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WEAK CONVERGENCE OF CONDITIONED SUMS
OF INDEPENDENT RANDOM VECTORS

BY
THOMAS M. LIGGETT

Abstract. Conditions are given for the weak convergence of processes of the form
(Xa(2) | Xa(1) € E™) to tied-down stable processes, where X,(¢) is constructed from
normalized partial sums of independent and identically distributed random vectors
which are in the domain of attraction of a multidimensional stable law. The con-
ditioning events are defined m terms of subsets E™ of R? which converge in an appro-
priate sense to a set of measure zero. Assumptions which the sets E® must satisfy
include that they can be expressed as disjoint unions of ‘‘asymptotically convex™
sets. The assumptions are seen to hold automatically in the special case in which E*
is taken to be a “natural” neighborhood of a smooth compact hypersurface in R®.

1. Introduction and netation. Empirical distribution functions have been widely
studied in probability theory and statistics. Often, the fact that they may be
represented as conditioned sums of independent random variables has played an
important role in these investigations. This has led to an interest in the behavior of
these sums under various forms of conditioning. It is the purpose of this paper to
present conditions under which certain stochastic processes, obtained from the
partial sums {S,, k<n} of independent identically distributed random vectors in
the domain of attraction of a stable law by conditioning on information concerning
S,, converge to a limiting process.

The following, for example, is a consequence of the main theorems of this paper
if the basic random vectors are nonlattice and require no centering constants:
When properly normalized and conditioned on the event {b,— v, < |S.|| £b,+ 74},
the partial sums (S,, k<n) converge to a stable process which is tied down at
time one to the surface of the unit sphere in R%. Here {b,} is the usual sequence of
normalizing constants and {y,} is any sequence of positive numbers which is
bounded away from zero and is o(b,). If, instead, we condition on the event
{IISz| £ yx}, the limiting process is tied down to the origin at time one.

The limiting process will be a multidimensional stable process X(¢) which is
conditioned, in a certain sense, on the event that X(1) lies in a set E. In all cases of
interest, E will be a set of Lebesgue measure zero in R%, so there is no unique
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196 T. M. LIGGETT [November

natural way of defining the conditioned process. Roughly speaking, the non-
uniqueness in this definition is a consequence of the fact that given that X(1) is in
E, one could assign different weights to the event that X(1) lies in one part of E as
opposed to another part of E. It is for this reason that for a fixed stable process X,
the processes which occur as limits of the conditioned approximating processes are
parametrized not by the set E on which conditioning takes place in the limit, but
by measures p on R In a sense, u(dx) is the relative importance one gives to the
possibility that X(1) is in dx when given that X(1) is in E, the support of u.

If the approximating processes constructed from the partial sums are denoted
by X.,(), the conditioning will usually be on the event {X,(1) € E™} for an appro-
priate choice of sets E™ in R% which decrease to E. Most of the assumptions to be
made in the main theorem (Theorem 4) concern these sets E™. These conditions
are of a somewhat involved and seemingly technical nature. It is seen in §4, how-
ever, that they are satisfied in many cases, and that they can often be verified quite
easily. In fact, the choice of this particular form of the conditions on the sets £™
was motivated by the situation considered in §4, where E is taken to be a smooth
hypersurface in R% and E™ is taken to be a sequence of “natural” neighborhoods
of E.

In an earlier paper [8], the author investigated the question of weak convergence
of these conditioned processes for the case in which d=1, E is a singleton in R?,
and {E"} is a decreasing sequence of intervals about E. The present emphasis is on
weak convergence to stable processes which are tied down at time one to more
general sets in R?, such as lower dimensional hypersurfaces. Wichura [13] has
obtained some related results. His treatment, insofar as it relates to sums of
independent random vectors, deals with the case in which the random vectors are
in the domain of attraction of a Gaussian law, and are lattice distributed or have
a continuous density. Furthermore, the sets E” and E are singletons, in which
case there is a unique natural way of defining the conditioned processes.

The main results concern a sequence {§,} of independent, identically distributed,
d-dimensional random vectors with common characteristic function g(s). The
distribution of the vectors &, is assumed to be nondegenerate and normalized in
the sense of Stone [10]. That is, the distribution of &, does not have its support in
any (d— 1)-dimensional hyperplane, and “there is an integer dy, 0=<d, =d, and
there are real numbers «'%, . . ., «®’ such that (i) if (for some k) s**#0 and either
di <k £d or [s®] <2m, then |g(s)| <1; and (ii) if (for some k) 1 £k =d;, s =2m,
and s =0 for j#k, then g(s) =exp (2mia®™).” In other words, the coordinate system
of R is chosen so that E, has a lattice distribution of span one in the first d;
directions, and a nonlattice distribution in the remaining directions. Letting S,
denote the partial sum &, + - - - +§,, we define the support lattice of S, by

D, = {xe R | x®—na® is an integer for 1 < k £ d,}.

