
WEAK CONSISTENCY IN SAATY’S AHP –

EVALUATING CREATIVE WORK OUTCOMES

OF CZECH ART COLLEGES
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Abstract: The full consistency of Saaty’s matrix of preference intensities used
in AHP is practically unachievable for a large number of objects being compared.
There are many procedures and methods published in the literature that describe
how to assess whether Saaty’s matrix is “consistent enough”. Consistency is in
these cases measured for an already defined matrix (i.e. ex-post). In this paper
we present a procedure that guarantees that an acceptable level of consistency of
expert information concerning preferences will be achieved. The proposed method
is based on dividing the process of inputting Saaty’s matrix into two steps. First,
the ordering of the compared objects with respect to their significance is determined
using the pairwise comparison method. Second, the intensities of preferences are
defined for the objects numbered in accordance with their ordering (resulting from
the first step). In this paper the weak consistency of Saaty’s matrix is defined,
which is easy to check during the process of inputting the preference intensities.
Several propositions concerning the properties of weakly consistent Saaty’s matrices
are proven in the paper. We show on an example that the weak consistency, which
represents a very natural requirement on Saaty’s matrix of preference intensities, is
not achieved for some matrices, which are considered “consistent enough” according
to the criteria published in the literature.
The proposed method of setting Saaty’s matrix of preference intensities was used
in the model for determining scores for particular categories of artistic production,
which is an integral part of the Registry of Artistic Results (RUV) currently being
developed in the Czech Republic. The Registry contains data on works of art
originating from creative activities of Czech art colleges and faculties. Based on
the total scores achieved by these institutions, a part of the state budget subsidy
is being allocated among them.
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Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science,
Palacky University in Olomouc, E-mail: jan.stoklasa@upol.cz, vera.jandova01@upol.cz,

jana.talasova@upol.cz

c⃝ICS AS CR 2013 61



Neural Network World 1/13, 61-77

1. Introduction

When designing mathematical models for such purposes as evaluation of works of
art, the evaluators’ experience and background needs to be taken into account.
Suitable mathematical tools have to be chosen so that the resulting model is not
only mathematically sound, but also possible to implement in real setting. Partic-
ularly when dealing with abstract categories and large amounts of pairwise com-
parisons and experts not closely related to the field of mathematics, it is important
to find an appropriate way of inputting the data. During each step we might need
to go back and correct some partial inconsistencies, but the result should be a
reasonably consistent mathematical representation of experts’ knowledge concern-
ing their preferencies on the given set of objects. Tools enabling the evaluators to
check the consistency of inputted preferences for pairs of objects (even during the
process of data input) and guidelines for such purposes can be the key to success
in such application areas. We are going to present here a real-life problem and our
solution to it. The task was to develop a mathematical model for the evaluation
of works of art, which required cooperation with experts from the field of artistic
production.

In the second section of the paper, we start with the description of the Registry
of Artistic Results (RUV – from Czech “Registr Uměleckých Výstup̊u”), its purpose
and structure. We also introduce the evaluation criteria and the resulting categories
of works of art in this section. Section 3 describes the two-step mathematical model
used to obtain scores for each category, and the respective evaluation methodology.
As consistency is a great issue when using Saaty’s matrices of large dimensions,
Section 4 discusses various measures of inconsistency in Saaty’s matrix and presents
a short overview of the relevant research. We introduce here a new concept of weak
consistency and prove several properties of weakly consistent Saaty’s matrices.
Section 5 presents two methods for determining the scores of categories of works
of art by Saaty’s matrix of preference intensities – the eigenvector method and the
logarithmic least squares method. We discuss here the possibility of seeing the data
in Saaty’s matrix as repeated measurements of relative information concerning the
importances in the set of categories of works of art and hence dealing with it as with
compositional data. All the results presented in this paper are then summarized
and discussed in Section 6.

2. Classification of Works of Art

The Registry of Artistic Results has been developed and is currently being pilot
tested in the Czech Republic. It contains information on works of art originating
from creative activities of art colleges and faculties (see [14]). The RUV is conceived
as an analogy to the register of R&D outcomes where information on outcomes of
research institutions (including universities) has been collected for some years al-
ready. In both registers the outcomes are stored under several categories. These
categories are assigned scores. The sum of scores of all the outcomes of a given
university is considered an indicator of its performance in the area of creative ac-
tivity. These numerical values can then be used in decisions regarding one part
of the total money to be allocated among universities from the state budget. The
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structure of the evaluated categories of works of art used in the Registry of Artistic
Results was inspired, to some extent, by the artistic categories in the Slovak Re-
public (see [12]). However, the mathematical model used to determine scores for
each category in Slovakia is quite different.

