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Weak convergence of integrands and the Young measure representation

David Kinderlehrer and Pablo Pedregal

Abstract  Validity of the Young measure representation is useful in the study of microstructure
of ordered solids. Such a Young measure, generated by a minimizing sequence of gradients
converging weakly in LP, often needs to be evaluated on functions of pth power polynomial
growth. We give a sufficient condition for this in terms of the variational principle. The principal
result concerns lower semicontinuity of functionals integrated over arbitrary sets, THEOREM 1.2.
The question arose in the numerical analysis of configurations. Several applications are given. Of

particular note, Young measure solutions of an evolution problem are found.
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1 Introduction

For a lower semicontinuous functional of the form

d) = J(p(Vv) dx, ve HLP(Q;RM),

the convergence property
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®duk) —» ®@) and uk — u in HLP(QRM) weakly

for a particular sequence (uk) does not by itself inform us of the behavior the sequence

( @(Vuk) )1. Here we show that if ¢ is nonnegative and has polynomial growth, then ( o(Vuk))
is weakly convergentin L1(Q) to @(Vu). A consequence is that the Young measure generated by
( Vuk) represents the weak limit of a sequence (y(Vuk)) when v is dominated by ¢. Our
interest in this question arose in the attempt to estimate convergence properties of numerical
methods for functionals which are not lower semicontinuous, where ¢ plays the role of the
relaxed density. Validity of the Young measure representation is useful knowledge in the study of
the microstructure of ordered solids, cf. Ball and James [5,6], Chipot and Kinderlehrer [10],
Ericksen [18-29], Fonseca [31-34], James [35], James and Kinderlehrer [36], Kinderlehrer [37],
Kinderlehrer and Pedregal [38], Matos [41], and Pedregal [45,46]. We do not give any explicit
applications to the numerical analysis in this paper except to say that our results confirm the validity
of the Young measure representation for the limits of the approximations generated by finite
element methods when the energy density has appropriate polynomial growth at infinity. We refer
to [9,11,12,13,14] for discussions of these developments.

The proof of this and related facts is based on a method of Acerbi and Fusco [1] and
subsequent application of the Dunford and Pettis criterion for weak convergence in L1. Weak
convergence of a sequence (k) in L1 is sufficient but not necessary to give sense to the Young
measure representation. Ball and Zhang [8] use the Chacon biting lemma to study this question
under hypotheses weaker than ours.

The proofs of our results are in §1 - 3. Three applications are given in §4,5, and 6. The
example of constraint management in §4 is a generalization of a result of S. Miiller [44], cf. also
K. Zhang [51]. In §5 adiscussion of the Young measure representation when surface energies
are present in the system, cf. [39]. Both of these use the convergence property above, or (1.3)
below, without assuming that the functional is being driven to a minimum. An application to an
evolution problem is given in §6, where it is shown how Young measure solutions may be found.
This builds on some recent work of Slemrod [47]. Useful discussions of Young measures are
given by Young [50] and Tartar [48,49], and more recently by Ball [3] and Evans [30]. One
consequence of our considerations is that they lead to a notion of Young measures generated by

YTransitions and Defects in Ordered Materials. Supported by the NSF and the ASOFR through DMS 87-18881 and
the ARO through DAALO3 88 K 0110 at the University of Minnesota.
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functions whose gradients are in LP for finite p, [45]. We begin with a description of our
principal results.

THEOREM 1.1 Let ¢ be continuous and quasiconvex and satisfy
0 < o(A) < CA+I1AIP), AeM, (1.1)
where 1 < p < oo. Suppose that

kK - u in HLP(Q) weakly and (1.2)

Q[q;(Vu) dx = lim ko w d[<p(Vuk) dx . (1.3)

Then there is a subsequence (not relabled) of the (uK) such that

o(Vuk) — o¢(Vu) in LY(Q) weakly.

THEOREM 1.2 Let @ be continuous and quasiconvex and satisfy
0 < ¢A) < C(1+1AIP), AeM,

where 1 < p < o, If ¥ = u in HL(Q) weakly , then

E[<p(vu) dx < 1iminf g e E[q)(vuk) dx (1.4)

for every (measurable) E c Q.

We wish to discuss THEOREM 1.2 a little prior to giving the proof. First note that
according to the generalizations of Morrey's Theorem [43], for example Acerbi and Fusco [1],
(1.4) holds whenever E is a domain with Lipschitz boundary. This information is insufficient to
deduce (1.4) for more general sets, which is the crux of the problem.
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The case of THEOREM 2 with p = o is automatic since { ¢(Vuk) } are uniformly
bounded in this case. Indeed, choose M with the property

k <
I o(Vu )IILOO(Q) < M forallk.

Given E, let U be an open neighborhood of E with IU-E| < & Now U is the union of

countably many cubes { Dj} with disjoint interiors and for each Dj, (1.4) holds. Hence

J(p(Vu)dx < T [o(Vudx
D;

IA

Z liminf [ (Vuk) dx
D;

IN

lim ian @(Vuk) dx.

Finally, we have that

A

E[q)(vu) dx < lim infhjq)(Vuk) dx + 2Me.

Thus, if uk = u in H1.=(Q) weak*, then

qu)(Vu) dx < liminf [ @(Vuk) dx (1.5)
E

for any measurable E c Q.

The case p = 1 for Theorems 1 and 2 is easy and will not be discussed.

To illustrate how the preceding results apply to the Young measure representation, let us
introduce the Banach space, for p> 1 fixed,

WALy

E = {ye CM): SUPM A 1p 5 1

(1.6)
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THEOREM 1.3 Let ¢ be quasiconvex and satisfy, for some constants C 2 ¢ > 0,
max {clAIP-1,0} < @A) £ CA+I1AIP), AeM, (1.7
where 1 < p < oo. Suppose that

uk - u in H1.P(Q) weakly and (1.8)

ﬂ[(p(vu) dx = 1im ko o dfcp(vuk) dx . (1.9)

Let v = (Vx)xe Q be aYoung measure generated by (uk). Then for any \y € E, the sequence

y(Vuk) = v in o@LYQ).L=(Q) where

v = [yA) dvA) in Q ae. (1.10)
M

Further, consider W e C(M) satisfying

WA) 2 0

and (1.11)
c(lAP -1) < WA) < C(AIP+ 1)

A

forsome p > 1 and 0 < ¢ £ C. Let
AQ(yo) = {ve HLP(Q): v = y, on 0Q} where y,e HLP(Q).

