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In this paper, we present a review of recent works on weak decay of heavy mesons and
baryons with two mesons, or a meson and a baryon, interacting strongly in the final
state. The aim is to learn about the interaction of hadrons and how some particular
resonances are produced in the reactions. It is shown that these reactions have peculiar
features and act as filters for some quantum numbers which allow to identify easily some
resonances and learn about their nature. The combination of basic elements of the weak
interaction with the framework of the chiral unitary approach allow for an interpretation
of results of many reactions and add a novel information to different aspects of the hadron
interaction and the properties of dynamically generated resonances.
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1. Introduction

In this paper, we give a perspective of the theoretical work done recently on the

interpretation of results from B, D, Λb, Λc weak decays into final states that contain

interacting hadrons, and how it is possible to obtain additional valuable information

that is increasing our understanding of hadron interactions and the nature of many

hadronic resonances. The novelty of these processes is that one begins with a clean

picture at the quark level which allows one to select the basic mechanisms by means

of which the process proceeds. Finally, one has a final state described in terms of

quarks. To make contact with the experiments, where mesons and baryons are

observed, one must hadronize, creating pairs of qq̄ and writing the new states in

terms of mesons and baryons. This concludes the primary hadron production in

these processes. After that, the interaction of these hadrons takes place, offering a

rich spectrum of resonances and special features from where it is possible to learn

much about the interaction of these hadrons and the nature of many resonances in

terms of the components of their wave functions.
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Weak decays of heavy hadrons into dynamically generated resonances

2. The Scalar Sector in the Meson–Meson Interaction

Let us begin with some examples where the low-lying scalar meson resonances are

produced. This will include B0 and B0
s decays into J/ψ f0(500) and J/ψ f0(980)

and D0 decay into K0 and f0(500), f0(980) and a0(980).

The f0(500), f0(980) and a0(980) resonances have been the subject of discussion

for years with an apparently endless debate whether they are qq̄ states, tetraquarks,

molecular systems, etc.1,2 The advent of the chiral unitary approach in different ver-

sions has brought some light into this issue. Our present position is the following:

QCD at low energies can be described in terms of chiral Lagrangians in which the

original quark and gluon degrees of freedom have been substituted by the hadrons

observed in experiments, mesons and baryons.3–6 These Lagrangians involve pseu-

doscalar mesons and low-lying baryons, while vector mesons were included in

Refs. 7–9. The extension of these ideas to higher energies of the order of GeV,

incorporating unitarity in coupled channels, has brought new insight into this issue

and has allowed one to provide answers to some of the questions raised concerning

the nature of many resonances. With the umbrella of the chiral unitary approach

we include works that use the coupled channels Bethe–Salpeter (BS) equation, or

the inverse amplitude method, and by now are widely used in the baryon sector,

where it was initiated,10–23 and the meson sector.24–31 A recent thorough review

on chiral dynamics and the nature of the low lying scalar mesons, in particular the

f0(500), can be seen in Ref. 32.

The BS equation for meson–meson interaction in coupled channels reads as

t = [1 − V G]−1V, (1)

where V is the transition matrix potential, usually taken as the lowest order ampli-

tude of chiral perturbation theory (the inverse amplitude method includes explicitly

terms of next order, but in the scalar sector the largest ones are generated by rescat-

tering in the BS equation). These matrix elements for π+π−, π0π0, K+K−, K0K̄0

can be taken for instance from Ref. 24 and can be complemented with the matrix

elements of the ηη channels from Ref. 33. Then the t matrix provides the transition

t matrix from one channel to another. The diagonal G-matrix is constructed out of

the loop function of two meson propagators

Gii(s) = i

∫

d4q

(2π)4
1

(P − q)2 − m2
1 + iε

1

q2 − m2
2 + iε

, (2)

where m1,2 are the masses of the two meson in channel i, and where P 2 ≡ s is the

center of mass energy squared. This loop function can be regularized using a cutoff

method or dimensional regularization. The interesting thing about these equations

in the pseudoscalar sectors, with a suitable cutoff of the order of 1GeV to regularize

the loops, is that one obtains an excellent description of all the observables in

pseudoscalar–pseudoscalar meson interaction up to about 1GeV. In particular one

can also look for poles in the scattering matrix which lead to the resonances in

the system. In this sense one obtains the f0(500), the f0(980) in ππ, the a0(980)
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in πη and the κ(800) in Kπ in the s-wave matrix elements. Note that one neither

puts the resonances by hand in the amplitudes, nor uses a potential that contains

a seed of a pole via a CDD34 pole term in the potential (of the type of a/(s− s0)).

In this sense, these resonances appear in the same natural way as the deuteron

appears in the solution of the Schrödinger equation for NN scattering and qualify

as dynamically generated states, kind of molecular meson–meson states. It is also

interesting to evaluate the residues at the poles for each channel, for this tells us

the strength of each channel in the wave function of the resonance. In this sense

the f0(500) couples essentially to ππ. The f0(980) couples most strongly to KK̄,

although this is a closed channel, pointing to the KK̄ nature of this resonance, and

it couples weakly to ππ, the only open decay channel. The a0(980) couples strongly

to KK̄ and πη and the κ(800) to Kπ.

It is worth mentioning that in works where one starts with a qq̄ seed to represent

the scalars and then unitarizes the models to account for the inevitable coupling of

these quarks to the meson–meson components, it turns out that the meson–meson

components “eat up” the seed and they remain as the only relevant components of

the wave function.35–38

3. The Scalar Meson Sector in B and D Decays

Let us begin with an example of application of the former ideas to interpret recent

results from LHCb and other facilities.

The LHCb Collaboration measured the B0
s decays into J/ψ and π+π− and

observed a pronounced peak for the f0(980).39 At the same time the signal for the

f0(500) was found very small or non-existent. The Belle Collaboration corroborated

these results in Ref. 40, providing absolute rates for the f0(980) production with a

branching ratio of the order of 10−4. The CDF Collaboration confirmed these latter

results in Ref. 41. Further confirmation was provided by the D0 Collaboration in

Ref. 42. Furthermore, the LHCb Collaboration has continued working in the topic

and in Ref. 43 results are provided for the B̄0
s decay into J/ψ f0(980) followed by

the π+π− decays of the f0(980). Here, again the f0(980) production is seen clearly

while no evident signal is seen for the f0(500). Interestingly, in the analogs decay

of B̄0 into J/ψ and π+π−44 a signal is seen for the f0(500) production and only

a very small fraction is observed for the f0(980) production, with a relative rate

of about (1–10)% with respect to that of the f0(500) (essentially an upper limit

is given). Further research has followed by the same collaboration and in Ref. 45

the B̄0
s into J/ψ and π+π− is investigated. A clear peak is observed once again

for f0(980) production, while the f0(500) production is not observed. The B̄0 into

J/ψ and π+π− is further investigated in Ref. 46 with a clear contribution from the

f0(500) and no signal for the f0(980).

To interpret these results we take the dominant mechanism for the weak decay

of the B’s into J/ψ and a primary qq̄ pair, which is dd̄ for B0 decay and ss̄ for B0
s

decay. After this, this qq̄ pair is allowed to hadronize into a pair of pseudoscalar
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Weak decays of heavy hadrons into dynamically generated resonances

mesons and we look at the relative weights of the different pairs of mesons. Once

the production of these meson pairs has been achieved, they are allowed to interact,

for what chiral unitary theory in coupled channels is used, and automatically the

f0(500), f0(980) resonances are produced. We are then able to evaluate ratios of

these production rates in the different decays studied47 and we find indeed a striking

dominance of the f0(500) in the B0 decay and of the f0(980) in the B0
s decay, in a

very good quantitative agreement with experiment.

3.1. Formalism

Following Ref. 48 we take the dominant weak mechanism for B̄0 and B̄0
s decays (it

is the same for B0 and B0
s decays) which we depict in Fig. 1.

