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Abstract

Scale-space filtering (Witkin 83) is a recently developed

technique, both powerful and general, for segmentation

and analysis of signals. Asada and Brady (84) have amply

demonstrated the value of scale-space for description of

curved contours from digitised images . Weak continuity

constraints (Blake 83a,b, Blake and Zisserman 85,87) fur­

nish novel, powerful, non-linear filters , to use in place of

gaussians, for scale-space filtering. This has some strik­

ing advantages (fig 1). First, scale-space is uniform, so

that tracking across scale is a trivial task. Structure need

not be preserved to indefinitely fine scale; this leads to an

enrichment of the concept of scale - a rounded corner, for

example, can be represented as a discontinuity at coarse

scale but smooth at fine scale. And finally boundary con­

ditions at ends of curves are handled satisfactorily - it is

as easy to analyse open curves as closed ones.

1 Weak continuity constraints

Weak continuity constraints are a principled and effec­

tive treatment of the localisation of discontinuities in dis­

crete data. Detailed discussions are given in (Blake 83a,

Blake 83b, Blake and Zisserman 85, Blake and Zisserman

87). Applications in computer vision include curve de­

scription, edge detection, reconstruction of 2 ~D surfaces

from stereo or laser-rangefinder data, and others. This

paper deals with the application of weak continuity con­

straints to description of plane curves. First a brief sum­

mary of weak continuity constraints is given for problems

like curve description, in which the data is a 1D array.

Data may be obtained from a plane curve as an array (Ji

of tangent angle values at equal spacings in arc-length s .

The problem is to localise discontinuities in noisy, discrete

data. The notion of a discontinuity applies to functions,

not to discrete arrays so the problem is ill-posed, and this

is exacerbated by the presence of noise. One solution is

to interpolate the data by a smooth function such as a

gaussian, whose 1st derivative can then be examined. Of

course this is common practice in edge detection and in

spline interpolation (e.g. de Boor 78) . Such smoothing

can be regarded as fitting a function u(s) which tends to

seek a minimum of some elastic energy P. Energy P is

traded off against a sum of squares error measure D , de­

fined as :

D = ~i(U(Si) - (Ji)2

by minimising variationally the total energy (or cost) P+
D. The result is a function u(s) that is both fairly smooth

and is a fair approximation to the data (}i. The simplest

form of the energy P is that of a horizontal stretched

string (approximately) :

where the parameter A governs the stiffness of the string.

If.>. is large then the tendency to smoothness overwhelms

the tendency (from D) to approximate the data well. In

the extremes, if'>' is very large, the fitted function is sim­

ply u = canst , the least squares regression of a constant

function to the data (Ji; but if .>. ~ 0 then u interpolates

the data, linking the (Ji by straight lines.

Weak continuity constraints can be applied to a scheme

like the one above, to incorporate discontinuities explicitly

into the fitting of u above. Rather than fitting a u that

is smooth everywhere and then examining the gradient

u' , the function u is allowed to break (at knots, in spline

jargon) - it is piecewise continuous. The number and po­

sition of the discontinuities is chosen optimally, by using

an augmented form of cost function E = D + P + S,

where the additional term S embodies weak continuity

constraints:

s = n' X (number of discontinuities)

- a fixed penalty a is paid for each discontinuity allowed.

This has the effect of discouraging discontinuities; u is

continuous "almost everywhere". But an occasional dis­

continuity may be allowed if there is sufficient benefit in

terms of smoothness (P) and faithfulness to data (D) in

so doing . Clearly a is some kind of measure of reluctance

to allow a discontinuity.

In fact the two parameters a,'>' interact in a rather inter­

esting way. Far from being "fudge factors" that must be

empirically set, they have clear interpretations in terms of
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Fig 1 Curve segmentation by weak continuity constraints. From left to right : a hand drawn curve; angle/arc-length

data (note quantisation noise); scale-space , at angle sensitivity of 450
- note: 1. vertical lines (uniformity) 2. the

rounded corner disappears from scale-space at fine scale (non-preservation of structure) and 3. structure near curve

ends causes no problems for segmentation (there are no spurious discontinuities near the ends).

scale and sensitivity (Blake and Zisserman 85,87). Here is

what they signify, in the context of plane-curve segmen­

tation:

2 Algorithms: graduated non­

convexity (GNC) and dynamic.
programming

~ o = ";(20:/>.) is a measure of angular sensitivity. If

plane curve data e, contains an isolated discontinuity

of magnitude ~ (e.g. two long straight line segments,

joined at a vertex making an exterior angle ~) then

the fitted function u(s) will have a discontinuity there

if and only if <1> > <1>0

>. is a characteristic scale. "Events" (e.g. steps) in the

data that are separated by more than>' are treated

as effectively independent by the fitting process. But

events spaced less that >. apart may interact and

small "glitches" in the data whose total extent is

much less than>' may well be ignored - filtered out.

