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Weak Convergence and Local Stability Properties 
of Fixed Step Size Recursive Algorithms 
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and William A. Sethares, Member, IEEE 

Abstract-A recursive equation which subsumes several com- 
mon adaptive filtering algorithms, is analyzed for general sto- 
chastic inputs and disturbances by relating the motion of the 
parameter estimate errors to the behavior of an unforced de- 
terministic ordinary differential equation (ODE). Local stability 
of the ODE implies long term stability of the algorithm while 
instability of the differential equation implies nonconvergence of 
the parameter estimates. The analysis does not require continuity 
of the update equation, and the asymptotic distribution of the 
parameter trajectories for all stable cases (under some mild 
conditions) is shown to be an Ornstein-Uhlenbeck process. The 
ODE'S describing the motion of several common adaptive filters 
are examined in some simple settings, including the least mean 
square (LMS) algorithm and all three of its signed variants (the 
signed regressor, the signed error, and the sign-sign algorithms). 
Stability and instability results are presented in terms of the 
eigenvalues of a correlation-like matrix. This generalizes known 
results for LMS, signed regressor and signed error LMS, and 
gives new stability criteria for the sign-sign algorithm. The 
ability of the algorithms to track moving parameterizations 
can be analyzed in a similar manner, by relating the time 
varying system to a forced ODE. The asymptotic distribution 
about the forced ODE is again (under similar conditions) an 
Omstein-Uhlenbeck process, whose properties can be described 
in a straightforward manner. 

Index Terms- Weak convergence, adaptive filters, recursive 
algorithms. 

I. INTRODUCTION 

S APPLICATIONS of adaptive filtering, communication, A control, and identification methods have grown zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 141, 
[17], [MI, [19], [41], so have the number of adaptive algo- 

rithms [l], [6], [13], [16], [26], [30], [40]. Some are proposed 

because of their convergence properties, some because of 
their numerical simplicity, and others because of their noise 

rejection capabilities. The general recursive form 

wk+l = wk f pH(Wk,Yk, U,+,) (1) 

captures most of these algorithms by suitable choice of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH (  . ). 
In (l), wk represents the parameter estimate errors, Yk is 

some function of the inputs, uk is a disturbance process that 
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represents all nonidealities such as measurement and modeling 
errors, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp is a small positive constant stepsize. Convergence 

of the process wk to a stationary distribution about zero 
is equivalent to convergence of the adaptive filter parameter 

estimates to a region about their optimal values. Two important 
questions concerning the behavior of wk arise immediately. 

Under what conditions is the process stable? 
When does there exist an asymptotic (as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAca) dis- 

tribution for wk and how can it be characterized? 

Let us define a time scaled continuous time version of (1) as 

W d t )  = W[t/,] > (2) 

where [z]  represents the integer part of z. 
We address our questions by relating the behavior of the 

scaled adaptive algorithm (2) for small p to the behavior of the 
associated deterministic ordinary differential equation (ODE) 

W(t )  = WO + 1' I?(W(S)) ds , (3) 

where I?( . )  is a smoothed version of H(. ,  ., .). 
The question of when time scaled versions of the wk 

process converge (as p + 0) to W ( t )  has been investigated 

by a number of researchers both for fixed p and for the time 
varying stepsize cases of stochastic approximation. Many of 
the original notions (done in the stochastic approximations 
context) are due to Ljung [27] though the present approach 

is probably closest in spirit to [25]. (Some other important 

references for the fixed ,U case are [4], [21], [23].) We 
use similar arguments although our presentation is somewhat 

simpler than theirs. We discuss their work at the end of the 
next section. The field of stochastic approximations has a long 

history. A good introduction to the field is given in the seminal 
book [39], while more modern expositions can be found in 
the book by Benveniste etal., [5] or in any of the books by 

Kushner (e.g., [21], [22]). 
As a byproduct of our methodology, we are able to prove 

the stronger almost sure convergence of the algorithms, a new 
result for the fixed p algorithms.' 

The two questions about (1) then translate into analogous 

questions concerning (3). 
Under what conditions is the ODE stable or unstable? 

lIn some of the simplest no disturbance cases, [35] and [36] give (via 
product of random matrices type arguments) probability one convergence 
results of the trajectories. These results are quite different from ours, since 
we employ ergodic arguments to get the strong limits. 

0018-9448/93$03.00 0 1993 IEEE 



BUCKLEW zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.: WEAK CONVERGENCE AND LOCAL STABILITY PROPERTIES OF RECURSIVE ALGORITHMS 

How closely does the algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) track the behavior of 

If the ODE is locally stable, then the algorithm (1) is stable 

at least over long time periods (indicathg probable success 

of the adaptive scheme), while if (3) is unstable, then (1) is 

also unstable, and the adaptive algorithm fails. For instance, 

(letting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= X where X is the vector input process) it is 

well known [lo], [40] that if the correlation matrix E { X X T }  
is positive definite, then (for small enough zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp) the parameter 

estimate errors of the LMS algorithm converge in distribution 

to a region about the origin. The same matrix E { X X T }  
appears in our analysis as the linearization of I?(W). Positive 

definiteness of this matrix implies local stability of the ODE, 
while a negative eigenvalue would imply local instability. Of 

course, due to its structure as a correlation matrix, E { X X T }  
is always at least nonnegative definite, and the instability 

cannot occur. 
Certain of the variants of LMS are not so fortunate. The 

analogous condition for the signed regressor algorithm, (letting 

Y = (X ,sgn(X) )  for instance, requires that E { s g n ( X ) X T }  
be positive definite [34]. As before, this same matrjx ap- 

pears in the present analysis as the linearization of H ( W ) .  
Analogously, positive definiteness of E { sgn(X)XT } implies 
stability, while a negative eigenvalue implies instability. In 

this case, there are nontrivial input distributions that cause 
instability of the associated ODE, and hence of the signed 

regressor algorithm. 
Our methods allow us to derive analogous stability/ 

instability conditions (often called “persistence of excitation” 

conditions) for algorithms which have not been previously 

amenable to analysis. Chief among these are the sign-sign 
variant of LMS [ll], [12], [26]. Conditions on the input and 

disturbance sequences are derived which guarantee stability 

of the error system. Failing these conditions, the error system 

degenerates into (local) instability. 
The relation between the adaptive algorithm (1) and the 

ODE (3) may be thought of as a type of “law of large num- 

bers.” To investigate how close the behavior of the algorithm 
is to the deterministic trajectory of the ODE, one desires 

a corresponding “central limit theorem.” Consider the time 
scaled process W, (t). In Section 11, the martingale central 
limit theorem is exploited to show that the error process 

the ODE (3)? 

converges to a forced ODE that is driven by a sum of 
independent Brownian motions. Under mild assumptions on 

the input and disturbance processes, the limit distribution is an 

Ornstein-Uhlenbeck process, with known mean and variance. 
In practical terms, this convergence has two major impli- 

cations. First, for a given algorithm, it is easy to calculate 

the parameters of the steady State distribution in terms of 

the properties of the inputs and disturbances, and hence, to 
give a measure of the performance of the algorithm. Second, 
this allows a fair comparison between competing adaptive 

schemes. In Section 111, for instance, the mean and variance 
of the convergent distributions for the four signed variants 

of LMS are calculated when the disturbance has a density 

~ 
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that is symmetric and zero-mean, and the input is zero- 
mean, independent, and identically distributed. (We do not 

assume that the regressor vector is independent.) Assuming 

fulfillment of the stability conditions, the variance of the 
marginal Gaussian distributions can be adjusted by choice of 

the stepsize p. Alternatively, one can choose a desired final 

variance, and then choose the stepsize for each algorithm to 
achieve that variance. A fair comparison of the convergence 
speed of the algorithms can then be made. We performed 

numerical experiments to demonstrate how the comparison 

might actually be made. 

Finally, we study the ability of certain types of adaptive 
algorithms to track a slowly moving parameterization. The 

asymptotic distributions of the appropriate error process can 

be related to a forced ODE, where the forcing term is directly 
related to the motion of the underlying parametrization. Again, 
the asymptotics prove to be an Ornstein-Uhlenbeck process. 