For the purposes of registration of works of art originating from creative activ-
ities of the Czech art colleges and faculties, the whole area of artistic production is
divided into seven fields: architecture, design, film, fine arts, literature, music and
theatre. Each piece of art, regardless of the field, is categorized according to the
following three criteria:

• Relevance or significance of the piece;

• Extent of the piece;

• Institutional and media reception/impact of the piece.

In each criterion, three different levels are distinguished (denoted by capital
letters for easier handling):

• The criterion Relevance or significance of the piece:

A – a new piece of art or a performance of crucial significance;

B – a new piece of art or a performance containing numerous important
innovations;

C – a new piece of art or a performance pushing forward modern trends.

• The criterion Extent of the piece:

K – a piece of art or a performance of large extent;

L – a piece of art or a performance of medium extent;

M – a piece of art or a performance of limited extent.

• The criterion Institutional and media reception/impact of the piece:

X – international reception/impact;

Y – national reception/impact;

Z – regional reception/impact.

The resulting category for a piece of art is given by a combination of three
capital letters – e.g. AKX, BKY, or CLZ. There are 27 categories altogether that
are assigned a score. The decision concerning the relevance or significance of the
piece (choice of A, B or C) rests upon expert assessment; the experts have at their
disposal general definitions of each category and specific real-life (historical) exam-
ples of works of art in each category for all 7 fields of artistic production and these
examples assist them in the decision process. (Gathering real-life representatives
of all the categories for all the fields of arts was also important to confirm a com-
mon understanding of the categories and to ensure that corresponding categories
are really comparable in terms of evaluation across all the fields of arts.) As for
the extent of the piece (levels K, L, M), all the classes are clearly specified for
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all the fields of art. As for the institutional and media reception/impact, lists of
institutions corresponding to categories X, Y, Z are available for all fields.

Our task was to develop a mathematical model to determine the scores for such
categories of pieces of art (each described by a triplet of capital letters). We have
decided to solve this problem by applying Saaty’s AHP method (introduced in
[10]). We need to realize that there are interactions among the three mentioned
criteria. For example the first one (expertly defined Relevance or significance of
the piece of art) and the third one (Institutional and media reception/impact of the
piece) partly overlap. It was, therefore, not possible to use the approach, where
first we would determine the weights of the criteria and scores for their individual
levels, and then set the scores of categories as respective weighted averages. We
did not choose the ANP method either (see [11] for more details) which is able to
solve tasks with mutually dependent criteria. It was because deriving information
concerning the links among the criteria has proven to be extremely difficult for the
experts in the field of arts. We have decided to compare directly the 27 works of
art categories. In the case of such a large number of objects (categories), Saaty
suggests (see [8]) to split the problem into several smaller ones and then apply the
AHP on these. If we chose to do so, we would have to define relative significances
for abstract supercategories. This is a difficult task for the experts from the field of
arts. The difficulties resulting from a large dimension of the matrix of preference
intensities were considered small compared to the difficulties resulting from the use
of other ways of solving the problem. For a large number of mutually compared
objects the issue of obtaining a Saaty’s matrix that is consistent enough arises. Our
solution to this problem will be described and further discussed in the following
sections.