In order to understand the process some very basic elements of the weak inter-

action are needed. The W± connects two quarks and the strength is given by the

Cabibbo-Kobayashi-Maskawa (CKM) matrix.49,50 The operator resulting for the

exchange of the W in Fig. 1(a) is given by51–53:

HW =
GF√

2
VbcVcdc̄γµ(1 − γ5)bd̄γµ(1 − γ5)c + h.c. (3)

To get a feeling of the strength of the CKM matrix elements, recall that the

quarks are classified in weak doublets
(

u

d

) (

c

s

) (

t

b

)

.

The transitions between quarks in the same doublet are Cabibbo allowed, they

go roughly like the cosinus of the Cabibbo angle while from the first doublet to the

second it goes like the sinus, concretely

Vcd = −sin θc = −0.22534,

Vcs = cos θc = 0.97427.
(4)

The differences between the two processes in Fig. 1 are: (i) Vcd appears in the

Wcd vertex in B̄0 decay while Vcs appears for the case of the B̄0
s decay; (ii) one

has a dd̄ primary final hadron state in B̄0 decay and ss̄ in B̄0
s decay. Yet, one

b

c c̄

dW

d̄ d̄

B̄0

b

c c̄

sW

s̄ s̄

B̄0
s

(a) (b)

Fig. 1. Diagrams for the decay of B̄0 and B̄0
s into J/ψ and a primary qq̄ pair, dd̄ for B̄0 and ss̄

for B̄0
s .
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q

q̄

qq̄(ūu + d̄d + s̄s)

Fig. 2. Schematic representation of the hadronization qq̄ → qq̄(uū + dd̄ + ss̄).

wishes to have π+π− in the final state as in the experiments. For this we need the

hadronization. This is easily accomplished: schematically this process is as shown in

Fig. 2, where an extra q̄q pair with the quantum numbers of the vacuum, ūu+d̄d+s̄s,

is added. Next step corresponds to writing the qq̄(ūu+d̄d+s̄s) combination in terms

of pairs of mesons. For this purpose we define the qq̄ matrix M ,

M =





uū ud̄ us̄

dū dd̄ ds̄

sū sd̄ ss̄



. (5)

We can rewrite this in a different way and we see a nice property of this matrix

M = vv̄ =





u

d

s



 (ū d̄ s̄) =





uū ud̄ us̄

dū dd̄ ds̄

sū sd̄ ss̄



, (6)

which fulfils:

M2 = (vv̄)(vv̄) = v(v̄v)v̄ = (ūu + d̄d + s̄s)M. (7)

Now, in terms of mesons, the matrix M corresponds to

φ =















1√
2
π0 + 1√

3
η + 1√

6
η′ π+ K+

π− − 1√
2
π0 + 1√

3
η + 1√

6
η′ K0

K− K̄0 − 1√
3
η +

√

2
3η′















. (8)

This matrix corresponds to the ordinary one used in chiral perturbation theory4

with the addition of 1√
3
diag(η1, η1, η1) where η1 is a singlet of SU(3), taking into

account the standard mixing between η and η′.54–56 The η′ is omitted in the chiral

Lagrangians because due to the UA(1) anomaly it is not a Goldstone Boson. Note

also that the term 1√
3
diag(η1, η1, η1) is inoperative in the [φ, ∂µφ] structure. In

terms of two pseudoscalars we have the correspondence:

dd̄(uū + dd̄ + ss̄) ≡ (φ · φ)22 = π−π+ +
1

2
π0π0 − 2√

6
π0η + K0K̄0 +

1

3
ηη,

ss̄(uū + dd̄ + ss̄) ≡ (φ · φ)33 = K−K+ + K0K̄0 +
1

3
ηη,

(9)

where we have omitted the η′ because of its large mass. We can see that π+π−

is only obtained in the first step in the B̄0 decay and not in B̄0
s decay. However,
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Weak decays of heavy hadrons into dynamically generated resonances

upon rescattering of KK̄ we also can get π+π− in the final state, as we shall see.

Yet, knowing that the f0(980) couples strongly to KK̄ and the f0(500) to ππ, the

meson–meson decomposition of Eqs. (9) already tells us that the B̄0 decay will be

dominated by f0(500) production and B̄0
s decay by f0(980) production. Let us see

how the interaction proceeds.

Let us call VP the production vertex which contains all dynamical factors com-

mon to both reactions. The π+π− production will proceed via primary production

or final state interaction as depicted in Fig. 3.

The amplitudes for π+π− production are given by

t(B̄0 → J/ψπ+π−) = VP Vcd

(

1 + Gπ+π−tπ+π−→π+π− + 2
1

2

1

2
Gπ0π0tπ0π0→π+π−

+ GK0K̄0tK0K̄0→π+π− + 2
1

3

1

2
Gηηtηη→π+π−

)

,

t(B̄0
s → J/ψπ+π−) = VP Vcs

(

GK+K−tK+K−→π+π− + GK0K̄0tK0K̄0→π+π−

+ 2
1

3

1

2
Gηηtηη→π+π−

)

, (10)

where Gi are the loop functions of two meson propagators defined above in Eq. (2).

In Ref. 47, a cut off Λ = 600MeV is taken, as needed in the enlarged space with

respect to Ref. 24, including the ηη channel.

Note also that with respect to the weights of the meson–meson components

in Eqs. (9) we have added a factor 1/2 for the propagation of the π0π0 and ηη

states which involve identical particles, and a factor of two for the two possible

combinations to create two identical particles in the case of π0π0 or ηη.

B̄0

b

d̄

c c̄

W d

d̄

+

π+

π−

B̄0

b

d̄

d

d̄

c

W

c̄

M

M

π+

π−

(a)

B̄0
s

b

s̄

c c̄

W s

s̄

M

M

π+

π−

(b)

Fig. 3. Diagrammatic representation of π+π−, via direct plus rescattering mechanisms in B̄0

decay (a), and via rescattering for B̄0
s decay (b).
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E. Oset et al.

One comment is in order concerning Eq. (10), since in principle the t-matrices

have left hand cut contributions while the form factors accounting for final state

interaction which appear in the B decay amplitudes do not have it. In Ref. 58, the

problem of the form factors and its relationship to the chiral unitary approach is

addressed. A link is established there between the form factors and the t matrices

in the on shell factorization that we employ through our calculations, Eq. (1). The

left hand cut contributions to the t matrix are smoothly dependent on the energy

for physical energies59 and is usually taken into account by means of a constant

added to the G function. It is also interesting to recall the Quantum Mechanical

version of this issue, which can be found in Ref. 60, and is basically equivalent to

our approach using the on shell factorized t matrices in Eq. (10).

One final element of information is needed to complete the formula for dΓ/dMinv,

with Minv the π+π− invariant mass, which is the fact that in a 0− → 1−0+ transi-

tion we shall need an L′ = 1 for the J/ψ to match angular momentum conservation.

Hence, VP = A pJ/ψ cos θ, and we assume A to be constant (equal to 1 in the cal-

culations). Thus,

dΓ

dMinv
=

1

(2π)3
1

4M2
B̄j

1

3
p2

J/ψpJ/ψp̃π

∑∑

|t̃B̄0
j
→J/ψπ+π− |2, (11)

where the factor 1/3 is coming from the integral of cos2 θ and t̃B̄0
j
→J/ψπ+π− is

tB̄0
j →J/ψπ+π−/(pJ/ψ cos θ), which depends on the π+π− invariant mass. In Eq. (11)

pJ/ψ is the J/ψ momentum in the global CM frame (B̄ at rest) and p̃π is the pion

momentum in the π+π− rest frame,

pJ/ψ =
λ1/2(M2

B̄
, M2

J/ψ, M2
inv)

2MB̄

, p̃π =
λ1/2(M2

inv, m
2
π, m2

π)

2Minv
, (12)

with λ(a, b, c) the Källen function.