In contrast to the convergence speed, there is little difference 

between the various algorithms in terms of their ability to 

track slowly moving targets. 

The second section demonstrates the two theorems which 
show that the behavior of the adaptive algorithm (1) is tied 

inextricably to an appropriate ODE (3). The first theorem 

derives the relevant ODE and the second gives bounds (in 

terms of an asymptotic distribution) on the difference between 

the parameter estimate errors and the deterministic trajectory 
of the ODE. 

The third section presents a tutorial explanation of several 

common adaptive algorithms, derives the appropriate ODE, 
and then examines the stability properties of the ODE. For 

some algorithms, (LMS and the signed error algorithm), the 
ODE is virtually always locally stable, while others (Signed 

regressor and sign-sign) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be locally unstable for nontrivial 
inputs and disturbances. 

The fourth section compares the present results to previous 

stochastic and deterministic work. A “fair” comparison of 
convergence speed of the algorithms is conducted for one 

special case, and tracking properties of the various algorithms 
are compared under the assumption that the desired parame- 

terization is slowly varying. 

11. THEORETICAL DEVELOPMENT 

This section presents the limit theorems which relate the 
behavior of the algorithm (1) to an ODE (3). The update term 
H (  . )  in (1) has three arguments: 

W k  is the parameter estimate error; 

Yk is a function of the inputs to the algorithm; 

Uk+l is the present disturbance term. 

Let { W k ,  Yk, uk} be a random sequence defined on some 

probability space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a, F, P )  and taking values in %ld x E1 x Ez, 
where d is the number of adaptive parameters, and E1 and 

E2 are some measurable state spaces on which Yk and Uk 
evolve. {wk, Yj, uk} is adapted to a filtration {Fk}, (usually 

one takes Fk = the a-algebra generated by the random 

variables (W, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, &);=-,). Let P(A) denote the collection of 
probability measures on the space A. We assume the following. 
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The probability distribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq of the disturbance term is used 

in (5) to smooth out, or average, H through the action of the 

integral. Of most significance for the present purpose is that 
H can be continuous even when H is not.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 

C.2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp is continuous in (w ,  y ) ,  and for K E %+ 

Note that there are no assumptions on the autocorrelations of 
the inputs or disturbances. H is allowed to be discontinuous, 

provided that the expectation over q is smooth enough to make 

H continuous. Just as p averages H ,  the distribution of Y k  is 
used to average over the inputs Y k ,  and the doubly averaged 

quantity 

- 

(7) 

is the key ingredient in the ODE and to the questions of 
stability. 

We now carefully state the mathematical framework in 

which our work is imbedded. [SI, [15] are comprehensive 

references for most of the mathematical constructs mentioned 

in this paper. Let (E, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr )  denote a metric space with associated 
Bore1 field B(E). DE[O, CO) is the space of right continuous 

functions with left limits mapping from the interval [0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcm) into 

E. We assume that DE[O, cm) is endowed with the Skorohod 

Let { X a }  (where a! ranges over some index set) be a family 
of stochastic processes with sample paths in DE[O, CO) and let 

{Pa} C P(DE[O, CO)) be the family of associated probability 
distributions (i.e., Pa(B) = P{Xa  E B }  for all B E B(E)) .  
We say that { X a }  is relatively compact if {Pa} is relatively 

compact in the space of probability measures P(D,[O, CO)) 

endowed with the topology of weak convergence. will 
always denote weak convergence, -+ unless otherwise stated 

will denote convergence under the appropriate metric. 

topology. 

C.2a) Define f?(w,y,z) = H(w,y ,q (w ,y ,z ) ) .  Let Q = 
{ ( w , y , z )  : I? is continuous at (w,y ,z) } .  Assume that s ~ I Q ( w , Y , z ) v ~  (dy)v+ (dz )  = 1, for every w, and for 
K E %+ 

SUP lH(w,Yk,q(w,Yk,$Jk))l 
w : l w l l K  

Note that in C.2a) the continuity assumption on p in C.2) has 
been replaced by another type of continuity assumption. 

Corollary 1: Assume conditions C.l), C.2a), that W,(O) + 

WO almost surely, and that the solution of (8) is unique. Then, 

{ W F  } converges almost surely to W T K .  The theorem and 

corollary are proven in the Appendix. 
The stopping time T; measures how long it takes the time 

scaled process W,(t) to reach K in magnitude. The stopped 

process {W,” ( t ) }  is defined to be equal to W,(t) from time 
zero to the stopping time r; and is then held constant for 

all t > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf .  The theorem asserts that for any K E %+, 
every possible sequence (as ,LL --+ 0) of the stopped process 

{ W,-.”K ( t ) }  contains a weakly convergent subsequence, and 
that every limit of these subsequences is a process that satisfies 

the ODE (8), at least up until the stopping time. Zfthe solution 
to the differential equation is unique, then the sequence actually 
converges in probability (not just has a weakly convergent 
subsequence). The limiting quantity (the solution of the ODE) 
is continuous. The Skorohod topology for continuous func- 

tions corresponds to uniform convergence on bounded time 
intervals. Hence, convergence in probability means that for 

every T > 0, > 0, lim,,o ~ ( s u p ~ ~ ~ < ~ K ~ ~  IW,F(t) - 
W(t)I > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE )  = 0. 

One should also note that if no solution of the ODE 
becomes unbounded in finite time, then we can guarantee that 

r: + CO as K -+ CO. We may then assert that {W,} is 

relatively compact without needing to restrict our attention to 
the “stopped processes.” 

We apply theorem 1 to some common adaptive algorithms 
in the next section. Note that the theorem is a form of “law of 

T K  

large numbers” where the time scaled process W,(t) plays the 
Of ‘‘observations” and the convergent process W(t )  plays 

the role of the “expected value” to which the W,(t) converge 

as the number of observations 

‘Stationarity and ergodicity imply that C!21 p l ~ ( Y k )  + t x v y ( B )  as. ,  

where vy denotes the (asymptotic) distribution of the { Y k } .  This convergence 
is the essential assumption needed about the {Yk}  sequence. Hence, some sort 
of asymptotic stationarity/ergodicity could be assumed. 

increases. To investigate 
3This idea has been previously exploited, see e.g., [4], [5], [21], [24]. 
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how this convergence occurs, the corresponding “central limit 

theorem” describes the weak convergence of the error process 

Theorem 2: Assume C.l)-C.4), that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW,(O) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW O  in 

probability, that the solution of (8) exists for all t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 O,_and that 

Vp(0) + W O  in probability as p --+ 0. Then, M, j M where 

M is a mean zero Brownian motion independent of L with (10) 
1 

V,(t) = -(W,(t) - W t ) )  > 6 
where the scaling factor 2 expands V, to compensate for 

the time compression of W,(t). The next theorem shows that 

the error process V, converges to a forced ODE that is driven 
by the sum of two independent, mean zero Brownian motions. 

One driving term accounts for the error introduced by the 
smoothing with the disturbance ( H  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz) while the other 

( A  - z) accounts for the error when averaging over the 

inputs. 

H ( w , ~ ) ) ~  be the matrix that represents the deviation of H 
from its smoothed version p. If H is square integrable with 
respect to ~ ( w , y , . )  for each pair (w,y)  E Rd x El, we can 

define a smoothed version of G as 

fi 

- Let G(w, Y, U )  = ( H ( w ,  Y, - f 7 ( W ,  Y ) ) ( H ( W ,  Y, U )  - 

Averaging over all inputs yields 

G(w) = G(w, y)w(dy) .  * (12) J- 
The various G’s play a similar role in the central limit theorem 
that the H’s play in Theorem 1. In addition to C.l) and C.2), 
we make the further assumptions. 

