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WEAK CONVERGENCE OF WEIGHTED EMPIRICAL
CUMULATIVES BASED ON RANKS

By Hira LaL KouL AND ROBERT G. STAUDTE, JR.
Michigan State University

The weak convergence of weighted empirical cumulatives based on the
ranks of independent, not necessarily identically distributed, observations
to a continuous Gaussian process is proved. The results contain a shorter
proof of a central limit theorem by Dupat and Hajek (1969) Ann. Math.
Statist. Analogous results are proved for signed rank processes.

0. Summary. In this paper we consider the asymptotic behavior under general
alternatives of the processes S,*(v) = X i, ¢, [{R,; = (n+ 1)}, 0 <v<1,and
their signed rank counterparts.

Theorem 1.1 of Section 1 gives a simpler proof of the Theorem 1 of [2], namely
the asymptotic normality of S,*(v) for a fixed point v. Theorem 2.1 of Section 2
proves the analogous result for the signed rank statistics.

Theorems 3.1 and 3.2 give sufficient conditions for weak convergence of the
suitably normalized processes {S,*(v): 0 < v < 1} and their signed rank counter-
parts to appropriate continuous Gaussian processes. The results include as special
cases the asymptotic distribution of generalized Kolmogorov-Smirnov statistics
as studied in Theorems V. 3.5.1 and VI. 3.2.1 of [3].

The proof in all three sections uses results of [4] pertaining to the weighted
empirical cumulatives based on {X,}.

1. Linear rank statistics. For eachn > 1let R,, ---, R,,, denote the ranks of
independent observations X,,, - - -, X, having respective continuous distribution
functions F,,, ---, F,,. Letc,, ---, c,, be given real numbers. We define the
linear rank statistics

* = Nl cul{R, < (n + 1))

where [ is the set indicator function and v is a fixed point in the unit interval.
The point v will remain fixed throughout Sections 1 and 2.

For notational convenience we shall hereafter suppress the subscript n on the
above given entities and on all functions of them except for the empirical dis-
tribution function. Also, we shall write 3], and max; for };2_, and max,;,,
respectively. For any distribution function G, G-(¢) will denote the usual inverse
inf{x: G(x) = ¢}.

We define
H,(x) =n1' 3, I{X; < x}, —00 L x <
H(x) =n™' 3, Fi(x) , —o0 < X< oo
L(t) = F,(H7\(?)) » 01, 1ign.
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EMPIRICAL CUMULATIVES BASED ON RANKS 833
We are here concerned only with the asymptotic behavior of S*, so we may
consider the simpler (for our purposes) and asymptotically equivalent statistic
(1.1) S=3;c¢l{X; < H(v)}.
The main result concerning S follows.

THEOREM 1.1. Let S be given by (1.1) and assume that

(1.2) lim,_,, ¢, max;|c,] = 0 where o= >, ¢},
and
(1.3) lim,_, lim sup, ., max; |[L,(v 4+ 0) — L,(v — 9)| = 0.

Furthermore assume that there exist real numbers 1,(v), 1 < i < n, such that for
every K >0 )

(1.4)  lim,_, max; max,_, g, P L) — Li(v) — (¢ — 9)Li(v)| = 0.

Denoting n™* 33, ¢;l,(v) by ¢, we also require

(1.5) lim sup, .. #te,7'[¢| < 400 .
Then S is asymptotically normal with parameters (t, o*), where
r=>,cL(®v and
(1.6) o’ = Y (¢; — &) L,(v)(1 — L,(v)), provided that
(1.7) lim inf,_ 6*/c* > 0.

REMARKS. Since the above stated theorem bears strong resemblance to Theo-
rem DH1 of [1], (which is the complemented version of Theorem 1 of [2]), some
comments are in order. First, assumptions (1.2), (1.4), and (1.7) correspond to
conditions (2.2), (2.13), and (2.22) of [2]. Condition (1.3) above is not quite
comparable to condition (2.12) of [2], but it appears to be less restrictive. In
any case (2.12) and (2.13) of [2] together imply the boundedness of the /;’s, and
hence the condition (1.5) above. Taken together, then, the assumptions of Theo-
rem 1.1 above are somewhat weaker than those of DH1. On the other hand,
the conclusions of DH1 of [1] are stronger than those of the above theorem in
that it asserts not only < (¢7(S* — p)) — N(O, 1) but also E(¢~'(S* — p)) — 0
and E[¢7(S* — #)]?— 1 as n— oo. The main advantages of the proof of the
above Theorem 1.1 are that it is shorter and the role played by the conditions
(1.3) and (1.4) is clear.

