WEAK CONVERGENCE OF HIGH-SPEED NETWORK TRAFFIC MODELS

SIDNEY RESNICK AND ERIC VAN DEN BERG

ABSTRACT. We consider a network traffic model consisting of an infinite number of sources linked
to a server. Sources initiate transmissions to the server at Poisson time points. The duration of each
transmission has a heavy tailed distribution. We show that suitable scalings of the traffic process
converge to a totally skewed stable Lévy motion in Skorohod space, equipped with the Skorohod
M, topology. This allows us to prove a heavy traffic theorem for a single server fluid model.

1. INTRODUCTION

In modern telecommunications traffic data, features such as long range dependence, self-similarity,
and heavy tails are prominent. Furthermore, the characteristics of the data vary greatly over
measurements at different sites and different points in time. This is especially true for internet
data, as described in e.g. [32]. Black box time series modeling, which has been succesful in fi-
nite variance (low variability) settings, is inadequate for modeling teletraffic datasets. See e.g.
[25, 20, 24, 23, 9, 21, 6, 7] and the discussions therein. Hence, we should attempt more structural
modeling. The size of recent data sets of traffic network measurements, the dynamic nature of
communication networks, and the complexity of the traffic they carry argue strongly in favor of
parsimonious and structural network traffic models.

As a more structural traffic model, a superposition of a large number of ON/OFF type sources
whose activity periods are heavy tailed, has received considerable attention. Such models are ap-
proximated by fluid models with M /G /oo inputs, sometimes referred to as infinite source Poisson
models. (Cf. [13, 14, 16, 15, 18, 33, 34, 35, 28, 19, 5].) The M/G /oo input model described in [17]
is of this type. Using a distributional limit theorem, Konstantopoulos and Lin ([17]) explain the
suitability of an totally skewed stable Lévy motion as a macroscopic traffic model for a high-speed
network switch. The limit process is self-similar, but somewhat surprisingly has independent incre-
ments. The marginal distribution of the Lévy stable motion matches those sometimes empirically
obtained in practice ([11]). Also, results on the queue length process of queueing systems with Lévy
inputs are reported in [17].

However, in [17] the convergence of the scaled traffic model to the limit Lévy motion is only shown
to occur in the sense of finite dimensional distributions. To validate application of the limit model in
telecom applications, it is important to establish convergence in a stronger sense of functional weak
convergence in a suitable topology. Typically, when the limit process has almost surely continuous
paths, one uses the Skorohod J; topology, or even the uniform topology. Konstantopoulos and Lin
discuss why scaled infinite source Poisson models cannot converge in (D[0, 00),.J;) to a Lévy limit.
A comprehensive discussion of these issues is in the recently released reports of Whitt [30, 31, 29].

The main result of the present paper shows that indeed, the scaled and centered cumulative
traffic process converges to a skewed stable Lévy motion in D[0, c0) equipped with the Skorohod
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M topology. This result is then applied to obtain a heavy traffic limit theorem for a single server
fluid queue.

The paper is organized as follows. In Section 2, the network traffic model considered is described
in detail, and basic definitions and notation are given. Our assumptions, weaker than those used
in [17], are explained. In Section 3, we give an alternative proof of finite dimensional convergence
based on point process methods. This paves the way for proving weak M; convergence in D[0, c0),
which is done in Section 4, using ideas from [2, 3]. Finally, in Section 5, the convergence results
are applied to obtain a heavy traffic theorem for a single server fluid model with the given input
traffic.

2. INFINITE SOURCE POISSON MODEL

We consider the M/G/oco input model of incoming traffic to a communication network. Let
{I'x, & > 1} denote the points of a homogeneous Poisson process on [0, 00) with rate A. Suppose
at time ['g, a source starts a transmission, and continues to transmit for a period of length Ly, at
possibly time-varying rate. Let ((¢),t € [0,00) be a monotone increasing, right continuous function
describing the transmission schedule; the total amount of data transmitted by source k in time
t — I'y is given by (((t — I'y) A Lg). Assume for convenience that ((s) = 0 for s < 0. The total
volume of traffic injected into the network between 0 and ¢t is

(2.1) A(t) = i(((t ~TW) A Ly), t > 0.

k=1
We make the following assumptions on the distribution of L, and the schedule function {: Suppose
(2.2) PlLy>z]=1-F(z)=2""L(z), 1<a<2, >0
for some slowly varying function L(z),i.e. L(tz)/L(t) — 1 ast — oco. Further, assume ( is regularly

varying with index (3, that is:

<) =% 2 <p<a

(2:3) 500 C(1) 2

These assumptions subsume the case where sources transmit at unit rate; that is, {({) = ¢ and

[ = 1. Define
(2.4) b(t) :=inf{z : P[{(L1) > 2] <t '}.