3. Determining Scores for Particular Categories

of Artistic Production

Saaty’s method (see [8, 6, 9]) served as a basis for determination of scores for all
27 categories of artistic production. No matter how obvious it was that this math-
ematical tool is the most appropriate for this task, certain challenges concerning
its use were also clearly apparent: 1) difficulty for a team of experts to express
preferences with respect to abstract categories; 2) reaching consensus within the
group of experts (professional guarantors of particular fields of art); and most im-
portantly 3) difficulty to reach acceptable consistency of Saaty’s matrix for such a
large number of categories (Section 4 deals with this issue). Admittedly, express-
ing one’s opinion on intensities of preferences with respect to abstract categories
is difficult. Experts – professional guarantors of particular artistic fields – were
first asked to provide examples of works of art in all categories in their field (see
Section 2). Next, professional guarantors of each field of art set their preferences
concerning pairs of categories, while using the representatives (examples) as an aid
in their decision making. Although it would be possible for each of these experts
to express their preferences separately, and only then to derive the collective pref-
erences (from the individual ones), we used a different approach. The collective
preferences were set directly at a team meeting of experts. The reason was that
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art-college experts are not used to work with mathematical models and individual
inputting of required data could prove difficult for them. Achieving consensus was
also intentionally preferred over averaging different opinions.
Great effort was made to find the best way of converting expert preferences con-
cerning the 27 categories of artistic production (represented in each field of art
by specific examples) into a mathematical model. Such model is required to be a
consistent representation of experts’ preferences and to allow calculating the scores
of all the categories of works of art. To facilitate the process of inputting required
data by the experts, to achieve the necessary consistency of this input and to ob-
tain consensual scores for all the categories of works of art, the following two-step
procedure was performed. First, a pairwise comparison method was used to deter-
mine the order of importance of the 27 categories (their quasi-ordering). Second, a
Saaty’s matrix was constructed with categories numbered according to this quasi-
ordering. Such matrix of preference intensities was then used to determine scores
for the categories.

3.1 Matrix of preferences and indifferences

In the first step, we have determined the order of importance of the categories by
the Pairwise Comparison Method (see [6, 13]). This method employs a matrix of
preferences and indifferences P = {pij}i,j=1,...,27. For its elements it holds that:

pij = 1, if the ith category is more important than the jth category;

pij = 0.5, if the ith category is equally important as the jth category;

pij = 0, if the jth category is more important than the ith category.

It is sufficient for the experts to fill in the upper right triangle of the matrix,
that is, the elements pij , i < j, as pii = 0.5 and pji = 1 − pij . The row sums

Ri =
∑27

j=1 pij , i = 1, . . . , 27, are used in this method to determine the order of the
mutually compared objects according to their significance. To be able to accept
the results of this method, we need to be sure that the matrix P defined by experts
contains consistent information on their preferences on the set of objects. The
matrix P , therefore, has to represent a quasi-ordering of objects, i.e. a complete
and transitive relation (a relation that can be described as a linear ordering of
classes of indifferent objects). The completeness of this relation is ensured by the
process of inputting of matrix P (pji = 1 − pij); the transitivity in the terms of
matrix P can be expressed by the following condition:

pik = max{pij , pjk}, for all pij , pjk ≥ 0.5, i, j, k = 1, . . . , 27. (1)

If the matrix does not satisfy the condition (1), we make the minimum amount
of changes necessary for it to become so. These changes are then consulted with
the team of experts and if they are approved of, we can proceed. All the changes
actually made while solving our problem are summarized in Fig. 1.

3.2 Saaty’s matrix of preference intensities

Saaty’s matrix of preference intensities for n mutually compared objects is a square
matrix S = {sij}

n
i,j=1, that is reciprocal (i.e. sij = 1/sji for all i, j = 1, 2, . . . , n)
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Fig. 1 Pairwise comparison matrix for 27 categories. Necessary changes are
highlighted.
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and for an object i that is more or equally preferred than object j the element
sij ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}. Tab. I provides the linguistic descriptors of these nu-
merical values for Saaty’s scale. If, for example, sij = 3, it can be interpreted
that the object i is 3 times as important as the object j. From Perron-Frobenius
theorem it follows that Saaty’ matrix always has a maximum eigenvalue (spectral
radius – see [6]). A fully consistent Saaty’s matrix has a single nonzero eigenvalue,
which is equal to the order of the matrix.