ProoF oF THEOREM 1.1. The proof will be based on three lemmas that follow.
We define the weighted empirical cumulative functions

(1.8) Vit) = 0.0 T ellX: < H O} — L], 0<r<1.
In the special case ¢; = 1, 1 < i < n, we write V(t) for V(f). Note that

(1.9) Vi) = mIH,H(0) — 1], o<r<1.
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Letting T = ¢,7'[S — p], one may easily show that
(1.10)  T'= V(H(H,7'(v))) + 0.7 Z; [ L(H(H,7'(v))) — Ly(v)] -

This relationship between T and V, is basic to the proof of the theorem.

In the sequel we shall write Y, = o,(1) for “Y, converges to zero in prob-
ability” and Y, = O,(1) for “Y, is bounded in probability”; all limits are taken
with n — + oo, unless otherwise specified.

LEmMA 1.1. SUPcicr |[H(H, (1)) — 1] = 0,(1) .
Proor.
SUPoc,<: | H(H, (1)) —
< SUPoeea |H(H, () — H,(H,7'(Y))| + SUPw<s [HA(H, 7)) — 1|
S SUP e [H(9) — HL (9] - = Uy [HL(HO) — 1] + .
But the first term on the right converges in probability to zero by (1.4) of [4],
and the lemma follows at once.
Lemma 1.2. If condition (1.3) is satisfied then for any ¢ > 0 and v fixed
lim;_, lim sup,,_.. Pr{sup;,_,;<; [V.(t) — V,(v)] > ¢ = 0.
Proor. Let G(f) = 0,7 3, ¢’L(t), 0 < t < 1. Then by Lemmas 2.1 and 2.2
of [4], there is a K independent of § and v such that for all n
Pr {Supy,_i<s [V(t) — V()| > )
= L1600 +9) = 6 — )P + 2Pr{[Vv+0) — Vv — ) = =},

which is
K+ 32

52

<

[G(v + 0) — G(v — 9)

by Chebyshev’s Inequality. The lemma now follows from (1.3) and the fact that
G(v + 8) — G(v — 8) < max, (Ly(v + 8) — Ly(v — 9)) .
LemMA 1.3. If condition (1.3) is satisfied, then for any ¢ > 0
lim,_.., Pr {| V,(H(H,(v)) — V.(0)] > ¢ = 0.
Proor. This statement is immediate from Lemmas 1.1 and 1.2 above.

Proor oF THEOREM 1.1 (continued). In view of (1.10) and the definition of T
it suffices to prove that T'is asymptotically normal with mean O and variance ¢%/0 2.
By Lemmas 1.1 and 1.3

(1.11) T= V) +ol)+ Y
where Y =013, c[L(HH,(v) — L,()] -
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We also have
n[H(H,™(v)) — v] = n}[H(H,™'(v)) — H,(H,7(v))] + O(n™*)
(1.12) = —V,(H(H,(v)) + O(n~?) by (1.9)
= —V,(v) 4 o,(1) by Lemma 1.3.

Since the sequence {V(v)} has an asymptotically normal distribution, it fol-
lows that for any given ¢ > 0 there exist K, and N,, such that n > N,, implies
(1.13) P[|HH,'(v)) —v| < Knt]=1—c¢.
Moreover by assumption (1.4) there exists numbers {/;(v)} such that for any given
¢ > 0 there exists N, such that n > ¥, implies
(1.14) Max; sUp;,_,icu-ix, MLi(1) — Li(v) — (¢ =~ )L()] <.

We define
A4, = {|HH,(v) —v| < K.nY} and

.15y Z,;. = {L(H(H,7'(v))) — Ly(v) — [H(H, () — vJL()}H(4,.) »
1<ign.

Now observe that in view of (1.14) and (1.13) we have

(1.16) P(max;nt|Z, ;| >¢)<e¢ for n> N,

where N, = max (N, N,,).
Furthermore we have

(1.17) Y = YI(4,,) + YI(4,)
= g“lnﬁé"[H(Hn_l(’v)) - 'U] + Zn,o,e + ac_l Z'i cizn,i,e

where
Zyoo ={Y — o "ent[H(H,'(v)) — v]}(4;.) -

Note that
(1.18) P(Z,o. # 0) < P(45,) < ¢ for n>N,.
By the Cauchy inequality and (1.16)
(1.19) Plo, Y e:Zs >e]l < e for n>N,.
Hence in view of (1.19), (1.18) and (1.17) we have
(1.20) Y = o, 'mte[H(H,™'(v)) — v] + o,(1).
Consequently, by (1.10), (1.11), (1.12) and (1.13) we have in view of (1.5) that
(1.21) T — V,(0) + o, meV (v) = o(1).