We assume that the distribution of &, is in the domain of attraction of a non-
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1970] CONDITIONED SUMS OF INDEPENDENT RANDOM VECTORS 197

degenerate stable law. Specifically, there are normalizing constants ,>0 and a,
so that (S,—a,)/b, converges in distribution to a random vector which will be
called X(1). The support lattice of (S, —a,)/b, is D¥=(D,—a,)/b,. It is known [7]
that the characteristic function of the nondegenerate d-dimensional stable random
vector X(1) has the form

S(s) = exp {ib-s—cw\(s, @) —icw,(s, «)},
where

wi(s, @) = f |6-5| dH(®),

wyls, @) = —tani’szsign (6-5)|0-s|* dH®) if o« # 1,

- %—f(ﬂ-s) log |0-s| dH(®) ifo=1,

b is a constant vector in R%, ¢ is a positive number, « is in (0, 2], and dH(0) is a
probability measure on the surface of the unit sphere in R? which does not con-
centrate on any lower dimensional subspace of R¢. Since dH(8) does not concen-
trate on a lower dimensional subspace, |f(s)| £exp {—¢|s]|*} for some £>0. So,
fe Li(R%), and it follows that X(1) has a density p(x) which is continuous and
tends to zero as || x| — co. Here |- || refers to the ordinary norm in R®. Let

0 ={xeR|pkx) > 0.

Weak convergence will be considered in the space D?[0, 1], which is the topo-
logical product of d copies of the space D[0, 1]. D[0, 1] is the space of real-valued
functions on [0, 1] which are right continuous and have no discontinuities of the
second kind. There is a metric in D[0, 1] which makes it into a complete separable
metric space whose relative topology on the subspace of continuous functions is
the same as the topology of uniform convergence. A description of this metric and
of various results concerning weak convergence in D[0, 1] may be found in
Chapter 3 of Billingsley [1].

The basic processes to be considered are defined as follows. For each n, let X,
be the random element of D?[0, 1] given by

Xn(t) — S[(n+1)2]_([§:l+l)t]/n)an for O St< 1’

M

— Sn_an

b for ¢t =1,

where [-] is the greatest integer function.

2. Preliminary results. As in the one-dimensional case, the main theorems for
the conditioned processes follow from two basic results. The first of these is the
weak convergence of the processes X,,, which is stated as Theorem 1 below, while
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the second is the local limit theorem for the partial sums S,, which appears as
Theorem 2. We will need the function n(z) which is defined by

7n(t) = b(r—11'%) ifa#1,
- %tlogtfedﬂ(e) ifa=1,

where the quantities b, ¢, and dH(8) are those appearing in the expression for the
characteristic function of X(1) in §1.

THEOREM 1. X, converges weakly to X in D?[0, 1], where X(t) is a temporally
homogeneous process with independent increments which has no fixed times of
discontinuity and whose one-dimensional distributions are the same as those of
n(2)+11eX(1).

The proof of this theorem follows that of Theorem 6 of [5], which is exactly the
above result for the case «=2. Hence it will not be reproduced here. The only
change in the argument is that Theorem 1 of [8] is used in place of Donsker’s
theorem. For the details of the proof, see Lemma 3.6 of [9, p. 23].

To obtain the general results of §3, we will need versions of the local limit
theorem which deal with the probability that X,(1) is in a small convex set and, in
fact, that it is in a small set which is nearly convex in a sense which will be made
precise later. Since the local limit theorem which is available (Theorem 1 of [10])
applies only to (d—d,)-dimensional cubes, it is necessary to prove the following
lemma, which shows that uniformly bounded convex sets can be approximated
uniformly by unions of cubes. Without the uniformity statement, the proof of the
lemma would be much simpler. However, this uniformity will be necessary in the
next section.

In order to obtain the required uniformity, we will introduce the standard metric
topology on the class of nonempty compact convex subsets of R*. For this purpose,
if >0 and A4 is any subset of R¥, define the é-neighborhood of 4 by

2) N(4; 8) = {xeR" |inf Ix—y| < 3}_
yeA
Then, if C, and C, are nonempty compact convex subsets of R¥, the distance
A(C,, C,;) between C, and C, is defined to be
inf{8 > 0] C; = N(Cy; 8)}+inf{d > 0| C; = N(Cy; 3)}.

It is known that this is, in fact, a metric [4, p. 60]. Furthermore, by the Blaschke
Selection Theorem [4, Theorem 32], the class of uniformly bounded compact
convex subsets of R* is compact in this metric topology. We may now proceed to
the lemma.

LemMMA 1. For £>0 and integers ny, . . ., n,, define

I'm) = I*(ny, ..., m) = {XeR* |(m—De < xP S mefori=1,..., k}
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1970] CONDITIONED SUMS OF INDEPENDENT RANDOM VECTORS 199

For a bounded convex subset C of R¥, let V(C) be the union of all I°(n) which have
the property that I°(n) N\ 0C# . Then, for each constant M, m(V,(C)) — 0 as
e — 0 uniformly for all convex sets C such that the diameter of C is <M. Here m,
denotes k-dimensional Lebesgue measure.