It is easy to see, that (L) has regularly varying tail probabilities with index —a/f since P[((L1) >
z] ~ 1= F(¢* (z)) is a composition of two regularly varying functions and is hence regularly varying
([8, 12, 4, 26]). It follows that b(t) is regularly varying with index §/a.

Since a > 1 and o/ > 1,

(2.5) p=FE(L) = /OOO eF(dz) < oo, p¢:=FE((L))= /OOO ((z)F(dz) < oo.

3. FINITE DIMENSIONAL CONVERGENCE: A POINT PROCESS APPROACH

We now give a version of [17, Theorem 4] without some extraneous assumptions assumed in
[17]. Our proof of this result, based on a point process approach, will help to show convergence in
D[0, 00) endowed with Skorohod’s M; topology.
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Theorem 3.1. Suppose A(t) is defined by (2.1), b(t) by (2.4) and p¢ by (2.5). Assume (2.2) and
(2.3) hold. Then
A(Tt) — XNT'tpe fdd.
T — Xyyp(t) as T — oo,

where Xa/ﬁ(t) is o/ stable Lévy motion with mean 0, skewness parameter 1, and scaling para-

meter (/\C;/lﬁ)ﬁ/a, where C, 5 is defined in (3.18). Here 149 denotes convergence of the finite-

dimensional distributions.

Proof. As a first step, we will show:

A(T) — ATpe
1 — = X 1).
(3.1) b(T) = Of/ﬁ( )
The point process
(3.2) M =" €ry1,) = PRM (At x F(da)),

=1

is a Poisson process on [0,00) X [0,00] with mean measure Adt x F(dz) ([26]). Consider the
cumulative input in [0, T'], denoted by A(T). We can divide this input in two parts: the traffic from
sources that have started and stopped transmitting before time T’, and the traffic from sources that
have started transmitting before 7', and are still transmitting at 7. Define (see Figure 1)

R = {(2,y) € [0,00) x [0,00] sz +y < T}, RS ={(z,y) € [0,00) x [0,00] : 2 < T < &+ y}.

Then
Al = ; Lo e, pyertny + ; S =T, e
(3.3) = Ay (T) + Ay(T).

Since A4(T") and A9(T) are functions of M over the disjoint regions RET) and RgT), Ay (T) and
Ay (T) are independent.
Observe that,

34)  EMED) = / " s / U P ldy) = AP(T) s oo,

where F/(T) := fOT F(s)ds ~TF(T)~T,asT — oo, and

35  EMED)) = /OT Ads /:_ Fdy) = /\/OT F(T — s)ds = Am(T) 725 Ap,

with m(7T) == fOT F(s)ds. Also M restricted to R(lT) is almost surely finite and hence has represen-
tation

; P(T)
(3.6) M| g = ; (D7)
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Ficure 1. Traffic up to time T divided in two parts

where P, (T) is Poisson with parameter AF'(T), independent of the i.i.d. random pairs {(TIET), JIET))}.
The joint distribution of (TlgT), JIET)) is the normalized mean measure
AdsF(dy) | _ dsP(dy)
Zery BT TR

and therefore the distribution of .J ]ET) satisfies for z < T

(3.1 P < g = o BFE I, ST =8) (1= )P (@) + o)
F(T) P(T)
and for z < T
T (T - 2)F(z) - gf(s)ds

(3.8) P > 2] = F(T)f
We can write

Pi(T)
(3.9) A (T) £ Z C(JIET))'

k=1

Next, we will analyze the tail behavior of C(JIET)) as T — oo. Note that 0 < JIET) < T, and hence
¢(0) < C(™) < ¢(T). We have
P > b(1)2) =P > ¢ (b(T)e)

(T = ¢ )R FC (BT))) — i gy F()ds)

(3.10) = )
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Now F(T) ~ T as T — oo. Since (¥ is regularly varying with index 1/, and b(¢) is regularly
varying with index 3/, we have

CEB(T)e) ~ 2O (b(T)) ~ 2T L (T

for a slowly varying function L*, and recalling 1 < a < 2 we see that

Putting things together, we get
- T
rPQU > o)) ~ (1 DDy - [T o
r ¢ ((T)e)
— T/¢E(0(T)z)
~ (14 o(1))z=/# - M/ TF(CT(b(T)z)s)ds
T
(3.12) — /P /00 g Bgmods = g=/P,
1
This result is equivalent to (see [26])
(T)
(3.13) TP ¢ ) )

where 7 is the Lévy measure given by n(dz) = a/ﬁ:v_a/ﬁ_ll(opo](m). Using Karamata’s theorem,
we can verify that