This mechanism removes both noise and small-scale

structure.

/Co = <1>0/2>' is a curvature limit . If an extended arc

in the data has curvature k > ko then there will be

a discontinuity in the fitted function u somewhere

on that arc . This can be regarded as a limitation

on performance - the inability to discriminate be­

tween high curvature arcs and angular discontinuities

- to be traded off against the previous 2 performance

measures <1>0, x

0: itself is a measure of resistance to noise. If 0: is large

compared with the variance (T2 of noise in the angle

data, then there will be no spurious discontinuities

due to noise.

Given a curve as a stream of coordinates (Xi ,Yi), the first

step is to convert it to ei(S) form. This is best done by

dividing the stream of (Xi, y,) into a sequence of strokes

(Perkins 78) of equal lengths ti.s . A stroke is formed by

least squares fitting a straight line segment to the (Xi, Yi)
that fall within the particular stroke. Length ti.s should

be chosen as short as possible to avoid blurring, but just

long enough to avoid undue quantisation error. In prac­

tice, quantisation errors around ±100 may be acceptable.

The ei are not restricted to the range [00,3600
] but in­

elude a "winding number" , so that curves with loops can

be correctly represented (fig 2). Of course, it is not quite

possible in practice to fit a function u(s) to the data, but

only a discrete representation of u(s). So u(s) is approx­

imated, in accordance with the usual practice of finite

elements (see Terzopoulos (83) for applications of finite

elements to computer vision). For the simple stretched

string energy P above, linear elements are sufficient. The

function u(s) is represented by a sequence of points Ui
(at positions along the curve corresponding to the ei)'
interpolated linearly. The variational problem of the pre­

vious section becomes a discrete optimisation problem, to

minimise:

F =Ei(Ui - eil + E,g(u, - ui-d
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Fig 2. The () - s representation of a curve includes winding number, so that even spirals can happily be segmented.

where the function

get) = ,\2t2 if ItI< va/'\, a otherwise

is an interaction function between neighbouring Ui (see

fig 3a) that incorporates both the membrane energy and

weak continuity constraint penalties. The term Esg( ...)

above is the discrete representation of the functional S+P

above. Details of the discretisation, and derivation of 9

are given in (Blake and Zisserman 85,87).

Nowa fundamental property of F is that it is non-convex,

and so may have many local minima. Its global minimum

cannot generally be found by naive downhill search over

the 'Ui. A rather general way of dealing with such non­

convexity is to use "simulated annealing" (Metropolis et

aI53), a stochastic method, which works for cost functions

like F above (Geman and Geman 84) but is rather expen­

sive computationally (Marroquin 84). Here two efficient

algorithms are described; both have been implemented

successfully on modest serial machines.

Graduated non-convexity

"Graduated non-convexity" (GNC) is fully described in

(Blake 83a,83b, Blake and Zisserman 85,87). Whereas

simulated annealing uses random processes to jump out

of local minima, GNC constructs a function F* which

is convex (and hence is free of spurious local minima)

and approximates F well. Then a family of functions
pep) p e [0, 1] is constructed with F(l) = F* and F(D) = F,

and F(p) varying gradually between the two as p varies

from 1 to o. The function F(p) is defined as F above, but

with g(p) in place of g, where

gP(t) =a - c(ltl- r)2 if q < ItI< r, get) otherwise,

where c = 1/2p, r = ..jaJ2/c + 1/'A2 , and q = aj('A2,'I )

- see fig 3b. The algorithm is to minimise a sequence of
r», by direct descent on each one, starting with F(l) and

ending with F(O). A sequence of 11 values of p 1.0,0.9,..0

proves to be more than adequate in practice. In fact, less

work is needed for small ,\ (e.g. ,\ :::; 4, where the fi­

nite element between Ui, Ui+l has unit length) and it may
be sufficient to use the convex approximation F+ = F(l)

without bothering to descend on the remaining 10 F(p).

But for large ,\ (e.g. ,\=20) the whole sequence is needed.

GNC is an approximate method - it finds Ui close to the

optimum of F. It has been shown, however, to be exact

under certain conditions (Blake 83b, Blake and Zisser­

man 87). Although execution times are relatively long

for large A, multigrid methods (Terzopoulos 83) might

effect a considerable improvement.