Proof. Since the closure of a convex set is convex, we may without loss of
generality, consider only compact convex sets. Also, since the statement of the
lemma is invariant under translations in R¥, we may assume that all convex sets
to be considered are contained in a fixed sphere in R¥. By the Blaschke Selection
Theorem, it is now sufficient to prove that if C,, and C are nonempty compact
convex sets such that

ACp, C)—0 asm— 0,

and if ¢, — 0, then m(V, (C,)) — 0.
Now, if x e ¥, (Cn) then x € I*=(n) for some n such that I*=(n) N 9C,# &.
So, there is a y € 8C,, so that

Ix—y| < eak*2
Using the definition of the metric A, we see that for this y, there is a z € &C so that

Hence, given 7>0, if m is so large that ¢,k'24+ A(C,, C)<n we have V, (Cn)
contained in N(0C; n). Since oC is compact and m,(0C)=0, we see that

m[N(@C; 9)] —0

as n — 0. This completes the proof of the lemma.

The next step is to use this approximation lemma to extend Stone’s local limit
theorem to convex sets. In order to state the following result, it is necessary to
define a sequence v, of measures on R? which are essentially the Haar measures of
the support lattices D¥. If 4 is a Borel measurable subset of R, 4 N D¥ can be
regarded as a union of countably many (d—d;)-dimensional Borel measurable
sets. So, we may define

v(A) = my_q,(A N D}Y)/bs.

Here it is understood that mo(4 N D¥) is the number of points in the set A N D¥.
The set y+ b, C denotes, as usual, the set {y+b, x| xe C}.

THEOREM 2.
P(X,(1) € y+b;*C) = va(y+b; *Chp(y) +0(b; %)

where, for each finite M, bio(b; %) — 0 uniformly for all y € R® and for all convex
subsets C of R® such that supycc |X| S M.

Proof. For each n, D¥ is a countable union of disjoint (d—d,)-dimensional
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hyperplanes, which we may denote by {Hj,k=1}. Let =: R* > R*~% be the
projection defined by

a(x®, .., xP) = (x| XD,

If we let Qi==[(b,HY) N (b,y+C)], OF is a convex subset of R%~%, and has a
smaller diameter than C does in R%. In what follows, m=(m;, ..., my_4) will
range through the integer lattice of R¢~%,

For each pair of positive integers k£ and n, let

®) Up= > P(X,(1)e H}, n(bX,(1)) € I5(m)),
I5(m) < Q;

and

) Tp= > P(X(1)e HE, n(b,X, (1) € I°(m)).

I5(m) N QR = o

We will show that T7 is negligible compared with b, ¢, but that b2U} is approxi-
mately equal to p(y)m,_.(Or). Let zi(m) be the unique point in H: with the
property that =(z3(m)) is the midpoint of the cube b; '/%(m). An application of
Theorem 1 of [10] then shows that, as n — o,

P(Xy(1) € Hi, n(b,X4(1)) € I°(m)) = by “e?~“1p(zi(m)) + o(bic )

uniformly for all k, all m, and all positive ¢ which are bounded above.
If m is such that I5(m) N QF+# @, there is a w € b, H} which satisfies =w & 15(m)
N QF. Then w e b,y+C, so |b,y—w]|| < M. Furthermore,

Iw—"b,z2(m)|| = |=w—=(bzp(m))| < e(d—dy)2/2.

So, |y —zp(m)| < (M +e(d—d,)*/?)/b,. Using this inequality, the uniform continuity
of p(-), and the fact that the number of terms in each of the sums (3) and (4) is
bounded by [2M +2¢]2~%1%1-% we have

Ut = pWbamy_a,f U 1 ‘(m)}+ [2M +2e]~ %16%1~%0(by %),

15(m) < Qf;

and
% = p(y)by *my_ d1{ U I ‘(m)} +[2M +2¢]* 41641~ %0(by %),

Bm)NIQE + o

where blo(b, ?) — 0 uniformly for all k and all bounded e.
Now, let K, be the set of integers k such that Q}# @. The number of elements
in K, is bounded in n and in C as long as supy.c | x| £ M. By Lemma 1,

lim lim sup sup b3T7 = 0.

&0 n-» o k
Furthermore, since we can write

baUL = p(Y)ma- o (QF) + [2M +26]* %1281~ %(1)
S bA(UR+TR)+2[2M + 2]~ %121~ %0(1),
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it follows that
&) lim lim sup sup | p(y)mq-a,(Q) —b2UE| = 0.

To conclude the proof of the theorem, note that the first two lines below are true
by definition, and that they, together with (5), imply the third:

b D> Up < biP(X, (1) ey+b;1C) < b > (Up+Tp),

keKy keKy
by +b71C) = bi=% > my_g,[(4+b:*C) N HE = D my_y (QD),
keKp keKp

lim b3 P(X(1) € y+b; 1C)—vily + b7 *Chp(y)| = 0.