C.3) H is square integrable with respect to q(w,g,.) for 

each pair (w, y) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE trId x El. z is differentiable as a function 
of w, E and 6JWz are continuous, and for K E R+ 

E{ f i ( t ) f i ( t )T }  = 1’ G(W(s))  ds 
0 

and V, + V satisfying 

V( t )  = w0 + &(t) + L(t)  + .I” aWI?(W(s))V(s) ds .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(15) 

The theorem is proved in the Appendix. 
These results can be extended in a variety of directions with 

little or no change in the hypotheses. For example, consider the 

asymptotics of the “tracking problem” for FIR adaptive filters. 
Let WL denote the time varying “correct” filter coefficients 

that the adaptive filter is attempting to track, and let l@k be 

the parameter fstimates. The parameter estimate error is then 

W k  = Wl - Wk, which evolves according to 

Wk+1 = Wk + pH(Wk,Yk,Uk+l)  

+ (WL+1- WL) * (16) 

Clearly, some restrictions must be placed on the possible 

motion of the filter W*. One possibility is to assume the 

fol~owing.~ 
C.5) W; = @ ( k p )  where is a differentiable function 

with derivative denoted by 4. 
It is then easy to show that (8) can be replaced by 

dW(t) = -4dt + I?(W(t)) dt 

Note that C.3) implies I? is locally Lipschitz (in fact continu- 

ously differentiable), so the solution of (8) is unique and hence, 
V,(t) is well defined (on any interval of which the solution 

of the ODE is bounded). For simplicity (so we do not have 
to stop our process outside of a compact set), we assume that 

the solution exists for all t 2 0. Define 

WPI - 1 

q L ( t )  = (H(wwYk,Uk+l) - ~ ( w c , y k ) ) d i i  (13) 
k=O 

and 

The implications of (17), in terms of the tracking capabilities 

of the various adaptive algorithms, are briefly discussed in ’ 
Section IV-C. 

Kushner and Shwartz [25] contains the results of the LMS 
Algorithm in Section III-D under different hypotheses on the 
input sequence {Xk}. They do not require stationarity and 
ergodicity (or asymptotic stationarity and ergodicity), but do 

place assumptions on E[Xk+ll.Fk] as a function of k and 

1. They characterize the limit as a solution of a martingale 

problem in the sense of Stroock and Varadhan [37]. Their 
approach would also apply to the Signed Regressor Algorithm 

in Section III-C and to any other algorithm that has the linear 

form 

wk+i = Wk + p(AkWk + Bk) I 

The results of Kurtz and Protter [20] provide an alternative 
approach to these linear algorithms which would cover both 

the Kushner and Shwartz results and the linear examples in 
the Present Paper. 

gives a discussion of other choices made by other researchers. 

k=O 

There are a variety of different conditions (for example, mixing 

conditions on {Y,})  that imply {L,} converges weakly to a 
(time inhomogeneous) Brownian motion. We simply assume 

this convergence. 
c.4) L, + L, where L is a zero-mean Brownian motion. 

4This is a deterministic parameterization. [36] does a stochastic one and 
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Theorem3: Let 

and suppose that there exists a matrix A and a vector B such 

that for each t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0 

SUP ~A,(S) - As1 + 0,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s < t  s s t  

SUP ~B, (S)  - BSI + 0 

in probability, and for each t 

is stochastically bounded (e.g., has uniformly bounded ex- 

pectations). Note that these conditions hold if the sequence 
{(Ak,Bh)} is stationary and ergodic and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE[IAkI + l B k l ]  < 
03. If W,(O) + WO, then W, + W where W satisfies 

W(t )  = w0 + st ( A W ( s )  + B )  d s  . 
0 

Define M f ( t )  = &(A,(t) - At)  and M f ( t )  = 

&(B,(t) - Bt), and suppose that M t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj M A  and M f  + 
M B .  If V,(O) -+ WO, then V, + V satisfying 

V( t )  = w0 + 1' (AV(s) + M A ( ~ ) k i f ( ~ ) )  d s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

+ M A ( t ) W ( t )  + M B ( t ) .  

The theorem is proved in the Appendix. 
Another related class of theorems is surveyed in the book by 

Benveniste, Metivier, and Priouret [5]. In their setting, the ex- 
plicit assumption of stationarity (or asymptotic stationarity) is 

replaced by the assumption that { ( X k ,  Y k ) }  is a Markov chain, 
and averaging properties for Markov chains are exploited to 

obtain the desired limit. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
111. EXAMPLES 

This section applies the theorems to a handful of adaptive 

algorithms; the sign-sign algorithm, the signed error algo- 
rithm, the signed regressor algorithm, and LMS. The strategy 

in each example is: 

define appropriate Y k  (input) and H (update term); 

find the unforcedAODE (1) by calculating the smoothed 
versions and H ;  

check local stability of the ODE by linearizing 8 about 
the equilibrium W = 0 (recall that W = 0 precisely when 

the algorithm has achieved its optimum performance); 
examine the forced ODE (15) to determine the steady 

state distribution of the algorithm. 

In the various examples, we impose some common addi- 

tional assumptions on the input and disturbance processes. 
These are not required by the theory. Rather, they are a way 
to find relatively simple expressions for the stabilityhtability 

of the ODE, and for the mean and variance of the correspond- 
ing Ornstein-Uhlenbeck process. These assumptions are the 

following. 

El) { U k }  is a zero-mean i.i.d. symmetric (hence ~ ( 0 )  = 
1/2) sequence with probability distribution V (  . )  and 

bounded, continuous density fu( . )  with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfu(0) > 0. 

The sequence { X k }  is a stationary, ergodic sequence 
(with finite mean and covariance) of Rd valued random 

variables independent of { Vk}. 

E2) Assumption El)  holds and the components of Xj = 
( X j l ,  Xj2, . . . , X j d ) T  are i.i.d. symmetric, mean zero, 
variance n: random variables for all j E Z .  

These, of course, are a very restrictive set of assumptions. 

However, they will allow us to compare in a common setting 

the local stability/limiting distribution behavior of the four 

algorithms. 

A. Sign-Sign Algorithm 

The sign-sign algorithm [26], prized for its computational 
simplicity, has seen a resurgence of interest since its incorpo- 

ration in a recent CCIT standard [ l l ]  for adaptive differential 

pulse code modulation. Despite some efforts [3], [12], a clear 

and simple test for stability of the algorithm has been elusive. 

The algorithm is 

Wk+1 = Wk - P S@(Xk)  ,gn(xlcTWk + Uk) I (18) 

where W k  is the parameter estimate error, XI, is a regressor 
of past inputs, sgn(X) applied to a vector is an element by 

element operation, and U, is a disturbance term. 
Suppose that the { U k }  sequence satisfies El). Define y = 

(x sgn(z)) or Yk = (Xk,sgn(Xk)). Then, 

- 
-H(w, y) = sgn(x) /sgn(xTw + u ) f u ( u ) d u  

= sgn(x ) ( l -  2q(-xTw)) 

is continuous in (w, y). Thus, conditions C.l) and C.2) (and, 
hence, Theorem 1) hold. 

Let F(  . )  denote the distribution function of XI.  Then, 

-fi(w) = //sgn(x) sgn(xTw + u) ju  d u d F  (x) 

= /sgn(z)[l-  2q(-x:'w)] d F  (x). 

Since fu is bounded, we can show H is globally Lipshitz. 

Hence there exists a unique solution to the ODE that does not 
become unbounded in finite time. Therefore, we do not need 
to work with the "stopped" processes. To linearize H ,  take the 
derivative with respect to w. This gives 

---H(w)= hjk(W) , 
dW 1 

where 
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This can be evaluated at the equilibrium w = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

dW 
- -H (o )  = 2 f u ( ~ ) ~ ( s g n ( ~ 1 ) ~ T } G  

For the “central limit theorem” results, note that 

- 
~ ( w ,  y) = /(sgn(x) sgn(xTw + u) - sgn(x) 

. /sgn(xTw + d )  dv(d))  

- (sgn(x) sgn(xTw + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU )  - sgn(x) 

. / sgn(xTw + d )  dv ( d ) l T  dv (u) 

= sgn(x) sgn(xT) (1 - (1 - 2 q ( - w ~ x ) ) ~ ) .  