In the second step of our method, Saaty’s matrix of preference intensities S =
{sij}

27
i,j=1 was constructed for categories numbered in ascending order according

to their significance determined in the previous step. Again, it was in this case
sufficient to fill in the upper right triangle of the matrix S, as S is reciprocal. The
elements sij , i < j, were set using Saaty’s scale presented in Tab. I. Before we
could proceed with calculating the scores of the categories, the consistency of the
information provided by experts through the matrix S had to be checked. It is well
known that the full consistency defined by Saaty:

sik = sij · sjk, for all i, j, k = 1, 2, . . . , n, (2)

is basically unachievable even for not too large sets of mutually compared objects.
Various authors, including Saaty (see [7]), therefore define for the practical use
of Saaty’s matrix various criteria to decide, whether a Saaty’s matrix that is not
fully consistent is at least consistent enough to represent expert knowledge concern-
ing the relative preferences on a set of objects that are being compared. Hence,
these authors allow some tolerance in the fulfillment of condition (2). We have
approached this problem differently. We have defined directly the notion of weak
consistency of Saaty’s matrix. This natural condition has the advantage that al-
ready during the process of inputting data into Saaty’s matrix that is constructed
for categories ordered in accordance with their significance, the experts can easily
check its fulfillment. The details concerning the issue of consistency of Saaty’s
matrix are given in the following section.

sij linguistic meaning
1 ith object is equally important as jth object
3 ith object is slightly/moderately more important than jth object
5 ith object is strongly more important than jth object
7 ith object is very strongly more important than jth object
9 ith object is extremely/absolutely more important than jth object

2,4,6,8 correspond with the respective intermediate linguistic meanings

Tab. I Saaty’s scale.

4. Consistency and Weak Consistency of Saaty’s

Matrix

In this section, we are going to deal with a general Saaty’s matrix S = {sij}
n
i,j=1,

which represents the information concerning preference intensities among n ob-

67



Neural Network World 1/13, 61-77

jects (in our application categories of works of art) given by experts. In the
sense of the previously mentioned definition of Saaty’s matrix, this means that
sij ∈ {1/9, 1/8, 1/7, . . . , 1/2, 1, 2, . . . , 8, 9} and the matrix is reciprocal, i.e.
sij = 1/sji for all i, j = 1, . . . , n. We also require the matrix to be consistent
enough to be able to use Saaty’s method to calculate the relative importances of
the objects.

The full consistency condition of Saaty’s matrix is expressed by (2). Such a
full consistency is, however, unachievable in real situations. Consider, for example
four arbitrary objects linearly ordered according to their importance. If each of
them is just slightly more important than the following one, then in the case of
full consistency, the first object would have to be 27 times more important as the
fourth one. But we have no value greater than 9 available on Saaty’s 9 point scale
to express our preferences (Tab. I). Saaty [7], therefore, proposes an inconsistency
(Saaty introduced it as consistency index) index (CI) based on the spectral radius
(λmax) of the pairwise comparison matrix S:

CI(S) =
λmax − n

n− 1
, (3)

where n is the dimension of the matrix S. For any Saaty’s matrix it holds that
CI(S) ≥ 0. CI(S) was defined by Saaty to introduce an inconsistency measure
for Saaty’s matrices that would be independent of the dimension of the matrix.
The average CI(S) of randomly generated Saaty’s matrices, however, proved to
be growing as the dimension of the matrix grows. Saaty, therefore, introduced the
inconsistency ratio CR(S):

CR(S) =
CI(S)

RI(n)
, (4)

where RI(n) is the so-called random inconsistency index that represents the in-
consistency of a randomly generated reciprocal pairwise comparison matrix of di-
mension n. RI(n) is calculated as an average of indices CI(S) calculated for a
set of randomly generated reciprocal pairwise comparison matrices of dimension n.
Matrix S for which CR(S) < 0.1 is then considered consistent enough.

4.1 Other approaches to determining satisfactory level

of consistency of Saaty’s matrix

Various authors have been trying to construct alternative measures of inconsis-
tency of the matrix S. Alonso & Lamata [2] pointed out that the use of ran-
domly generated reciprocal pairwise comparison matrices S of dimension n to de-
termine the RI(n) may result in slightly different indices depending on the number
of such matrices used to compute the RI(n). As they try to lower the compu-
tational complexity of determining RI(n) for larger matrices, they realize that
the growth of an average largest eigenvalue λmax(n) is easier to predict than the
RI(n) as the dimension n of the matrix S grows. For λmax(n), the expression
λmax(n) = 2.7740n−4.3513 obtained by the least square method proves to be very
accurate and easy to compute. Using λmax(n), they compute the random incon-
sistency index RIλ(n) = (λmax − n)/(n− 1). These authors, therefore, propose to
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compute CR(S) using the following formula:

CR(S) =
CI(S)

RIλ(n)
=

λmax − n

λmax − n
. (5)

Analogically to Saaty’s approach, for CR(S) < 0.1 is the matrix S considered
consistent enough.