COROLLARY 1.4 Let W satisfy (1.11). Suppose that (ukK) c Aq(y,) satisfies

lim x5 o JW(Vuk) dx = ianQ(y ) JW(VV) dx . (1.12)
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uk - u in HL.P(Q) weakly.
Let v = (vx)xe Q be aYoung measure generated by (ukK). Then for any y € E, the sequence

Wy(VuK) - v in o(L1(Q),L~(Q)) where

v = [y dvA) in Q ae. (1.13)
M

In particular, the (W(VuK)) converges to a limit energy density W in o(L1(Q),L=(Q)) where

W) = W) dvxA) in Q ae. (1.14)
M

A version of COROLLARY 1.4 has also been proved independently by Matos [42] who
obtains an improved class E by combining Ekeland's Lemma with the reverse Holder inequality,
although the convergence is then restricted to 6(L1(Q"),L=(Q)) for Q' cc Q.

Note that a particular consequence of THEOREM 1.3 is that the sequence { | M- Vuk P},
for a constant matrix M, converges weakly in L1(Q), althoughnotto | M- Vu [P, Another
consequence concerns the relaxation of W, or its quasiconvexification, cf. [7,15,16] for example.
Assume that p > 1. The integrand

_ lee 1
WHE) = me0 @ D DJW(F+V§) dx (1.15)

is quasiconvex and relaxes the variational principle (1.8) in the sense that

inf J W(Vv)dx = inf Jw#(vv) dx .
AQ(Yo) AQ(Yo)

Obviously a minimizing sequence for (1.8) is also a minimizing sequence for the functional with
the integrand W*. For a given F, the infimumin (1.11) may or may not be realized, but given a
minimizing sequence uk(x) = Fx + {K(x) e HLP(Q;RM),
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WHE) = lim g oo JW(Vuk)dx.

Let & = (Mx)x e @ be a Young measure generated by ( uk). We may assume that iy is
independent of x € €, although we pass over the details of that here. Applying COROLLARY 1.4,
we obtain in particular that

WHE) = [W(A) du(A), (1.16)
M

so the infimum is attained in a Young measure fashion. Moreover, the inequality w# < W

insures that
supppt < {A: W(A) = WHA) }.

Of course, if ¢ is any other Young measure generated by some sequence of the form (vk)
HLP(QRM) with vk = Fx on 0%, then

[wa ana) < [wa) doa),
M M

so W satisfies an ersatz minimizing principle as well.

2 Proof of Theorem 1.2
Our aim is to give a proof of the second result. THEOREM 1.1 will be a corollary of it.
For this we adopt a technique of Acerbi and Fusco which has an important ingredient from a paper

of F.-C.Liu [40]. The technique uses these facts from Acerbi and Fusco:

LEMMA 2.1 Let GCRM have | G| < oo. Assume that { My } is a sequence of subsets of G
such that for some € > 0

IMkl > ¢ for all k.

Then there is a subsequence k;j for which
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MM, # 0.

LEMMA 2.2 Let {fx ) be a sequence bounded in 1LN(Q). Then for each € > 0, there is a
triple (Ag, 8, S), where Ag < Q with | Agl < € & > 0,and S is an infinite subset of the

natural numbers, such that

[Ifc1ax < e
D

whenever DN Ag = @ and |DI| < 4.

For any v e C(R"), we set

M*v(x) = M(vx)) + MIVv(x))

where

1
M) = Supr>0 [B ([)| f(z) | dz
B.(x

is the maximal funtion of f. It is well known that if v € C:(R“), then M*v e C(RM) and

MV I pgny S COP) IVl pn 1< P S o (2.1)
and in particular, for any A > 0,
(MY 2 M)1 S Cap APV ppn, 1 <P < oo (2.2)

LEMMA 2.3 Letve c‘;j(Rn) and A > 0. Set H» = { M*v < A }. Then

W(f‘z—:;fﬂ < Ctm)A, x,ye HL, 2.3)
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where C(n) depends only on n.

We shall also make use of the well known fact that a Lipschitz function defined on a subset
of RM™ may be extended to all of R without increasing its Lipschitz constant.

PROOF OF THEOREM 1.2 We regard uk and u as extended to functions in HLP(RD) with
norms controlled by their H.P(Q) norms. Let € > 0.

Step 1. Since the functional of (1.4) is continuous in HL.P(RM) in the norm topology,
because of the upper bound on ¢, we may find z, zK e C(R?) with

[lo(Vuw) - p(vaidx < ¢ (2.4)
Rl’l
[lo(Vuky - p(Vz + VZR)Idx < e (2.5)
RN

and

1

— yk — 7k =
lu - u z ”Hl,p(]Rn) < x-

Thus zX — 0 in HLP(RM) weakly and

12K pgmy S M < oo, (2.6)

Set
H*» = {M*2 <) and Hf(”: (M*zk < A }.

According to LEMMA 2.3, we may find (K, 1 e HL@RD) such that {X = zK on Hl)(‘ and n =

z on H* with

k k
g ”L°°(]Rn) < llz ”L""(Hf(“) < A

and
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1Kl cogny S CO)A,

and the same for 1. After extraction of a subsequence we may suppose that
(k — { in HL=(RM) weak*.

We apply LEMMA 2.2 to the sequence { M*(zk)P }. By (1.2) and (2.1) these functions
are bounded in L1(). So given € > 0, there is a triple (Ag» 5, S) with
lAgl < € and

[M*pdx < e
D

whenever DN A, = @ and ke S.

Nowlet G = {{ # 0}. Sincethe zK — 0 in LP(RM) in norm, we may assume that
zX — 0 pointwise a.e.in Q. Thusif weset Go = G {xe Q: ZK(x) — 0}, then |1 G, !