3. General conditioned convergence theorems. The two principal theorems in
this section give conditions on a sequence of Borel measurable sets E*< R¢ which
guarantee that the processes (X, | X,(1) € E™) converge weakly to a limiting process.
The first of these considers the case in which the sets £ converge to a point of R¢
in a sense to be defined, while the second uses this result to obtain a similar con-
clusion for sets E® which converge to a more general set in R%

It will always be the case in what follows that the event {X,(1) € E™} has positive
probability, at least for sufficiently large n. So, the conditioned processes

Xn | Xa(1) € E™)
are defined simply as measures on D?[0, 1] which take the value
PX,cA4|X(1)eE™

at each measurable subset 4 of D?[0, 1]. With this definition, we are in a position
to state the following theorem.

THEOREM 3. Let y € R® be such that p(y) >0, and let {E"} be a sequence of Borel
measurable subsets of R* which satisfy the following conditions:

(©) lim sup |z—y| =0,
1+ zeE"
) ~ sup [b, diameter (E")] < o,
and
® inf [bw.(E")] > .

Suppose there are two sequences of Borel measurable convex sets {C™} and {F"}
which satisfy C*< E*< F™ and

) lim bl (FM\C™) = 0.
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Then the sequence of processes (X, | X (1) € E™) converges weakly in D*[0, 1] to a
process Y, with finite-dimensional distributions given by

P(Y, (1) € Ay, ..., Yy (t,) € Ax)

_ f P1-o(Y—Zy)
A Ak J26))

for0<t;<---<t<1; YAL0)=0 and Y,(1)=y. Here p, is the density of X(t):

pdx) = t—{m; P (%(‘Q)

P(X(t,) edz,, ..., X(t) € dzy)

REeMARKS. It should be noted that if d, =0 and if E™ is convex, the above con-
ditions simplify considerably. In this case v, is d-dimensional Lebesgue measure for
each n and condition (9) is automatically satisfied. The proof of Theorem 3 is a
straightforward extension of the proof of Theorem 4 of [8), so we will only outline
the main ideas of the proof here. The details may be found in [9, p. 25].

Outline of proof. (a) Theorem 2 is used to show that for t € (0, 1),

PX() EX+EY) _ pix+y)
POMEEY O

uniformly for all x such that —x is in the support of P(X,(1)—X,(¢) € dz).

(b) Part (a) is used to show that the finite-dimensional distributions of the
processes (X, | X,(1) € E™) converge to those of Y.

(c) Part (a) is used again to show that for ¢ <1 there are constants M(z) and n(?)
so that

P(XPed| X (1) e E") £ ME)P(XP € A)

for each i=1, ..., d, for each n2n(t), and for each Borel set 4 in D[0, 1] which
depends only on times in [0, ¢].

(d) Part (c) is used to show that the processes (X | X,(1) € E™) are tight in
D[0, ¢] for each 1 <1 and each i.

(e) A time reversal argument is used to show that the sequence (X | X, (1) E™)
is tight in D[O0, 1] for each i.

(f) Finally, Lemma 1 of [5] is used to show that the processes (X, | X,(1) € E™)
are tight in D4[0, 1].

Before proceeding to the main theorem of this section, it is necessary, for
technical reasons, to prove a lemma concerning the behavior of P(Yy, € F) as a
function of y for a fixed set F. Note that this function is well defined only for
y € @, the support of p(-). The method of proof is of interest because it is an
application of Theorem 3.

LEMMA 2. For each closed subset F of D°[0, 1), P(Y,€ F) is an uppersemi-
continuous function of y in Q. For every Borel subset F of D*[0, 1], P(Xye F) isa
Borel measurable function of y in Q.
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Proof. Let F be a closed subset of D¢[0, 1], and let y, — y,, where y, and y,
are in Q. It will suffice to show that the measures Y, on D?[0, 1] converge weakly
to the measure Yy, since then it will follow from Theorem 2.1 of [1] that

P(Yy, € F) = lim sup P(Y,, € F).
n— o

Let B be any number greater than (d;)*2. Since the span of the lattice part of the
distribution of &, is equal to one, we have for any y € R%,

my_g{XeR| |x—y| £ B,x€ D} 2 my_gfx€ R4 | x| < f2—dy} > 0.
For each pair of integers n and m, let
E} = {xe R | |x=¥a| = B/bn}-
Then b,, diameter (E™) <28, and
bSvn(ED) = my_ay(buER O\ buDE) 2 my_gfx € R4 | x| < B2 —dy).

Furthermore, E™ is convex for each n and m. So, by Theorem 3, (X,, | X.(1) € EP)
converges weakly to Y, for each n, and (X, | Xx(1) € E7¥) converges weakly to
Y,, for each pair of sequences of integers {m,} and {n,} which tend to infinity.
Now, let T be a bounded, continuous function on D?[0, 1], and define

o = f T()P(X,, € dh | Xn(1) € E}).
p%10,1)
By Theorem 2.1 of [1]

lim a,, = f T()P(Y,, € dh)
p%0,11

m—> o

and

lim g, m, = fz)"[o  TOP(Y,, < db)

k—

whenever n;,, — oo and m; — co. So,

lim [fim a,,0] = f  T()P(Yy, € dh).
n— o {Mm-—>w0 D"[0,1]

Since this is true for every such function T, we may conclude that Y, converges
weakly to Y, .