3.2. Results

In Fig. 4 we show the π+π− invariant mass distribution for the case of the

B̄0
s → J/ψπ+π− decay, comparing the results with the data of Ref. 45 where

more statistics has been accumulated than in the earlier run of Ref. 39. The data

are collected in bins of 20MeV and the theoretical results are compared with the

results in Fig. 14 of Ref. 45. We can see that the agreement, up to an arbitrary

normalization, is quantitatively good. We observe an appreciable peak for f0(980)

production and basically no trace for f0(500) production. The agreement is even

better with the dashed line in Fig. 14 of Ref. 45 where a small background has been

subtracted. At invariant masses above the f0(980) peak, contribution from higher

energy resonances, which we do not consider, is expected.45

The second equation of (10) tells us why the f0(500) contribution is so small.

All intermediate states involved, KK̄, ηη, have a mass in the 1 GeV region and the

G functions are small at lower energies. Furthermore, the coupling of the f0(500)
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Weak decays of heavy hadrons into dynamically generated resonances

Fig. 4. π+π− invariant mass distribution for the B̄0
s → J/ψπ+π− decay, with arbitrary normal-

ization and folded with a 20MeV resolution, compared with the data (see Ref. 45).

to both KK̄ and ηη is also extremely small, such that the t matrices involved have

also small magnitudes.

Note that in this decay we could have also J/ψ and vector meson production,

but the ss̄ component would give φ production which does not decay to ππ. The

case is quite different for the B̄0 → J/ψπ+π− decay, because now we can also

produce J/ψρ (ρ → π+π−) decay and in fact this takes quite a large fraction of the

J/ψπ+π− decay, as seen in Ref. 46. We shall address this point in the next section.

We plot our relative S-wave π+π− production for the B̄0 → J/ψπ+π− decay in

Fig. 5.

We can see that the f0(500) production is clearly dominant. The f0(980) shows

up as a small peak. A test can be done to compare the results: If we integrate the

strength of the two resonances over the invariant mass distribution we find

B[B̄0 → J/ψf0(980), f0(980) → π+π−]

B[B̄0 → J/ψf0(500), f0(500) → π+π−]
= 0.033± 0.007, (13)

with an admitted 20% uncertainty from the decomposition of the strength in Fig. 5

into the two resonances. The most recent experimental result46 is:

(0.6+0.7+3.3
−0.4−2.6) × 10−2. (14)

The central value that we obtain is five times bigger than the central value of the

experiment in Eq. (14), yet, by considering the errors in Eq. (14) we get a band for

the experiment of 0 ∼ 0.046 and our results are within this band.a Let us note that

in the work of Ref. 89, where a form factor is used, obtained using experimental

phase shifts, one has a dip for the f0(980) following some enhancement in the

aAlternatively, the results of Eq. (14) can be interpreted as providing an upper limit for this ratio,
in which case we can state that our results are below this upper limit.
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E. Oset et al.

Fig. 5. π+π− invariant mass distribution for the B̄0 → J/ψπ+π− decay, with arbitrary nor-
malization. In a recent work (see Ref. 57) there are small corrections of the order of 10% with
respect to this figure, from considering the singlet contribution in Eq. (8), omitted in the work
(see Ref. 47) reviewed here.

strength of the distribution. We obtain a small, but neat peak for the f0(980), but

also followed by a dip, which is not seen in the B0
s decay.

There is another point to consider. The normalization of Figs. 4 and 5 is arbi-

trary but the relative size is what the theory predicts. It is easy to compute

Γ(B0 → J/ψf0(500))

Γ(B0
s → J/ψf0(980))

≃ (4.5 ± 1.0) × 10−2. (15)

This number is in agreement within errors with the band of (2.08 ∼ 4.13)×10−2 that

one obtains from the branching fractions of 9.60+3.79
−1.20×10−6 for B̄0 → J/ψf0(500)44

and 3.40+0.63
−0.16 × 10−4 for B̄0

s → J/ψf0(980).43

Added to the results obtained for many other processes, as quoted in the Intro-

duction, the present reactions come to give extra support to the idea originated from

chiral unitary theory that the f0(500) and f0(980) resonances are dynamically gen-

erated from the interaction of pseudoscalar mesons and could be interpreted as a

kind of molecular states of meson–meson with the largest component ππ for the

f0(500) and KK̄ for the f0(980).

Note that, while a better quantitative agreement in the shape of Fig. 4 is

obtained in Ref. 89 by using experimental ππ phase shifts in a big range of energies,

the approach given here provides the basic features and allows to relate different

decays processes without introducing further parameters.

So far we have assumed that VP is constant up to the P -wave factor. Actually

there is a form factor for the transition that depends on the momentum transfer.

Then it could be different for f0(500) or f0(980) production. However, the work

in Refs. 61–63 indicates that the form factors for primary productions prior to the
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Weak decays of heavy hadrons into dynamically generated resonances

final state interaction, are rather smooth. This point gives us an excuse to elaborate

on this issue and place our approach in a broader context. This is done in the next

subsection.

3.3. Relationship to other approaches

Referring to the diagram in Fig. 1(b), the weak decay of a b quark will proceed via

the exchange of a W± which in one vertex will connect a b and c quark, and in the

other vertex connect a c and s quark and the strength is given by the CKM matrix50

elements. The operator resulting for the exchange of the W is given51–53 by:

HW =
GF√

2
VcsVbcc̄γµ(1 − γ5)bs̄γ

µ(1 − γ5)c + h.c. (16)

The theoretical study of these process requires the evaluation of the quark matrix

elements of this operator for which many different approaches are followed. Quark

models in different versions are one of the options.64–68 Another approach using

elements of QCD under the factorization approximation is followed in weak B and

D decays into two final mesons.69–74 B decays are also addressed in Ref. 75 using

light cone QCD sum rules under the factorization assumption. A different approach

to B0 into J/ψ and π+π− decay was followed in Ref. 76 using the QCD-improved

factorization approach.

Theoretical work on these issues is also done in Ref. 77 for the semileptonic D

decays using QCD sum rules. The light-front quark model is used again in Ref. 78 to

calculate form factors for D decays. A Nambu–Jona–Lasinio type model is used in

Ref. 79 to study semileptonic D decays. Estimations based on a simple model where

the hadronic current is taken to be the Noether current associated with a minimal

linear sigma model are also available for semileptonic D decays.80,81 Research along

similar lines is done in Ref. 82. Light-cone sum rules are used to evaluate the form

factors appearing in different weak processes.63,83–88

Apart from the hard processes that involve the weak transition and the

hadronization, and that in QCD are considered in terms of the Wilson coefficients,

one has to take into account the meson final state interaction. In some cases this is

done using the Omnès representation,84,88,89 which have the advantage of preserv-

ing all good properties of unitarity and analyticity of the amplitudes. In other cases

Breit–Wigner or Flatté structures are implemented and parametrized to account

for the resonances observed in the experiment.83 This latter procedure is known

to have problems some times concerning these mentioned properties. Reference 88

represents a hybrid approach insofar that unitarized chiral interactions are used to

parameterize the πK, ηK amplitude, that is then fed into a dispersion approach to

study semileptonic B decays. For this, the two-channel inverse amplitude method

of Ref. 25 is considered that contains next-to-leading order contact terms, and that

is supplemented with a resonance term to account for the K∗
0 (1430). The amplitude

is fitted to πK phase shift data. To guarantee the correct analytic structure, this
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E. Oset et al.

amplitude serves then as input for a twice-subtracted Muskhelishvili–Omnès rela-

tion in the coupled πK and ηK channels. Additionally, the form factor is matched

to the value and slope of the one-loop ChPT result of the strangeness-changing

form factors at s = 0.90

In contrast to these pictures, in the present study we treat the meson–meson

interaction using the chiral unitary approach.