= | Gl. We write Gg as a union,

Go = (GonHM U (Gon R -H})) .

By (2.2),

|Gon®R"-HM)I < CAPM forall k. 2.7)

This implies that
|Gyl = IGl £ 2CAPM. (2.8)

Otherwise, namely if

|Gol > 2CAPM, then 1GoNHYI > CAPM,
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by (2.7). Applying Lemma 2.1, there would be a subsequence kj such that

Goﬁ(ﬁHl)(‘j) + @,

and for x in this intersection,
({x) = lim{kx) = limzk(x) = 0,

which contradicts the definition of the set G. Hence (2.8) holds.

Step 2 Since @(Vu) e LI(Q), we may find 6,0 <0 <€, and A large enough that
[oVwdx < e, 2.9)
Acu(Q-HMUG

cf. (2.8) above. Let E ¢ Q be measurable and assume a subsequence of the uk chosen (but
not relabled) so that

lim qu;(vuk) dx = liminf J(p(Vuk) dx .

Put

ox = J(p(Vuk) dx .

Since ¢ 2 0, by (2.5)

o = J oV uk) dx
ENHAMHAMKA(Q-Ag)

[ o(Vz+vzk)dx .
ENHMHM¥N(Q-Ag)

v
I
™
+

But Vz = Vn and Vzk = V{k in HA\~HMK 5o that
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ok = —¢& + j e(Vn +V{k) dx
ENHAMHMKA(Q-Ay)

= —e + [ ovn +vEkyax - | ovm +vLR) dx
ENHM(Q-Ag) ENHM(Q-HM9NQ-Ag)

= -€+ Bk — %-

Since V(n + {K) is uniformly bounded and @ is quasiconvex, by the remark (1.5), we have that
for K sufficiently large

Bx + & 2 J o(Vn +V{) dx
ENHM(Q-Ag)

We now inspect Y. Using the bounds on Vn and V(K, and choosing A large enough,

T < C+AD) 1 (Q-HHNQ-Ag)!

IN

ClQ-HM + | oM*@kp dx
Q@-HMYN(Q-Ag)

< Ce + Co < 2Ces.

Consequently, for k sufficiently large,

ok = —Ce + [ ovn +vgax . (2.10)
ENHM(Q-Ag)
Step 3. Again using the positivity of ¢, from (2.10)
ok = -Ce + j o(Vn +V{)dx

ENHANQ-Ag)N(Q-G)

Since { = 0 in Q -G, we have that V{ = 0 in Q- G, so, since | = z in H*, we deduce
that
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o = -Ce + J ¢(Vn) dx
ENH*(Q-Ag)N(Q-G)

> —Ce + | 0(V2)dx
ENHAN(Q-Ag)N(Q-G)

By (2.4) and (2.9),

o 2 —(1+Ck + J ¢(Vu) dx
ENHM(Q-A5)N(Q-G)

v

~(1+Ck + Ej o(Vu)dx - [ o(Vu) dx
EN[AguU(Q-HMUG]

v

-2+0Ck¢ + J ¢ (Vu) dx

Since € > 0O is arbitrary, the theorem is proved.

3 Proofs of the other results

PROOF OF THEOREM 1.1 This follows from the Dunford-Pettis criterion. Assume that the
sequence ( @(Vuk)) is not o(L1,L*) relatively compact. Then for some € > 0 and every & >

0, there is an Agc Q and an integer kg such that | Agl < & and

[oVuksyax > ¢ .
A

Since @(Vu) € LI(Q), thereisa &, > 0 suchthatif |El < 3y, then
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EI(p(Vu)dx < €. 3.1)

Let us choose in particular o = 2-J 8, . Then there is a sequence Aj, 1 Ajl < dj, and kj
such that

[o(Vikydx > & forall j.
Aj

Let E = UAj,s0 IEIl < §, and (3.1) holds. Thus

£ < hj e(Vukj)dx < Q[ o(Vuk)dx - [ @(Vukj) dx
Q-E

Letting kj — oo, we have by THEOREM 1.2 and the hypothesis (1.3) that

£ < (Vu) dx) - (Vu) d
J(p u) dx Q_J;S(p u) dx
= 11J(p(Vu)dx < g,

a contradiction.

PROOF OF THEOREM 1.3: This also follows by the Dunford-Pettis criterion, using THEOREM 1.1.

4 Constraint management in a limit case
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Certain variational principles in elasticity constrain the admissible variations v €
HLS(Q;RM), where Q < RN, to satisfy

detVv > 0 in Q ae.

In the limit case p =n, det Vv e LY(Q) for ve HL(Q;RM) but it is not necessarily integrable
to any higher power. Thus it is not automatic that if uk — u in HI.(Q;RD) weakly, that det Vuk
— det Vu in LY(Q) weakly. In fact, without additional requirements, this condition does not
hold. One may refer to the counterexamples in Ball and Murat [7]. However, much is known

about this situation, as we summarize below.

First of all, the determinant is a null lagrangian, namely, if u,v € HL.B(Q;R") and u

o2

=v I . then

Jdet Vudx = Jdet Vvdx . 4.1

Assume that uK,u e HL)(Q;RD) and

uk — u in HLW(QRM) weakly. (4.2)
Then for a subsequence of the (uk), not relabeled, cf. eg. [2] ,

det Vuk — detVu in D(Q). (4.3)
Very recently, S. Miiller [44] has shown that if (4.2) holds and det Vuk > 0, then

detVuk — detVu in L, () weakly. (4.4)

We give a slight generalization of Miiller's result. With it, alternate proofs of some results in
elasticity may be given, for example, some of those in Zhang [51].

THEOREM 4.1 Let uku e HLM(QRD) satisfy
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uk — u in HLAQ;RD) weakly, (4.5)
detVuk > 0 in Q ae., and (4.6)
k| = 4.7
. Iag to I o @7

where uy e HLM(Q;RD) is fixed. Then
det Vuk — detVu in LY(Q) weakly. (4.8)

PROOF Firstof all, u = uy on 9Q. From Miiller's result (4.4), we deduce that det Vu
> 0 in Q a.e. By (4.1),

JdetVudx = JdetVukdx = Q[detvuodx forall k. (4.9)

Now let

@A) = max {detA,0}, AeM,
which is continuous, quasiconvex, and satisfies

0 < oA) < CA+1ADY, AeM.