Lamata & Pelaez [5] propose an inconsistency index CI∗ for a matrix S of type
n× n using determinants:

CI∗(S) =















0 if n < 3,
det(S) if n = 3,

1
NT (S)

NT (S)
∑

i=1

CI∗(σi) if n > 3,

(6)

where σ is a submatrix of S of type 3 × 3 consisting of the rows and columns
i, j, k ∈ {1, . . . , n}, i ̸= j ̸= k, and NT (S) is the number of such submatrices, i.e.

NT (S) =

{

0 if n < 3
n!

(n−3)!3! otherwise.

Next they generate 10 000 random Saaty’s matrices of type n × n. For this data
they determine the p-value (e.g. 0.05) and for this p-value a critical value CR∗ is
calculated. If CI∗(S) > CR∗, then the matrix S is considered inconsistent.

Ji & Jiang [4] find Saaty’s scale to be problematic – this paper deals with the
transitivity on the linguistic and numerical parts of the scales most commonly
used in AHP and with various types of inconsistency causes inherent to the scales
used in AHP. They propose a scale that is transitive both in linguistic and in
numerical part. The numerical part of this scale consists of the following set of
values: {0,+0.5,−0.5,+1,−1,+1.5, . . . ,−3.5,+4,−4}. A common Saaty’s matrix
S can be transformed into a matrix D using this new so-called derived transitive
scale in the following way:

dij =

{

(sij − 1)/2 if sij ≥ 1

−
(

1
sij

− 1
)

/2 if sij < 1.
(7)

The matrix D is absolutely consistent, if

dij =
1

n

n
∑

k=1

dik +
1

n

n
∑

k=1

dkj =
1

n

n
∑

k=1

dik −
1

n

n
∑

k=1

djk (8)

i.e. if dij = di − dj , where di = 1
n

∑n

k=1 dik and dj = 1
n

∑n

k=1 djk. An average
grade deviation per comparison is then determined:

ϵ =

√

√

√

√

√

n−1
∑

i=1

n
∑

j=i+1

[dij − (di − dj)]2

n(n− 1)/2
. (9)

The decision maker sets up an acceptable level of deviation ald, and if ϵ < ald the
matrix is considered consistent.
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All of these approaches to assessing the consistency of the matrix of preference
intensities are mathematically sound. These approaches, however, forget about
the experts that input the data. It is almost impossible for the experts to check
whether they are consistent (or consistent enough) in their preferences during the
process of inputting data. Which is a major drawback when these experts are
far from the field of mathematics and the dimension of the matrix is large. If we
obtain from the experts a matrix of preference intensities that is not consistent
enough, the usual advice is to start from the beginning and fill the matrix in again.
This approach, however, does not make much sense as it does not guarantee that
the new matrix of preference intensities will be better (more consistent) than the
previous one. We need to find a way of obtaining a better result. Our solution to
this problem is presented in the following subsection.

4.2 Weak consistency

Unlike most of the authors that start with full consistency and try to determine an
acceptable level of its violation (see [2, 5, 4]), we have chosen a different approach.
We define directly a weak consistency that is based on the properties that should
intuitively hold, and we require these properties to be fully met. This is of great
use when we need the experts that are expressing their preference intensities to
check the consistency themselves during the process of inputting. If we utilize the
linguistic meanings of the elements of Saaty’s scale, we can define weak consistency
such that for example if an object A is slightly more important than object B and
object B is strongly more important than object C, we need at least the larger of
the preference intensities to hold between A and C (which means that a stronger
preference than the larger one of these two is also acceptable). For situations, when
two objects are equally important, such as if A is equally as important as B and
B is very strongly more important than C, it is reasonable to require A to be very
strongly more important than C (the preference between the two objects that are
not indifferent should hold between A and C). This understanding of weak consis-
tency is summarized in Definition 1.