Dyriamic programrning

An alternative to GNC is to treat the minimisation of F
as an integer programming problem, by quantising angle

measures as a range of M values Ui (say to 10 or 20 accu­

racy), and applying dynamic programming (Bellman and

Dreyfus 62). Details of this method are given in Papou­

lias (85). It is applicable because the ID vector u; can

be expressed, for all i, as a union of two sets {UO, ..Ui}

and {Ui, .. UN} which have precisely one element Ui in

common. Note that no equivalent family of simple de­

compositions exists for 2D arrays Usj and hence dynamic

programming is not usable for applying weak continuity
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Fig 3. Neighbourhood interaction functions: (a) g for th e cost function F ; (b) g(p ) for the sequence of funct ions r»
that approximat e F .

constraints to 2D data, as in edge detection or surface

reconstruction . Although a dynamic programming algo­

rithm for the 2D problem could be defined, in theory, it

would involve th e use of tables with up to M N entries!

For similar reasons, it is not practicable to use dynamic

programming for higher order energies P , involving 2nd

or higher derivatives of 'U. Tables of size O(M2
) would

be required (for P involving 'U") . GNC is quite usable ,

however, both for 2D data and for 2nd order P .

Following normal dynamic programming practice , the al­

gorithm consists largely of constructing a pair of tables

(the return function fi and the policy function Pi) for each

i , each of length M. Total storage required is therefore

O(N M ) units . The value of f ie'Ui+l) is the minimal par­

tial cost for 'UO ..'Ui for a given value of 'Ui+l , and Pie'Ui+l)

is the value of 'Ui at that minimum. Having constructed

the tables , there remains the task (requiring relatively

insignificant computation time) of tracing back through

the tables , from fN down to fo, to recover the optimal

'Ui. The complexity of the algorithm is O( N M 2) - so ex­

tra precision in angle quantisation (large M) is expensive.

The expense can be mitigated to some degree by "table

reduction" (Papoulias 85), which works as follows. For

the cost function F for the weak elastic string, it tran­

spires that each table Ii contains a non-constant interval

flanked by entries all of the same constant value. Those

constant entries can be treated for computational pur­

poses as one entry. This effectively reduces the value of M.

The effective M appears, in practice, to be proportional to

va (independent of >.) ; so the reduction may be effective

even at large>. when GNC is least efficient. In practice,

reduction by a factor of up to 4 was obtained, reducing

execution time by a factor of up to 16. More recently,

an exact dynamic programming algorithm has been con­

structed, that requires no quantisation at all (Blake 89).

Comparison of GNC and dynamic

programrmng

It has been mentioned that GNC is an approximate

method, whereas dynamic programming is exact. In prac­

tice , no qualitative difference between solutions obtained

from the two methods is observed (see also Blake 89); this

is, in itself, a confirmation that soluti ons from GNC are

good approximations. As for efficiency, each method has

its advantages. For large values of >. GNC is slow, but

(for a given a) dynamic programming continues to work

well. Finally, GNC requires high precision arithmetic ,

unlike quantised dynamic programming. In practice (for

modest values of >.) it seems that GNC is faster on a

Motorola 68000, for example , if it has adequate hardware

floating-point support. For smaller values of >. , GNC runs

in about 1 second (SUN 2, SKY floating point , vector

length N=50, >'=2). This could be expected to improve

by an order of magnitude with the new 68000 floating

point co-processor.

3 Scale-space properties

This section discusses the properties of scale-space de­

scriptions of curves, under weak continuity constraints .

An example was displayed in fig 1. Several notable prop­

erties are illustrated: the most striking is the uniformity

of the scale-space - the locus of each discontinuity in scale

space is plumb vertical. Moreover, in this scale-space,

unlike gaussian scale space (Witkin, 83) in which the fin­

gerprint theorem holds (Yuille and Poggio 84), structure

is not preserved - discontinuities may be created as scale

increases. We argue here that this lack of structure preser-

I



vation is a desirable property. Four other issues are con­
sidered: how to achieve an invariant parametrisation of

the curve, detection of curvature discontinuities and how

to treat the "curvature limit" described in section 1, and

boundary conditions for open-ended curves. Finally it is

worth noting that the new scale-space has an extra pa­

rameter in addition to scale , namely angular sensitivity

( ~ o in section 1). Plots of scale-space shown here are at

fixed values of ~o(e.g. 45° in fig 1.).