(T))
(3.14) limsup TVar(>-"A—-21 (7 ) < o0
T—o0 b(T) (L <m
for any M > 0,
- ¢
3.15 lim lim sup T'Var(=——+=—+1 < o0
(3.15) €0 oo (bﬂU (ﬁﬁghgo)
and
- ¢
(3.16) lim lim sup T E(] 1 )=10
M=o T oo b(T) (|C(b](1T) )|>M)

Therefore, as in Section 2 of [22], it follows that in (D]0, c0), .J1),

[T1] (T) (T)
(3.17) Sr(t) = (3 % - [Tt]E(Cg{;) ) ™y = Sassl®)
k=1

where S, /3(t) is skewed /3 stable Lévy motion. S, /5(1) is a stable random variable with skewness

parameter 1 and scaling parameter C’;/ﬁﬁ/a, where

-5

cos(33)

(3.18) C@gzrm_%)
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Furthermore, from the central limit theorem for Poisson random variables,
P(T) = A\P(T
(3.19) B = D) . () = B(1)
AF(T)

where B(1) has a MV (0, 1) distribution, and so P, (T)/T LS Consequently from (3.17) and (3.19)

P(T)
T

—roam = 57 )+ Bi(T)E(

b(T) <
Z VAR(T
(3-20) /;JI((TT)) - Azﬁt(rT))E SO gafmycaay = Sars M) + I)T())BT +0p(1) = Says(V)

as T — oco. Note that b(T) ~ TP/*Ly(T), and 3 > «/2, so that / F(T)/b(T) ~ T2 /b(T) — 0.
Also, observe that S, /5(A) L Aﬁ/aSa/ﬁ(l), so S,/s(A) is a stable random variable with scaling
parameter (/\C';/lﬁ)ﬁ/a. Next, we show:
Proposition 3.1. With A(t) defined as in (2.1), b(t) as in (2.4), and A;(t) as in (3.3), we have
AT)-A(T) p

b(T) — 0,
asT — oo.
Proof. By (3.3) we need to show:
A2 (T) P
b(T) =0
We can write:
Py (T)
(3:21) A1) £ 3 (==,
k=1
P T)
d
(3.22) M|pm) = €T (1)
k=1
T

where P,(7') is Poisson with parameter Am(7) iy A, and P5(T') is independent of the points
{(7&,mx), k > 1}, which are in turn i.i.d. with distribution

AdsF(dy) dsF(dy)

T(T)|R2(T) = D) |Ro(T)-

Forz < T,

T _
( ) B ( ) . fs: —r AdSF(T— S) . m(x)
P(T—TlT gm)_P(TlT >T —z) === (T = ()
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It suffices to show EA(T)/b(T) — 0. We have

EAy(T) /b(T) =Am(T)EC(T — () /b(T)
N/\/ C(u) I (u)du/b(T)

(3.23) ~(const) ((T)TF(T)/b(T).
We are done if we show
(3.24) f+1—-a<f/a

or equivalently if fa+ o — a? < 3. However

pa—ala—1) < pa—pFla—-1)=p,

which proves the statement.

Combining Proposition 3.1 and (3.20), we have

dsF

(3:29) % B A%E(C(J’ET)”[qJﬁ“)@( ) = Sars)
as T — oo.
In Zder to center A(T) by AT u¢ we first subtract
F(T (T A ¢(Jo
A5 ((T)) pe = A ((T))E(c(.J;T ™)<y = A E( g(i})) €557
+ AIZ(%) (e = "),
where ,ugT) = E(C(Jl(T)). Now
F(T) P(T) dsF(dz) dsF(d )
s =M =25 ([ P / / 0<;<7;C($) o)
B F(T) dsF(dz)
_/\W[//OSSSTC(@ 7(T) //SE’FZ
dsF dac) A F(T)
//0<5<T F } + b(T)TMC(T B 1)
A .
_—T)//gg%sj; 2)dsF(dz) + mMC(F(T) ~T)
=I+1I.
We have

)
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and

A T 00
I:W/s:o(/zﬂ_ C(2)F(dz))ds
(T)F(

~ (const)# -0
by regular variation of {(-) and b(+), and (3.24). To summarize, for large T,
(3.26) ne — ") < (const)(T)F(T) + 2\ ppue/T.
We may conclude
Py R e SO
(3.27) A b(T) pe — A b(T) E((J, )1[C(J£T))Sb(T)]) = AF(T)E( ) 1[<(J}£T))>b(T)] +o(1).