In Fig. 1(b), after hadronization, Fig. 3(b), we have two mesons in the final

state, in S = 0, and we want to study their interaction. For this purpose, we

encompass all the information of the hard transition part into a constant fac-

tor and, up to an arbitrary normalization, we obtain invariant mass distributions

which are linked to the meson–meson interaction. The use of a constant VP fac-

tor in our approach gets support from the work of Ref. 89. The evaluation of the

matrix elements in these processes is difficult and problematic, and we have given a

sketch of the many different theoretical approaches for it. There are however some

cases where the calculations can be kept under control. For the case of semilep-

tonic decays with two pseudoscalar mesons in the final state with small recoil,

namely when the final pseudoscalars move slowly, it can be explored in the heavy

meson chiral perturbation theory.91 Detailed calculations for the case of semilep-

tonic decay are done in Ref. 63. There one can see that for large values of the

invariant mass of the lepton system the form factors can be calculated and the

relevant ones in s wave that we need here are smooth in the range of the invari-

ant masses of the pairs of mesons. In the present case the lepton system would be

replaced by the J/ψ which is very massive and extrapolating the results of Ref. 63

to this case one can conclude that the dependence of the s-wave matrix elements

on the meson–baryon invariant mass should be smooth. There is also another limit,

at large recoil, where an approach that combines both hard-scattering and low-

energy interactions has been developed and is also available,84 but this is not the

case here.

There is also empirical information on the smoothness of these primary form

factors. Yet, in Ref. 61 this form factor is evaluated for B decays and it is found

that F σ
B0

s
(m2

J/ψ)/F f0

B0
s
(m2

J/ψ) = 1, where σ, f0 stand for the f0(500), f0(980). In

Ref. 62 the same results are assumed, as well as in Ref. 48, where by analogy

F σ
B0(m2

J/ψ)/F f0

B0(m2
J/ψ) is also assumed to be unity. In addition, in Ref. 48 it is also

found from analysis of the experiment that F f0

B0
s
(m2

J/ψ)/F σ
B0(m2

J/ψ) is compatible

with unity.

All that one needs to apply our formalism is that the form factors for the primary

production of hadrons prior to their final state interaction are smooth compared to

the changes induced by this final state interaction. This is certainly always true in

the vicinity of a resonance coming from this final state interaction, but the studies

quoted above tell us that one can use a relatively broad range, of a few hundred

MeV, where we still can consider these primary form factors smooth compared to

the changes induced by the final state interaction.
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Weak decays of heavy hadrons into dynamically generated resonances

4. Vector Meson Production

4.1. Formalism for vector meson production

At the quark level, we have

|ρ0〉=
1√
2
(uū − dd̄); |ω〉=

1√
2
(uū + dd̄); |K∗0〉= ds̄. (17)

The diagrams of Fig. 1 without the hadronization can serve to study the pro-

duction of vector mesons, which are largely qq̄ states.92–94 Since we were concerned

up to now only about the ratio of the scalars, the factor VP was taken arbitrary.

The spin of the particles requires now L′ = 0, 2, and with no rule preventing L′ = 0,

we assume that it is preferred; hence, the pJ/ψ cos θ is not present now. Then we

find immediately the amplitudes associated to Fig. 1,

tB̄0→J/ψρ0 = − 1√
2
Ṽ ′

P Vcd, tB̄0→J/ψω =
1√
2
Ṽ ′

P Vcd, tB̄0
s→J/ψφ = Ṽ ′

P Vcs,

tB̄0→J/ψK̄∗0 = Ṽ ′
P Vcs, tB̄0

s→J/ψK∗0 = Ṽ ′
P Vcd, (18)

where (− 1√
2
) is the ρ0 component in dd̄ and ( 1√

2
) that of the ω and Ṽ ′

P is the

global factor for the processes, different to VP used for the scalar sector. In order

to determine Ṽ ′
P versus VP in the scalar production, we use the well-measured

ratio43,95:

ΓB̄0
s→J/ψf0(980);f0(980)→π+π−

ΓB̄0
s→J/ψφ

= (13.9 ± 0.9) × 10−2. (19)

The width for J/ψV vector decay is now given by

ΓVi
=

1

8π

1

m2
B̄0

i

|tB̄0
i
→J/ψVi

|2pJ/ψ. (20)

Equation (18) allows us to determine ratios of vector production with respect to

the φ,

ΓB̄0→J/ψρ0

ΓB̄0
s→J/ψφ

=
1

2

∣

∣

∣

∣

Vcd

Vcs

∣

∣

∣

∣

2 m2
B̄0

s

m2
B̄0

pρ0

pφ
= 0.0263,

ΓB̄0→J/ψω

ΓB̄0
s→J/ψφ

=
1

2

∣

∣

∣

∣

Vcd

Vcs

∣

∣

∣

∣

2 m2
B̄0

s

m2
B̄0

pω

pφ
= 0.0263,

ΓB̄0→J/ψK̄∗0

ΓB̄0
s→J/ψφ

=
m2

B̄0
s

m2
B̄0

pK̄∗0

pφ
= 0.957,

ΓB̄0
s→J/ψK∗0

ΓB̄0
s→J/ψφ

=

∣

∣

∣

∣

Vcd

Vcs

∣

∣

∣

∣

2
pK∗0

pφ
= 0.0551.

(21)

By taking as input the branching ratio of B̄0
s → J/ψφ,

BR(B̄0
s → J/ψφ) = (10.0+3.2

−1.8) × 10−4, (22)
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E. Oset et al.

we obtain the other four branching ratios

BR(B̄0 → J/ψρ0) = (2.63+0.84
−0.47) × 10−5,

BR(B̄0 → J/ψω) = (2.63+0.84
−0.47) × 10−5,

BR(B̄0 → J/ψK̄∗0) = (9.57+3.1
−1.7) × 10−4,

BR(B̄0
s → J/ψK∗0) = (5.51+1.7

−1.0) × 10−5.

(23)

The experimental values are95:

BR(B̄0 → J/ψρ0) = (2.58 ± 0.21)× 10−5,

BR(B̄0 → J/ψω) = (2.3 ± 0.6) × 10−5,

BR(B̄0 → J/ψK̄∗0) = (1.34 ± 0.06)× 10−3,

BR(B̄0
s → J/ψK∗0) = (4.4 ± 0.9) × 10−5.

(24)

We can see that the agreement is good within errors, taking into account that the

only theoretical errors in Eq. (23) are from the experimental branching ratio of Eq.

(22). The rates discussed above have also been evaluated using perturbative QCD

in the factorization approach in Ref. 96, with good agreement with experiment.

Our approach exploits flavor symmetries and the dominance of the weak decay

mechanisms of Fig. 1 to calculate ratios of rates with good accuracy in a very easy

way.

The next step is to compare the ρ production with ρ → π+π− decay with

B̄0 → J/ψf0; f0 → π+π−(f0 ≡ f0(500), f0(980)). In an experiment that looks for

B̄0 → J/ψπ+π−, all these contributions will appear together, and only a partial

wave analysis will disentangle the different contributions. This is done in Refs. 44,

46 following the method of Ref. 97. There (see Fig. 13 of Ref. 46) one observes a

peak of the ρ and a f0(500) distribution, with a peak of the ρ0 distribution about a

factor 6 larger than that of the f0(500). The f0(980) signal is very small and only

statistically significant states are shown in the figure. Since only an upper limit was

determined for the f0(980) it is not shown.