Unifornlity

It is apparent in fig 1 that the locus in scale-space of

an individual feature (corner) is uniformly vertical, un­

like gaussian scale spaces. This is a consequence of the

theoretically predicted, spatial stability with respect to

scale, that is inherent in optimal function fitting under

weak continuity constraints (Blake and Zisserman 87) .

It arises because the extra cost in F, if a corner were

slightly misplaced, is very large - far greater than the

relatively modest extra costs introduced by spatially in­

coherent noise, or by extended but gentle curves (figure

4). Hence corners do not get misplaced.

F

cusp

o

Fig.4 The uniformity property is a consequence of the

sharp , cusp-like minimum in the energy F, plotted as a

function of edge position. For a displacement e in edge

position it can be shown (Blake and Zisserman, 87) that

the corresponding F is as plotted above . Hence there is

a strong attraction towards e = 0, the true edge position.

Alternatively, in the terms of Canny's (83) performance

measurers, the localisation is very good - as good , in fact ,

as a difference of boxes operator. (But it doesn 't have that

operator's multiple response problem!) A consequence of

uniformity is that anyone connected contour in scale­

space must belong to only one physical feature on the

curve. This is untrue of gaussian scale-space , as fig 5.
shows.

Preservation of structure

Under weak continuity constraints, structure is not pre­

served as scale increases. There is an example of this

135

in figure 1, in which a rounded corner is represented in

scale space by a line that is present at large scale, but

absent at small scale (Ae:[0 ,5]). This is absolutely as it

should be. The rounded corner appears smooth at small

scale. It seems that the ability to represent this fact is im­

portant. Whereas structure preservation is a must with

gaussian filters because it guarantees a successful track­

ing algorithm - tracking from fine to coarse scale picks up

all zero-crossings - it is redundant under weak continuity

constraints. Tracking is trivial, due to uniformity.

Invariant paraIIletrisation

A problem with any scheme that uses arclength s to

parametrise curves is that the parametrisation is defined

with respect to the data rather than the interpreted curve

u(s). At small scale, this could mean extreme sensitiv­

ity to sensor and quantisation noise ; in a practical vision

system, this would result in curve descriptions that were

unstable over time. A simple solution to this is adopted

by Asada and Brady (84) : they obtain their data from

images , by means of an edge detector that inherently su­

presses noise. However there remains the lesser problem,

that intermediate structure could generate distortions of

scale (fig 6). An elegant solution to this problem, in

the context of gaussian scale space filtering, proposed by

Porril (85) , subjects the curve to a simulated diffusion

process. Under weak continuity constraints, an invariant

scheme could conceivably be attainable by fitting a curve

to data supplied as a sequence of coordinate vectors Xi ,

minimising curvature. Further work may be needed here.

Curvature limit and detection of discontinuities

It was explained in section 1 that /Co = i'f!0/2A is a cur­

vature limit, such that curves of curvature /C > /Co are

segmented, even if there is no curvature maximum (fig

7).

Moreover the actual point of segmentation need not be

particularly spatially stable. This seems to be a limita­

tion of the scheme, for which two partial remedies are pro­

posed . One is to note that such segmentation points exist

only at large scale - but of course there may be "genuine"

structure too that exists only at large scale . A better rem­

edy is to use a higher order scheme, in which P =Ju1/2•

This allows both tangent and curvature discontinuities to

be detected, rather than tangent only. It also pushes

the "spurious" segmentation problem to higher order (i.e.

spurious curvature discontinuities) - but at some extra

computational expense.

Boundary conditions

A very attractive property of the proposed scheme is that

boundary conditions on open-ended contours are dealt

with naturally. Naive gaussian filtering generates spuri­

ous discontinuities near ends of contours, which may mask

genuine features near ends. Cures are of course possible,

such as using modified convolution masks near ends (thus
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Fig 5. The gaussian scale-space generated by a polygonal contour (a) , contains a bifurcation (b) which is unstable

(non-t ransverse). It is therefore uncertain to which fine scale zero-crossing the single coarse scale zero-crossing belongs.

losing the gaussian's t ime-saving factorisability) or a dif­

fusion process as above. Fig 1 illustrates the correct han­

dling of boundary conditions: the small feature near the

end is t reated much like the one in the middle.
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a) b)

Fig 6 Non-invariance in s-parametrisation of curves. Curve (a) has t wo corners . Curve (b) very similar "at large scale" l

but has some detail between the two corners . As a result it acquires a great deal of extra arc-length between those

corners, which distorts its scale-space diagram.

Fig 7 T he gradient limit: arcs above a certain threshold curvature lCo = ~ o/2>' may be segmented spuriously at larger
scales.