Then @(Vuk) = det Vuk and @(Vu) = det Vu, so, trivially, by (4.9),

J e(Vu)dx = limg, J ¢(Vuk) dx .

Consequently, by THEOREM 1.1, possibly for a subsequence which we do not relable,
det Vuk — det Vu in L1(Q) weakly. ' QED

We wish to remark that we used Miiller's result to conclude that det Vu 2 0 inQ a.e.
We could also have used the biting convergence theorem of Zhang [51] for this purpose. The idea
of THEOREM 4.1 is that the sequence (uk) may arise as a minimizing sequence for some
variational principle subject to (4.6). Additional information then follows from the theorem.
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5 Application to functionals with surface energies

We consider a simple situation where cooperative bulk and surface energies are minimized.
Let Q < R! have smooth boundary I'" and set

EW) = d[W(Vv)dx + Fjx(vv,v)ds, ve CLQRM), (5.1)

where v denotes the exterior normal to I'. The infimum of E over C1(Q;RM) is not necessarily
the sum of the infima of its two summands, so we envision an application of our results when
(1.3) will hold for each of the two terms but where these quantities will not be the unrestricted
infima of their portions of the functional.
Assume that W is continuous and satisfies, forsome p>1 and C 2 ¢ > 0,
max {clAIP-1,0} € WA) < C1+1AIP), Ae M. (5.2)

About T we assume that it is continuous and, for some s> 1,

0 < 1(A,v) and

AeM, (5.3)
clAanlS—1) € 1AV) < CIAIS+1),

where Ay = A(l-v®v) is the tangential part of A.

For a fixed ve SM1, let D'c {x-v =0} be adomain and let dx' denote the (n - 1)-

Lebesgue measure on D'. By D' x (-r,r), r > 0, we abbreviate the name of the set
{xeRM: x'=(1-v ®V)xe D and |xvl<r]).
Let [E] denote the n - 1 dimensional Lebesgue measure of E. We define

™(F,v) = inf ¢ ﬁ _[t(F+VC,v)dx', (F,v) e M x Sn-1,
D'
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(5.4)
C' = D' x (T,0).

We always suppose that [0D'] =0. Clearly 1 > 0 and is independent of r. The relaxation of
the functional E is given by

E*(v)= Jw#(vv) dx + JI#(VV,V) dS, ve CHQRM), (5.5)

where W#(A) is the ordinary quasiconvexification of W and 1# is defined by (5.4). A special
property of T# is that

™AV) = ™Aunv), AeM,
which implies that

clAgnls-1) € ™AV) < CIAIB+1), AeM, (5.6)
and that t# is well defined on HLS(I';RM). An easy generalization of [39] tells us that

inf

cl@ Bv) = inf EAv), V = HLP(QR™) xHISTRM). (5.7)

Let (uk) c V be a minimizing sequence for E. Then (uk) is a minimizing sequence for F¥#,
which is bounded in V. Suppose that ue V and uk — u in V weakly. By lower
semicontinuity,

E*) = limg e E#(v) = inf Ev) = ianE#(v) and

cl©
JW#(Vu) dx = lims e J WH(Vuk) dx

(5.8)
’JT#(anu,v) dS = lim ks e IJT#(Vuk,v) as .
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We may apply THEOREM 1.3, or a slight generalization of it in the case of (T#(Vuk,v)), to
deduce that

WHVuk) - WH#Vu) in LY(Q) weakly and
#(Vuky) = 1#(Vipu,v) in LI weakly .

If B = (Ux )x e Q denotes a Young measure generated by ( Vuk ), we have the limit energy

representations
W = WHVIe)) = [W(A) dux(A), xe Q
M

10 = t(Vianux),v(x) = lJt#(z"s,\’(X)) dux(A), xeT,

and

JW(X) dx + JE(X) dS = inf cl@) E(v) .

6 Measure valued solutions of an evolution problem

Some of our methods may be employed to study measure valued solutions of evolution
problems. A more extensive treatment is given by Slemrod [47]; here we wish to explain merely
how such solutions may come about. For further developments we refer to Demoulini [17]. To
fix the ideas, we consider a scalar case. Suppose that ¢ € CI(RD) satisfies

max (clal2-1,0) < o@) < C(lal2+1) aeR (6.1)

| Vo)l < Clal

where 0 <c<C. Let q(a) = V@(a). Our interest is in solutions, possibly Young measures,
which in some sense satisfy

—div q + g—‘t‘ = 0 in Qx R+, (6.2)
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R+ = (0,0), subject to appropriate boundary conditions.

To render this more precise, let us agree that v = (vy; )(x ne QxR is a Young measure

solution of (6.2) provided that

Vv is a family of probability measures and
ue L2(R¥; H:)(Q)) with % e L2(Q x RY) which satisfy

~div q + % = 0 in H(QxRY), (6.3)
u | Q = U | -~ where (6.4)
ax) = Jq@dvxya) and
Rn
in Qx Rt ae. 6.5
Vux) = [advega) in a.e (6.5)
Rn

Above, ug € H(I)(Q) is given. Moreover, we shall impose the condition that
Vv is generated by a sequence (Vul ), h > 0, where uh € L°(R*: H(l)(Q)). (6.6)

The equation (6.5) means that

Jomfg( q-V¢ + %t—“ {)dxdt = 0 for {e H(Qx R¥). (6.7)

We shall give an outline of the proof of

THEOREM 6.1 Assume (6.1) about ¢. Then there exists a Young measure solution v =
(Ve e axrt of

—diva+3—lt1 = 0 in Qx R¥,
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satisfying (6.3) - (6.6). In addition
suppvxt € {aeRM @@ = ¢"(@) }, in Qx Rt ae, (6.8)
where ©** is the convexification of ¢ .
Recall that if @ € C1(RM), then ¢** € CI(R™), whence
q@ = q@ in {aeRY @@) = ¢ (@) ),
where q**(a) = V@**(a). Note also that ¢** satisfies (6.1). Hence the

COROLLARY 6.2 Assume (6.1) about ¢ andlet v = (vx )(x,l) c Qxr™ beaYoung

measure solution satisfying (6.8). Then Vv is a solution of the relaxed problem

—div @™ + % = 0 in Qx R+ (6.9)

The constructed solution has some additional properties which we shall describe in the sequel.