Since F/(T) ~ T and TP(C(.]IET)) > b(T)) — 1, we have from the Lemma on page 578 of [10], a
variant of Karamata’s theorem, that

o SO 5
(3.28) AF(TYE( ) 1[C(J}(€T))>6(T)]) — /\(% - 1).
Furthermore,
~ T
F(T)u¢ — ATueh (fo F(s)ds — T)NC/\
b(T) b(T)
T -
g fy Fs)ds  —duep
b(T) b(T)
—0,
as T — oo. We conclude:
A(T) = AT af
(3.29) N Sass(N) = M5 1) = Xoya(D),
where Xa/ﬁ(l) is an «/f stable random variable with mean 0, skewness 1, and scaling parameter
O

Now, consider A(Tt), t > 0 fixed. Recalling that b(¢) is regularly varying with index 3/, it
follows that:
A(Tt) — /\Tt,uc _ b(Tt) A(Tt) — /\Ttug

(3:30) b(T) b(T)  b(TH)

N d
= 171X 5(1) = Xay(1)

as T — oo.

Next, we show joint convergence. We content ourselves with considering two time points 0 <
s < t. We divide the traffic between 0 and Tt into parts as illustrated in Figure 2.

From Proposition 3.1 we have

A(Ts) — ApeTs A(Tt) — ATt A(Ts) — ATs Ay(Tt) — \T't
a0 (B ) = (P ) + (o) (1),
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Ficure 2. Traffic up to time Tt divided in five parts

=t + ([ oM@+ [ oMy

0<u4y<Tt Ts<u+y<Tt
=:A1(Ts) + Al + AL,
where the three summands are independent. Observe that by scaling
(3.32) AL ATt - s),

and Al is negligible since

T<uu—|—_y<T
1
=5 / osucr, COMF
A Ts Tt—u
s | |, i)

b

_b u=0 Jy=Ts—u

_ATET) [ [ ((Ty) F(Tdy)

T () /u:o/y:s_u ) ) "
T¢(T)F(T)

=cr(s,t) b1
T¢(T)F(T)
~e(s,t) Wy
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where

(3.33) c(s,t) = = ﬁ)(;_ Y [Sﬁ—aﬂ — et g - S)ﬁ—aﬂ].

This ratio goes to 0 due to (3.24) as required. The joint convergence then follows from (3.30),
(3.31), (3.32). O

Remark 3.1. For later purposes, note from the definitions of ¢r(s,) and c(s,t) that for s < ¢,
these functions are increasing in ¢ and decreasing in s.

Note that the tail behavior of the random variables JIETt) as T — oo does not depend on the
value of . To check this, note that 0 < .],th) < Tt, so ¢(0) < C(JIET)) < ¢(Tt), and from (3.8),
P > bo(T)e) =PI > ¢=(b(T)))
_ T _
[Tt = ¢ PG (B(T)2)) — [ ey F(5)ds)
F(Tt) '

As T — oo, F(Tt) ~ Tt. Now

T (1))

TP > b(T)e) ~ (1 - 2=

Tt
ﬂT@“@@WD—ll F(s)ds

- ) [T (B(T)z)
~ (14 o0(1))z=/# - %/I TF(C(B(T)z)s)ds

—zm/8 0/ g~ Ps=qs = g~/
1

since T/C* (b(T)z) — 0o as T — oo, see (3.11). Hence, for every fixed ¢,

(334) TPEI"™) > b(T)2) — 2=/8

as T — co.

4. WEAK CONVERGENCE IN D[0, c0)

In the previous section, we showed that the finite dimensional distributions of the scaled process
(A(Tt) — Au¢Tt)/b(T) converge as T — 00, to those of a skewed a//3 stable Lévy motion X, 5(t).
For telecommunications applications such as the heavy traffic theorem discussed in the next section,
we need convergence in the stronger functional sense in a suitable topology. When the limit process
has almost surely continuous sample paths, one typically uses the Skorohod .Ji-topology, or if
possible the uniform topology. As remarked in [17, 30, 31, 29], it is not possible for a family of
continuous processes X7 € C'(0,00] to converge in the .J; sense to a limit X that is discontinuous
with positive probability.

Hence, we investigate convergence in a weaker topology than .J; and show in this section that
(A(Tt) — AucTt)))/b(T) converges to X, /5(t) in D[0, 00) endowed with the M;-topology.