In order to compare the theoretical results with these experimental distributions,

we convert the rates obtained in Eqs. (23) into π+π− distributions for the case of

the B̄0 → J/ψρ0 decay and K−π+ for the case of the B̄0 → J/ψK̄∗0 decay. For

this purpose, we multiply the decay width of the B̄0 by the spectral function of the

vector mesons. We find:
dΓB̄0→J/ψρ0

dMinv(π+π−)
= − 1

π
2Mρ Im

1

M2
inv − M2

ρ + i MρΓρ(Minv)
ΓB̄0→J/ψρ0 , (25)

where

Γρ(Minv) = Γρ

(

poff
π

pon
π

)3

, poff
π =

λ1/2(M2
inv, m

2
π, m2

π)

2Minv
θ(Minv − 2mπ),

pon
π =

λ1/2(M2
ρ , m2

π, m2
π)

2Mρ
. (26)
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Weak decays of heavy hadrons into dynamically generated resonances

and for the case of the B̄0 → J/ψK̄∗0 (K̄∗0 → π+K−), we have

dΓB̄0→J/ψK̄∗0;K̄∗0→π+K−

dMinv(π+K−)
= − 1

π

2

3
Im

2MK∗

M2
inv − M2

K∗ + i MK∗ΓK∗(Minv)

×ΓB̄0→J/ψK̄∗0, (27)

with similar formulas for ΓK∗ , poff and pon. In Eqs. (25) and (27) we have taken into

account that ρ0 decays only into π+π−, while K̄∗0 decays into π+K− and π0K̄0 with

weights 2/3 and 1/3, respectively. Expressions for B̄0
s → J/ψK∗0; K∗0 → π−K+

are readily obtained from the previous ones with the obvious changes.

4.2. Results

In Fig. 6 we show our predictions for f0(500), f0(980), and ρ0 production in B̄0 →
J/ψπ+π−, taken from Ref. 98.

The relative strengths and the shapes of the f0(500) and ρ distributions are

remarkably similar to those found in the partial wave analysis of Ref. 46. However,

our f0(500) has a somewhat different shape since in the analysis of Ref. 46, like

in many experimental papers, a Breit–Wigner shape for the f0(500) is assumed,

which is different to what the ππ scattering and the other production reactions

demand.32,99,100 It is interesting to remark that we have only considered the ρ con-

tribution without paying any attention to ρ − ω mixing. This is done explicitly in

Ref. 89 and it leads to a peculiar shape, different to the one obtained in the elec-

tromagnetic form factor of the pion.104 This new interesting shape is corroborated

by a recent work.105 It is also interesting to mention that, although small, we see a

signal of the f0(980) in the distribution of Fig. 6, while in Ref. 89 only a small bump

is seen in this region. Let us mention to this respect that in the J/ψ → ωπ+π−

Fig. 6. π+π− invariant mass distributions for the B̄0 → J/ψπ+π− (S wave) (solid line) and
B̄0 → J/ψρ, ρ → π+π− (P wave) decays, with arbitrary normalization, and folded with a 20MeV
resolution.

1630001-17

In
t.

 J
. 
M

o
d
. 

P
h
y
s.

 E
 2

0
1
6
.2

5
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 W

S
P

C
 o

n
 0

3
/0

4
/1

6
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



E. Oset et al.

decay, similar to the B0 decay here, one observes clearly the f0(980) peak101,102

and there is a good agreement with the theoretical work of 103 done along similar

lines as here. It would be most interesting to see what one finds in the present case

when more statistics is gathered.

In Fig. 7 we show the results for the Cabbibo allowed B̄0 → J/ψπ+K−, super-

posing the contribution of the κ̄ and K̄∗0 contributions and in Fig. 8 the results for

the Cabbibo suppressed B̄0
s → J/ψπ−K+, with the contributions of κ and K∗0.

The κ(800) scalar contribution is calculated in Ref. 98 in the same way as described

in the former subsection.

Fig. 7. π+K− invariant mass distributions for the B̄0 → J/ψK̄∗0, K̄∗0 → π+K− (solid line)
and B̄0 → J/ψκ̄, κ̄ → π+K− (dashed line), with arbitrary normalization.

Fig. 8. π−K+ invariant mass distributions for the B̄0
s → J/ψK∗0, K∗0 → π−K+ (solid line)

and B̄0
s → J/ψκ, κ → π−K+ (dashed line), with arbitrary normalization.
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Weak decays of heavy hadrons into dynamically generated resonances

The narrowness of the K∗ relative to the ρ, makes the wide signal of the scalar

κ to show clearly in regions where the K∗0 strength is already suppressed. While

no explicit mention of the κ resonance is done in these B̄ decays, in some analyses,

a background is taken that resembles very much the κ contribution that we have in

Fig. 7.106 The κ(800) appears naturally in chiral unitary theory of πK and coupled

channel scattering as a broad resonance around 800MeV, similar to the f0(500)

but with strangeness.25 In D decays, concretely in the D+ → K−π+π+ decay, it

is studied with attention and the links to chiral dynamics are stressed.107,108 With

the tools of partial wave analysis developed in Ref. 46, it would be interesting to

give attention to this S-wave resonance in future analysis.

5. The Low Lying Scalar Resonances in the D0 Decays

into K0
s

and f0(500), f0(980), a0(980)

5.1. Formalism

The process for D0 → K0
sR proceeds at the elementary quark level as depicted in

Fig. 9(A). The process is Cabibbo allowed, the sd̄ pair produces the K̄0, which will

convert to the observed K0
s through time evolution with the weak interaction. The

remaining uū pair gets hadronized adding an extra q̄q with the quantum numbers

of the vacuum, ūu + d̄d + s̄s. This topology is the same as for the B̄s → J/ψss̄

(substituting the sd̄ by cc̄),48 that upon hadronization of the ss̄ pair leads to the

production of the f0(980),47 which couples mostly to the hadronized KK̄ compo-

nents.

The hadronization is implemented as discussed previously. Hence upon

hadronization of the uū component we shall have

uū(ūu + d̄d + s̄s) ≡ (φ · φ)11 =
1

2
π0π0 +

1

3
ηη +

2√
6
π0η + π+π− + K+K−, (28)

where we have omitted the η′ term because of its large mass. This means that

upon hadronization of the uū component we have D0 → K̄0PP , where PP are the

different meson–meson components of Eq. (28). This is only the first step, because

now these mesons will interact among themselves delivering the desired meson pair

component at the end: π+π− for the case of the f0(500) and f0(980), and π0η for

the case of the a0(980).

D0

c

ū

s d̄

u

ū

W
D0

c

ū

s d̄

u

ū

W

ūu + d̄d + s̄s

(a) (b)

Fig. 9. (a) Dominant diagram for D0 → K̄0uū and (b) hadronization of the uū to give two
mesons.

1630001-19

In
t.

 J
. 
M

o
d
. 

P
h
y
s.

 E
 2

0
1
6
.2

5
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 W

S
P

C
 o

n
 0

3
/0

4
/1

6
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



E. Oset et al.

D0

c

ū

s d̄

W u

ū

π+

π−

+

c

ū

s d̄

W u

ū

π+

π−

P

P

(a) (b)

D0

c

ū

s d̄

W u

ū

π0

η

+

c

ū

s d̄

W u

ū

π0

η

P

P

(c) (d)

Fig. 10. Diagrammatic representation of π+π− and π0η production. (a) direct π+π− production,
(b) π+π− production through primary production of a PP pair and rescattering, (c) primary π0η

production, (d) π0η produced through rescattering.

The multiple scattering of the mesons is readily taken into account as shown

diagrammatically in Fig. 10.

Analytically we shall have

t(D0 → K̄0π+π−) = VP

(

1 + Gπ+π−tπ+π−→π+π− + 2
1

2

1

2
Gπ0π0tπ0π0→π+π−

+ 2
1

3

1

2
Gηηtηη→π+π− + GK+K−tK+K−→π+π−

)

, (29)

and

t(D0 → K̄0π0η) = VP

(

√

2

3
+

√

2

3
Gπ0ηtπ0η→π0η + GK+K−tK+K−→π0η

)

, (30)

where VP is a production vertex common to all the terms, and that encodes the

underlying dynamics. G is the loop function of two mesons24 and tij are the tran-

sition scattering matrices between pairs of pseudoscalars.24 The f0(500), f0(980),

and a0(980) are produced in s-wave where π0π0, π+π− have isospin I = 0, hence

these terms do not contribute to π0η production (I = 1) in Eq. (30). Note that in

Eq. (29), as in former sections, we introduce the factor 1
2 extra for the identity of

the particles for π0π0 and ηη, and a factor 2 for the two possible combinations to

produce the two identical particles.