Stepl An equilibrium problem. Let w e H(l)(Q) and h >0 and consider

ONV) = Dy(v) = J((p(Vv) +§H|v_w|2) dx, ve H.(Q),and (6.10)

QH*(y) = J((p**(Vv) +-lv-wi2)dx, ve HY(Q), (6.11)

where @** is the convexification of ¢. By a known relaxation theorem, cf. [16],

I = inf H(l)(Q) d(v) = inf H(l)(Q) D (v). (6.12)
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Now let ( vK) be a minimizing sequence for ®(v). We may assume thereisa u e H(l)(Q) such

that

vk > u in H(I)(Q) weakly as k — oo,

By lower semicontinuity,
dk) —» ®(u) as ko oo,

and by the Rellich Theorem,

ka—wﬂ dx — fglu—wﬂdx as k — oo,

Hence

Q[<p*"‘(vu)dx - limk_,ooJ(p**(Vvk)dx _ limk_aoofj(p(Vvk)dx.

Hence by THEOREM 1.1,

¢**(VvK) = ¢™*(Vu) in LY(Q) weakly and
O(VWK) — ¢™(Vu) in LI(Q) weakly.

Denoting by v = (vx )x e @ the Young measure generated by ( VvK),
suppv < {ae R% ¢(@) = 9" } ,
¢*(Vu) = ¢ = ¢ and q = q** in Q ae, (6.13)

where

v = [y@dvx@ in Q ae.
Rn
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In fact, the Young measure representation holds for any y € E, where

(Al
E = {ye CM): suPMI—_KwILZ_l_l<°°}°

We may now apply the technique developed in [10] to discuss stable Young measure
minimizers of variational principles, cf. §5. As a consequence of this, we may write an
equilibrium equation

J( Q-Ve+la-wdx=0 for {eH(Q. (6.14)

Finally, the Young measure representation provides us with an elementary estimate for q.
Indeed, using the estimates of (6.1) and (6.13),

Jrarac < [ ] 1a@ avaa

< C _[Q ,[Rnl a 12 dvy(a)dx
< C jg IR“ (p(a) + 1) dvg(a)dx
- C A(q)**(Vu)Jr 1) dx (6.15)

Step 2 Approximate solution Let ug € H(l)(Q) be given and h > 0. We define a sequence of

Young measure solutions VJ and underlying functions ubd by setting
vho = dy,, and uho = y,

and vhi+l the solution of (6.12) with w = ubd and uhd+1 its underlying function. We then

are in possession of the energy densities
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e (Vuhi) = (vhip) = (vhi ") (6.16)
and the flux densities
ghd = (vhig) = (vhig™). (6.17)

Let Thi = [hj, h(+1)), xhi = %M , and

0 t < hj
At = { L1 hj <t < h(j+ 1)

=
1 h(j +1) <t
Set
uh(x) = X {(1-ARi() uhice) + Abi(D) uhi+l(x)} € L*®*+HL(Q) (6.18)
and
vio= Zjahiovi! e E (6.19)

Now from (6.18),
duh 1, hisl h. h _ h = Z ahd vhij
e = p@hitl-uhd) and  gh = (Vhg) = 25 Uiy (6.20)
comprise a solution of
— h
—div gh + aalt = 0 in H-Y(Q), foreach t,

from which it is elementary to check that

ij qh V§+M§ dxdt = 0 for {e HY(Q x R¥) (6.21)
0 Q(q- ot Ydxdt = or (e H . .
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Step 3 Estimates Uniform estimates are available for uh e L°°(R+;H(1)(Q)) and

L2(Qx R+). To begin, uli is admissible in the variational principle for uhi+1, so

J (¢**(Vuhi+ly + 21_h | uh+l —ghi|2) dx < J(P**(Vuh’j) dx .

Hence

Q[<p**(vuh,j)dx < J(p**(Vuo)dx - M2

and

= %5 luhi+l —uhi[2 < Q[<p**(Vuo)dx - M2,

Since ¢** satisfies (6.1), the inequality (6.22) tells us that

I} Vahi | 2 S M.
By convexity of the L2 norm and (6.24) we have that
llub LM(R+;Hi(Q)) < M.
Rearranging a little in (6.23) and noting (6.20),
7112 g < ae
0 Q
Introduce the function

wh(xt) = Xj uhit) yhi()) € L=®R+H.(Q)).

Then (6.24) implies that

€

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)
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Hwhil oz )y € M- (6.28)

Finally, we wish to estimate g using (6.15), which provides the estimate

I gl 2@y < C J((p**(Vth)+l)dx < CM2 + 1), (6.29)

Step 4 Passage to the limit ~We let h — 0. From the estimates (6.25), (6.26), (6.28), and
(6.29), we may extract a subsequence of h as h - 0 and

V= W )xpe axrt € B with suppv { 0@a) = 0™ () }

and v is a Young measure,

we L*®*H\(Q) with Vw = (va),

ge Lo®R*+L2%Q) with q = (v,q) = (v,q**), and
ue L*RHHL(Q) with g—‘;e L2(Q x R¥)

which satisfy

jow JQ( E'VC+%% {)dxdt = 0 for {e H.(Qx R¥). (6.30)

In fact, (6.30) above holds for { e L°°(R+;H(1)(Q)). We remark that v is a Young measure but it

is not generated by the sequence ( Vuh') of (6.18), but rather by a diagonal subsequence of the
functions which generate the (vh) of (6.19).