The investigation of functional limit theorems for processes with paths in D[0, 1] was started by
Skorohod [27], who introduced four topologies on D|0, 1], which he called .Jy, Jo, My and M,. For
defining the My and .J; topologies, we need the functions

(4.1) J (21,22, 23) = min{|z1 — 23], |z3 — 22|}
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and

(4.2) M (21, z2, z3) = the distance from z3 to the line segment joining z1 and z3
0, if z9 € [21 A z3, 21V 23],

(4.3) _ 2 [ 1 Ax3, 21 V23]
J(z1,22,23), otherwise.

The function M (z1,z2,23) is 0 if 23 is in the line segment with endpoints z; and z3 and is the
minimum distance of z5 to the endpoints of the segment otherwise.
Letting H stand for either J or M, we define the H-oscillation (see [27, 2, 3]) of a function z(¢)

on [0, 1] as
(4.4) wl(Z):=  sup  H(z(t1), z(t2), 2(t3)).

0<ty <t<ta<1

0<t2—11<8
We need the following criterion from [27], Theorems 3.2.1 and 3.2.2, which can also be found as
Proposition 2 in [3]:

Proposition 4.1. Let Z,(t) be processes in D[0, 1], whose finite dimensional distributions converge
to those of a process Z(t), which is almost surely continuous att = 0 and t = 1. Let H stand for
either J or M. Then weak Hi-convergence holds if and only if for every e > 0

lim lim sup P(wH (Z,) > ¢€) =0
540 pooo

Remark 4.1. An analogous result holds for processes in DI[0,b], b arbitrary, provided the limit
process Z(t) is a.s. continuous att =0 and at t =b.

As mentioned in [31], Section 8, p.20, convergence in D[0,c0) is equivalent to convergence in
DJ0,b] for all b > 0. Let
A(Tt) — AucTt)
b(T)

(4.5) Zr(t) =

By Proposition 4.1, we need to show

(4.6) lim lim sup P(wM (Z7) > ¢) = 0.

=0 Teo

We will do this in the following Theorem.

Theorem 4.1. For 0 < t; <t < ty < b, there exists a T depending on (ty — t1) such that for
T > Ty, we have

P(M(Zp(ty), Zr(t), Zr(ty)) > €) < N2C2H/B+0) (1, — )2,

Therefore
liqu sup P(wM (Z7) > €) < KAXC2 /P4
—00
and Z7 converges in (D[0, 00), M;).
Proof. If t; =t = t3, there is nothing to prove. By (4.3):
P(M(Z7(t), Z7(t),Z7(t2)) > €)
=P[Z7r(t) > Z7r(t2) V Z1(t1) + €] + P[Z7(t) < Zr(ta) A Zr(t1) — €]
=P(Zr(t) — Z7r(t1) > €, Z7(t2) — Z7(t) < —¢)
(4.7) + P(Zr(t) — Zr(t1) < —¢, Zr(ta) — Z7(t) > €).
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Consider the first term on the right hand side of (4.7):

P(ZT(t) — ZT(tl) > G,ZT(tg) — ZT(t) < —6)
_p AT ATR) Tt =) | AT) AT ~AucTla =) _
- b(T) | b(T) -
_p Al (Tt) — Al (Ttl) + AQ(Tt) — A2 (Ttl) — AIMCT(t — tl)
= ( > €,
b(T)
Al (Ttg) — Al (Tt) —|— A2 (th) — A2 (Tt) — AIMCT(tQ — t) < _6)
b(T) -
Write
A(T1) = A4 (Tty) // 0<u<Tt, M (dudy) + //Tt1<u<Tt M (dudy)
Tt1<u—|—y<Tt 0<uty<Tt
= AL + AL(T(t — t1),
A1(Tt2) = Au(T?) // 0<u<Tt M (dudy) + // Tt<u<Tt, M (dudy)
Tt<u+y<Tt 0<u+y<Tt2

=AY+ AY(T(t - t1).

The previous probability is

AVT (= 1y) = Mie(T(t —t1) AL+ A(Tt) — Ay(Tty)
[ b(T) b(T) >
ANty — ) — Aue(T(ty — 1) A%+ Ay(Tty) — As(TH)

b(T) b(T) =

and using (AU B) N (C'U D)

= ACUAD U BC U BD and subadditivity we get the bound

wy s tl)g(;)/\ucT(t ) gy, MLl - t)b)(;)mmz —) < _ep2)
AT = tl)z(;)/\ugT(t —h) g A2t AQ(f(tfp))_ A1) gy
4Pl AQ(ig(t% - As(Tt) At = t)z(;)wcﬂh — < _e2)