The t matrix is obtained as discussed before and the matrix elements of the

potential can be found in Ref. 109.

Finally, the mass distribution for the decay is given by Eq. (11) changing appro-

priately the variables. However, since we have a transition 0− → 0−0+ we need

L = 0 now and the corresponding factor to 1
3p2

J/ψ of Eq. (11) is omitted.
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Weak decays of heavy hadrons into dynamically generated resonances

Fig. 11. The π+π− (solid line) and π0η (dashed line) invariant mass distributions for the D0 →
K̄0π+π− decay and D0 → K̄0π0η decay, respectively. A smooth background is plotted below the
a0(980) and f0(980) peaks.

5.2. Results

In Fig. 11, we show the results for this process. We have taken the cut off qqmax =

600MeV as in Ref. 47. We superpose the two mass distributions dΓ/dMinv for π+π−

(solid line) and π0η (dashed line). The scale is arbitrary, but it is the same for the

two distributions, which allows us to compare f0(980) with a0(980) production.

As we discussed before, it is a benefit of the weak interactions that we can see

simultaneously both the I = 0 f0(980) and I = 1a0(980) productions in the same

D0 → K̄0R decay.

When it comes to compare with the experiment we can see that the f0(980)

signal is quite narrow and it is easy to extract its contribution to the branching

ratios by assuming a smooth background. For the case of the π0η distribution we

get a clear peak that we associate to the a0(980) resonance, remarkably similar in

shape to the one found in the experiment.110 Not all the strength seen in Fig. 11

can be attributed to the a0(980) resonance. The chiral unitary approach provides

full amplitudes and hence also background. In order to get a “a0(980)” contribution

we subtract a smooth background fitting a phase space contribution to the lower

part of the spectrum. The remaining part has a shape with an apparent width of

80MeV, in the middle of the 50 − 100MeV of the PDG.95 Integrating the area

below these structures we obtain

R =
Γ(D0 → K̄0a0(980), a0(980) → π0η)

Γ(D0 → K̄0f0(980), f0(980) → π+π−)
= 6.7 ± 1.3, (31)

where we have added a 20% theoretical error due to uncertainties in the extraction

of the background.

Experimentally we find from the PDG and Refs. 110 and 111,

Γ(D0 → K̄0a0(980), a0(980) → π0η) = (6.5 ± 2.0) × 10−3, (32)

Γ(D0 → K̄0f0(980), f0(980) → π+π−) = (1.22+0.40
−0.24) × 10−3. (33)
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The ratio that one obtains from there is

R = 5.33+2.4
−1.9. (34)

The agreement found between Eqs. (31) and (34) is good, within errors. This

is, hence, a prediction that we can do parameter free.

It should not go unnoticed that we also predict a sizeable fraction of the decay

width into D0 → K̄0f0(500), with a strength several times bigger than for the

f0(980). The π+π− distribution is qualitatively similar to that obtained in Ref. 47

for the B̄0 → J/ψπ+π− decay, although the strength of the f0(500) with respect to

the f0(980) is relatively bigger in this latter decay than in the present case (almost

50% bigger). A partial wave analysis is not available from the work of Ref. 111,

where the analysis was done assuming a resonant state and a stable meson, including

many contributions, but not the K0
sf0(500). Yet, a discussion is done at the end

of the paper111 in which the background seen is attributed to the f0(500). With

this assumption they get a mass and width of the f0(500) compatible with other

experiments. Further analyses in the line of Ref. 46 would be most welcome to

separate this important contributions to the D0 → K0
sπ+π− decay.

5.3. Further considerations

Our results are based on the dominance of the quark diagrams of Fig. 9. In the

weak decay of mesons the diagrams are classified in six different topologies112,113:

external emission, internal emission, W -exchange, W -annihilation, horizontal W -

loop and vertical W -loop. As shown in Ref. 114, only the internal emission graph

(Fig. 9 of the present work) and W -exchangeb contribute to the D0 → K̄0f0(980)

and D0 → K̄0a0(980) decays. In Ref. 115, the D0 → K̄0π+π− decay is studied.

Hence, only the D0 → K0
sf0(980) decay can be addressed, which is accounted for

by proper form factors and taken into account by means of the M2(K
0
s [π+π−]s)

amplitude of that paper, which contains the tree level internal emission, and W -

exchange (also called annihilation mechanism). We draw the external emission and

W -exchange diagrams pertinent to the D0 → K̄0π+π− decay, as shown in Fig. 12.

A discussion of the relevance of these diagrams is done in Ref. 109 in connection

to the work of Ref. 115. The conclusion drawn there is that because the absorp-

tion diagrams involve two quarks of the original wave function, unlike the other

mechanisms that have one of the quarks as spectators, these diagrams are small.

6. B̄0 Decay into D0 and f0(500), f0(980), a0(980), ρ and B̄0
s

Decay into D0 and κ(800), K∗0

In this section, we report on the decay of B̄0 into D0 and f0(500), f0(980), and

a0(980). At the same time we study the decay of B̄0
s into D0 and κ(800). We

bThe W -exchange and W -annihilation are often referred together as weak annihilation diagrams.
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Weak decays of heavy hadrons into dynamically generated resonances

D0

c

ū

s

d̄ d

ū

W+

u

d̄
π+

K̄0

π−

D0

c

ū

s

d̄ d

ūu

d̄

W+

K̄0

π−

π+

(a) (b)

Fig. 12. External emission diagram (a) and the W -exchange diagram (b) for D0 → K̄0π+π−

decay.

also relate the rates of production of vector mesons and compare ρ with f0(500)

production and K∗0 with κ(800) production. Experimentally there is information

on ρ and f0(500) production in Ref. 116 for the B̄0 decay into D0 and π+π−.

There is also information on the ratio of the rates for B0 → D̄0K+K− and B0 →
D̄0π+π−.117 We investigate all these rates and compare them with the experimental

information, following the work of Ref. 118.

6.1. Formalism

We show in Fig. 13 the dominant diagrams for B̄0 [Fig. 13(a)] and B̄0
s [Fig. 13(b)]

decays at the quark level. The mechanism has the b → c transition, needed for the

decay, and the u → d vertex that requires the Cabibbo favored Vud CKM matrix

element (Vud = cos θc). Note that these two processes have the same two weak

vertices. Under the assumption that the d̄ in Fig. 13(a) and the s̄ in Fig. 13(b) act

as spectators in these processes, these amplitudes are identical.

6.1.1. B̄0 and B̄0
s decay into D0 and a vector

Figure 13(a) contains dd̄ from where the ρ and ω mesons can be formed. Figure 13(b)

contains ds̄ from where the K∗0 emerges.

Hence, by taking as reference the amplitude for B̄0 → D0K∗ as V ′
P pD, we can

write by using Eq. (17) the rest of the amplitudes as

tB̄0→D0ρ0 = − 1√
2
V ′

P pD, (35)

b

c ū

dW

d̄ d̄

B̄0

b

c ū

dW

s̄ s̄

B̄0
s

(a) (b)

Fig. 13. Diagrammatic representations of B̄0 → D0dd̄ decay (a) and B̄0
s → D0ds̄ decay (b).
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tB̄0→D0ω =
1√
2
V ′

P pD, (36)

tB̄0→D0φ = 0, (37)

tB̄0
s→D0K∗0 = V ′

P pD, (38)

where V ′
P is a common factor to all B̄0(B̄0

s) → D0Vi decays, with Vi being a

vector meson, and pD the momentum of the D0 meson in the rest frame of the

B̄0 (or B̄0
s). The factor pD is included to account for a necessary P -wave vertex to

allow the transition from 0− → 0−1−. Although parity is not conserved, angular

momentum is, and this requires the angular momentum L = 1. Note that the

angular momentum needed here is different than the one in the B̄0 → J/ψVi,

where L = 0. Hence, a mapping from the situation there to the present case is not

possible.