This second part of the lemma follows from the first by applying the Monotone
Class Theorem [2, p. 5].

The next theorem gives general conditions under which one has convergence of
the processes (X, | X,(1) € E™). Most of these conditions relate to the type of sets
E™ which may be used. In spite of their somewhat involved appearance, it is
usually relatively easy to verify them, as will be seen in §4. One condition is a
probabilistic one, and again it is automatically satisfied in many cases.
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THEOREM 4. Let {N,;n=1,2,...} be a sequence of integers such that 0 < N, < oo,
and let {E?}, {C?} and {F}} be three families of Borel subsets of R®, where k runs
through the integers {1,2, ..., N,} for each n=1,2,.... Define E*=\_), E%, and
assume that these sets satisfy the following conditions:

(i) Cr and F} are convex; Ch< Ep< F}; {ER} are disjoint for each n.

(ii) by (FA\CP) — 0 as n — oo uniformly in k.

(iii) supy,, [b, diameter (ER)] <oo and inf,, , bav,.(ER)>0.

(iv) If we define p,(dx)=v,(dx N E™), then there are constants B, and a measure
w(dx) on R? satisfying 0 < [pa p(x)(dx) <00 so that B,u.(dx) converges to p(dx) in
the sense that

B [ HO0ua(dn) > [ Hout)
Sfor every continuous function h(x) which has its support in a compact subset of Q.
(v) For each >0, there is a compact subset K of Q so that
liminf PX,()e K| X, ()€ E™) 2 1 —e.

Then, (X, | X,(1) € E™) converges weakly to Y, in D°[0, 1] ,where Y, is a random
element satisfying

_ [ P(Yy € A)p(y)n(dy)
(10) PO e A) = )

Jor each Borel subset A of D°[0, 1].

REMARK. It will be shown later (see Lemma 3) that condition (v) above could
be replaced by the condition 8,u,(R%)=0(1).

Proof. Lemma 2 guarantees that P(Y, € 4) is a measurable function of y for
each Borel set 4 in D?[0, 1], so the integral in (10) makes sense. Furthermore, the
right-hand side of (10) is a probability measure on D?[0, 1], and may therefore be
taken as the definition of P(Y, € 4). So, by Theorem 2.1 of [1], it will suffice to
show that for every closed subset F of D?[0, 1],

(11) P(Y,eF) 2 limsup PX,e F| X, (1) E™.

Let F be a closed set in D?[0, 1], and let K be a fixed compact subset of Q such
that u(0K)=0. Define h(y)=P(Y, € F) on Q. Then, h(y) is bounded by one on Q,
and is upper semicontinuous on Q by Lemma 2. So, there is a sequence h,(y) of
continuous functions on @ such that 4,(y)<1 and h,(y) | A(y) on Q [11, Lemma
6-9 1V].

Fix an m= 1. We will show that

(12) limsup sup [P(X,, € F| X,(1) € E})— inf h,,,(y)] =0

A2 ®© ERAK#® yYEEg
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Suppose that (12) is in fact positive. Then there is an ¢ > 0 such that for each integer
N, there is an n2= N, an integer k, and a y € E? so that

P(X, € F| X)) € E)—hnly) 2 ¢

and E} N K# @. By condition (iii), all these y’s lie in a compact subset of Q for
sufficiently large N. So, there are sequences {y;} in Q, {k;} and {n;} so that y, € E},
nfTw5 Yi—>Yo € Q, and

P(Xn, € Fl Xn;(l) € El'c';)'—hm(YJ) Z e

Noting that if the hypotheses of Theorem 3 hold for a subsequence {r;} then so
does the conclusion, we may apply that theorem to conclude that (X,, | X, (1) € E%)
converges weakly to Yy,. So, since F is closed,

h(yo) 2 lim sup P(X,, € F| X, (1) € E}).
jo o
Hence,

hn(¥o) Z h(Yo) Z e-+lim sup hn(y,),

which contradicts the continuity of A,. So, we conclude that (12) holds.
Now, let K be a compact subset of the interior of K. Applying (12) and using
the fact that E" is the disjoint union of the E}’s, we obtain

limsup P(X, € F| X (1) e E™)
n—w

inf A, (y)1P(X.(1) € E? _
(13) < im o EZK [,'Z‘Eg (y)] (Xa(1) € )+P(Xn(1)eE"\K)'
= anw > PX(DekED PX(DEE™

ERnK+g2

Let y% be a point in the closure of E} so that p(yi) =infy. g2 p(y). For each k and n,
there is a sphere G} in R? of diameter at most twice the diameter of E? such that
ELcG}. So, by replacing Fi by Fi N G} if necessary, we see that we may assume
that

sup [b, diameter (F})] < co.
N
Then, by Theorem 2,

P(X,(1) € Fp) = vao(FR)p(yR) + 0(b; )
and

PX(1) € CB) = vi(COP(YD) +o0o(b; %)
where, in each case, b%(b, ¢) — 0 uniformly in k. By condition (i),
(14) ba P(Xi(1) € ER) = bava(ER)p(yi)+o(1)

where o(1) — 0 as n — oo uniformly in k. Since bdv, (EX)p(y?) is bounded away
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from zero for k such that E} N K+ @ and for sufficiently large n, we may rewrite
(14) as