Assume E2) holds, then E(sgn(X1XT)) = I .  Hence, 

G(w) = E(sgn(X1XT) (1 - (1 - 2 7 1 ( - ~ ~  W H ” }  

= I - E(sgn(X1XT) (1 - 2 7 ( - x ~ w ) ) ~ }  

or G(o) = (1 - (1 - 277(0))~)1 = I .  
Recall that the Brownian driving term L( t )  is the limit 

of L,(t) of (14). At the equilibrium w = 0, H(0,Yk)  = 
-sgn(Xk)(l - 2r](O)) = 0. Hence, k ( 0 )  = 0, which implies 

that L,(t) = 0 + L(t)  = 0. 
Hence, from (15), the limiting stochastic differential equa- 

tion is 

v(t> = ‘uo + *(t) - 2fP(O)E{sgn(X1)X~} .It v(s) d s .  

(19) 

Under assumption E2), the V( . )  process “decouples” into n 
independent components V( t )  = (Vl(t), Vz(t), , Vn(t))T 
where 

K(t) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWO% + f i ( t )  - 2fu(0) 

. E(X1, sgn(X1;)) s ’V, (s)  d s .  
0 

This is the general form of an Ornstein-Uhlenbeck random 

process. Define Q = 2fu(0)E{X1 sgn(X1)) and u2 = 1. 

Then, V, ( t )  is an asymptotically stationary Gaussian random 

process with mean zero, variance g and autocorrelation 

function R,(T) = E { v , ( ~  + T)x( t ) )  = < exp(-al.rl). 
Practically speaking, this means that for fixed t and small zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p we have the approximation V,(t) = ‘(W,(t) - W(t ) )  M 

V( t ) ,  where V( t )  has a N ( 0 ,  g) density, and W(t )  M 0. 

Hence, W,(t) = Wp/,l has (approximately) a N(0,  p<) = 
N(O, 4fu(0)E(~lsgn(X1)} ) density. 

fi 

B. Signed Error Algorithm 

with the sgn function applied only to the error term 
The signed error algorithm [16], [38] is similar to (18) but 

(20) ~ k + 1 =  ~k - p x k  sgn(XTWk + uk) . 

Emulating this derivation (with y = x or Yk = Xk), it is easy 

to see that the corresponding linearization is (under El)-E2)) 

d 
- - H ( 0 )  dW = 2fu(0)E{X1XT} 

= 2 f u ( 0 ) a 3 .  

Note that & is again globally Lipschitz. The “central limit” 

results are also analogous (under El)-E2)), with E(w,  y) = 
~xT(1-(1-2v(-xTw))2),  G(w) = 021. Again,z(O,Yk) = 

Hence, the limiting stochastic differential equation (15) 
H(0,Yk) = 0 + L(t)  = 0. 

becomes (at the equilibrium) 

V(t) = WO + *(t) - 2fu(0)O:11t V ( s )  ds 

Define a = 2fu(0)a: and u2 = U;. Hence, as before 

we have, R,(T) = E{V,(t+7)V,(t)} = Cexp(-a lT l )  
and W,(t) = Wp/,l has (approximately) a N(O,p<)  = 
N(0,  &) density. 

C. Signed Regressor Algorithm 

yields [30], [34], 

Applying the sgn function to only the regressor vector XI, 

Wk+l = Wk - p sgn(Xk) (XTWk + u k )  (21) 

Under El), we obtain with (y = (x,sgn(x)) or Yk = 

(Xk, s g n ( W ) )  

-H(w) = // sgn(x) (xTw + u)fu(u) du dF (x) 

= 1 sgn(x) (xTw) dF (x) 

(note H is linear and hence Lipschitz) and 

(22) 
d 

dW 
--H(w) = E(sgn(X1)XT). 

The “central limit” results follow quite easily also. 
Under E2) it is straightforward to verify that E(w,y )  = 
sgn(x) sgn(xT)a2, G(w) = 102, and L(t)  = 0. Then, (15) 
becomes (at the equilibrium) 

V(t> = 210 + *(t) - E(sgn(X1)X;) /” v(s) cis. 

Let a = E(sgn(X1;)Xl;) and u2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~72. Then 

R,(r) = $exp(-alrI), and Wp,,] has (approximately) a 

0 

N(O,P<)  = N ( 0 ,  2E{x:$(xl)}) density. 

D. LMS Algorithm 

mean square algorithm [40] 
Probably the most studied adaptive algorithm is the least 

W k + 1  = Wk - p x k ( x r W k  + uk) (23) 
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Under E l )  

e ( w )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-E{X,X,T}w = - u ~ I w ,  (24) 

which is linear (therefore is Lipschitz) and hence, 

d n  
dW 
--H(w) = -&, 

For the “central limit theory” we may easily verify (under 
E2)) ?? = o;xxT, G(w) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&U:, L( t )  = 0, Equation (15) 
becomes 

V( t )  = u0 + a(t) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.:lit V ( S )  d s .  

Define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ = U:, c2 = ~ 2 0 2 .  Then R,(T) = cexp( -a l r / )  

and W ~ I ~ L ]  has (approximately) a N ( O , p g )  = N(0,  $) 
for its stationary density. Of course, this most famous of 

algorithms has been treated elegantly by other researchers, 

most notably H. Kushner, A. Benveniste, and their coworkers. 

IV. DISCUSSION 

This section compares the adaptive algorithms with previ- 

ous stochastic and deterministic analyses, and compares the 
algorithms with each other in terms of convergence speed and 

tracking ability. 

A. Comparison with Previous (Stochastic) Results 

For LMS, the fact that E { X X T }  positive definite implies 

convergence in distribution is well known [40] though it ap- 
peared that the limiting distribution (as k + 00) was strongly 

dependent on the input distribution [9]. Theorem 2 demon- 
strates that the limiting distribution is approximately Gaussian 

irrespective of the input, assuming sufficiently smooth distur- 
bances, mixing, and sufficiently small stepsize. This result was 

foreshadowed in [7] (under the condition that the inputs are 
Gaussian), and the result is implicit in [4] and [25]. 

The signed regressor algorithm was shown to be locally 
stable in [34] if all eigenvalues of E{sgn(X)XT}  have 

positive real parts, and instability was conjectured if an eigen- 

value has negative real parts. As shown in Section 111-C, 
this instability conjecture is true, at least locally. Examples 

of nontrivial stochastic processes for which E{  sgn(X)XT}  
has negative eigenvalues were calculated in [34]. Such inputs 

destabilize the sign regressor algorithm. When the inputs cause 
the algorithm to be stable, Theorem 2 describes the limiting 

distributions. 
The signed error algorithm was shown in [16] (in certain 

cases) to converge in distribution to the optimal solution 
plus a term dependent on the stepsize when the inputs are 

jointly Gaussian. Theorem 1 states a more general stability 
criterion, and Theorem 2 characterizes the limiting distribution 

concretely. 
The sign-sign algorithm has been shown locally stable 

when the inputs are independent and Gaussian [3], but more 
general results are unavailable. Section 111-A ties the stability 

properties of the sign-sign algorithm to the stability properties 
of the sign regressor algorithm. Thus the examples of [34] are 

also examples of stability and instability for the sign-sign 

algorithm. 

B. Comparison with Deterministic Results 

Progress in the analysis of adaptive algorithms has often 

alternated between the deterministic and stochastic realms. The 

deterministic approach typically assumes that the disturbances 
are identically zero, proves an exponential stability result, and 

then uses some form of total stability to guarantee robust- 

ness to disturbances [2]. Speaking loosely, the deterministic 
“persistence of excitation condition” [lo] tends to function 
analogously to the conditions derived here via linearization 

of H .  For example, the LMS (signed regressor) algorithm 
is exponentially stable when all eigenvalues of X X T  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(E sgn(X)XT)  have positive real parts, which clearly par- 
allels the conditions on E { X X T }  (E{sgn(X)XT} ) .  