Here A} and Af are independent and identically distributed, as are A} and A%. Recalling we work
on [0, b], we may use Markov’s inequality on the last three terms to get the bound

; (E(Aa) + E(A3) + 2E<A2<Tb>)) 6 (E(A'» + E(A3) + 2E(Ay(T0))

b(T)e/2 b(T)
((T)F(T)
(4.9) (Const)T —0
as T'— oo, by (3.24). The constant is of the form (cf. (3.33), (3.23))

2eltr, 1)+ (1,1 + k()
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where £(b) depends only on b.
For the first probability in (4.8), we can factor to get

AT = 0) = MacT (= 1) o AY(T(t2 = 1) = MecT (12 = 1)

_ phI = tl)b)(;)A’“T(t —1) o gy p T2 = t)b)(;)AHCT(tQ “ < ),
Consider the first factor
' _ _ _ PU(T(t=t1)) ( 7(T)y _ —
Pl_(lT(f—fl)) gDy _ M PUT(t - t, T _ Tt — )
_ p(Ei= b(f;)k ) — e )+ (T(t t))HbC(T) peT(t t)>€)
Pl_(lT(f—fl)) gDy _ 0 P(T(t -t T _ 2\ T(t — )
< P k= b(f;)k ) —pe ) > /2 + P (T(t t))Hbg(T) T (t = th) > ¢/9)
(4.10) =A+ B.
Now
) — _ — Y PU(T (-1
‘BSP%KPﬂTU t?éUAT@ tg”%|>eﬂj+}%0« fie ;T§(t tD:>d®
=Bl + BII.

Consider BI: From the central limit theorem for Poisson variables, we know that

By = DU AU =0)) ) o,y

AF(T(t —t1))

and
(4.11) E|BT(t—t1)| < E(B%“(t—tl))l/2 =1,
4 PUT(t—t)) = NT(t—t1)
BI < “E| G m
4 EIP(T(t—1t)) = (Tt —t))] AE(T(t—t1)) = T(t—t1))
S (“C b(T) el b(T) D
4 [AAP(T(t—ty)) ME(T(E—t)) =Tt — 1))
=% oy et | b(T) pel
4 AF(T(t—ty) Mic i
(4.12) <- ( s et b(;)) 0,

(see the argument between (3.28) and (3.29)) as T' — oo, since b(T) is regularly varying with index
Bla>1/2.
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To handle BII, we argue similarly:

(e = nEYPUT(E=t1) (e = OB (E=1)) (e = p) (T (= 1) = AP(T (2 = 1))

o(T) - o(T) * o(T)
=TILH +TII,.

From (3.26),

(MFP(M)T | pepe
W) TN
C(T)F(T)T
b(T)

T11, =(const)(t — t1)

<(consty)(ty — t1) -0
as T — oo from (3.24). For T'I1; we have from (4.11)

AE(T(t —ty)
b(T)

1
PITIT; > e <=E|Br()|pc

NE(T(ty — 4
(4.13) <n (b(;) )

— 0,

as T — oo. This concludes the discussion of B.
Next, we consider A. We have

Pl(T(f—fl)‘ C(J(T)

k=1

and therefore
NF(T(t—11))] (C(](T)) _ (T)) IINF(T (t—t1))]- P (T (t—t1))| C(JIET)) - H(T)

A <P( Z | “k ) | >¢€/2) +P( |b(—T)C| > ¢/2)
k=1 k=1
= Al + AIl.

Now AII can be bounded using Markov’s inequality, and the fact that P(7T'(t — t1)) is a Poisson
random variable:

AIl < P(]

INF(T (t=t1))] = PU(T (t=11)) C(-](T) )
‘ > €/2)

IINF(T(t=t1))] =Py (T (t—t1))] C(-](T)) -~ H(T)
<2/ E( |%|)

< (2/€)pe

(4.14) < (2/e)e -0

as T — oo, as seen before.
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Now we deal with AI. To bound this probability, we argue as in the proof of Lemma 2 of [2]:
Pick > 0 such that /8 —n > 1. Let

€Ty = My

4.15 Y. =
11 M)
and define
(4.16) YET =Ye, 11y, r1<1)s Yk?T = Yerl(y, r/>1)
(4.17) YET = YIET - B (YkS,T)7 Yk?T = Yk?T - B (Yk?T)
Now
NF(T(t—11))] NF(T(t—t1))] B NF(T (t—t1))] B
P( Y Mrl>9<P( Y Vl>ag+P( > IVl >e/2).
k=1 k=1 k=1