P(X,(1) € E}) = (1 +o(1))va(EF) inf p(y)

yeEj

where o(1) — 0 uniformly for k such that Ef N K+# @ . Similarly, we have
(15) P(X,(1) € E) = (1+0(1))v(ER) sup p(y)

YEER

with the same uniformity statement.
We will now apply these estimates to the first term on the right side of (13) to

obtain
lim sup B, > [inf hm(y)]P(x,.(l) €E}) < limsup B, . [inf hm(y)p<y)]v,,(E,:)
n— E,'QCK yeEk n-—+ EQCK yeEk

A

lim sup B, Z

ERcK

< f ha(Yp(Y1e(dy)

Ln ha(Y)P(Y)rn(dy)

since B,u.(dy) converges weakly to u(dy) on compact subsets of Q, h,(y) is con-
tinuous, and u(0K)=0. In the same way, we obtain

liminfg, > PO <ED 2 [ puldy).

ERnK# 2

Applying the dominated convergence theorem, we now have

[x P @edy) | PO(1) € EMER),
Jepudy) ~ n-ws PX(1)€E™)
This is true for any pair of compact subsets K and K of Q such that K is contained
in the interior of K. So, (11) follows from condition (v) of the theorem, and the
fact that 0 < [, p(y)u(dy) < .
REMARK. A straightforward verification shows that the random elements Y, are
Markov processes. However, they do not have stationary transition probabilities.
One might expect that in obtaining the weak convergence of the conditioned
processes (X, | X,(1) € E™), it would not be necessary to impose any probabilistic
conditions other than those needed to guarantee the weak convergence of X, to X.
However, we have included an additional such condition in this theorem—con-
dition (v). This condition is not very restrictive, since it is easy to check that it
follows from the conclusion of the theorem. Unfortunately, though, the theorem
is not true without condition (v) as may be seen by referring to Example 5.1 of [9].
A useful sufficient condition for condition (V) is given in the following lemma.
An application of it will occur in the next section.

limsup PX,e F| X (1)e E") £
n—
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LEMMA 3. Suppose all conditions except (V) of Theorem 4 are satisfied. Then, if
{Bapn(RY)} is bounded in n, condition (v) holds also.

Proof. For £>0, define K,={x € R? | p(x)Z ¢}, and let K be any compact subset
of Q with the property that u(interior of K)>0. There exists such a K since
{ p(x)u(dx)>0. Since condition (v) was not used to derive equation (14) we have,
for a fixed £>0,

P(xn(l) € El’cl) s 28Vn(El1cl)

for k so that Ef N K¢# o and for sufficiently large #. On the other hand, it
follows from the same equation that

PX(1) € Ef) 2 ¥ inf p(ypn(ER)

for k so that E} N K# @ and for sufficiently large n.
So, for large n, we have

2 PX(1)eEP)
PX(DeK: | XN e EM) £ S5 1y Fp)
4ev, (E™) < 4e Ignf"n(Rd).
= [infyeK p(Y)]Vn(En NK)~ infyeK P(Y) Barn(K)

From condition (iv), it follows that lim inf B,u,(K) Z p(interior of K). So, £ can be
chosen so that K, satisfies condition (v).

4. The convergence theorem in the ‘‘smooth®’ case. The purpose of this section
is to show that Theorem 4 has a wide range of applicability. In particular, we will
show that all the conditions of this theorem are automatically satisfied in case the
sets E™ are the “natural” neighborhoods of a smooth compact hypersurface in R?
which has no boundary points, at least when the distribution of §, has no lattice
component. When E, has a lattice component, the statement of an analogous result
would become more involved, and it would probably be easier to investigate the
role of the support lattice for each individual example than to try to state a general
result. Hence, in this section, we will restrict ourselves to the case d; =0.

The hypersurface to be used in the conditioning will be defined in terms of a
mapping L(x) from R? to R (1 £r<d). Writing L(x)=(L(x), . . ., L{(x)), we will
require that each function Ly(x) have continuous mixed partial derivatives of order
two in all of its variables x, . . ., x*¥. For each x € R¢, define

a(Lly ) Lr) ]2)”2

(i) (1,)
1S3 < <ip=d [a(x Vyeos X r)

where we have used the standard notation for the Jacobians. We then have the
following theorem.

S(x) = (
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THEOREM 5. Suppose that the following conditions hold in addition to those stated
above:
(1) S(x)>0 for each x where L(x)=0.
(i) L(x)=0 for some x in Q.
(iii) lim infyy o [L(x)]>0.
Then the assumptions (and hence the conclusion) of Theorem 4 are satisfied when E™
and p are taken to be

E" ={xeR*||L(X)| £ b fori=1,...,r},
w(dx) = m,_(dx N E)/S(x),
where E is the set {x | L(x)=0}.