The first example of instability in an FIR adaptive filter 
was given in [33]. The first example that did not violate the 

persistence of excitation condition X X T  presented a period 

three input sequence that drives the parameter estimates of 

the sign-sign algorithm to infinity [12]. This spurred activity 

to try and determine the class of signals that stabilize and 
destabilize the various signed algorithms, and answers were 

found for LMS [lo], signed regressor [34], and signed error 

[32]. Lacking, however, was a condition for the sign-sign 

algorithm. 
Consider the twelve periodic input sequence { 3, - 1 , - 1 , 3, 

-1, -1,3, -1, -1,3, -1, -7}. (Note that this input does not 
satisfy our assumptions of ergodicity. It is easy to check 

though that the proof of Theorem 1 is still valid for inputs of 

this type.) This destabilizes the three dimensional sign-sign 
algorithm much as the example in [12], but all eigenvalues of 

C { s g n ( X ) X T }  have positive real parts. Hence, this input 
stabilizes the sign regressor algorithm [34]. Thus, positive 

definiteness of C { s g n ( X ) X T }  is not the correct stability 

criterion for the deterministic sign-sign algorithm. Yet we 
have shown that both sign regressor and sign-sign are locally 

stable exactly when the real parts of the eigenvalues of 
E{sgn(X)XT}  are positive. The explanation of this apparent 

contradiction is simple, though somewhat surprising. Through- 
out this paper, we have assumed that the disturbance term 

is “smooth” enough to “average out” the discontinuities. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn 
identically zero disturbance does not give any smoothing. 

Thus, the presence of disturbances is crucial to being able to 
state a concise condition for the stability of the algorithm. As 
evidence that this is the correct interpretation, we simulated 
again the sign-sign algorithm with the same 12 periodic 
sequence just given, this time adding a small disturbance. 

The algorithm stabilized, converging to a small ball about the 
optimal parameterization. 

Similarly, for the signed error algorithm, the smoothing 
effect of the disturbance is necessary to demonstrate the 

stability of the equilibrium at W = 0. Deterministically 
(and without disturbances), the equilibrium is unstable (in the 

sense of Lyapunov), though it can be shown [32] that the 
algorithm is totally stable (convergent to a ball about the 
origin). The strength of the present approach is that the char- 
acteristics of the “convergent ball” can be precisely described 
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as the parameters of the Ornstein-Uhlenbeck distribution of 

Theorem 2. 

C. Convergence and Tracking of LMS and Variants 

One implication of Theorem 2 is that the signed variants of 

LMS converge to a Gaussian distribution with known mean 

and variance. A fair comparison of the convergence speed 

of the algorithms can be made by adjusting the stepsize so 
that the final distributions of all four algorithms are identical, 
and to then explore the convergence rates of the algorithms. 

Assume conditions El)  and E2). Then in the examples we 

showed that the asymptotic distribution of all the algorithms 

is approximately N ( O , e )  where 

sign-sign: c’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 4 ( ~ ( 0 )  - ~ ‘ ( 0 ) )  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = 2fu(0)  

signed error: a2 = 4a2(~(0) -$(O)) and a = 2fu(0)a2; 
signed regressor: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU’ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa& and a = E{sgn(X)XT}; ; ;  
LMS: a’ = azu& and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ = a:; 

where E{sgn(X)XT};; represents a diagonal term of the 

matrix E{sgn(X)XT}. Suppose the input is i.i.d. uniform 
[-0.5,0.5] (which fulfills both stability criteria E{XXT} 
and E{sgn(X)XT}), the distribution of the disturbance is 

O.l*N(O, l), and the desired variance is 0.0025. This can be 

achieved by choosing 

E{sgn(X)XT};i; 

p = 0.01 for sign-sign, 

p = 0.04 for sign error, 

p = 
p = 9 for LMS. 

for signed regressor, 

The four algorithms were initialized at W = 0, and each was 
computed for 1 million iterations. Fig. 1 is the “simulated 

density” constructed by counting the number of times (WI 
falls into bins of width 0.1. Note that the final distributions 
are virtually identical to each other despite the fact that these 

are not particularly “small” values of the stepsize p .  Indeed, 
this illustrates our assertion that the results are not limited to 

“vanishing” p. 
Fig. 2 shows a time plot for the same inputs, disturbances, 

and stepsizes, with an initialization at W = 20. The four 

trajectories converge to the same process with variance 0.0025, 
as before, though the speed of convergence varies with the 

algorithm used. Not surprisingly, the algorithms which can 5 
respond to large errors by taking a larger step (LMS and signed 
regressor) converge faster than the algorithms which must react 
through the signum function of the error. This may not always 

be the case, however, since the relative performance of the 
algorithms may differ depending on the distributions of the 

input and disturbance processes. The import of the present 

work in this regard is that it shows how to fairly conduct 
such a study, thus allowing a more knowledgeable choice of 

algorithm and stepsize for a given application setting. 
A second important area in terms of performance is the 

algorithms ability to track a moving parameterization. Recon- 
sider (17). This ODE is forced by the .f $, which represents 

E 
b 

0.0 0.050 0.100 0.150 0300 0.250 

sigma = .OS 

Fig. 1. Predicted and actual error densities. 

1; Id 12 lo” . I d  

time 

Fig. 2. “Fair” convergence behavior simulation. 

the motion of the parameters that the algorithm is trying to 

identify. The term J H ( W )  represents the exponentially stable 
transient part (assuming all eigenvalues of linearization have 

positive real parts) that dies away as the algorithm converges 

to a region about the moving parameterization W*. Since (17) 
is essentially the same in all four cases (except for the details 
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Fig. 3. Tracking behavior simulation. 

of the linearization), this implies that all four algorithms have 
roughly the same performance in terms of tracking ability, 
presuming the motion of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW* is slow enough. 

To illustrate this, Fig. 3 shows a time varying W* superim- 

posed on plots of all four algorithms. As before, all four are 

driven by uniform [-0.5,0.5] inputs, the distribution of the 
disturbance is O.l*N(O, 1) and stepsizes are chosen so that all 

algorithms have a final variance of 0.0025. It is impossible 

to distinjuish the four plots visually. The mean-squared error 

WL - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwk was summed over the 10000 iterations, giving 

27.15 for LMS, 

27.07 for signed error, 
28.65 for signed regressor, 

30.79 for sign sign, 

which are the same to within experimental accuracy, and 

fairly close to the theoretical value of 25. We suspect the 
minor differences are due to the fairly large stepsizes involved. 

Typical applications of adaptive algorithms generally presume 
that W* is slowly varying. As shown above, this implies 

that it does not matter which algorithm is used in terms of 
tracking ability. Differences in tracking performance would 
undoubtedly arise, however, when the motion of W* becomes 

large. In this case, algorithms which converge faster will likely 
have an advantage over those (such as sign-sign) that have a 

bounded rate of change. 

V. CONCLUSION 

The behavior of four common adaptive filters has been ex- 

amined by relating the motion of the parameter estimate errors 
to a deterministic ordinary differential equation. Appropriate 

stability and instability conditions are derived based on the 
linearization of a smoothed version of the error update. The 

steady-state distributions are shown to be Ornstein-Uhlenbeck 
under mild conditions on the input and disturbance processes. 

A method of choosing the stepsize in terms of the desired final 
variance of the Ornstein-Uhlenbeck is introduced, allowing a 

fair comparison of the convergence speed of the algorithms. 
When used in a nonstationary environment (when the desired 

parameterization is changing), the four algorithms are shown 
to track the moving parameterization equally well, assuming 

the motion is slow enough. Clearly, one could hope to analyze 
other adaptive algorithms (such as the dual sign LMS, output 

error identification, various adaptive controllers, the median 

LMS, and decision directed equalization schemes) in a similar 
vein. Conditions for stability and instability, and rules that re- 

late stepsizes to the parameters of the convergent distributions 

should be obtainable. 

APPENDIX 

PROOFS OF MAIN THEOREMS 

This appendix gives the proofs of the major results of 
Section 11. A common reference for the mathematical frame- 

work needed to read this appendix may be found in [8], [15]. 

Let (S ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd )  be a complete separable metric space and let M ( S )  
be the space of finite measures on S with the weak topology. 

Let C(S) be the space of measures on [ O , c a )  x S such that 

for every p E C ( S ) ,  u([O,t] x S )  < 03 for each t 2 0. For 

p E C(S),  let pt denote the restriction of p to [0, t ]  x S. Let 
rt denote the Prohorov metric on M([O,t] x S )  and define i 
on C ( S )  by 

i ( p ,  v )  = Jo” exp(-t)l A rt (,ut, vt)dt. 

