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WEAK CONTINUITY

OF THE GAUSS-CODAZZI-RICCI SYSTEM

FOR ISOMETRIC EMBEDDING

GUI-QIANG CHEN, MARSHALL SLEMROD, AND DEHUA WANG

(Communicated by Walter Craig)

Abstract. We establish the weak continuity of the Gauss-Coddazi-Ricci sys-
tem for isometric embedding with respect to the uniform Lp-bounded solution
sequence for p > 2, which implies that the weak limit of the isometric embed-
dings of the manifold in a fixed coordinate chart is an isometric immersion.
More generally, we establish a compensated compactness framework for the
Gauss-Codazzi-Ricci system in differential geometry. That is, given any se-
quence of approximate solutions to this system which is uniformly bounded in
L2 and has reasonable bounds on the errors made in the approximation (the

errors are confined in a compact subset of H−1
loc ), the approximating sequence

has a weakly convergent subsequence whose limit is a solution of the Gauss-
Codazzi-Ricci system. Furthermore, a minimizing problem is proposed as a
selection criterion. For these, no restriction on the Riemann curvature tensor
is made.

1. Introduction

The Gauss-Codazzi-Ricci system is a fundamental system of nonlinear partial
differential equations in differential geometry (cf. [4, 5, 12, 14, 15, 23, 25]). For
example, the fundamental theorem of the surface theory indicates that the existence
of a local or global solution of the Gauss-Codazzi-Ricci system can yield a local
or global higher dimensional isometric embedding. Therefore, it is important to
understand the behavior of this nonlinear system for solving isometric embedding
problems and other important geometric problems. In general, the Gauss-Codazzi-
Ricci system has no type, neither purely hyperbolic nor purely elliptic.
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We are concerned with the weak continuity of the Gauss-Codazzi-Ricci system
and the related compensated compactness framework for approximate solutions to
this system. In Chen-Slemrod-Wang [8], we noted that the Gauss-Codazzi equations
for isometric embedding of M

2 into R
3 fall naturally within the formulation of

compensated compactness. In this paper, we first show that this is also true in
the general case for the Gauss-Codazzi-Ricci system. One of our main observations
here is that the Codazzi and Ricci equations naturally have the Div-Curl structure.
Based on this observation, we establish the weak continuity of this system with
respect to the uniform Lp-bounded solution sequence for p > 2, which implies
that the weak limit of the isometric embeddings of the manifold is an isometric
immersion. This is reminiscent of the weak continuity of determinants which plays
an essential role in the theory of polyconvexity by Ball [1] in nonlinear elasticity (also
see Dacorogna [9], Evans [13], Morrey [19], and Müller [20]). More generally, we
establish a stronger compensated compactness framework for the Gauss-Codazzi-
Ricci system. That is, given any sequence of approximate solutions to this system
which is uniformly bounded in L2 and has reasonable bounds on the errors made
in the approximation (the errors are confined in a compact subset of H−1

loc ), the
approximating sequence has a weakly convergent subsequence whose limit is still a
solution of the Gauss-Codazzi-Ricci system. For these estimates, no restriction on
the Riemann curvature tensor is made.

A long-standing fundamental problem in differential geometry is the existence of
local (and if possible global) embeddings of a d-dimensional Riemannian manifold
M

d, d ≥ 3, into the Euclidean space R
N with optimal dimension N . As noted in

Han-Hong [17], the first global existence of smooth C∞ embeddings was given by
Nash [24], but the best result as of this time is the following theorem of Günther
[16]: Any smooth d-dimensional compact Riemannian manifold admits a smooth
(i.e. C∞) isometric embedding in R

N for N = 1
2 max{d(d+5), d(d+3)+10}. The

proof of Günther is based on first doing a local existence proof for a fixed local
coordinate system and then assembling the local results to obtain a global result
(see [17] for a presentation). Needless to say, it is of considerable interest to know
if Günther’s dimension N is optimal. In a similar vein, we could try to formulate
a selection or “admissibility” criterion to choose one of the possibly infinite em-
beddings provided by Günther’s theorem. Within the realm of surface theory and
elastic manifolds, this has been recently considered in [11, 28] where the selection
is done by minimizing an integral of the norm of the second fundamental form.
Indeed, this seems to be a natural approach for selection in the general case and
is even in the same spirit as Dafermos’s entropy rate criterion [10]. In Section 4,
we propose a minimizing problem as a selection criterion. Specifically we show in
the case where we have a sequence of embeddings defined by one fixed set of local
coordinates gijdx

idxj = ds2, x ∈ Ω, that by the compensated compactness frame-
work any minimizing sequence has a subsequence in Lp, p > 2, which converges
weakly to a minimizer that satisfies the Gauss-Codazzi-Ricci system. Since any
sequence of isometric embeddings of Md into R