Definition 1: Let S = {sij}
n
i,j=1 be Saaty’s matrix of preference intensities. We

say that S is weakly consistent, if for all i, j, k ∈ {1, 2, . . . , n} the following holds:

sij > 1 ∧ sjk > 1 =⇒ sik ≥ max{sij , sjk}; (10)

(sij = 1 ∧ sjk ≥ 1) ∨ (sij ≥ 1 ∧ sjk = 1) =⇒ sik = max{sij , sjk}. (11)

The property sik ≥ max{sij , sjk} can be found as max-max transitivity in the
literature [3].

If we order the objects (alternatives) being compared according to their impor-
tance from the most important to the least, we get sij ≥ 1 for all i, j = 1, 2, . . . , n
such that i < j; sii = 1 for all i = 1, 2, . . . , n. The upper triangle of the matrix
S then consists only of numbers from {1, 2, . . . , 9}. In such case, according to the
Definition 1, it is sufficient to check whether conditions (10) and (11) are fulfilled
for the elements in the upper triangle of S to assess the weak consistency of S.
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It is evident that for the weak consistency condition to hold, the elements in the
upper triangle of Saaty’s matrix S have to be nondecreasing from left to right in
the rows and from the bottom up in the columns. This property was used by the
experts to continuously check the weak consistency while entering the data into
Saaty’s matrix of preference intensities for categories of works of art.

Analogically, we could define weak consistency using elements that are lower
than 1 by minimum. This is summarized in the following proposition.

Proposition 1: Let S = {sij}
n
i,j=1 be Saaty’s matrix of preference intensities.

Then, S is weakly consistent if and only if the following holds for all i, j, k ∈
{1, 2, . . . , n}:

sij < 1 ∧ sjk < 1 =⇒ sik ≤ min{sij , sjk}; (12)

(sij = 1 ∧ sjk ≤ 1) ∨ (sij ≤ 1 ∧ sjk = 1) =⇒ sik = min{sij , sjk}. (13)

Proof:

1. First we prove that weak consistency implies conditions (12) and (13):

(a) Let sij < 1 and sjk < 1, then from the reciprocity of S we get sji > 1
and skj > 1. The weak consistency implies that ski ≥ max{sji, skj}, i.e.
sik ≤ 1

max{skj ,sji}
. Hence, sik ≤ 1

skj
= sjk and sik ≤ 1

sji
= sij , in other

words sik ≤ min{sjk, sij}.

(b) Let sij = 1 and sjk ≤ 1. Then, sji = 1 and skj ≥ 1, weak consistency
implies that ski = skj , from reciprocity sik = sjk = min{sij , sjk}.

(c) Let sij ≤ 1 and sjk = 1. Then, sji ≥ 1 and skj = 1, weak consistency
implies ski = sji, from reciprocity sik = sij = min{sij , sjk}.

2. Now let us suppose that S fulfills (12) and (13). We will prove that such
matrix S is weakly consistent:

(a) Let sji > 1 and skj > 1. Reciprocity implies sij < 1 a sjk < 1. From
(12) we get sik ≤ min{sij , sjk}. Then, sik ≤ sij and sik ≤ sjk. From
reciprocity we get ski ≥ sji and ski ≥ skj , i.e. ski ≥ max{skj , sji}.

(b) Let sji = 1 and skj ≥ 1. Reciprocity implies sij = 1 and sjk ≤ 1.
From (13) we get sik = sjk = min{sij , sjk}. Thus, from reciprocity
ski = skj = max{skj , sji}.

(c) Let sji ≥ 1 and skj = 1. Reciprocity implies sij ≤ 1 and sjk = 1.
From (13) we get sik = sij = min{sij , sjk}. Thus, from reciprocity
ski = sji = max{skj , sji}. �

Relations between elements greater than 1 and lower than 1 can be described
by propositions 2 and 3.

Proposition 2: Let S = {sij}
n
i,j=1 be a weakly consistent Saaty’s matrix of

preference intensities. If for i, j, k ∈ {1, 2, . . . , n} it holds that sij > 1 and sjk < 1,
then the following holds for sik:

1 < sik ≤ sij , if sij >
1

sjk
= skj ; (14)
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1 > sik ≥ sjk, if sij < skj ; (15)

sji ≤ sik ≤ sij , if sij = skj . (16)

Proof:
Considering the relationship between sij and skj we need to deal with the following
3 situations separately:

1. Let us consider sij > skj .

(a) Let us suppose that sik < 1. Reciprocity then implies ski > 1. From
weak consistency we get (ski > 1 ∧ sij > 1) =⇒ (skj ≥ max{sij , ski}),
which is a contradiction to the assumption that sij > skj .

