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WEAK COMPACTNESS IS EQUIVALENT TO
THE FIXED POINT PROPERTY IN c0

P. N. DOWLING, C. J. LENNARD, AND B. TURETT

(Communicated by Jonathan M. Borwein)

Abstract. A nonempty, closed, bounded, convex subset of c0 has the fixed
point property if and only if it is weakly compact.

1. Introduction

In 1981, B. Maurey [9], E. Odell and Y. Sternfeld [11], and R. Haydon, E.
Odell and Y. Sternfeld [6] published results on the existence of fixed points of
nonexpansive maps on subsets of c0. The most general result of these was due to
Maurey who used ultrapower techniques to prove that nonempty, weakly compact,
convex subsets of c0 have the fixed point property. That is, every nonexpansive
mapping of a nonempty, weakly compact, convex subset of c0 into itself has a fixed
point.

Recently there have been several articles investigating the converse of Mau-
rey’s theorem. In 1998, E. Llorens-Fuster and B. Sims [8] showed that the closed,
bounded, convex subsets of c0 with nonempty interior fail to have the fixed point
property, and that there exist nonempty convex subsets of c0 that are compact in
a topology slightly weaker than the weak topology that also fail to have the fixed
point property. (Recently, M. Japón Pineda [7] extended this second result to Ba-
nach spaces containing c0.) Llorens-Fuster and Sims’ investigations led them to
conjecture that closed, bounded, convex subsets of c0 with the fixed point property
are weakly compact.

Partial results along these lines have been obtained in Domı́nguez Benavides,
Japón Pineda and Prus [3] and Dowling, Lennard and Turett [4]. In both of these
articles, the authors provide characterizations of the weakly compact convex subsets
of c0 in terms of the fixed point property for certain classes of mappings. For
example, in [4], it is shown that a closed, bounded, convex subset of c0 is weakly
compact if and only if all of its nonempty, closed, convex subsets have the fixed point
property for nonexpansive mappings. However, this result is not strong enough to
prove the conjecture of Llorens-Fuster and Sims. The result only guarantees that
a closed, bounded, convex subset K of c0 that is not weakly compact contains a
further closed, bounded, convex subset K0 that fails the fixed point property. It
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does not guarantee that the set K itself fails the fixed point property. Thus, the
following theorem both improves and clarifies the situation.

Theorem 1. Let K be a nonempty, closed, bounded, convex subset of (c0, || · ||∞).
Then K is weakly compact if and only if K has the fixed point property ; i.e., every
nonexpansive mapping U : K −→ K has a fixed point.

Moreover, if K is non-weakly compact, there exists a contractive mapping T :
K −→ K (i.e., ‖T (u)−T (v)‖∞ < ‖u− v‖∞ for all u, v ∈ K with u 6= v), such that
T is fixed point free.

Thus, as conjectured by Llorens-Fuster and Sims, the converse of Maurey’s c0
theorem is true. We remark that our result holds when the underlying scalar field
is R and also when it is C.

The proof of the theorem depends on the notions of asymptotically isometric c0-
basic sequences and asymptotically isometric c0-summing basic sequences. Recall
from [4] that a sequence (yn)n∈N in a Banach space X is an asymptotically isometric
c0-summing basic sequence if there exists a null sequence (εn)n∈N in (0,∞) such
that

sup
n∈N

(
1

1 + εn

) ∣∣∣∣∣∣
∞∑
j=n

tj

∣∣∣∣∣∣ ≤
∥∥∥∥∥
∞∑
n=1

tn yn

∥∥∥∥∥ ≤ sup
n∈N

(1 + εn)

∣∣∣∣∣∣
∞∑
j=n

tj

∣∣∣∣∣∣ ,
for all (tn)n∈N ∈ c00, the space of finitely nonzero sequences. Recall also that if a
sequence (yn)n∈N is an asymptotically isometric c0-summing basic sequence and if
the sequence (wn)n∈N is defined by wn := yn − yn−1, where y0 := 0, then for all
(tn)n∈N ∈ c0,

(∗) sup
n∈N

(
1

1 + εn

)
|tn| ≤

∥∥∥∥∥
∞∑
n=1

tn wn

∥∥∥∥∥ ≤ sup
n∈N

(1 + εn) |tn|.