The decay width is given by an expression equivalent to that of Eq. (20).

6.1.2. B̄0 and B̄0
s decay into D0 and a pair of pseudoscalar mesons

In order to produce a pair of mesons, the final quark–antiquark pair dd̄ or ds̄ in

Fig. 13 has to hadronize into two mesons. The flavor content, which is all we need

in our study, has been discussed in former sections: we must add a q̄q pair with the

quantum numbers of the vacuum, ūu + d̄d + s̄s.

Following the developments in the former sections, we can write

dd̄(ūu + d̄d + s̄s) → (φ · φ)22 = π−π+ +
1

2
π0π0 +

1

3
ηη −

√

2

3
π0η + K0K̄0, (39)

ds̄(ūu + d̄d + s̄s) → (φ · φ)23 =π−K+ − 1√
2
π0K0, (40)

where we have neglected the terms including η′ that has too large mass to be

relevant in our study.

Equations (39) and (40) give us the weight for pairs of two pseudoscalar mesons.

The next step consists of letting these mesons interact, which they inevitably will

do. This is done following the mechanism of Fig. 14.

B̄0

b

d̄

c ū

W d

d̄

+

π+

π−

B̄0

b

d̄

d

d̄

c

W

ū

M

M

π+

π−

(a) (b)

Fig. 14. Diagrammatic representation of the final state interaction of the two mesons produced
in a primary step. (a) Direct meson–meson production and (b) meson–meson production through
rescattering.
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Weak decays of heavy hadrons into dynamically generated resonances

The f0(500) and f0(980) will be observed in the B̄0 decay into D0 and π−π+

final pairs, the a0(980) in π0η pairs and the κ(800) in the B̄0
s decay into D0 and

π−K+ pairs. Then we have for the corresponding production amplitudes

t(B̄0 → D0π−π+) = VP

(

1 + Gπ−π+tπ−π+→π−π+ + 2
1

2

1

2
Gπ0π0tπ0π0→π−π+

+ 2
1

3

1

2
Gηηtηη→π−π+ + GK0K̄0tK0K̄0→π−π+

)

, (41)

where VP is a common factor of all these processes, Gi is the loop function of two

meson propagators, and we have included the factor 1
2 and 2 in the intermediate

loops involving a pair of identical mesons, as done in the previous decays. The

elements of the scattering matrix ti→j are calculated in former sections following

the chiral unitary approach of Refs. 24 and 119. Note that the use of a common

VP factor in Eq. (41) is related to the intrinsic SU(3) symmetric structure of the

hadronization ūu + d̄d + s̄s, which implicitly assumes that we add an SU(3) q̄q

singlet.

Similarly, we can also produce K+K− pairs and we have

t(B̄0 → D0K+K−) = VP

(

Gπ−π+tπ−π+→K+K− + 2
1

2

1

2
Gπ0π0tπ0π0→K+K−

+ 2
1

3

1

2
Gηηtηη→K+K− −

√

2

3
Gπ0ηtπ0η→K+K−

+ GK0K̄0tK0K̄0→K+K−

)

. (42)

In the same way we can writec

t(B̄0 → D0π0η) = VP

(

−
√

2

3
−

√

2

3
Gπ0ηtπ0η→π0η + GK0K̄0tK0K̄0→π0η

)

, (43)

and taking into account that the amplitude for B̄0
s → cū + ds̄ in Fig. 13(b) is

the same as for B̄0 → cū + dd̄ of Fig. 13(a), and using Eq. (40) to account for

hadronization, we obtain

t(B̄0
s → D0π−K+) = VP

(

1 + Gπ−K+tπ−K+→π−K+ − 1√
2
Gπ0K0tπ0K0→π−K+

)

,

(44)

where the amplitudes tπ−K+→π−K+ and tπ0K0→π−K+ are taken from Ref. 119.

As in the former section, we have the transition 0− → 0−0+ for B̄0 → D0f0,

and now we need L = 0. The differential invariant mass width is given again by

Eq. (11) removing the factor 1
3p2

J/ψ and adopting the appropriate masses.

cIt is worth noting that π+π−, π0π0, and ηη are in isospin I = 0, while π0η is in I = 1.

1630001-25

In
t.

 J
. 
M

o
d
. 

P
h
y
s.

 E
 2

0
1
6
.2

5
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 W

S
P

C
 o

n
 0

3
/0

4
/1

6
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



E. Oset et al.

6.2. Numerical results

In the first place we look for the rates of B̄0 and B̄0
s decay into D0 and a vector.

By looking at Eqs. (35), (36) and (38), we have

ΓB̄0→D0ρ0

ΓB̄0→D0ω

=

[

pD(ρ0)

pD(ω)

]3

= 1, (45)

ΓB̄0→D0ρ0

ΓB̄0
s→D0K∗0

=

(

MB̄0
s

MB̄0

)2
1

2

[

pD(ρ0)

pD(K∗0)

]3

≃ 1

2
, (46)

ΓB̄0→D0φ = 0. (47)

Experimentally there are no data in the PDG95 for the branching ratio

Br(B̄0 → D0φ) and we find the branching ratios for B0 → D̄0ρ0,116 B0 →
D̄0ω,120,121 and B0

s → D̄0K̄∗0,116,122,123 as the following (note the change B̄0 → B0

and D0 → D̄0, B̄0
s → B0

s , K∗0 → K̄∗0):

Br(B0 → D̄0ρ0) = (3.2 ± 0.5) × 10−4, (48)

Br(B0 → D̄0ω) = (2.53 ± 0.16)× 10−4, (49)

Br(B0
s → D̄0K̄∗0) = (3.5 ± 0.6) × 10−4. (50)

The ratio
ΓB̄0

→D0ρ0

ΓB̄0
→D0ω

is fulfilled, while the ratio
ΓB̄0

→D0ρ0

ΓB̄0
s→D0K∗0

is barely in agreement

with data. The branching ratio of Eq. (50) requires combining ratios obtained in

different experiments. A direct measure from a single experiment is available in

Ref. 124:

ΓB̄0
s→D0K∗0

ΓB̄0→D0ρ0

= 1.48 ± 0.34 ± 0.15 ± 0.12, (51)

which is compatible with the factor of 2 that we get from Eq. (46). However, the

result of Eq. (50), based on more recent measurements from Refs. 122 and 123,

improve on the result of Eq. (51),125 which means that our prediction for this ratio

is a bit bigger than experiment.

We turn now to the production of the scalar resonances. By using Eqs. (41)–

(44), we obtain the mass distributions for π+π−, K+K−, and π0η in B̄0 decays

and π−K in B̄0
s decay. The numerical results are shown in Fig. 15.

The normalization for all the processes is the same. The scale is obtained

demanding that the integrated f0(500) distribution has the normalization of the

experimental branching ratio of Eq. (52). From Fig. 15, in the π+π− invariant

mass distribution for B̄0 → D0π+π− decay, we observe an appreciable strength

for f0(500) excitation and a less strong, but clearly visible, for the f0(980). In the

π0η invariant mass distribution, the a0(980) is also excited with a strength bigger

than that of the f0(980). Finally, in the π−K+ invariant mass distribution, the

κ(800) is also excited with a strength comparable to that of the f0(500). We also

plot the mass distribution for K+K− production. It begins at threshold and gets

strength from the two underlying f0(980) and a0(980) resonances, hence we can
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Weak decays of heavy hadrons into dynamically generated resonances

Fig. 15. Invariant mass distributions for the π+π−, K+K−, and π0η, and π−K in B̄0 →
D0π+π−, D0K+K−, D0π0η, and B̄0

s → D0π−K+ decays. The normalization is such that the
integral over the f0(500) signal gives the experimental branching ratio of Eq. (52).

see an accumulated strength close to threshold that makes the distribution clearly

different from phase space.