(b) Let us suppose that sik = 1. As skj > 1, we get from weak consistency
that sij = max{skj , sik} = skj , which is again a contradiction to the
assumption that sij > skj .

(c) Consequently, sik > 1 must hold. As skj > 1, weak consistency implies
that sij ≥ max{sik, skj}. Thus, sij ≥ sik > 1 holds.

2. Now let sij < skj .

(a) Let sik > 1. As in 1c) we get sij ≥ skj , which is a contradiction to the
assumption that sij < skj .

(b) Let sik = 1. As in 1b) we get sij = skj , which is again a contradiction
to the assumption that sij < skj .

(c) Consequently, sik < 1 must hold. Analogically to 1a), we now get
1 > sik ≥ sjk.

3. Let sij = skj . As S is weakly consistent, one of the following situations may
occur:

(a) Let sik > 1. Then, as skj > 1, we get from the weak consistency
sij ≥ max{sik, skj}. As sij = skj , to fulfill the implication (10) it has
to hold that sij ≥ sik > 1.

(b) Now let sik < 1. Then, ski > 1 and as sij > 1, the weak consistency
implies skj ≥ max{sij , ski}. As sij = skj , to fulfill the implication (10)
it has to hold that sij ≥ ski, i.e. sji ≤ sik < 1.

(c) The last situation we need to check is sik = 1. As skj > 1, the weak
consistency implies that sij = skj . As this equation holds, a situation
when sik = 1 can occur.

When we put together 3a) – 3c), we get sji ≤ sik ≤ sij . �

Proposition 3: Let S = {sij}
n
i,j=1 be a weakly consistent Saaty’s matrix of

preference intensities. If for i, j ∈ {1, 2, . . . , n} it holds that sij < 1 and sjk > 1,
then the following holds for sik:

1 < sjk ≤ sik, if sjk >
1

sij
= sji; (17)
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sij ≤ sik < 1, if sjk < sji; (18)

skj ≤ sik ≤ sjk, if sjk = sji. (19)

Proof:
The proof is analogical to the proof of Proposition 2 – to obtain (17), (18) and
(19), we again distinguish among three cases: sjk > sji, sjk < sji and sjk = sji
and for each of them we investigate sik > 1, sik < 1 and sik = 1. �

The concept of weak consistency (10), (11) represents a weakening of the con-
cept of consistency (2). This is summarized in the following proposition.

Proposition 4: Let a Saaty’s matrix of preference intensities S = {sij}
n
i,j=1 be

consistent, i.e. sik = sij · sjk for all i, j, k = 1, 2, . . . , n. Then, S is also weakly
consistent.

Proof:
Let S be consistent (i.e. consistency condition (2) is fulfilled). Then, sij > 1 and
sjk > 1 imply sik = sij ·sjk > max{sij , sjk}, which means that the first condition of
weak consistency (10) is fulfilled. Next, if sij = 1, then, sik = sjk = max{sij , sjk}
and if sjk = 1, then sik = sij = max{sij , sjk}. The second condition of weak
consistency (11) is also fulfilled. �

The implication in the Proposition 4 holds only for the consistency defined
by (2). On the other hand, it is naturally not true that a matrix that is deemed
“consistent enough” according to some of the criteria found in literature has to nec-
essarily fulfill the weak consistency conditions. For example, according to CR(S)
even such matrix S may be considered consistent enough, where the decision maker
did not manage to keep the preference ordering of the alternatives – at some place
he prefers alternative C to alternative D and at the same time he inputs informa-
tion that D is preferred to C. This situation will be illustrated by the following
numerical example.

4.3 Numerical example

Let us consider the following Saaty’s matrix.