Using Chebychev’s inequality with p = «/3 — 7, followed by the von Bahr-Esseen inequality, which
says that F| Z}n:l X;PP<2 27:1 E|X;Pif 1 < p <2, and X; a martingale difference sequence, we
get

WF(T(-t)] DET(=t)]
P Y Wl > e2) < (/27 S v/
k=1 k=1

< 2(e/2)"CIBMINE(T (t — tl))]E|Yk>,T|a/ﬁ_n-
Similarly, but using Chebychev’s inequality with p = a/3 + 7,

WA @E-n))]) A )
P( Z |Yk§T| > ¢/2) < 2(e/2)"C/BEIINE(T (¢ - t1))]E|Yk§T|a/ﬁ_”.
k=1
By Jensen’s inequality,

E|YSp = B(YS)|*/0m < 2258 U BV S 21040 4 | BY S| 200} < 20/0tnp|yS | o/om,
Similarly,
E|Yk>,T _ Eyk?ﬂa/ﬁ—n < Qa/ﬁ—nE|yk>7T|a//3—n_
Using Lemma 1 of [1], it follows that

{St%p(TEIYETla/ﬁ“)} v {St%p(TEIYk?Tla/B_”} <C <o

and thus
(T (t~t1))]
P( > [Virl>e <Ce
k=1
Now (T (t —t1)) < F(T(ty —t1)) ~ T(ty — t1), so for T large enough (depending on ty — t;),
(T (t~t1))]
(4.18) ATSP( Y Verl > ¢ <20Ce /P 1y —1y).
k=1

(o5 AT (= 11))]
T
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Summarizing (4.10), (4.12), (4.13), (4.14), (4.18), we have for t; —t; < 6 and T large enough,
depending on t; — t; that

p A= 0)) = AT (2 1)

b(T) |>¢)
INE(T (t—11))] gDy _ @) N
< P( |%| > ¢/2) + (16_6)(;\)’(%‘ + e b(T() ))
k=1
T )

Recall (4.7)

P(M(ZT(tl), ZT(t), ZT(tz)) > 6) = P(ZT(t) — ZT(tl) > €, ZT(tQ) — ZT(t) < —6)

+ P(Zp(t) — Zr(t1) < —e€, Zr(tz) — Z7(t) > €),
and from (4.8) and (4.9)

P(ZT(t) — ZT(tl) > €,ZT(t2) — ZT(t) < —6)
A=) = T (1) | AT = ) = T (12—

b(T) “ b(T) <o+t
T M=) | M) T8 o TP
cp(ATEZ ) Tt M=) deT =0 o TP
Similarly,
P(Zr(t) = Zr(t1) < —¢, Z7(t2) — Z7(t) > €) i
PR Tt M=) dT =0 o TP

So since A} L AY,
P(M(Z(t1), Z1(t), Z1(t2)) > €

- —(a/B+n) (4, _

p o8y | VAE(TS) ) TG(T) F(T)

¢ () THTT(T) ()

For T > Ty, with T} depending on t; — ¢y, §, a/3 + 1, we have
(4.19)

A AF(Té
:8A202€—2(a/ﬁ+7])(t2 _ t1)2 +4(16)( IuC,UJ m
T

iny]

~—

P(M(Zp(ty), Z1(t), Z1(ty)) > €) < N2C2eHlB+n) (1) — 4))?
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Let Z7,(t) be the step function built from the values of Zr(t) at ¢t = 7/2",i = 1,...,2". For
T > Ty, also

P(M(Zpn(th), Zrn(t), Zrn(ts)) > €) < N2C2 /B0 (1) — 11)2)
and thus, by Theorem 2 of [2], we have

P( sup  M(Zrn(c), Zrn(d), Zrn(e)) > €) < KX2C2e2@/B+n) (1) — 11)2,
tlgcgdgegtg

Now, as in the proof of Lemma 1 of [2]: let m = [§~!] and partition [0, 6] with #;,7 =0,1,...,m+1,
where tg = 0,t,,41 = b, and t;4q — t; = §,i = 0,1,...,m — 1. The event {wM(Zr,) > ¢} implies

{maxi=o, .. m—1 SUPy, <c<d<e<ts M(Zrn(c), Zru(d), Z1n(e)) > €}.
Indeed, if there exist points ¢ < d < e such that e — ¢ < §, then these points belong to some
interval [t;,t;42], so that M (Zr,(¢), Z1,(d), ZTn(€)) > ¢ implies

sup M (Zrn(c), Zrn(d), ZT n(€)) > €.
tiSCSdS@SL‘H.Q

Therefore, for T > Ty, we have

m—1

P! (Zrs) 2 ) <Y P( sup  M(Zra(e), Zr.a(d), Zr,a(€)) > €)
i=0 t,‘SCSdSeSL‘H.Q

gI(AZCZGZ(a/ﬁ—I—n) (tg - t1)2
<[FTHK N2 CRH@ B (24)2
<K'N}CPHelBEng,

Since almost all paths of Zr are right continuous and w (Z7,) — wM(Zr) a.s., we have