As in [4], a sequence (wn)n∈N satisfying (∗) is called an asymptotically isometric
c0-basic sequence. For information concerning asymptotically isometric c0-basic
sequences and asymptotically isometric c0-summing basic sequences, see [4] and
the references therein. The following result (Theorem 4 in [4]) as well as certain
technical details in its proof will prove crucial.

Theorem 2. [4] Let K be a closed, bounded, convex subset of (c0, ‖ · ‖∞) that
is not weakly compact. Then K contains a nonzero multiple of an asymptotically
isometric c0-summing basic sequence.

Thus, if K is a closed, bounded, convex subset of c0 that is not weakly compact,
then there exists L > 0 and an asymptotically isometric c0-summing basic sequence
(yn)n∈N in c0 such that the sequence (Lyn)n∈N is in K. With K0 := co{yn}, it is
easy to see that there exists a nonexpansive map T : LK0 → LK0 without a fixed
point if and only if there exists a nonexpansive map T̃ : K0 → K0 without a fixed
point. Merely define T̃ as the composition of the maps: multiplication by L, T ,
and multiplication by 1/L. Thus, in utilizing the theorem to prove Theorem 1, it
suffices to assume that L = 1; i.e., that K contains an asymptotically isometric
c0-summing basic sequence.

The technical detail from the proof of the above theorem that will be used in
the proof of Theorem 1 is a specific property of the asymptotically isometric c0-
basic sequence (wn)n∈N constructed in [4]. In particular, there exists a strictly
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increasing sequence (NM(n))n≥0 in N ∪ {0} such that NM(0) := 0 and the elements
wn = (wni ) = (yni − yn−1

i ) satisfy

(♠) max
NM(n−1)<i≤NM(n)

∣∣∣∣∣
∞∑
k=1

tk w
k
i

∣∣∣∣∣ ≥ |tn| −
(

δ

4n−2

)
‖t‖∞

for all n ∈ N and all (tk)k∈N ∈ c0. Here δ ∈ (0, 4−7) is a constant.
We remark that this condition (♠) is crucial in [4] for establishing the left in-

equality in (∗) above, so that (♠) and the right inequality in (∗) provide us with a
sharpening of Theorem 2.

2. Proof of Theorem 1

Proof. Since one direction is just a restatement of Maurey’s result, it is only nec-
essary to show that, if K is not weakly compact, then there exists a nonexpansive
self-map T of K without a fixed point. Indeed, we will show that there exists a
contractive such T , i.e., ‖T (u)− T (v)‖∞ < ‖u− v‖∞ for all u, v ∈ K with u 6= v.

Fix a closed, bounded, convex subset K of c0 that is not weakly compact. By
our comments above, we may assume that K contains an asymptotically isometric
c0-summing basic sequence (yn)n∈N where there is no loss in generality in assuming
that εn < 2−1 · 4−n, for all n ≥ 2. Then (wn)n∈N defined by wn := yn − yn−1,
where y0 := 0, is an asymptotically isometric c0-basic sequence. Defining the closed,
convex subset K0 := co{yn} of K and using yn = w1 + · · ·+ wn for n ∈ N yields:

K0 = co{yn} =

{ ∞∑
n=1

tnwn : (tn)n∈N ∈ c0, 1 = t1 ≥ t2 ≥ · · · ≥ 0

}
.

We begin by defining a nonexpansive map S from c0 into K0 as a composition of
four mappings: firstly R : c0 −→ c↓0, followed by J : c↓0 −→ A, then V : A −→ K0,
and finally M : K0 −→ K0. Here,

c↓0 := {s = (sn)n∈N ∈ c0 : s1 ≥ s2 ≥ s3 ≥ · · · ≥ 0} and

A := {t = (tn)n∈N ∈ c0 : 1 = t1 ≥ t2 ≥ · · · ≥ 0} = {t ∈ c↓0 : t1 = 1}.

(Note that the sets A and K0 coincide when each wn = en; i.e., (yn)n∈N is the usual
summing basis of c0.) We will successively define and discuss each mapping below.

For all u = (u1, u2, . . .) ∈ c0, let R(u) := u∗ = (u∗1, u∗2, . . .) ∈ c0 be the decreasing
(i.e., non-increasing) rearrangement of u; i.e., u∗ = (|uρ(1)|, |uρ(2)|, . . .) for some
one-to-one mapping ρ : N→ N such that u∗1 ≥ u∗2 ≥ u∗3 ≥ · · · . Note that u∗ ∈ c↓0.