- 
C(A)  is defined as the space of all bounded continuous 

functions on the metric space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. For a metric space, E,  let 

DE[O, CO) be the space of right continuous E-valued functions 
with left limits endowed with the Skorohod topology. See [15] 

for definitions and properties of this space. 

We first state some preliminary notions from the theory of 
relative compactness of random processes and functions in 

Lemma 1: Let {(xn,pn)} c D ~ [ 0 , c a )  x C(S),  and 
CO). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(x,, p,) ---f (x, p). Let h E ??(E x S).  Define 

Let .z,(t) = p,([O,t] x S )  and z ( t )  = p([O,t] x S) .  
If x is continuous on [0, t] and limn+,ca z,(t) = ~ ( t ) ,  
then lim,+mun(t) = u(t).  

( x n ,  Z,, U,, p n )  * (222 ,  U, p)  in D E x % x % [ o ,  m) 
C(S) .  In particular, limn-,m ~ , ( t )  = u(t) holds at all 
points of continuity of z .  
The continuity assumption on h can be replaced by 

the assumption that h is continuous wt-a.e. for each t, 
where ut E M ( E  x S )  is the measure determined by 

vt(A x B )  = p { ( s , y )  : x ( s )  E A,s  5 t , y  E B}.  
In both a) and b), the boundedness assumption on h 
can be replaced by the assumption that there exists 
a nonnegative convex function ( on [ O , c a )  satisfying 

If (x,, z,,pn) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 (x, 2, IL) in DEx%[O,  x C ( S ) ,  then 
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for each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0. 

Proof ofLemma 1: Let h E C(E x S). By assumption, 

the p, converge and hence, are tight. Therefore, for each 
E > 0 and t > 0, there exists a compact K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc S with 

sup, pn([O, t] x K") 5 E .  If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx is continuous, then 

and if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzn( t )  -+ z ( t ) ,  it follows that 

which verifies part a). 
If (x,,~,) -+ ( 2 , ~ )  in the Skorohod topology, then there 

exist continuous, strictly increasing mappings Q, of [O, CO) 

onto [0, m) such that V,(t) -+ t for each t and (x, o Q,, z, o 

7,) + ( x , z )  uniformly on bounded intervals. Define f i n  so 

that ji,( [0, t] x M )  = p,([O, ~ , ( t ) ]  x M )  for any measurable 
set M ,  and observe that ji, -+ p in C(S). But the uniformity 

of the convergence of x, o V ,  to x and z, o Q, to z implies 

[OJJn (t)l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx s 

= 1 h(x, 0 Q,(s), Y&, (ds x dy) 

P,tI x s 

-+ 1 h(x(s), Y ) P  (ds x dY) , 
P,tI x s 

(26) 

for each fixed t. We want to show that the convergence is 
uniform on bounded intervals. Let ii,(t) denote the integral 

on the left. It is sufficient to show that for any sequence 

satisfying t, -+ t,ii,(t,) - u(tn) -+ 0. But this convergence 

holds if for any sequence satisfying t, 2 t and t, t t, 
we have ii,(t,) -+ u(t) and for any sequence satisfying 
t ,  < t and t, -+ t, we have f in@,) -+ u(t-). Since for 

all T , S ,  Ifin(s) - cLn(t)l 5 I I  hll I z, 0 Q,(S> - 0 ~,(t)l, 
the pointwise convergence of ii, and the uniformity of the 

convergence of z, o V ,  imply, in the first case, that 

and in the second case, that 
' 

Gn+mlG,(t,) - u(t-)  I 
- - limn+, lim Iii,(t,) - ii,(t - €)I 

5 b - + o  lim llhll * 1% 0 Qn(tn) - z,o V,(t - €)I 
= 0 ,  

E'O 
- 

n+m 

which completes the proof of part b). 

Define vF(A x B )  = /l,{(s,y) : x, o v,(s) E A,s < 
t , y  E B}. Then, for a fixed t, the fact that (26) holds for 

each h E C(E x S )  is just the assertion that v: + ut. 
We claim that this convergence is uniform on bounded time 

intervals. If not, then there exists a bounded sequence t, and 

an E > 0 such that G,,,p(vz",,vtn) 2 E where p is the 
Prohorov metric on M ( E  x S). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs in the proof of part b), 
without loss of generality, we can assume that t, -+ t and 

that either t, 2 t for all n or t, < t for all n. In the first case, 

vtn + vt and the uniformity of the convergence in (26) for 
h E c ( E  x S )  implies that vz", + vt, so p(vFn,vtn) -+ 0. 

Similarly, in the second case, vt, + vt- and it follows 

that vz", + vt-, so again p(vt",,vtn) --f 0. Note that if h 

is vt almost surely continuous then it is vt- almost surely 
continuous. For t, -+ t with t, 2 t, the continuous mapping 

theorem gives Gin(&) -+ u(t);  and u(t,) --+ u(t); for t, -+ t 
with t, < t, un(tn) -+ u(t-) and u(t,) -+ u(t-). Part c) 
then follows as in the proof of part b). 

Dropping the boundedness assumption on h and assuming 
(25), part d) follows by approximating h by h, = c A 
((-4 v h). n 

Let us define 

L'6(x,T) = inf{ts} maxtsupttls<t<t,+l I x ( s >  - x ( t ) l ,  
where {it} ranges over all partitions of the form 0 = t o  < 
tl < ... < t,-1 < T 5 t, with minl lz l ,  (tt - t,-l) > S 
and n 2 1. 

Lemma 2: A sequence {x,} C DE[O, CO) is relatively 
compact, if and only if the following two conditions hold. 

a) For every rational t 2 0, there exists a compact set l?t 

b) For each T > 0, 

such that x,(t) E rt for all n. 

- .  
lim6+o lim,+,p6(x,, T )  = 0 .  

Proof of Lemma 2: See [15, pp. 123-1251. 0 

Let (E,T-)  be a metric space, B(E)  the Bore1 0-algebra 
of subsets of E. Given E > 0, define for all F E B(E),  
F" = {x E E : infYEFT-(x,y) < Q}. 

Theorem 4: Let ( E ,  T - )  be complete and separable, and let 
{X,}  be a family of processes with sample paths in DE[O, CO). 

Suppose we have the following. 

a) For every Q > 0 and rational t 2 0, there exists a 

compact set l?s,t c E such that 
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Proof of Theorem 4: 

Lemma 3: Let {X,] 

compact. 

See [15, pp. 128-1291. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

be a sequence of processes with 

lim6-,o supn &5(x,, T )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 8.s. 

But almost sure boundedness implies stochastic boundedness 
and convergence almost surely implies convergence in prob- 

ability, so conditions a) and b) of Theorem 4 hold and the 

lemma follows. 0 

Proof of Theorem I :  For simplicity, assumed that C.2) 
holds with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{w : lwl 5 K} replaced by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA!?Id. The more general 

result can be obtained by first multiplying H (and hence, 
H )  by a continuous function with compact support which is 
identically 1 on {w : IwI 5 K}. Define 

- 

[tli4-1 

M,(t) = (ff(Wk, Yk, &+l) - H(Wk, Yk))P (29) 
k=O 

and for B E B(El), define 

Plpl-1 

~,([O,tI x B )  = l B ( Y k ) P  
k=O 

and note that the ergodic theorem implies I?, -+ m x vy  

almost surely. 

Now, let us consider bounding the increments of W,(t): 

SUP IWJt + 3) - W,(t)I 
s < h  

[(t+h)lPI 

k = [ t / , ] + l  

5 SUP, IH(w,Yk,q(w,Yk,'$k))ICL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
as. 
-+ W s u P ,  IH(w,Yk,q(w,Yk,'$k))ll = C h ,  (30) 
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IwP(t+ ') - wP(t)I  5 maxl<l<N+l[supo<s<h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw p ( l h  + s) 
- W , ( W  +SUPO<S<Zh P,( lh  + s) - W,(lh)l I. Therefore, 
- 
lim,+0 supt<Tsups<h IWp(t f s) - Wp(t)I 5 Ch * 

(31) 

Lemma 3 shows that { W,} is relatively compact. 

