)=\int \Pi\left|z_{i}-t_{i}\right|^{-2} f\left(\theta_{1}, \ldots, \theta_{n}\right) d \theta_{1} \ldots d \theta_{n} \\
&=\int\left|z_{1}-t_{1}\right|^{-2} d \theta_{1} \int \prod_{i>1}\left|z_{i}-t_{i}\right|^{-2} f\left(\theta_{1}, \ldots, \theta_{n}\right) d \theta_{2} \ldots d \theta_{n} \\
&=\int\left|z_{1}-t_{1}\right|^{-2} d \theta_{1} F\left(\theta_{1}, z_{2}, \ldots, z_{n}\right)
\end{aligned}
$$

say. Keeping $\left(z_{2}, \ldots, z_{n}\right)$ fixed, we see from this equation and Theorem 1 that $\delta^{-1} P \lambda\left(\cdot, z_{2}, \ldots, z_{n}\right)$ is in $\Lambda(U)$. The corresponding quasi-norm is dominated by $C \int F\left(\theta_{1}, z_{2}, \ldots, z_{n}\right) d \theta_{1}$, because of the remark in the beginning of §3. Putting $\int F d \theta_{1}=G\left(z_{2}, \ldots, z_{n}\right)$, we thus have for $\alpha>0$

$$
\begin{equation*}
m_{2}\left\{z_{1} \in U: \delta^{-1} P \lambda\left(z_{1}, \ldots, z_{n}\right)>\alpha\right\} \leqslant C \alpha^{-1} G\left(z_{2}, \ldots, z_{n}\right) \tag{7.2}
\end{equation*}
$$

where m_{j} is j-dimensional Lebesgue measure.
Clearly,

$$
\begin{equation*}
G\left(z_{2}, \ldots, z_{n}\right)=\int \prod_{i>1}\left|z_{i}-t_{i}\right|^{-2} d \theta_{2} \ldots d \theta_{n} \int f\left(\theta_{1}, \ldots, \theta_{n}\right) d \theta_{1} \tag{7.3}
\end{equation*}
$$

But $\int f(\theta) d \theta_{1}$ can be considered as an integrable function on T^{n-1}, with integral 1. Because of the induction hypothesis, (7.3) implies that G is in $\Lambda^{n-2}\left(U^{n-1}\right)$. Since trivially $G \leqslant \Pi_{i>1}\left(1-\left|z_{i}\right|\right)^{-2}$, we have $G \leqslant \alpha^{2(n-1)}$ on the set $B=\left\{\left(z_{2}, \ldots, z_{n}\right): 1-\left|z_{i}\right|>\alpha^{-1}, i=2, \ldots, n\right\}$. From (7.2) and Fubini's Theorem, we deduce

$$
\begin{equation*}
m_{2 n}\left\{z \in U \times B: \delta^{-1} P \lambda(z)>\alpha\right\} \leqslant C \alpha^{-1} \int_{B} G d m_{2 n-2} \tag{7.4}
\end{equation*}
$$

But (2.1) and the properties of G just stated imply

$$
\begin{align*}
\int_{B} G d m_{2 n-2} & \leqslant C \int_{0}^{C} \min \left(\alpha^{2(n-1)}, t^{-1}\left(\log \left(2+t^{-1}\right)\right)^{n-2}\right) d t \tag{7.5}\\
& \leqslant C(\log (2+\alpha))^{n-1}
\end{align*}
$$

Together with the trivial inequality $m_{2 n}\left(U^{n} \backslash(U \times B)\right)<C \alpha^{-1}$, (7.4)-(7.5) imply

$$
m_{2 n}\left\{z \in U^{n}: \delta^{-1} P \lambda(z)>\alpha\right\} \leqslant C \alpha^{-1}(\log (2+\alpha))^{n-1}
$$

This completes the induction for absolutely continuous measures λ. The general case then follows by an obvious limiting process. The necessity part of the theorem is thus proved.