Although the basic properties of R are well known, we shall derive those that
we use herein, for the sake of completeness. Fix u = (un)n∈N ∈ c0. Define u∗1 :=
maxn∈N |un|, which equals |un1 | for some n1 ∈ N. We may assume that n1 is
minimal with this property. Next, u∗2 := max{|un| : n ∈ N\{n1}} = |un2 | for some
minimal n2 ∈ N\{n1}. Generally, for each k ∈ N, we inductively define

u∗k+1 := max{|un| : n ∈ N\{n1, . . . , nk}},

which equals |unk+1 | for some minimal nk+1 ∈ N\{n1, . . . , nk}. It is easy to see
from this definition that u∗ = (u∗n)n∈N is decreasing and belongs to c0. (Moreover,
the map ρ : N→ N mentioned above is given by ρ(k) := nk, for all k ∈ N.) By the
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definition, it is straightforward to check the following fact: for all u ∈ c0, for each
k ∈ N,

(♣) u∗k = min
F⊆N: #(F )=k−1

max
n∈N\F

|un|.

As a direct consequence of this min-max characterization, it follows that for all
u, v ∈ c0,

|u∗k − v∗k| ≤ ‖u− v‖∞ , ∀ k ∈ N.
Therefore, for all u, v ∈ c0, ||u∗ − v∗||∞ ≤ ||u − v||∞. Hence, rearrangement is a
nonexpansive mapping on c0.

Let us now consider the second mapping J . Using an idea of Llorens-Fuster and
Sims [8, The proof of Proposition 1], we define J : c↓0 −→ A by

J(s) := (1, s1 ∧ 1, s2 ∧ 1, s3 ∧ 1, . . . ), for all s = (sn)n∈N ∈ c↓0.

The following fact is well known (see, for example, [10, Theorem 1.1.1 (x)]): for all
r, s, t ∈ R,

|s− t| = |s ∨ r − t ∨ r|+ |s ∧ r − t ∧ r|.
Consequently, it is easy to see that J is nonexpansive on c↓0.

The third mapping V : A −→ K0 is formed by taking each t = (tn)n∈N ∈ A to∑∞
k=1 tk wk ∈ K0. Lastly, M : K0 −→ K0 is the identity averaged together with

the iterates of a right shift operator on K0. Indeed, define Q : K0 −→ K0 by

Q(σ) := w1 + t1 w2 + t2 w3 + · · ·+ tn wn+1 + · · · , for all σ =
∞∑
k=1

tk wk ∈ K0.

Also, let I be the identity operator on K0 and Q2 := Q ◦Q, Q3 := Q ◦Q ◦Q, and
so on. Next, we define M : K0 −→ K0 by

M :=
1
2
I +

1
22
Q+

1
23
Q2 +

1
24
Q3 + · · · .

Now, putting everything together, define S : c0 −→ K0 by S := M ◦V ◦ J ◦R =
MV JR. Furthermore, let us introduce some useful notation. Put ũ := u∗ ∧ 1 =
(u∗n ∧ 1)n∈N, for all u ∈ c0. Note that for each u ∈ c0, JR(u) = (1, ũ1, ũ2, ũ3, . . . ).
Then for all u ∈ c0,

S(u) = MV (JR(u)) = M(V (1, ũ1, ũ2, ũ3, . . . ))
= M(w1 + ũ1w2 + ũ2w3 + · · ·+ ũnwn+1 + · · · )

=
1
2

(w1 + ũ1 w2 + ũ2 w3 + ũ3w4 + ũ4w5 + · · · )

+
1
22

(w1 + w2 + ũ1 w3 + ũ2w4 + ũ3 w5 + · · · )

+
1
23

(w1 + w2 + w3 + ũ1 w4 + ũ2w5 + ũ3w6 + · · · ) + · · · ; and so

S(u) = w1 +
(

1
2

+
1
2
ũ1

)
w2 +

(
1
4

+
1
4
ũ1 +

1
2
ũ2

)
w3 + · · ·

+
(

1
2n−1

+
1

2n−1
ũ1 +

1
2n−2

ũ2 +
1

2n−3
ũ3 + · · ·+ 1

2
ũn−1

)
wn + · · · .
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We will show below that S is contractive on c0, using the fact that ||ũ− ṽ||∞ ≤
||u − v||∞, for all u, v ∈ c0. Fix u, v ∈ c0 with u 6= v. Define αj := ũj − ṽj , for all
j ∈ N. From above,