REMARK. Before proceeding to the proof of this theorem, it may be in order to
comment briefly on the conditions listed above. Condition (i) guarantees that F is
genuinely (d—r)-dimensional at every point. Condition (iii) forces all the sets E®
to lie within a compact part of R¢, thus making u a finite measure and leading to
the application of Lemma 3. Condition (ii) will make the denominator of expression
(10) positive. Finally, the smoothness assumption on L makes it possible to write
E™ as a disjoint union of asymptotically convex sets as required in the first two
conditions of Theorem 4.

Proof. Let inf,.; [x—y|| be denoted by p(x, E), and define, as in (2), an e-
neighborhood of F by

N(e) = {xeR*| p(x, E) < ¢}

for each positive e. The first part of the proof will show that there is an n, and a
constant R so that, for n=n,,

(16) N(R™'b;1Y) = E* © N(Rb;Y).

The left inclusion is easy to obtain. Choose constants » >0 and M, and a compact
convex subset K of R® which contains N(), so that all first and second order partial
derivatives of each L; are bounded by M in K. That this is possible is a consequence
of the regularity assumptions made on L and condition (iii) above. By the mean
value theorem, if x € E and y satisfies |[x—y| <7, then

IL(y)| < dM|x—y| forl <isr

So, for n so large that (dMb,)~* <7, we have N((dMb,) " )<=E™.

To show that the right inclusion in (16) holds also, it will suffice to show that
the function p(x, E)/|L(x)| is uniformly bounded in K\E. Let x, be any point in
K\E, and let y, be any point in E such that ||x,—¥,] = p(X,, £). Such a point exists
since E is compact. Since S(yo) >0, there is a set of indices, which we will take to
be {1, ..., r} for simplicity of notation, so that the mapping

(D, ..., 29) o> (Ly(@), . . ., L(@), 2%V, . . ., Z®)
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maps a neighborhood A4 of y, one-to-one and onto a neighborhood A~ of
©,...,0,)§*b, ..., ¥§). As z ranges through 4" N E, the function [z—x,|?
achieves its minimum at z=y,. So, for i>r,
0 = (P — YOO+ - - + (8 — YOO+ (P~ )9) atz = Yo
Now, let & and Z be the matrices
L = (aLi/azw)i=1,...,r;j=1,...,r and £ = (aLt/aZw)i=1....,r;1=1.....a,

where the partial derivatives are evaluated at y,. Then, as a consequence of the
fact that the inverse of the Jacobian matrix of a transformation is the Jacobian
matrix of the inverse of that transformation, we have

0z V[0 0L,[0z®
: = P! : fori > r.
az(r)/az(i) aLr/az(i)

S0, Xo—Yo=(x' =y, ..., xP—yP)L 12, Let a be the r-vector
1 1 -1
(=6, .. L X =y,

and let A, ..., ), and x,, ..., X, be the complete set of eigenvalues of 2.2* and
the corresponding orthonormalized eigenvectors. (The asterisk denotes the
transpose matrix.) Then

r
”ajj*[P = z Aiz(a, x{)2,
i=1
while
r
la2]? = > Me, x)2
i=1
So, since A, =0 for each i,
P Px|2 > : 22
a2 2*|? 2 (min X)ja]?
By the Cauchy-Binet formula [6, p. 1], S%(y,) =det (L.£*), which is equal to the
product of the eigenvalues A, i=1,..., r. For each i,
A= 2] < dime,

$0 min, <<, A; is bounded below by a constant multiple of S%(y,). Since S(-) is
bounded away from zero on E,

|a2]? = |xo—Yo|?> and [aLP*|? = > (VL (Xo—Y¥0))%

i=1
where VL, is the gradient of L;, we see that there is a 8 > 0 which is independent of
Xo € K\E so that

Z (VLi, (X0 —¥0))* 2 8% —Yo||*> = 8p*(xo, E).
=1
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By Taylor’s Theorem,

ILx0)]|? = Z (YL, (X0 = Yo))*+o([[ X0 —Yol?),
where |Xo—Yo| ~20(]|xo—¥o||?) — 0 as |xo—Yyo| — O uniformly for x, € K\E. So,
the right inclusion in (16) can also be achieved for appropriate choices of n, and R.
Fix an R and an #n so that (16) holds, and let #(x, ¢) denote the d-dimensional
open sphere with center at x and radius e. Since E is compact, it may be covered
with finitely many spheres with center in E and of radius b, . If we increase the
radii of these spheres to (1+R~1)b,; ! and eliminate ‘““unnecessary’’ spheres, we
can assume that, if {x;} is the set of centers of the remaining spheres, |x;—x,|
2 (Rb,)"1! for i#j. Then,
an E* < NRb < y(x,., Ri%‘:)-
n

The next step is to partition the union on the right side of (17) into disjoint convex
sets. This is accomplished by setting