But V,(v) — o,'nt¢V(v) equals
(1.22) 0 T e — O, < HA0)) — Ly(v)]

which under (1.2) and (1.7) has an asymptotically normal distribution by the
Lindeberg-Feller Central Limit Theorem. The proof is complete upon observa-
tion that (1.22) has asymptotic mean 0 and variance g, %".
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2. Signed rank statistics. In this section we prove the analogue of Theorem
1.1 for signed rank statistics. This result has been previously obtained by the
authors in [5] using the projection method and other techniques of Dupa¢ and
Héajek in [2]. The proof presented here, however, is considerably shorter.

Given the model of Section 1, define

H, (x)=n?),[{X]| <x}, 0x<
H(x) = n7" 2 [Fi(x) — Fi(=x)] 0<x<o.
Furthermore letting p, = F;(0), ¢, =1 — p;, 1 < i < ndefine, for0 <r < 1,

Li(n) = [Fi(H. 7)) — pillg: if ¢;:>0

=0 if q; = 0
Lyt = [ps — F(—H.7@lp: it pi>0
=0 if p,=0

L (1) = ¢: Li(1) + piLi(?)
pt (1) = q: L) — p L) -

For a fixed point v in the unit interval, define the signed rank statistic
2.1 St = i al{|Xi] = H(v)}s(X))
where s(x) = Ifx = 0} — I{x < 0}.

THEOREM 2.1. Assume (1.2) holds. Also, assume
(2.2) (i) lim,_,limsup,_. |Lf(v 4+ 6) — Lf(v — 9)| =0,

j=12,1<i<nand
(ii) that there exist numbers {I}(v)} and {I{(v)} such that for all K > 0

lim,_,, max; max,,_, <x.-3 B|L5(t) — LE(v) — (¢ — 0)H(v)| =0, j=1,2.
Defining ¢, = n™* 3, c{q;l;(v) — p;li(v)}, we further assume
(2.3) lim sup,_., nte,7'|¢,| < oo .
Then S* given by (2.1) is asymptotically normal with parameters (p.,, 7.%), where
py = 2cpt(v) and

0. = T Ac/[L*(v) — (#H ()] + LA ()1 — Li*(v))
= 2¢;¢,[p*(0)(1 — L*(v)) ]}

provided that
2.4) liminf,_ 0,2 >0.

REMARK. Note that if the X;’s are symmetric random variables ¢, = 0 = p,,
and ¢, = 3, ¢,’L;*(v).

Proor oF THEOREM 2.1. The method of proof is similar to that of Theorem
1.1, so we shall be brief. We define, for 0 < ¢t < 1,

(2-3) Vor() = o7 s el {1 Xi] = H . 7(O)}s(Xy) — ()] -
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Then denoting ¢,7[S* — p*] by T* we obtain
(2.6) Tt =V A(H(HL) + 0.7 X elpt (H (H3 () — 17 (V)] -

In view of the proof of Theorem 1.1 and the decomposition it should be clear
that we need results analogous to Lemmas 1.1, 1.2 and 1.3.

LeEMMA 2.1. SUPgcs<r [HL(H 1 (1) — t] = 0,(1) .

Proor. This statement follows from Lemma 1.1 applied to the random vari-
ables |X}|, |X,|, - - -, | X,

LEMMA 2.2. Assume that v is fixed in [0, 1] and that (2.2) (i) is satisfied. Then
forany e >0 ¢
2.7) lim ;_, lim sup,,_.., Pr{sup,,_,;<; | V.*(t) — Vi*(v)| > ¢} =0.

Proor. Using (1.8) and (2.5) we may write
(2-8) Vor(e) = Wa(t) + We(t)

where
. W.(t) = V(H(H, (1)) — V(H(0))
an
Wa(t) = V.(H(—H,\(1))) — V.(H(0)) .