N (say given by Günther’s theorem)
must satisfy the equations exactly, this implies that the problem of minimizing the
Lp-norms of the second fundamental form and the connection form on the nor-
mal bundle (sometimes called torsion coefficients [5]) does have a solution within
the class of weak solutions of the Gauss-Codazzi-Ricci system, hence yielding an
isometric immersion of W 2,p class for p > 2.
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2. The Gauss-Codazzi-Ricci system for isometric embedding

of M
d
into R

N

In this section, we use the following conventional notation:

gij : given metric of the Riemannian manifold,

Γk
ij : Christoffel symbols,

Rijkl : Riemann curvature tensor,

ha
ij : coefficients of the second fundamental form,

κa
lb : coefficients of the connection form (torsion coefficients) on the normal

bundle,

where the indices a, b, c run from 1 to N and i, j, k, l,m, n run from 1 to d ≥ 3.
For a given metric gij , the Christoffel symbols are

Γk
ij =

1

2
gkl (∂jgil + ∂igjl − ∂lgij) ,

which depend on the first derivatives of (gij), and the Riemann curvature tensor is

Rijkl = glm
(
∂kΓ

m
ij − ∂jΓ

m
ik + Γn

ijΓ
m
nk − Γn

ikΓ
m
nj

)
,

which depends on (gij) and its first and second derivatives, where (gkl) denotes the
inverse of (gij) and ∂j = ∂xj

. We denote |g| = det(gij).

2.1. The Gauss-Codazzi-Ricci system. As is well-known in Riemannian geom-
etry, the isometric embedding problems for d-dimensional Riemannian manifolds
into the Euclidean space R

N can be reduced to the solvability problems of the
Gauss-Codazzi-Ricci system of nonlinear partial differential equations with the fol-
lowing form in local coordinates gijdx

idxj = ds2:
The Gauss equations:

(2.1) ha
jih

a
kl − ha

kih
a
jl = Rijkl;

The Codazzi equations:

(2.2)
∂ha

lj

∂xk
−

∂ha
kj

∂xl
+ Γm

ljh
a
km − Γm

kjh
a
lm + κa

kbh
b
lj − κa

lbh
b
kj = 0;

The Ricci equations:

(2.3)
∂κa

lb

∂xk
− ∂κa

kb

∂xl
− gmn

(
ha
mlh

b
kn − ha

mkh
b
ln

)
+ κa

kcκ
c
lb − κa

lcκ
c
kb = 0.

Notice that the coefficients of the second fundamental form are symmetric:

(2.4) ha
ij = ha

ji,

while the coefficients of the connection form on the normal bundle are antisymmet-
ric:

(2.5) κa
kb = −κb

ka.

In particular, the antisymmetry of κa
kb implies

κa
ka = −κa

ka,

and so
κa
ka = 0.

Thus, the ath column of the d× d matrix κa is zero.
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When d = 3, the Janet dimension N = d(d+1)
2 = 6 (cf. Janet [18]). Then

κ1 =

⎡
⎢⎣
0 κ1

12 κ1
13

0 κ1
22 κ1

23

0 κ1
32 κ1

33

⎤
⎥⎦ , κ2 =

⎡
⎢⎣
−κ1

12 0 κ2
13

−κ1
22 0 κ2

23

−κ1
32 0 κ2

33

⎤
⎥⎦ , κ3 =

⎡
⎢⎣
−κ1

13 −κ2
13 0

−κ1
23 −κ2

23 0

−κ1
33 −κ2

33 0

⎤
⎥⎦ .

2.2. The Div-Curl structure of the Codazzi and Ricci equations. In this
section we present one of our main observations on the features of the Codazzi and
Ricci equations: the Div-Curl structure, which leads to the weak continuity of the
system.

For w = (w1, w2, · · · , wd),

curlw := (∂jwi − ∂iwj)1≤i,j≤d

is a d× d matrix field.
From the Codazzi equations (2.2), for k < l, they possess the form

∂ha
lj

∂xk
−

∂ha
kj

∂xl
+ l.o.t. = 0

or

(2.6) div(

k︷ ︸︸ ︷
0, · · · , ha

lj , 0, · · · ,−ha
kj︸ ︷︷ ︸

l

, 0, · · · , 0) + l.o.t. = 0,

and

(2.7) curl(ha
1j , h

a
2j , · · · , ha

dj) + l.o.t. = 0,

where l.o.t. represents the lower-order terms without involving derivatives in the
equation.