P(wg\/I(ZT) >¢€) = lim P(wéM(ZTm) > €),

n—00
and hence, for T' > Ty
P (Z1) > o) < K'\}¢? /B4,

This implies

(4.20) limsup P(wM (Z7) > €) < K'\2C2H@/Bn)§
T—o00
and thus
(4.21) lim lim sup P(wM (Z7) > €) < lim K'A2C2e=2e/8+m§ = o
50 Tyoo =0
which proves weak M; convergence of (A(Tt) — AucTt)/b(T) to X, /5(t). O

Remark 4.2. If, instead of the M function, we would have used the J-function, to attempt to
prove J; convergence, the argument would be altered as follows. Since ( is regularly varying with
index 8, C((1/2)'/PLy) ~ (1/2)C(Ly) for Ly large. Heuristically, for each large job ((Ly), the
halfway point (1/2)((Ly) is also large. Take #; corresponding to the starting point of the large job,
t as halfway point, and t; corresponding to the endpoint of the large job, we see that if there is a
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large job arriving in the interval [T'ty, Tt3], we can choose timepoints Tt; < Tt} < Tt < Tth, < Tty
such that J(Zr(t)), Zr(t}), Z7(t})) > €. Therefore,

P(J(Zr(tr), Zr(t), Z1(t2)) > €) = P(Large job arriving in [Ty, Tt3])

T (t—t1)] ., (1)
p 3 S = B

1%

k=1
AT (t2—1)]

+
e,

k=1
=0(ty —t1)

which is not enough to make

P(J(Zr(ty), Zr(t), Zr(t2)) > €) = O((t2 = 11)'*7), B> 0.

5. A SINGLE SERVER APPLICATION

Suppose traffic modeled by (2.1) enters a network, and queues at an intermediary switch. Let
the cumulative output at the switch by time ¢ be denoted by R(t). Then the content of the fluid
queue at time Tt is given by

Tt
Y (Tt) = A(Tt) — R(Tt) — N\ (A(s) — R(s))
s=0
¢
= A(Tt) — R(Tt) — ]\ (A(T's) — R(Ts)).
s=0
Furthermore, assume

R(Tt) = Ryt
where
Ry — ApueT
5.1 Y ol Sl

for some constant ¢. Then since the process A(7'-) has no fixed discontinuities,
A(Tt) — R(Tt) A(Tt) — ’\NCTt Ry — /\,ucT
= - t=X t) —ct
o) 0(7) oy )T e
as T — oo in (D[0, c0), My), where X, /5(t) is the totally skewed Lévy motion described in Theorem
3.1. (See [30], Corollary 7.1).
The reflection mapping z,(t) : z(t) — z(t) — Al_yz(s) is (Lipschitz) continuous in (D[0, c0), M)
([31], Theorem 3.2 and Remark 3.1; [30], Section 8). Therefore, we have by an application of the
continuous mapping theorem:

) L0 = A= Ao BEI Z RO (0 -t = \(Xasle) = )

s=0

In particular, suppose ¢ = 0 in (5.1), which then becomes the ’heavy traffic’ condition
Ry — AT

(5.3) D)

— 0.
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Then (5.2) yields

(5.4) };g? X.a(t /\ Xayp(s)

as T'— oo, in (D]0,00), My). To illustrate the heavy trafﬁc interpretation of this result, we argue
as follows:

Consider the model of section 2, but suppose we increase the arrival rate of source transmissions
from X to AT. Furthermore, we increase the speed of transmission. The new transmission schedule

is given by (r(t) := ((7't), and the new transmission durations LECT) have the same distribution as

Ly/T:

pr" > %) = P(Ly > 2)=1- F(z) = 2~°L(x)

where L(z) is as in (2.2). Then for the new system, the total traffic input by time ¢, Ar(¢), has
the same distribution as A(Tt) above. Now consider a fluid queue with input Ar(t), and output
R7(t) :== Rrt. Denote its content at time ¢ by Y7 (¢). Under the heavy traffic condition (5.3), we
see that in (D[0, 00), M;):

Yr (t)

(55) Wj Oz/ﬁ /\on/ﬁ asT—>oo.
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