By a similar argument, {M,} is also relatively compact. 
By the definition of p, M, is a martingale. Condi- 
tion C.2) ensures that for each t, the total variations 
up to time t, {Tt (Mp)}  is bounded in 151. (Note 

that IEp(t)l 5 xf2'- '(sUPw IH(w,Yk,q(w,Yk,'$k))l + 
sup, IH(w, Yk)l )p . )  The ergodic theorem and C.2) imply 
that the right-hand side of the previous inequality is a 

uniformly integrable sequence (in p) of random variables. 
Hence, {Mp( t ) }  is a uniformly integral sequence of random 
variables. This uniform integrability implies that as p -.+ 0, 

any limit point of {M,} is a martingale. Since any limit point 
will be continuous and of finite variation, M, + 0. 

We now may write 

W,(t) = Y d O )  + M,(t) 

{W,} and {M,} are almost surely relatively compact se- 
quences of functions in &d [O, t ] .  We note that all possible 
limit points of the summands being continuous (almost surely) 
is sufficient to assert that the relative compactness of the 

summands implies relative compactness of the sum. The 
theorem (with {w : 1wI 5 K }  replaced by md) now follows 
by invoking Lemma la). 

We now wish to prove the assertion that any limit of W,?K 
will satisfy the ODE for t < rK. First, note that along some 

sequence W;nxpn is converging in probability to a solution 
of the ODE, W ,  i.e., lim,,+o f'(supo~t<TK,n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA~ IWpn ( t )  - 
W(t)I > E )  = 0. Now, for some w,  p, such that 

T A r z .  Hence, limPn+o f'(SUPO<t<TK-6AT IWPn(t) - 
W(t)I > E )  = 0, for any S > E .  Hence, we have that 
the limit satisfies the ODE for t < rK-'. Since W(t )  is 
continuous, lim6+0 rK-& = rK.  Since S > 0 is arbitrary, 

the final assertion is verified. 0 

Proof of Corollary 1: Under the assumptions of the 

corollary, define F,,t E M ( Rd x El x E3) by 

SUPO<t<TKpn A T  IW,n ( t )  - W ( t ) I  5 € 9  we have A rK--E 5 

[ t l w l -  1 

p p , t ( A  x B x c) = IA(Wk)IB(yk)IC('$k)P 
k=O 

and note that 

W,(t) = W,(O) 

B(z, y, z)?,,, (dz x dy x dz)  . 
+ J , d x E , x E 2  

Define by ?;,,(B x C) = f,,t(Rd x B x C). Note that 

the ergodic theorem implies + t . zq~ x v+ uniformly 

in t 5 T almost surely. Fix an w for which (30) holds and 
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f'F,t -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt . vy x v$. By (30) and Lemma 2, the sequence of 

functions {W,(.,w)} is relatively compact as a sequence of 

functions in DRd [0, m). Along a subsequence of p's such that 

WIL(.,w) --t w( -), Lemma 1 implies I',,t(w) + rt given by 

f t ( A  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx B x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC) = 

IA(w(s))IB(Y)IC(z) d.5 x d l / y (Y )  x dv$(z) * 

Under the stated assumptions, 

surely, and the last part of Lemma A.l implies that 

is continuous Ft-almost 

~ ( t )  = w0 + Lt &(w(s)) d s .  

Consequently, if the solution of this equation is unique there is 

only one possible limit point for {W,(.,w)} and the assertion 
0 

Proof of Theorem 2: With I?, defined as in the proof of 

of almost sure convergence follows. 

Theorem 1, now define 

2, (t  ) =M, (t ) M, ( t y  

Observe that the independence of {$k} and { Y k }  implies 
that M, and 2, are martingales with respect to the filtration 
given by $ = V a(L,) (where a(L,) is the a-algebra 

generated by L, for all time). Theorem 1 implies that {W,} 
is converging in probability. Hence, there is a subsequence 
converging almost surely. Along this subsequence, Lemma 1 
implies 

. .  
(32) 

Hence, we have convergence of these integrals in probability. 
(32) and C.3) assure that {M,} satisfies the conditions of the 

martingale central limit !heorem (e.g., [15, Theorem 7.1.4]).' 
The convergence of {M,} to a Brownian motion (i.e., a 

continuous process with independent, Gaussian increments) 

follows. 
In a similar fashion to the argument given in the proof 

of Theorem 1 for the uniform integrability of the {M,(t)} 
sequence, C.2) and C.3) imply that { ~ , ( t ) }  and {Z,(t)} are 
u_niformly integrable sequences. This fact and the fact _that 

Alp  and 2, are {@}-martingales implies that the limit M of 

{M,  (4 1 and 

2(t) = M ( t ) Z f ( t y  - 1" G(W(s)) ds (33) 

are martingales with respect to the filtration given by Gt = 
a(A?(s) : s 5 t )  V a(L) .  Denote the distribution of M ,  which 

is uniquely determined by G, by PG. Let (Cl, F,  P )  denote the 

probability space on which M and L are defined. Suppose that 

N is a nonnegative, Borel function defined on c s d  [o, m) such 

SThe main additional condition is that lim,,o E{suptlT l&f,(t) - 
$fw ( t - )  1 2 }  = 0, which is true in our case. 

that E P [ N ( L ) ]  = 1. Define the probability measure Q on 3 
by dQ = N ( L )  dP. Then, and 2 are still {Gt}-martingale_s 

under Q (that is, on the probability space (a ,F ,  Q)), so M 
has distribution PG under Q. Consequently, for any bounded, 
Borel function F on c % d  [0, m) 

E P [ F ( M ) N ( L ) ]  = E Q [ F ( f i ) ]  

= E ' [ F ( f i ) ]  

= E P  [F(G)] E p [ N ( L ) ] .  

Since N can be any nonnegative, bounded Borel function 
normalized so that E p [ N ( L ) ]  = 1, the desired independence 

follows. 
The process V, satisfies 

= V,(O) + G P ( 4  + U t )  

The first three terms on the right of (34) of this _equation 
converge by hypothesis and the convergence of {M,}; the 

fourth term is asymptotic to 

(34) 

and the fifth term goes to zero by the differentiability of H 
and W .  For compact K C Rd, let T: = inf{t : V,(t) K } .  

We now assert that {R,(. A T:)} is relatively compact. 
Note that the processes are stopped at the time {V,} becomes 

too large. Therefore, V, is bounded in the integral defining 

the stopped R,. Hence, we may bound the increments of the 

stopped R, via C.3) and the convergence of I?,. We then 
use an identical argument to the one used for the relative 

compactness of W, in the proof of Theorem 1 to obtain the 

relative compactness of { R, (. A T:) }. 
Since all terms on the right of (34) are asymptotically almost 

surely continuous, the relative compactness of { V,(. A 7:)) 
follows from the relative compactness of the individual terms 

on the right. Finally, any limit of Vk of {V,(. AT:)} must 

satisfy (15) up to ?-K = inf{t : V ( t )  K } .  Since the solution 

of (15) exists and is unique for all t 2 0, V K ( ~ )  = V(t )  for 

t 5 7 K  and ?-K -+ m as K increases to Rd. It follows that 

Proof of Theorem 3: A consequence of the hypothesis is 

that maxk~[~/,l pIAkl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 0. This observation ensures that 
{A , }  satisfies condition C2.2(i) of [20]. Observing that 

v, =$ v. 0 
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the first conclusion follows by theorem 5.4 of [20]. The second 
conclusion follows by the same theorem after writing 

Mf(s)w(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAds zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ M f ( t ) W ( t )  + M:(t). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 +l 
REFERENCES 

[1] M.A. Aizerman, E.M. Braverman, and R.I. Rozonoer, “The method 
of potential functions for restoring the characteristic of a function from 
randomly observed points,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAutomat. Remote Contr., vol. 25, no. 12, 
pp. 822-830, Dec. 1964. 

[2] B.D.O. Anderson, R.R. Bitmead, C. R. Johnson, Jr., P.V. Kokotovic, 
R.L. Kosut, I.M. Y. Mareels, L. Praly, and B. D. Reidle, Stability of 
Adaptive Systems: Passivity and Averaging Analysis. Cambridge, MA: 
MIT Press, 1986. 