It remains to show that the Young measure v and the limit function u are connected. We
claim that u = w. In fact, we shall show that Vu = Vw by means of an easy lemma.

LEMMA 6.3 Let (ff) < bounded set of L2(Q) for h>0 and j=12,3,..., and set

thx,) = X5 i) xhi) and
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ghx,0) = 2 {(1—ARi(D) fhi(x) + Abice) fhitl(x)),

where XM is the characteristic function of [hj, h(i+1)) and

0 t < hj
Aty = { L_ hj <t < h(j+ 1)

hj
1 h(j+1) £t
Suppose that
fh 5> f and gh—> g in L12 oo (Q X RY) weakly.
Then f = g.
PROOF It suffices to show that

Jom _[Qfgdxdt = Jow JQ g C dxdt

for (e C:(Q) of the form {(x,t) = w(x)z(t). Let zhJ = z(hj) and

Chixt) = wix) 2 2 xhi(y)

Ehx,t) = wix) 2 {(1 - Abiqr) zhid + Ahi() Zhi-1} |

It is elementary to check that {h — { and &b — { uniformly since z is smooth. Since
" hehdxdt = | h ¢h dxdt,
[T s =[] o

the lemma follows.

Acknowledgement We are delighted to thank J. Matos for many helpful conversations.



Weak convergence of integrands and the Young measure representation 28 7/11/90

10.

11.

13.

14.

14.

15.

16.

References

Acerbi, E. and Fusco, N. 1984  Semicontinuity problems in the calculus of variations, Arch. Rat.
Mech. Anal., 86, 125 - 145

Ball, J. M. 1977  Constitutive inequalities and existence theorems in nonlinear elastostatics,
Nonlinear analysis and mechanics: Heriot Watt Symposium, Vol I (Knops, R., ed.) Pitman Res.
Notes in Math. 17, 187-241

Ball, J. M. 1989 A version of the fundamental theorem for Young measures, PDE’s and
continuum models of phase transitions, Lecture Notes in Physics, 344,(Rascle, M., Serre, D., and
Slemrod, M., eds.) Springer, 207-215

Ball, J. M, 1989  Sets of gradients with no rank-one connections (to appear)

Ball, J. M. and James, R. 1987  Fine phase mixtures as minimizers of energy, Arch. Rat. Mech.
Anal., 100, 15-52

Ball, J. M. and James, R. 1989  Proposed experimental tests of a theory of fine microstructure and the
two well problem

Ball, J. M. and Murat, F. 1984  WLP - quasiconvexity and variational problems for multiple integrals,
J. Fnal Anal, 58,225-253

Ball, J. M, and Zhang, K. 1990  Lower semicontinuity of multiple integrals and the biting
lemma, Proc. Royal Soc. Edinburgh, 114A, 367-379

Chipot, M. and Collins, C. Numerical approximation in variational problems with
potential wells, (to appear)

Chipot, M. and Kinderlehrer, D. 1988  Equilibrium configurations of crystals, Arch. Rat. Mech.
Anal. 103, 237-277

Chipot, M. Numerical analysis of oscillations in nonconvex problems

Collins, C. and Luskin, M. 1989  The computation of the austenitic-martensitic phase
transition,PDE’s and continuum models of phase transitions,Lecture Notes in Physics, 344,
(Rascle, M., Serre, D., and Slemrod, M., eds.) Springer, 34-50

Collins, C. and Luskin, M. Numerical modeling of the microstructure of crystals with
symmetry-related variants, Proc. ARO US-Japan Workshop on Smart/Intelligent Materials and
Systems, Technomic

Collins, C., Kinderlehrer, D., and Luskin, M. Numerical approximation of the solution of
a variational problem with a double well potential, SIAM J. Numer. Anal.

Dacorogna, B. 1982  Weak continuity and weak lower semicontinuity of nonlinear functionals,
Springer Lecture Notes 922

Dacorogna, B. 1989 Direct methods in the Calculus of Variations, Springer



Weak convergence of integrands and the Young measure representation 29 7/11/90

17.
18.
19.
20.

21.

22.
23,

24.
25.
26.
27.
28.
29.‘
30.

31.
32.

33.
34.

3s.

36.

37.

Demoulini, S. Thesis, University of Minnesota

Ericksen, J.L. 1979  On the symmetry of deformable crystals, Arch. Rat. Mech. Anal. 72, 1-13

Ericksen,J.L. 1980  Some phase transitions in crystals, Arch. Rat. Mech. Anal. 73, 99-124

Ericksen, J.L. 1981 Changes in symmetry in elastic crystals, IUTAM Symp. Finite Elasticity
(Carlson, D.E. and Shield R.T., eds.) M. Nijhoff, 167-177

Ericksen, J.L. 1981  Some simpler cases of the Gibbs phenomenon for thermoelastic solids, J.of
thermal stresses, 4 , 13-30

Ericksen, J.L. 1982  Crystal lattices and sublattices, Rend. Sem. Mat. Padova, 68, 1-9

Ericksen, J.L. 1983  Ill posed problems in thermoelasticity theory, Systems of Nonlinear Partial
Differential Equations, (Ball, J., ed) D. Reidel, 71-95

Ericksen, J. L. 1984  The Cauchy and Born hypotheses for crystals, Phase Transformations and
Material Instabilities in Solids, (Gurtin, M., ed) Academic Press, 61-78

Ericksen, J. L. 1986  Constitutive theory for some constrained elastic crystals, Int, J. Solids
Structures, 22, 951 - 964

Ericksen, J. L. 1986  Stable equilibrium configurations of elastic crystals, Arch. Rat. Mech. Anal. 94,
1-14

Ericksen, J. L. 1987  Twinning of crystals I, Metastability and Incompletely Posed Problems, IMA
Vol. Math. Appl. 3,(Antman, S., Ericksen, J.L., Kinderlehrer, D., Miiller, I.,eds) Springer, 77-96

Ericksen, J. L. 1988  Some constrained elastic crystals, Material Instabilities in Continuum
Mechanics, (Ball, J. ed.) Oxford, 119 - 136

Ericksen, J. L. 1989  Weak martensitic transformations in Bravais lattices, Arch. Rat. Mech. Anal,
107,23 - 36

Evans, L. C. 1990  Weak convergence methods for nonlinear partial differential equations, CBM S
74, Amer. Math. Soc.