Similarly, we observe that the identical form of the Ricci equations (2.3) can also
be written as

(2.8) div(

k︷ ︸︸ ︷
0, · · · , 0, κa

lb, 0, · · · ,−κa
kb︸ ︷︷ ︸

l

, 0, · · · , 0) + l.o.t. = 0

and

(2.9) curl(κa
1b, κ

a
2b, · · · , κa

db) + l.o.t. = 0.

Now replacing a by b and j by i in the Codazzi equations (2.6)–(2.7), we obtain

(2.10) div(

k︷ ︸︸ ︷
0, · · · , hb

li, 0, · · · ,−hb
ki︸ ︷︷ ︸

l

, 0, · · · , 0) + l.o.t. = 0

and

(2.11) curl(hb
1i, h

b
2i, · · · , hb

di) + l.o.t. = 0.

Similarly, replacing a by b and b by c in the Ricci equations (2.8)–(2.9), we have

(2.12) div(

k︷ ︸︸ ︷
0, · · · , 0, κb

lc, 0, · · · ,−κb
kc︸ ︷︷ ︸

l

, 0, · · · , 0) + l.o.t. = 0
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and

(2.13) curl(κb
1c, κ

b
2c, · · · , κb

dc) + l.o.t. = 0.

One of our main observations is that the scalar products of the two vector fields
in the rewritten forms (2.6)–(2.13) yield the nonlinear quantities in the lower-order
terms in the Gauss-Codazzi-Ricci system (2.1)–(2.3): Forms (2.6) and (2.11) yield

(2.14) ha
ljh

b
ki − ha

kjh
b
li,

forms (2.8) and (2.13) yield

(2.15) κa
kbκ

b
lc − κa

lbκ
b
kc,

and forms (2.9) and (2.10) yield

(2.16) κa
kbh

b
li − κa

lbh
b
ki.

This observation is essential for us to establish the weak continuity of the Gauss-
Codazzi-Ricci system in Section 3.

3. Weak continuity and compensated compactness framework

In this section we establish the weak continuity of the Gauss-Codazzi-Ricci sys-
tem and the related compensated compactness framework for approximate solutions
to the system via the Div-Curl lemma (see Murat [21] and Tartar [26]).

The Div-Curl lemma is a basic result in the compensated compactness theory
for the weak continuity of the scalar product of two vector fields (cf. [9, 13, 21, 22,
26, 27]) and is closely related to the Hodge decomposition.

Theorem 3.1 (Div-Curl lemma). Let Ω ⊂ R
d, d ≥ 2, be open bounded. Let p, q > 1

such that 1
p + 1

q = 1. Assume that, for any ε > 0, two fields uε ∈ Lp(Ω;Rd) and

vε ∈ Lq(Ω;Rd) satisfy the following:

(i) uε ⇀ u weakly in Lp(Ω;Rd) as ε → 0;
(ii) vε ⇀ v weakly in Lq(Ω;Rd) as ε → 0;

(iii) div uε are confined in a compact subset of W−1,p
loc (Ω;R);

(iv) curl vε are confined in a compact subset of W−1,q
loc (Ω;Rd×d).

Then the scalar products of uε and vε are weakly continuous,

uε · vε −→ u · v,

in the sense of distributions.

Based on our observation of the Div-Curl structure of the Codazzi and Ricci
equations, we employ the Div-Curl lemma to formulate the following compensated
compactness framework.

Let a sequence of vector fields (ha,ε
ij , κa,ε

lb )(x), defined on an open bounded subset

Ω ⊂ R
d, satisfy the following Framework (A):

(A.1) ‖(ha,ε
ij , κa,ε

lb )‖L2(Ω) ≤ C for some C > 0 independent of ε > 0.

(A.2)
∂ha,ε

lj

∂xk − ∂ha,ε
kj

∂xl and
∂κa,ε

lb

∂xk − ∂κa,ε
kb

∂xl are confined in a compact set in H−1
loc (Ω).
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(A.3) There exist oεj(1), j = 1, 2, 3, with oεj(1) → 0 in the sense of distributions
as ε → 0 such that

∂ha,ε
lj

∂xk
−

∂ha,ε
kj

∂xl
+ Γm

ljh
a,ε
km − Γm

kjh
a,ε
lm + κa,ε

kb h
b,ε
lj − κa,ε

lb hb,ε
kj = oε1(1),

∂κa,ε
lb

∂xk
− ∂κa,ε

kb

∂xl
− gmn

(
ha,ε
mlh

b,ε
kn − ha,ε

mkh
b,ε
ln

)
+ κa,ε

kc κ
c,ε
lb − κa,ε

lc κc,ε
kb = oε2(1),

(3.1)

and

(3.2) ha,ε
ji ha,ε

kl − ha,ε
ki h

a,ε
jl = Rijkl + oε3(1).