R+1+R?
b,

k4

Ir= {zeR"] lz—x| = min Jz—x,| <
j

|z—x > min |z—x,] for k < i—1}-
j

Then, by (17) Er<\_J, IF'; {I}*} are disjoint for each n; and each I is convex, since
it is the intersection of a sphere and finitely many half spaces. Also, the diameter of
It is less than or equal to 2(R+1+ R~Y)b; ! and m,(I* N E™) = B(Rb,) ™4, where B
is a constant depending only on d, since I* N E™ contains a sphere of radius
(2Rb,)~1. Now, let B,=d?M(R+1+ R~')? and define
E=LI'nE",
Cr =1Ir N {zeR*| [(VLi(x), (z—x))| < by*—Bib;2forj=1,...,r},
Fr=InfzeR||(VLx), @-x))| < b;*+Bb;*forj=1,...,r.
Note that C! and F} are convex sets. Furthermore, CP< Er< F since
|LAz)—(VLAx,), (z—x,))| < Byb;?
for each z € I by Taylor’s Theorem. This completes the verification of conditions
(i) and (iii) of Theorem 4.
Turning to condition (ii), note that for each i,

4 R+1+4+R?
micr < {ze o (x D) |1 10L&, @3l -5 < Bibi?)-

Each set in this union consists of two parts, each of which lies between two (d—1)-
dimensional hyperplanes which are at a distance 2B;b, 2| VL(x;)|| ~! from each
other. So,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use




1970] CONDITIONED SUMS OF INDEPENDENT RANDOM VECTORS 211

o o & 4B 1 R+1+R-}¢-1
8 mdFI\CD) = 3, B VL BZ( G )

where B, is the volume of the unit.(d— 1)-dimensional sphere. Now, Z.2*(x,) is
an r x r positive definite matrix whose diagonal elements are | VL/(x)|2. So,

r

S%(x) = det (P2*(x)) < [ [ |VLx)|?

ji=1
(see [6, p. 9]). Also, |VLA(x,)|2<dM?, and hence
r r—1

2 vl s T
This, together with (18), yields

m(F\CP) < Bs[S(x)bg+'] !
where Bj; is a constant which is independent of i and of »n for n=n,. So, condition
(ii) of Theorem 4 holds.

Since F is compact, and since S(-) >0 on E, there is a finite set of points {y;} in E
and a corresponding set of positive numbers {e;} so that E<|J, #(y;, &), and so
that for each i, there is a set of indices {j,, ..., ;- with the property that the
mapping

O, D) > (Ly(x), . . ., LX), x90, . .., xVa-r)

maps #(y;, 2¢;) onto a neighborhood of (0, ..., 0, y{1), .. ., ya-¥’) in a one-to-one
fashion. Fix an i, and let g(x) be a continuous function on R? which is supported by
&(yi, 2¢). To simplify the notation, we will assume that j,=r+1,.. ., j;.,=d for
this choice of i. Letting z”=L/(x) for j=1, .. ., r and transforming the variables of
integration, we obtain

o(xM, ..., x")

bn r -] ©
(3) J soma [ s [ axonto) Gl

where x is evaluated at (0,...,0, x"*Y, ..., x¥) for j=1,...,r. Now, in
Z(y;, 2¢;), we have the following expression for the surface area of E:

A(x, . . ., x%-0)
6(x"+1), e x(d))

2\ 1/2
m;_{dx NE)= ( ] ) dxTHD Ly,

12l < <ilg-¢=d

Using this, together with the expression for subdetérminants of the inverse of a
matrix in terms of the subdeterminants of the matrix (see [6, p. 5]), we obtain

A, .. ., x)

LASMEEEETE 20 ] [F WCES VRN N )
o(zY, ..., z)

(19) My_(dx N E) = S(x)

So, as n — o0,

20) (%) [.. ecomatao > [ £2 ma_av.
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By (16) Er<|J; &(x;, &) for large enough #, so it now follows that (20) holds for
any bounded continuous function g(-) on R?%. From (19) and condition (ii) of this
theorem, we see that 0 <m,_(E N Q) <m,_,(E) <. So, condition (iv) of Theorem
4 is verified.

To verify condition (v) of Theorem 4, note that applying (20) to the function
g=1 yields the fact that (b,/2)'m,(E™) is bounded in n, since S(x) is bounded away
from zero on E. We may now apply Lemma 3. This completes the verification of all
the conditions of Theorem 4.

This section has concentrated on the case in which E is very smooth. To show
that Theorem 4 can be applied in many other types of cases, we will present the
following example, in which E is the ordinary Cantor set.

EXAMPLE. Assume d; =0, and define E™ by

E" = {xe R%| xV € [0, 1], x* has a ternary expansion whose first

m(n) terms are 0 or 2, and |x?¥} < byl fori=2,...,d},
where m(n) is the integer part of log; b,. Suppose E N Q# &, where
E=NE"={xe R*|x"isin the Cantor set and x¥ = O fori =2,...,d}.
n

Then it is easy to see that all the conditions of Theorem 4 are satisfied where u(dx)
is the (logs 2)-dimensional Hausdorff measure on E. To check this, it suffices to let
Ci=Er=Fp, for k=1,...,2™™ be the 2™® components of E", and use the fact
that 1 5,3 ™™ < 3. Condition (v) will again follow from Lemma 3.
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