S(u)− S(v) =
1
2
α1 w2 +

(
1
4
α1 +

1
2
α2

)
w3 + · · ·

+
(

1
2n−1

α1 +
1

2n−2
α2 + · · ·+ 1

2
αn−1

)
wn + · · · ;

and using the rightmost inequality in (∗) above, together with the fact that εn <
2−1 4−n for all n ≥ 2, it follows that

||S(u)− S(v)||∞ ≤ sup
n≥2

(1 + εn)
∣∣∣∣ 1

2n−1
α1 +

1
2n−2

α2 + · · ·+ 1
2
αn−1

∣∣∣∣
≤ sup

n≥2
(1 + εn)

(
1 + 2 ε2

2n−1

1
1 + 2 ε2

|α1|+
1 + 2 ε3

2n−2

1
1 + 2 ε3

|α2|+ . . .

+
1 + 2 εn

21

1
1 + 2 εn

|αn−1|
)

≤ max
m≥1

1
1 + 2 εm+1

|αm| ·B, where

B := sup
n≥2

(1 + εn)
(

1 + 2 ε2

2n−1
+

1 + 2 ε3

2n−2
+ · · ·+ 1 + 2 εn

21

)
≤ sup

n≥2

(
1 +

1
2 (4n)

) ([
1

2n−1
+

1
2n−2

+ · · ·+ 1
21

]
+
[

1
42 2n−1

+
1

43 2n−2
+ · · ·+ 1

4n 21

])
= sup

n≥2

(
1 +

1
2 (4n)

) (
1− 1

2n−1
+
[

1
2n+3

+
1

2n+4
+ · · ·+ 1

22n+1

])
≤ sup

n≥2

(
1 +

1
4n

) (
1− 1

2n−1
+

1
2n+2

)
≤ sup
n≥2

(
1 +

1
4n
− 7

2n+2

)
= 1.

So,

‖S(u)− S(v)‖∞ ≤ max
m≥1

|ũm − ṽm|
1 + 2 εm+1

.

Recall that u 6= v. If ũ = ṽ, then ‖S(u) − S(v)‖∞ = 0 < ‖u − v‖∞. Otherwise,
ũ 6= ṽ, which implies

‖S(u)− S(v)‖∞ ≤ max
m≥1

|ũm − ṽm|
1 + 2 εm+1

< max
m≥1

|ũm − ṽm| = ||ũ− ṽ||∞ ≤ ||u− v||∞,

and therefore ‖S(u)− S(v)‖∞ < ‖u− v‖∞, for all u, v ∈ c0 with u 6= v. Thus, S is
contractive.

Finally, define T : K → K0 ⊆ K to be the restriction of S to K. The mapping
T is contractive.

We will next show that T fails to have a fixed point in K. Observe first that
from the definition above, one can readily show that for all u ∈ c0, for each k ∈ N,

(♦) u∗k = max
G⊆N: #(G)=k

min
n∈G
|un|.
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Now assume, to get a contradiction, that u ∈ K is a fixed point of T and recall
that 0 < δ < 4−7. Then

u = T (u) = w1 +
(

1 + ũ1

2

)
w2 +

(
1
4

+
1
4
ũ1 +

1
2
ũ2

)
w3 + · · ·

+
(

1
2k−1

ũ1 +
1

2k−2
ũ2 +

1
2k−3

ũ3 + · · ·+ 1
2
ũk−1

)
wk + · · ·

=:
∞∑
k=1

tk wk.

Applying (♠) with n = 1 yields that there exists i1 ∈ {1, . . . , NM(1)} such that

|ui1 | = |(T (u))i1 | =
∣∣∣∣∣
∞∑
k=1

tk w
k
i1

∣∣∣∣∣
≥ |t1| −

δ

41−2
‖t‖∞ = 1− 4 δ.

So, u∗1 ≥ |ui1 | ≥ 1− 4 δ; and thus ũ1 = u∗1 ∧ 1 ≥ 1− 4 δ.
Next, applying (♠) with n = 2, we see that there exists i2 ∈ {NM(1) + 1, . . . ,

NM(2)} such that

|ui2 | = |(T (u))i2 | ≥ |t2| −
δ

42−2
‖t‖∞ =

1
2

+
1
2
ũ1 − δ

≥ 1
2

+
1
2

(1− 4 δ)− δ = 1− 2 δ − δ ≥ 1− 4 δ.