Then we have

Theorem 3.2 (Compensated compactness framework). Let a sequence of vector
fields (ha,ε

ij , κa,ε
lb ) satisfy Framework (A). Then there exists a subsequence (still la-

beled) (ha,ε
ij , κa,ε

lb ) that converges weakly in L2(Ω) to (ha
ij , κ

a
lb) as ε → 0 such that

(i) ‖(ha
ij , κ

a
lb)‖L2(Ω) ≤ C;

(ii) the quadratic terms in (2.1)–(2.3) are weakly continuous with respect to
the subsequence (ha,ε

ij , κa,ε
lb ) that converges to (ha

ij , κ
a
lb) weakly in L2(Ω) as

ε → 0;
(iii) the limit vector field (ha

ij , κ
a
lb) satisfies the Gauss-Codazzi-Ricci system

(2.1)–(2.3).

That is, the limit vector field (ha
ij , κ

a
lb) is a weak solution to the Gauss-Codazzi-Ricci

system (2.1)–(2.3).

Proof. By assumption (A.1), there exist a subsequence (still denoted) (ha,ε
ij , κa,ε

lb )

and a vector field (ha
ij , κ

a
lb) ∈ L2(Ω) such that

(3.3) (ha,ε
ij , κa,ε

lb ) ⇀ (ha
ij , κ

a
lb) in L2(Ω)

and

(3.4) ‖(ha
ij , κ

a
lb)‖L2(Ω) ≤ C.

By the Div-Curl structure, observed in Section 2.2, assumption (A.2) implies
that

(3.5) div(

k︷ ︸︸ ︷
0, · · · , ha,ε

lj , 0, · · · ,−ha,ε
kj︸ ︷︷ ︸

l

, 0, · · · , 0), curl(ha,ε
1j , h

a,ε
2j , · · · , h

a,ε
dj )

and

(3.6) div(

k︷ ︸︸ ︷
0, · · · , 0, κa,ε

lb , 0, · · · ,−κa,ε
kb︸ ︷︷ ︸

l

, 0, · · · , 0), curl(κa,ε
1b , κ

a,ε
2b , · · · , κ

a,ε
db )

are confined in a compact set in H−1
loc (Ω).

By exchanging the indices, we also have that

(3.7) div(

k︷ ︸︸ ︷
0, · · · , hb,ε

li , 0, · · · ,−hb,ε
ki︸ ︷︷ ︸

l

, 0, · · · , 0), curl(hb,ε
1i , h

b,ε
2i , · · · , h

b,ε
di )
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and

(3.8) div(

k︷ ︸︸ ︷
0, · · · , 0, κb,ε

lc , 0, · · · ,−κb,ε
kc︸ ︷︷ ︸

l

, 0, · · · , 0), curl(κb,ε
1c , κ

b,ε
2c , · · · , κ

b,ε
dc )

are confined in a compact set in H−1
loc (Ω).

Using the Div-Curl lemma, Theorem 3.1, we conclude the weak continuity of the
nonlinear quadratic quantities in the Gauss-Codazzi-Ricci system with respect to
the sequence (ha,ε

ij , κa,ε
lb ):

ha,ε
lj hb,ε

ki − ha,ε
kj h

b,ε
li ⇀ ha

ljh
b
ki − ha

kjh
b
li,(3.9)

κa,ε
kb κ

b,ε
lc − κa,ε

lb κb,ε
kc ⇀ κa

kbκ
b
lc − κa

lbκ
b
kc,(3.10)

κa,ε
kb h

b,ε
li − κa,ε

lb hb,ε
ki ⇀ κa

kbh
b
li − κa

lbh
b
ki(3.11)

in the sense of distributions as ε → 0.
Combining (3.3)–(3.4) with (3.9)–(3.11), we conclude that the weak limit vector

field (ha
ij , κ

a
lb) of the sequence (ha,ε

ij , κa,ε
lb ) satisfies the Gauss-Codazzi-Ricci system

(2.1)–(2.3) in the sense of distributions; that is, the limit vector field (ha
ij , κ

a
lb) is a

weak solution of (2.1)–(2.3). �

As a corollary, we conclude the weak continuity of the Gauss-Codazzi-Ricci sys-
tem with respect to the uniform Lp-bounded solution sequence for p > 2.