Fonseca, 1. 1985  Variational methods for elastic crystals, Arch. Rat. Mech. Anal., 97, 189-220

Fonseca, L. 1988  The lower quasiconvex envelope of the stored energy function for an elastic
crystal, J. Math. pures et appl, 67, 175-195

Fonseca, 1. Lower semicontinuity of surface energies (to appear)

Fonseca, L. The Wulff Theorem revisited (to appear)

James, R. D, 1988  Microstructure and weak convergence, Proc. Symp. Material Instabilities in
Continuum Mechanics, Heriot-Watt, (Ball, J. M., ed.), Oxford, 175-196

James, R. D. and Kinderlehrer, D. 1989  Theory of diffusionless phase transitions,PDE’s and
continuum models of phase transitions, Lecture Notes in Physics, 344,(Rascle, M., Serre, D., and
Slemrod, M., eds.) Springer, 51-84

Kinderlehrer, D. 1988  Remarks about the equilibrium configurations of crystals, Proc. Symp. Material
instabilities in continuum mechanics, Heriot-Watt (Ball, J. M. ed.) Oxford, 217-242



Weak convergence of integrands and the Young measure representation 30 7/11/90

38.
39.

40.
41.
42.
43.
44.
45.
46.

47.
48.

49.

50.
51.

Kinderlehrer, D. and Pedregal, P. Remarks about Young measures supported on two wells
Kinderlehrer, D. and Vergara-Caffarelli, G. 1989  The relaxation of functionals with surface energies,
Asymptotic Analysis 2, 279-298

Liu, F.-C. 1977 A Luzin tyoe property of Sobelov functions, Ind. U, Math. J., 26, 645-651
Matos, J. The absence of fine microstructure in o-B quartz

Matos, J. Thesis, University of Minnesota

Morrey, C. B, Jr. 1966  Multiple Integrals in the Calculus of Variations, Springer

Miiller, S. Higher integrability of determinants and weak convergence in 1! (to appear)

Pedregal, P. 1989  Thesis, University of Minnesota

Pedregal, P. 1989  Weak continuity and weak lower semicontinuity for some compensation
operators, Proc. Royal Soc. Edin. 113, 267 - 279

Slemrod, M. Dynamics of measure valued solutions to a backward-forward heat equation

Tartar, L. 1983  The compensated compactness method applied to systems of conservation laws,
Systems of nonlinear partial differential equations (Ball, J. M., ed) Riedel

Tartar, L. 1984  Etude des oscillations dans les équations aux dérivées partielles nonlinéaires,
Springer Lect. Notes Physics, 195, 384-412

Young, L. C. 1969  Lectures on calculus of variations and optimal control theory, W .B. Saunders

Zhang, K. Biting theorems for Jacobians and their applications, Analyse nonlineare, (to

appear)

Present addresses of the authors:

DXK.

Department of Mathematics P.P.  Departamento de Matemidtica Aplicada
Carnegie Mellon University Universidad Complutense de Madrid
Pittsburgh, PA 15213 28040 Madrid, Spain



#
618
619

620
621

622
623

624

625
626

627
628
629

630
631

632
633
634
635
636

637
638
639
640
641
642

643
644
645
646
647

648
649
650
651
652
653
654

655
656

657

Recent IMA Preprints
Author/s Title

L.E. Fraenkel, On a linear, partly hyperbolic model of viscoelastic flow past a plate

Stephen Schecter and Michael Shearer, Undercompressive shocks for nonstrictly hyperbolic
conservation laws

Xinfu Chen, Axially symmetric jets of compressible fluid

J. David Logan, Wave propagation in a qualitative model of combustion under equilibrium
conditions

M.L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra Systems

Allan P. Fordy, Isospectral flows: their Hamiltonian structures, Miura maps and
master symmetries

Daniel D. Joseph, John Nelson, Michael Renardy, and Yuriko Renardy, Two-Dimensional
cusped interfaces

Avner Friedman and Bei Hu, A free boundary problem arising in electrophotography

Hamid Bellout, Avner Friedman and Victor Isakov, Stability for an inverse problem in
potential theory

Barbara Lee Keyfitz, Shocks near the sonic line: A comparison between steady and
unsteady models for change of type

Barbara Lee Keyfitz and Gerald G. Warnecke, The existence of viscous profiles and
admissibility for transonic shocks

P. Szmolyan, Transversal heteroclinic and homoclinic orbits in singular perturbation
problems

Philip Boyland, Rotation sets and monotone periodic orbits for annulus homeomorphisms

Kenneth R. Meyer, Apollonius coordinates, the N-body problem and continuation of
periodic solutions

Chjan C. Lim, On the Poincare-Whitney circuitspace and other properties of an
incidence matrix for binary trees

K.L. Cooke and I. Gydri, Numerical approximation of the solutions of delay differential
equations on an infinite interval using piecewise constant arguments

Stanley Minkowitz and Matthew Witten, Periodicity in cell proliferation using an
asynchronous cell population

M. Chipot and G. Dal Maso, Relaxed shape optimization: The case of nonnegative
data for the Dirichlet problem

Jeffery M. Franke and Harlan W. Stech, Extensions of an algorithm for the analysis
of nongeneric Hopf bifurcations, with applications to delay-difference equations

Xinfu Chen, Generation and propagation of the interface for reaction—diffusion equations

Philip Korman, Dynamics of the Lotka—Volterra systems with diffusion

Harlan W. Stech, Generic Hopf bifurcation in a class of integro-differential equations

Stephane Laederich, Periodic solutions of non linear differential difference equations

Peter J. Olver, Canonical Forms and Integrability of BiHamiltonian Systems

S.A. van Gils, M.P. Krupa and W.F. Langford, Hopf bifurcation with nonsemisimple
1:1 Resonance

R.D. James and D. Kinderlehrer, Frustration in ferromagnetic materials

Carlos Rocha, Properties of the attractor of a scalar parabolic P.D.E.