It is clear that the lemma will follow if we verify condition (2.7) with V_*
replaced by W,, and then by W,,. Now

W) = 0.7 i cilll{0 < Ho (X)) = 1} — ¢: Li(0)]
is a weighted empirical process defined in terms of random variables with im-
proper but finite and continuous distribution functions ¢, L}, 1 < i < n. Lemmas
2.1 and 2.2 of [4] also hold for such processes; and if G,(f) = a,7* 3}, ¢;’q; Lii(?)
they imply for ¢ > 0,
Pr{sup;,_,j<s | Wa(t) — Wa©)| > ¢} < K[Gy(v + 9) — Gy(v — d)]/e*,

Since G,(v + d) — Gy(v — 9) < max; [L,(v + ) — L,(v — 9)|, and since the W,,
process may be treated in the same way, the lemma follows from (2.2) (i) above.

An immediate consequence of Lemmas 2.1 and 2.2 is
Lemma 2.3. If (2.2) (i) is satisfied, then for any ¢ > 0,
lim, . P{|V,*(H,(H;1(v))) — V()| > ¢} = 0.
ProOF OF THEOREM 2.1 (continued). Using (2.6) and Lemma 2.3 we obtain
(2.9) TH =V W) +o,(1)+ Y+, where
(2.10) Y+ =0, 5, efut (H(HR W) — p2(0)] -

Then, denoting W,; by W,, when ¢; =1, 1 <i < n, and writing W(v) for
W (v) — Wy(v), we have

2.11) m[H, (H,"v)) — v] = W(),
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so that we have an analogue of (1.12), namely
(2.12) m[H, (H,}(v)) —v] = —W(v) + o,(1) .

Next, using (2.2) (ii) and (2.12) above and the fact that the sequence {W(v)}
is bounded in probability one may show, with details similar to the derivation
of (1.21), that
(2.13) T+ — V() + nte, 0, W(v) = o,(1).

Now using the definitions of ¥,* and W we have
Vo) — nte,o W) = 0.7 T {alI(1X] < H 7' ()s(X) — pt (V)]
(2.14) — &[{lXi| = H.7(0)} — L ()]}
=90,'Z,, say,
where Z, is asymptotically normal (with parameters (0, ¢,%) by the Lindeberg

Central Limit Theorem). The proof is complete.

3. Weak convergence. In Sections 1 and 2 we determined the asympotic dis-
tribution of the statistics 7,, and T,* at an arbitrary but fixed point v in the unit
interval. Here we shall give sufficient conditions for convergence of the processes
{T,(v): 0 <v< 1}, and {T,*(v): 0 < v < 1}, to the appropriate continuous
Gaussian processes. As before the dependence on n of X,;, F,;, c,;, and func-
tions of them will be notationally suppressed, with the exception of T,, T,*,
and the processes K, K, * defined below. We consider the linear rank case first.

THEOREM 3.1. Assume (1.2) of Theorem 1.1 and
(3.1) lim;_, lim sup, ., max; max,,_,,.; |L,(t) — Ly(s)] = 0,
and that V
3.2) there exist functions I, 1 < i < n, on [0, 1] such that for all K > 0
lim, ., max; max,,., Max,,_, <x.-s B |L;(t) — Ly(s) — (t — $)l;(s)] = 0.

Furthermore, defining ¢(t) = n=' Y, ¢;1,(t) and o*(t) = 3, (c; — &))*L,(H)(1 —
L,(9), 0 <t £ 1 we assume

(3.3) lim sup, ., sup,g,<, nté(t)|o, ™ < + o0,
(3.4) lim;_, lim sup,, ., sup,_, <; #|¢(t) — &(s)|o,”' = 0 and
(3.5) lim inf, ., ) > 0 for 0<t<1.
O'C
Finally, defining
(3.6) K, (t) = V(1) — nté(t)o, 'V (1), 0<r<t,
we assume

3.7 C(t, s) = lim,_,, Cov (K,(2), K,(s))
= lim, . 0,7 5, (¢; — &s))(e; — €O)L(1 — Li(n)]
exists forall 0 < s <t < 1.
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Then {T,} converges weakly to a Gaussian process T having continuous sample paths
and the following properties:
(3.8) T(0) =0 = 1(1), ET=0, and
Cov (T(s), T(t)) = C(s, t) , 0s, t<1.
REMARK 1. Since S,*(v) = S,((# + 1)v/n) it is clear that the above theorem
holds for T,*(v) = T,((n + 1)v/n), 0 < v < 1.

REMARK 2. In (3.2) we may assume without loss of generality that the /;’s
are measurable functionsand n~! 32, /;(s) = 1,0 < s < 1. Forif (3.2) is satis-
fied for {/;: 1 < i < n} then it is satisfied for {/;*: 1 <i < n}, where [;*(s) =
W[Ls + 1) — L(s)], 0 < s < 1.