[3] B. D. 0. Anderson, I. M. Y. Mareels, W. A. Sethares, and C. R. Johnson, 
“Averaging theory for sign-sign LMS,” in Proc. 26th Ann. Allerton 
Conf: Commun., Contr., and Comput., Sept. 1988. 

[4] A. Benveniste, M. Goursat, and G. Ruget, “Analysis of stochastic 
approximation schemes with discontinuous and dependent forcing terms 
with applications to data communication algorithms,” IEEE Trans. 
Automat. Contr., vol. AC-25, no. 6, pp. 1042-1058, Dec. 1980. 

[5] A. Benveniste, M. Metivier, P. Priouret, Adaptive Algorithms and 
Stochastic Approximations. 

[6] N.J. Bershad, “Comments on ‘Comparison of the convergence of 
two algorithms for adaptive FIR digital filters,’ ” IEEE Trans. Acoust., 
Speech, Signal Processing, vol. ASSP-33, pp. 1604- 1606, Dec. 1985. 

[7] N. J. Bershad and L. Z. Qu, “On the probability density function of the 
complex scalar LMS adaptive weights,” IEEE Trans. Acoust., Speech, 
Signal Processing, vol. 37, no. 1, pp. 43-56, Jan. 1989. 

[8] P. Billingsley, Convergence of Probability Measures. New York: John 
Wiley, 1968. 

[9] R. R. Bitmead, “Convergence in distribution of LMS-type adaptive 
parameter estimates,” IEEE Trans. Automat. Contr., vol. AC-28, no. 1, 
pp. 54-60, Jan. 1983. 

[lo] -, “Persistence of excitation conditions and the convergence of 
adaptive systems,” IEEE Trans. Inform. Theory, vol. IT-30, no. 2, 
pp. 183-191, Mar. 1984. 

[ll] CCIT Red Book, Recommendation (3721, Tome 111-3, Oct. 1984. 
[12] S. Dasgupta and C.R. Johnson, Jr., “Some comments on the behavior 

of sign-sign adaptive identifiers,” Syst. Contr. Lett., vol. 7, pp. 75-82, 
Apr. 1986. 

[13] D. L. Duttweiler, “Adaptive filter performance with nonlinearities,” 
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-30, 

New York: Springer-Verlag, 1990. 

pp. 578-586, Aug. 1982. 
L. J. Eriksson, M. C. Allie, and R. A. Greiner, “The selection and 
application of an IIR adaptive filter for use in active sound attentuation,” 
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-35, no. 4, 
pp. 437-438, Apr. 1987. 
S. Ethier and T. Kurtz, Markov Processes-Characterization and Con- 
vergence. New York: Wiley-Interscience, 1986. 
A. Gersho, “Adaptive filtering with binary reinforcement,” IEEE Trans. 
Inform. Theory, vol. IT-30, no. 2, pp. 191-198, Mar. 1984. 
G. C. Goodwin and K. S. Sin, Adaptive Filtering, Prediction, and Con- 
trol. Englewood Cliffs, NJ: Prentice-Hall, 1984. 

[18] S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice- 
Hall, 1986. 

[19] N. S. Jayant and P. Knoll, Digital Coding of Waveforms. Englewood 
Cliffs, NJ: Prentice-Hall, 1984. 

[20] T.G. Kurtz and P. Protter, “Weak limit theorems for stochastic in- 
tegrals and stochastic differential equations,” Ann. Probab., vol. 19, 

[21] H. J. Kushner, Approximation and Weak Convergence Methods for Ran- 
dom Processes. Cambridge, MA: MIT Press Series in Signal Process- 
ing, Optimization, and Control, 1984. 

[22] H. J. Kushner and D. S. Clark, Stochastic Approximation Methods for 
Constrained and Unconstrained Systems. New York: Springer-Verlag, 
1978. 

[23] H.J. Kushner and H. Huang, “Asymptotic properties of stochastic 
approximations with constant coefficients,” SIAM J. Contr. Optimizat., 
vol. 19, no. 1, pp. 87-105, Jan. 1981. 

[24] H. J. Kushner and A. Shwartz, “An invariant meausre approach to the 
convergence of stochastic approximations with state dependent noise,” 
SIAM J. Contr. Optimizat., vol. 22, no. 1, pp. 13-27, Jan. 1984. 

[25] -, “Weak convergence and asymptotic properties of adaptive filters 
with constant gains,” IEEE Trans. Inform. Theory, vol. IT-30, no. 2, 
pp. 177-182, Mar. 1984. 

[26] R. W. Lucky, “Techniques for adaptive equalhaiton of digital com- 
munication systems,” Bell Syst. Tech. J., vol. 45, pp. 225-286, Feb. 
1966. 

[27] L. Ljung, “Analysis of recursive stochastic algorithms,” IEEE Trans. 
Automat. Contr., vol. AC-22, no. 4, pp. 551-575, Aug. 1977. 

[28] M. Metivier and P. Priouret, “Applications of a Kushner and Clark 
lemma to general classes of stochastic algorithms,” IEEE Trans. Inform. 
Theory, vol. IT-30, no. 2, pp. 140-150, Mar. 1984. 

[29] -, “Theoremes de convergence presque sure pour une classe 
d’algorithmes stochastiques a pas decroissants,” Prob. Th. Rel. Fields, 
vol. 74, pp. 403-428, 1987. 

[30] J. L. Moschner, “Adaptive equalization via fast quantized state meth- 
ods,” Tech. Dept. 6796-1, Inform. Syst. Lab., Stanford Univ., 1970. 

[31] G. Pflug, “Stochastic minimization with constant step-size: Asymptotic 
laws,” SIAM .I. Contr. Optimizat., vol. 24, pp. 655-666, 1986. 

[32] W. A. Sethares and C. R. Johnson, Jr., “A comparison of two quan- 
tized state adaptive algorithms,” IEEE Trans. Acoust., Speech, Signal 
Processing, vol. 37, no. 1, pp. 138-143, Jan. 1989. 

[33] W. A. Sethares, D.A. Lawrence, C. R. Johnson, Jr., and R. R. Bitmead, 
“Parameter drift in LMS adaptive filters,” IEEE Trans. Acoust., Speech, 
Signal Processing, vol. ASSP-34, no. 4, pp. 868-880, Aug. 1986. 

[34] W.A. Sethares, I. M. Y. Mareels, B. D. 0. Anderson, C. R. Johnson, Jr., 
“Excitation conditions for sign-regressor LMS,” IEEE Trans. Circuits 
Syst., vol. 35, no. 6, pp. 613-625, June 1988. 

[35] D.H. Shi and F. Kozin, “On almost sure convergence of adaptive 
algorithms,” IEEE Trans. Automat. Contr., vol. AC-31, pp. 471-474, 
1986. 

[36] V. Solo, “The limiting behavior of LMS,” IEEE Trans. Acoust., Speech, 
Signal Processing, vol. 37, pp. 1909-1922, Dec. 1989. 

[37] D. W. Strook and S. R. S. Varadhan, Multidimensional Difusion Pro- 
cesses. Berlin: Springer-Verlag, 1979. 

[38] N. A. Verhoeckx and T. A. C. M. Claasen, “Some considerations on 
the design of adaptive filters with the sign algorithm,” IEEE Trans. 
Commun., vol. COM-32, no. 3, pp. 258-267, Mar. 1984. 

[39] M. T. Wasan, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAStochasticApproximations. Cambridge: Cambridge Univ. 
Press, 1969. 

[40] B. Widrow, J. M. McCool, M. G. Larimore, and C. R. Johnson, Jr., “Sta- 
tionary and nonstationary learning characteristics of the LMS adaptive 
filter,” Proc. IEEE, vol. PROC-64, no. 8, pp. 1151-1162, Aug. 1976. 

Englewood 
Cliffs, NJ: Prentice-Hall, 1985. 

pp. 1035-1070, 1991. 

[41] B. Widrow and S. D. Steams, Adaptive Signal Processing. 