Debra Lewis, Lagrangian block diagonalization

Richard C. Churchill and David L. Rod, On the determination of Ziglin monodromy groups

Xinfu Chen and Avner Friedman, A nonlocal diffusion equation arising in terminally attached
polymer chains

Peter Gritzmann and Victor Klee, Inner and outer j- Radii of convex bodies in finite-
dimensional normed spaces

P. Szmolyan, Analysis of a singularly perturbed traveling wave problem

Stanley Reiter and Carl P. Simon, Decentralized dynamic processes for finding equilibrium

Fernando Reitich, Singular solutions of a transmission problem in plane linear elasticity
for wedge-shaped regions

Russell A. Johnson, Cantor spectrum for the quasi-periodic Schrodinger equation

Wenxiong Liu, Singular solutions for a convection diffusion equation with absorption

Deborah Brandon and William J. Hrusa, Global existence of smooth shearing motions of a
nonlinear viscoelastic fluid

James F. Reineck, The connection matrix in Morse-Smale flows 11

Claude Baesens, John Guckenheimer, Seunghwan Kim and Robert Mackay, Simple
resonance regions of torus diffeomorphisms

Willard Miller, Jr., Lecture notes in radar/sonar: Topics in Harmonic analysis with applica-
tions to radar and sonar



658
659
660
661
662

663
664

665
666
667
668

669

670
671
672
673
674

675
676
677
678
679
680
681
682
683
684
685
686
687
688

689
690
691
692
693

694
695

696

697
698

699
700

701
702

703

704

¢

Calvin H. Wilcox, Lecture notes in radar/sonar: Sonar and Radar Echo Structure

Richard E. Blahut, Lecture not.~ in radar/sonar: Theory of remote surveillance algorithms

D.V. Anosov, Hilbert’s 21st problem (according to Bolibruch)

Stephane Laederich, Ray—Singer torsion for complex manifolds and the adiabatic limit

Geneviéve Raugel and George R. Sell, Navier-Stokes equations in thin 3d domains: Global
regularity of solutions I

Emanuel Parzen, Time series, statistics, and information

Andrew Majda and Kevin Lamb, Simplified equations for low Mach number combustion with
strong heat release

Ju. S. I’yashenko, Global analysis of the phase portrait for the Kuramoto-Sivashinsky equation

James F. Reineck. Continuation to gradient flows

Mohamed Sami Elbialy, Simultaneous binary collisions in the collinear N-body problem

John A. Jacquez and Carl P. Simon, Aids: The epidemiological significance of two different mean
rates of partner-change

Carl P. Simon and John A. Jacquez, Reproduction numbers and the stability of equilibria of SI
models for heterogeneous populations

Matthew Stafford, Markov partitions for expanding maps of the circle

Ciprian Foilas and Edriss S. Titi, Determining nodes, finite difference schemes and inertial manifolds

M.W. Smiley, Global attractors and approximate inertial manifolds for abstract dissipative equations

M.W. Smiley, On the existence of smooth breathers for nonlinear wave equations

Hitay (3zbay and Janos Turi, Robust stabilization of systems governed by singular integro-differential
equations

Mary Silber and Edgar Knobloch, Hopf bifurcation on a square lattice

Christophe Golé, Ghost circles for twist maps

Christophe Golé, Ghost tori for monotone maps

Christophe Golé, Monotone maps of 7" x R™ and their periodic orbits

E.G. Kalnins and W. Miller, Jr., Hypergeometric expansions of Heun polynomials

Victor A. Pliss and George R. Sell, Perturbations of attractors of differential equations

Avner Friedman and Peter Knabner, A transport model with micro- and macro-structure

E.G. Kalnins and W. Miller, Jr., A note on group contractions and radar ambiguity functions

George R. Sell, References on dynamical systems

Shui-Nee Chow, Kening Lu and George R. Sell, Smoothness of inertial manifolds

Shui-Nee Chow, Xiao-Biao Lin and Kening Lu, Smooth invariant foliations in infinite dimensional spaces

Kening Lu, A Hartman—Grobman theorem for scalar reaction-diffusion equations

Christophe Golé and Glen R. Hall, Poincaré’s proof of Poincaré’s last geometric theorem

Mario Taboada, Approximate inertial manifolds for parabolic evolutionary equations via Yosida approxi-
mations

Peter Rejto and Mario Taboada, Weighted resolvent estimates for Volterra operators on unbounded inter-
vals

Joel D. Avrin, Some examples of temperature bounds and concentration decay for a model of solid fuel
combustion

Susan Friedlander and Misha M. Vishik, Lax pair formulation for the Euler equation

H. Scott Dumas, Ergodization rates for linear flow on the torus

A. Eden, A.J. Milani and B. Nicolaenko, Finite dimensional exponential attractors for semilinear wave
equations with damping

A. Eden, C. Foias, B. Nicolaenko & R. Temam, Inertial sets for dissipative evolution equations

A. Eden, C. Foias, B. Nicolaenko & R. Temam, Holder continuity for the inverse of Mané’s pro-
Jjection

Michel Chipot and Charles Collins, Numerical approximations in variational problems with potential
wells

Huanan Yang, Nonlinear wave analysis and convergence of MUSCL schemes

Laszlé Gerencsér and Zsuzsanna Vagd, A strong approximation theorem for estimator processes in
continuous time

Laszlé Gerencsér, Multiple integrals with respect to L-mixing processes

David Kinderlehrer and Pablo Pedregal, Weak convergence of integrands and the Young measure
representation

Bo Deng, Symbolic dynamics for chaotic systems

P. Galdi, D.D. Joseph, L. Preziosi, S. Rionero, Mathematical problems for miscible, incompressible fluids
with Korteweg stresses

Charles Collins and Mitchell Luskin, Optimal order error estimates for the finite element approximation
of the solution of a nonconvex variational problem

Peter Gritzmann and Victor Klee, Computational complexity of inner and outer j-radii of polytopes in
finite-dimensional normed spaces