Hence, using (♦) above and the fact that i2 > i1, it follows that u∗2 ≥ min{|ui1 |, |ui2 |}
≥ 1− 4 δ; and consequently ũ2 = u∗2 ∧ 1 ≥ 1− 4 δ.

Furthermore, applying (♠) with n = 3 gives that there exists i3 ∈ {NM(2)+1, . . . ,
NM(3)} such that

|ui3 | = |(T (u))i3 | ≥ |t3| −
δ

43−2
‖t‖∞ =

1
4

+
1
4
ũ1 +

1
2
ũ2 −

δ

4

≥ 1
4

+
1
4

(1− 4 δ) +
1
2

(1− 4 δ)− δ

4
≥ 1− 2 δ − δ − δ

2
≥ 1− 4 δ.

Since i3 > i2 > i1, we may use (♦) to see that u∗3 ≥ min{|ui1 |, |ui2 |, |ui3 |} ≥ 1−4 δ;
and therefore ũ3 = u∗3 ∧ 1 ≥ 1− 4 δ.

Continuing inductively, it follows that there exists a strictly increasing sequence
of positive integers (in)n∈N such that for all n ∈ N,

|uin | ≥ 1− 2 δ − δ − δ

2
− · · · − δ

2n−2
≥ 1− 4 δ.

It follows from (♦) that for all n ∈ N, ũn ≥ 1 − 4 δ > 0, which contradicts the
fact that ũ ∈ c0. Thus, T is fixed point free on K. This completes the proof of
Theorem 1. �

3. Some remarks and a further result

The conclusions of Theorem 1 do not hold in every Banach space. Goebel and
Kuczumow [5] and Soardi [12] have given examples of closed, bounded, convex,
non-weakly compact sets in `1 and L∞[0, 1] that have the fixed point property,
and Dale Alspach [1] has given an example of a weakly compact, convex subset of
L1[0, 1] failing to have the fixed point property. There are spaces, other than c0,
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for which the conclusions of Theorem 1 hold. However, it is unclear if any of these
spaces are significantly different from c0.

Corollary 3. Let K be a nonempty, closed, bounded, convex subset of (c0(Γ), ‖·‖∞)
where Γ is uncountable. Then K is weakly compact if and only K has the fixed point
property.

Proof. Since it is known [2] that weakly compact convex sets in c0(Γ) have the
fixed point property for nonexpansive maps, assume that K is not weakly com-
pact. Then K contains a sequence (xn)n∈N with no weakly convergent subse-
quence. Let Γ1 denote the support of the sequence (xn)n∈N; that is, Γ1 = {γ ∈
Γ : xn(γ) 6= 0 for some n ∈ N} where xn = (xn(γ))γ∈Γ. Then co{xn} lies in
the subspace c0(Γ1) ×

∏
γ∈Γ\Γ1

{0} of c0(Γ) and, since Γ1 is countably infinite,
c0(Γ1) ×

∏
γ∈Γ\Γ1

{0} is linearly isometric to c0. Thus the previous results can be
applied. To be specific, let P1 denote the canonical projection from c0(Γ) onto
c0(Γ1). The closed, bounded, convex, non-weakly compact set P1(K) contains the
closed, bounded, convex, non-weakly compact set co{P1(xn)}; and, since this set
lies in a closed subspace isometric to c0, co{P1(xn)} contains (without loss of gen-
erality) an asymptotically isometric c0-summing basic sequence (yn)n∈N. Letting
(wn)n∈N denote the asymptotically isometric c0-basic sequence corresponding to
(yn)n∈N and defining the closed, convex subset K0 := co{yn} implies, as before,
that

K0 = co{yn} =

{ ∞∑
n=1

tnwn : (tn)n∈N ∈ c0, 1 = t1 ≥ t2 ≥ · · · ≥ 0

}
.

If the mapping S : c0 −→ K0 is defined as in the proof of Theorem 1 (with c0(Γ1)
identified with c0) and if T is defined as the restriction of S to P1(K), then T is a
nonexpansive self-map of P1(K) without a fixed point. Next, with

−→
0 denoting the

zero element in c0(Γ\Γ1), note that yn×
−→
0 lies in co{xn} and thus is an element of

K. Therefore, since the range of T is actually a subset of K0, the map U : K → K

defined by U(x) = (T ◦P1(x))×−→0 is a nonexpansive self-map of K without a fixed
point and the proof is complete. �
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