S =

A B C D
A
B
C
D









1 2 2 2
1/2 1 3 2
1/2

1/3 1 2
1/2

1/2
1/2 1









Its maximum eigenvalue is λmax = 4.2153. The inconsistency index
CI = 4.2153−4

4−1 = 0.0718 and the inconsistency ratio is CR(S) = 0.0718
0.89 = 0.0807. If

we use Saaty’s weakening of the consistency condition, this matrix will be consid-
ered consistent enough as CR(S) < 0.1.
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From the second row of the matrix S it follows that B is preferred to C and
D. As the intensity of preference of B to C is larger than B to D, we reasonably
conclude that D is preferred to C. While according to the third row C is preferred
to D. The preference ordering of the alternatives is clearly violated and still the
matrix is considered consistent enough if we use Saaty’s inconsistency ratio and the
threshold 0.1. We can easily see that S is not weakly consistent: for s23 = 3 and
s34 = 2 we would need s24 ≥ max{s23, s34} = 3. However, s24 = 2 which violates
condition (10) of the weak consistency.

5. Determining Scores of the Categories

The weak consistency of Saaty’s matrix can be easily checked during the process of
entering data into the matrix. In our case, the experts have decided to additionally
(after having completed Saaty’s matrix) re-divide the classes of indifferent cate-
gories that resulted from the Pairwise Comparison Method. The experts defined
the intensities of preferences between pairs of previously indifferent categories and
then compared the new categories with the others so that Saaty’s matrix remained
weakly consistent. Fig. 2 illustrates final Saaty’s matrix after re-dividing the pairs
of indifferent categories.

If S is close to the ideally consistent matrix, the scores of 27 categories, repre-
senting their relative importance, can be calculated by Saaty’s method as compo-
nents of the eigenvector corresponding to the largest eigenvalue of Saaty’s matrix
S.

We can obtain the scores of artistic categories from S also in a different way.
The columns of S can be interpreted as repeated measurements of the relative im-
portances of the 27 categories. These measurements are performed by the team
of experts who compare all the categories with the first one, then the second one,
and so on until the 27th one. From the point of view of mathematical statistics,
these are compositional data, i.e. data bearing only relative information (see [1]).
Information contained in these data can be expressed by estimating their mean
value. A proper estimator of the mean value of this kind of data is a vector whose
components are geometric means of the corresponding components of vectors rep-
resenting single measurements. The relative scores of all 27 categories can be also
obtained by computing geometric means of the rows of Saaty’s matrix (this calcu-
lation method is known as the Logarithmic Least Squares Method, see [6]). If the
experts satisfy the condition of weak consistency of the matrix of preference inten-
sities throughout the input process, we can expect the individual measurements
and the estimate of the mean value of the compositions to be better.

Fig. 3 compares the scores determined by Saaty’s matrix eigenvector method
with those determined as geometric means of the rows. The scores are normalized
so that the maximum is 305 (analogy to R&D outcomes evaluation). It is easy
to see that the differences between the results of these two methods are not large.
Saaty’s matrix eigenvector method was used in testing the model on the first real
dataset, gathered by Czech art colleges and faculties for the years 2008 to 2010.

74



Stoklasa et al.: Weak consistency in Saaty’s AHP

Fig. 2 Saaty’s matrix of preference intensities for 27 categories ordered according
to their significance. The re-devided categories are highlighted.
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Fig. 3 Comparison of the results of eigenvector method and the logarithmic least
squares method (Geom. means method).

6. Conclusion

The paper describes a multiple criteria evaluation model for the works of art result-
ing from the creative activities of Czech art colleges and faculties. The evaluation
model is an integral part of the Registry of Artistic Results (RUV), where informa-
tion concerning these works of art is stored. The results of this evaluation model
have been used as a basis for allocating a part of the state-budget subsidy among
art colleges in the Czech Republic since 2012.

For the purpose of determining scores for 27 categories of works of art a two-step
procedure is proposed. It was developed in an effort to achieve the best possible
conversion of preferences of the expert team into scores for different categories
of artistic production. It is based on Saaty’s method. Due to the large number
of compared objects, our effort was focused on the consistency of Saaty’s matrix.
Various criteria of sufficient consistency of Saaty’s matrix published in the literature
were studied and consequently a new notion of weak consistency of Saaty’s matrix
has been introduced in this paper. For objects descending ordered in accordance
with their importance (obtained e.g. by the Pairwise Comparison Method) the
weak consistency is easy to check even during the process of entering data into
Saaty’s matrix of preference intensities. It also constitutes a natural requirement
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for the consistency of information provided by experts concerning their preferences
on a set of objects.

The paper shows on a practical application how much effort is needed to obtain
information as consistent as possible from a group of experts in a field far away
from mathematics (in this case arts).
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