Sufficiency. Suppose that u is n-harmonic in U^{n}, and that $\delta^{-1} u \in$ $\Lambda^{n-1}\left(U^{n}\right)$. We follow closely the corresponding part of the proof of Theorem 2. The inequality from [3] used there is now applied to $|u|$ in suitable polydiscs, and yields

$$
|u(z)| \leqslant C \delta(z)^{-1}\left(\log \left(2+\delta(z)^{-1}\right)\right)^{n-1}
$$

For $0<\eta<r_{i}<1, i=1, \ldots, n$, we have $\left(\theta_{i}=\arg t_{i}\right)$

$$
\int_{\mathbf{T}^{n}}|u(\eta t)| d \theta \leqslant \int_{\mathbf{T}^{n}}\left|u\left(r_{1} t_{1}, r_{2} t_{2}, \ldots, r_{n} t_{n}\right)\right| d \theta
$$

since $|u|$ is n-subharmonic. If we integrate this inequality with respect to $\left(\Pi\left(1-r_{i}\right)^{-1}\right) d r_{1} \ldots d r_{n}$ over $\eta<r_{i}<1-\varepsilon$, we obtain a $2 n$-dimensional integral on the right-hand side (cf. (4.8)). Essentially as in §4, we deduce that $\int_{\mathbf{T}}|u(\eta t)| d \theta$ is bounded as $\eta \rightarrow 0$, dividing by $\left(\log \varepsilon^{-1}\right)^{n}$ this time. This means that u is the iterated Poisson integral of a measure, as required. (See [6, Theorem 2.1.3(e)].) To deal with the case when $\delta^{-1}|u|^{p} \in \Lambda^{n-1}\left(U^{n}\right)$, we carry out the same reasoning for $|u|^{p}$. This ends the proof of Theorem 5 .

References

[^1]6. W. Rudin, Function theory in polydiscs, Benjamin, New York and Amsterdam, 1969. MR 41 \#501.
7. P. Sjögren, La convolution dans $L^{\mathbf{l}}$ faible de R^{n}, Séminaire Choquet: Initiation à l'analyse, 13ième année (1973-74), exposé 14, Secrétariat mathématique, Paris, 10 pp .
8. ___, Noyaux singuliers positifs et ensembles exceptionnels, Séminaire Choquet: Initiation à l'analyse, 14ième année (1974-75), exposé 8, Secrétariat mathématique, Paris, 23 pp .
9. ___ Une propriété des fonctions harmoniques positives, d'après Dahlberg, Séminaire de theorie du potentiel, Lectures Notes in Math., vol. 563, Springer-Verlag, Berlin and New York, 1976, pp. 275-282.
10. \qquad , Characterizations of Poisson integrals and H^{p} spaces, Report 1975-5, Dept. of Math., Chalmers Univ. of Technology and the Univ. of Göteborg, Sweden.
11. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., no. 30, Princeton Univ. Press, Princeton, N. J., 1970. MR 44 \# 7280.
12. E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., no. 32, Princeton Univ. Press, Princeton, N. J., 1971. MR 46 \#4102.
13. K. O. Widman, Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations, Math. Scand. 21 (1967), 17-37 (1968). MR 39 \#621.

Department of Mathematics, Universtiy of Uppsala, Sysslomansgatan 8, S-752 23 Uppsala, Sweden

[^0]: Received by the editors March 20, 1976.
 AMS (MOS) subject classifications (1970). Primary 31B10, 30A78.
 Key words and phrases. Poisson integral, Green potential, H^{P} spaces, weak L^{p} spaces.

[^1]: 1. A. Beurling, A minimum principle for positive harmonic functions, Ann. Acad. Sci. Fenn. Ser. A I No. 372 (1965), 3-7. MR 32 \# 5904.
 2. B. Dahlberg, A minimum principle for positive harmonic functions, Proc. London Math. Soc. 33 (1976), 238-250.
 3. C. Fefferman and E. M. Stein, H^{P} spaces of several variables, Acta Math. 129 (1972), 137-193.
 4. G. Hellwig, Partielle Differentialgleichungen, Teubner, Stuttgart, 1960. MR 22 \#5794.
 5. V. G. Maz'ja, On Beurling's Theorem on the minimum principle for positive harmonic functions, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 30 (1972), 76-90. (Russian) MR 48 \#8821.