Theorem 3.3 (Weak continuity). Let (ha,ε
ij , κa,ε

lb ) be a sequence of solutions to the

Gauss-Codazzi-Ricci system (2.1)–(2.3), which is uniformly bounded in Lp, p > 2.
Then the weak limit vector field (ha

ij , κ
a
lb) of the sequence (ha,ε

ij , κa,ε
lb ) in Lp is still a

solution to (2.1)–(2.3).

Proof. Since the solution sequence (ha,ε
ij , κa,ε

lb ) is uniformly bounded in Lp, p > 2,

(3.12) ‖(ha,ε
ij , κa,ε

lb )‖Lp(Ω) ≤ C,

for some C > 0 independent of ε, there exist a subsequence (still denoted) (ha,ε
ij , κa,ε

lb )

and a vector field (ha
ij , κ

a
lb) ∈ Lp(Ω) such that

(ha,ε
ij , κa,ε

lb ) ⇀ (ha
ij , κ

a
lb) in Lp(Ω)

and

‖(ha
ij , κ

a
lb)‖Lp(Ω) ≤ C.

Then we conclude from (3.12) that all the lower-order terms for the solution
sequence (ha,ε

ij , κa,ε
lb ) in the Gauss-Codazzi-Ricci system (2.1)–(2.3) are uniformly

bounded in Lp/2, p > 2. This implies that

(3.13)
∂ha

lj

∂xk
−

∂ha
kj

∂xl
,
∂κa

lb

∂xk
− ∂κa

kb

∂xl
are confined in a compact set in H−1

loc (Ω).

Since the domain Ω ⊂ R
d is bounded, the uniform bound in (3.12) implies the

uniform bound of (ha,ε
ij , κa,ε

lb ) in L2(Ω). By the compensated compactness frame-

work (Theorem 3.2), we conclude that the limit vector field is a weak solution of
(2.1)–(2.3), which implies the weak continuity of the system. �
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Remark 3.1. The weak continuity of the Gauss-Codazzi-Ricci system implies that,
for p > 2, the weak limit of a sequence of isometric embeddings of the d-dimensional
manifold M

d into R
N as surfaces with corresponding uniform Lp-bounded sequence

(ha,ε
ij , κa,ε

lb ) is an isometric immersion as a surface in R
N . The requirement that

p > 2 is to ensure the H−1-compactness in (3.13) to deal with the nonhomogeneous
terms.

4. Minimization problem

In this section, as an example, we show that the solution sequence (ha,ε
ij , κa,ε

lb )
for the weak continuity in Theorem 3.3 can be obtained from a selection criterion.
In particular, we wish to select an “energy” minimizer among all embeddings with
local coordinates gijdx

idxj = ds2, x ∈ Ω. Non-uniqueness and uniqueness (rigidity)
of embeddings were discussed by Berger-Bryant-Griffiths [2, 3].

Theorem 4.1. There exists a minimizer (ha
ij , κ

a
lb) for the minimization problem

(4.1) min
S

‖(h, κ)‖pLp(Ω) := min
S

∫
Ω

√
|g|

(
(hijhij)

p
2 + (κlbκlb)

p
2

)
dx, p > 2,

where S is the set of weak solutions to the Gauss-Codazzi-Ricci system (2.1)–(2.3).

Proof. Clearly, S is non-empty by the local version of Günther’s theorem in [16]
(also see Section 1.2 in [17] and the statement in Section 1 above). A minimizing
sequence provides the desired Lp-norm for the weak continuity theorem (Theorem
3.3). Since the Lp-norm, which is weakly lower semicontinuous, is convex, any min-
imizing sequence has a subsequence in Lp(Ω) that converges weakly to a minimizer
which satisfies the Gauss-Codazzi-Ricci system (2.1)–(2.3). �

Notice that any sequence of isometric embeddings of Md into R
N with a fixed

local coordinate system gijdx
idxj = ds2, x ∈ Ω, as surfaces (say, given by Günther’s

theorem) must satisfy the Gauss-Codazzi-Ricci equations (2.1)–(2.3). This implies
that the problem of minimizing the Lp-norms of the second fundamental form and
the connection form on the normal bundle does have a solution within the class
of weak solutions of the Gauss-Codazzi-Ricci system (2.1)–(2.3), hence yielding an
isometric immersion of W 2,p class for p > 2 for Md into R

N as a surface for x ∈ Ω.
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