REMARK 3. Conditions (1.2) and (3.3) may together be replaced by the bound-
edness condition lim sup nt max; |¢;/o,”* < oo, for in view of the last remark

SUPy<.<; ME|E(D)|0, 7! < nt max, |c;lo, 7.
ReMARK 4. Condition (3.4) may be replaced by the stronger condition
lim,_, lim sup, ., max, max,_, o |/;(t) — Li(s)| = O

since
nte(t) — &(s)|o,”t < max, |[(f) — ()] -

REMARK 5. In the special case F;, = F,i=1, ---,n we have L,(f) = ¢ and
I(#) =1 for 0 <t < 1, so conditions (3.1) through (3.4) are trivially satisfied.
Moreover, Cov (K,(t), K,(s)) = s(1 — ), 0 <s <t <1 so (3.7) is satisfied.
Thus Theorem 3.1 includes Theorem V. 3.5.1. of [3].

Proor oF THEOREM 3.1. We first observe that conditions (3.1), (3.2), (3.3)
and Lemma 2.3 of [4] enable us to strengthen (1.21) of Theorem 1.1 to
(3.9) SUPygis1 [ T(t) — Ku()] = 0,(1) -

Moreover, (3.1), (3.2), (3.3), and (3.5) imply (1.3), (1.4), (1.5), and (1.7) for
each fixed point ¢ in [0, 1], so that the distributions of {T,(t)), - - -, T,(¢,)} con-
verge to that of Gaussian distribution with r X r covariance matrix [C(t;, t,)],
where C is given by (3.7).

Finally, in view of (3.9) we need only to show that for any ¢ > 0,

(3.10) lim,_, lim sup, ., Pr {sup,,_, <; |[K.(s) — K.(¢)| > ¢} = 0.
But |K,(f) — K,(s)| is bounded above by
V() = Vo9)| + nta Vi) [8(5) — &(s)] + nto, 7 e(s)] [Vi(r) — V()]
and hence (3.10) follows from conditions (3.3), (3.4) and Lemma 2.3 of [4].
The proof is complete.

We now state the weak convergence result for the signed rank processes
{T,*(v): 0 < v < 1} defined in Section 2.
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THEOREM 3.2. Assume that conditions (3.1) and (3.2) of Theorem 3.1 are satis-
fied for each of the sets {Lj: 1 < i< n} and {L},: 1 < i< n}, and denote the
respective sets of approximating functions by {I;: 1 < i < n}and {l;;: 1 < i < n}.
Then, defining ¢ (t) and ¢ ,*(t) as in Theorem 2.1 for 0 < t < 1, we assume conditions
(3.3), (3.4) and (3.5) are satisfied when ¢, ¢,* replace ¢, o*.

Define K,*(t) = V,*(t) — nt¢ (t)o,"*W(t) and assume that

(3.11) C.(t, 5) = lim, . Cov (K, *(t), K,*(s))

exists for 0 < s, t < 1.
Then {T,*} converges weakly to a continuous Gaussian process W+ which satisfies
w+0) =0, EW+ =0, and
Cov (W+(s), WH(1)) = C*(s, 1) , 0<s, t<1.

ProoF oF THEOREM 3.2. The proof of Theorem 3.1 can be modified to prove
this result in the same way that the proof of Theorem 1.1 was modified to prove
Theorem 2.1.

REMARK 1. Remarks 1 through 3 following Theorem 3.1 apply to Theorem
3.2 with obvious modifications.

REMARK 2. Even in the special case F; = F, 1 < i < n, Thoerem 3.2 is to
our knowledge an unpublished result. It is the analogue of Theorem V. 3.5.1
of [3] for the signed rank statistics (2.1). Furthermore, if ¢; = 1 for all i, we
observe that

SUPygugt | T (V)] = SUPo<, <o M {HL(¥) — H,(0)} — {H,(0) — H,(x)}
— {F(x) — FO)} + {F(0) — F(—x)}|

which is precisely the statistic ¢, * proposed by Smirnov [6] in 1946 to test the
symmetry of F. Smirnov considered only the null distribution but Theorem 3.2
allows us to compute the asymptotic distribution of z,* under a general class of
alternatives.

If the ¢;’s are allowed to be arbitrary (subject to (1.2)) we obtain a class of
generalized Smirnov staistics sup,.,, |T,*(#)| for testing symmetry which are
analogous to the generalized Kolmogorov-Smirnoyv statistics studied in Chapter
V. 3 of [3].

Acknowledgment. The authors thank the referee for drawing their attention
to the Dupac paper [1].
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