There is some experimental information to test some of the predictions of our

results. Indeed in Ref. 116 (see Table II of that paper) one can find the rates of

production for f0(500) [it is called f0(600) there] and f0(980). Concretely,

Br[B̄0 → D0f0(500)] · Br[f0(500) → π+π−] = (0.68 ± 0.08)× 10−4, (52)

Br[B̄0 → D0f0(980)] · Br[f0(980) → π+π−] = (0.08 ± 0.04)× 10−4, (53)

where the errors are only statistical. This gives

Br[B̄0 → D0f0(980)] · Br[f0(980) → π+π−]

Br[B̄0 → D0f0(500)] · Br[f0(500) → π+π−]

∣

∣

∣

∣

Exp.

= 0.12 ± 0.06. (54)

From Fig. 15 it is easy to estimate our theoretical results for this ratio by

integrating over the peaks of the f0(500) and f0(980). To separate the f0(500) and

f0(980) contributions, a smooth extrapolation of the curve of Fig. 15 is made from

900MeV to 1000MeV. We find

Br[B̄0 → D0f0(980)] · Br[f0(980) → π+π−]

Br[B̄0 → D0f0(500)] · Br[f0(500) → π+π−]

∣

∣

∣

∣

Theo.

= 0.08, (55)

with an estimated error of about 10%. As we can see, the agreement of the theo-

retical results with experiment is good within errors.

It is most instructive to show the π+π− production combining the S-wave and P -

wave production. In order to do that, we evaluate VP of Eq. (41) and V ′
P of Eq. (35),
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E. Oset et al.

Fig. 16. Invariant mass distribution for π+π− in B̄0 → D0π+π− decay. The normalization is
the same as in Fig. 15.

normalized to obtain the branching fractions given in Eqs. (52) and (48), rather

than widths. We shall call the parameters ṼP and Ṽ ′
P , suited to this normalization.

We obtain ṼP =(8.8±0.5)×10−2 MeV−1/2 and Ṽ ′
P =(6.8±0.5)×10−3 MeV−1/2.

To obtain the π+π− mass distribution for the ρ, we need to convert the total

rate for vector production into a mass distribution. For that we follow the formalism

developed in Sec. 4.

We show the results for the π+π− production in B̄0 → D0π+π− in Fig. 16. We

see a large contribution from the f0(500) and a larger contribution from the ρ0 →
π+π− production. We can see that the f0(500) is clearly visible in the distribution

of π+π− invariant mass in the region of 400–600MeV.

The VP and V ′
P obtained by fitting the branching ratios of f0(500) and ρ produc-

tion can be used to obtain the strength of K∗0 production versus κ(800) production

in the B̄0
s → D0π−K+ decay. For this we use Eqs. (35)–(38) and recall that the rate

for K∗0 → π−K+ is 2
3 of the total K∗0 production. The results for K∗0 → π−K+

and κ(800) → π−K+ production are shown in Fig. 17, where we see a clear peak

for K∗0 production, with strength bigger than that for ρ0 in Fig. 16, due in part to

the factor-of-2 bigger strength in Eq. (46) and the smaller K∗0 width. The κ(800)

is clearly visible in the lower part of the spectrum where the K∗0 has no strength.

Finally, although with more uncertainty, we can also estimate the ratio

Γ(B0 → D̄0K+K−)

Γ(B0 → D̄0π+π−)
= 0.056 ± 0.011± 0.007 (56)

of Ref. 117. This requires an extrapolation of our results to higher invariant masses

where our results would not be accurate, but, assuming that most of the strength

for both reactions comes from the region close to the K+K− threshold and from

the ρ0 peak, respectively, we obtain a ratio of the order of 0.03 ∼ 0.06, which agrees

qualitatively with the ratio of Eq. (56).

1630001-28

In
t.

 J
. 
M

o
d
. 

P
h
y
s.

 E
 2

0
1
6
.2

5
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 W

S
P

C
 o

n
 0

3
/0

4
/1

6
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



Weak decays of heavy hadrons into dynamically generated resonances

Fig. 17. Invariant mass distribution for π−K+ in B̄0
s → D0π−K+ decay. The normalization is

the same as in Fig. 15.

7. B̄0 and B̄0
s

Decays into J/ψ and f0(1370), f0(1710), f2(1270),

f ′
2
(1525), K∗

2
(1430)

7.1. Vector–vector interaction

In this section we describe the B̄0 and B̄0
s decays into J/ψ together with f0(1370),

f0(1710), f2(1270), f ′
2(1525), or K∗

2 (1430). The latter are resonances that are

dynamically generated in the vector–vector interaction, which we briefly discuss

now. In these interactions, an interesting surprise was found when using the local

hidden gauge Lagrangians and, with a similar treatment to the one of the scalar

mesons, new states were generated that could be associated with known resonances.

This study was first conducted in the work of Ref. 126, where the f0(1370) and

f2(1270) resonances were shown to be generated from the ρρ interaction provided

by the local hidden gauge Lagrangians7–9 implementing unitarization. The work

was extended to SU(3) in Ref. 127 and eleven resonances where dynamically gener-

ated, some of which were identified with the f0(1370), f0(1710), f2(1270), f ′
2(1525)

and K∗
2 (1430). The idea has been tested successfully in a large number of reactions

and in Ref. 128 a compilation and a discussion of these works have been done.

7.2. Formalism

As done in former sections we take the dominant mechanism for the decay of B̄0

and B̄0
s into a J/ψ and a qq̄ pair. Posteriorly, this qq̄ pair is hadronized into vector

meson–vector meson components, as depicted in Fig. 18, and this hadronization is

implemented as has already been explained in former sections.

In this sense the hadronized dd̄ and ss̄ states in Fig. 18 can be written as

dd̄(ūu + d̄d + s̄s) = (M · M)22, (57)

ss̄(ūu + d̄d + s̄s) = (M · M)33. (58)
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B̄0

b

d̄

c c̄

d

d̄

W
b

d̄

c c̄

d

d̄

W

uū + dd̄ + ss̄

(a) (b)

B̄0
s

b

s̄

c c̄

s

s̄

W
b

s̄

c c̄

s

s̄

W

uū + dd̄ + ss̄

(c) (d)

Fig. 18. Basic diagrams for B̄0 and B̄0
s decay into J/ψ and a qq̄ pair [(a) and (c)], and hadroniza-

tion of the qq̄ components [(b) and (d)].

However, now it is convenient to establish the relationship of these hadronized

components with the vector meson–vector meson components associated to them.

For this purpose we write the matrix M which has been defined in Eq. (6) in terms

of the nonet of vector mesons:

V =

















√
2

2
ρ0 +

√
2

2
ω ρ+ K∗+

ρ− −
√

2

2
ρ0 +

√
2

2
ω K∗0

K∗− K̄∗0 φ

















, (59)

and then we associate

dd̄(ūu + d̄d + s̄s) ≡ (V · V )22 = ρ−ρ+ +
1

2
ρ0ρ0 +

1

2
ωω − ρ0ω + K∗0K̄∗0, (60)

ss̄(ūu + d̄d + s̄s) ≡ (V · V )33 = K∗−K∗+ + K∗0K̄∗0 + φφ. (61)

In the study of Ref. 127 a coupled channels unitary approach was followed

with the vector meson–vector meson states as channels. However, the approach

went further since, following the dynamics of the local hidden gauge Lagrangians,

a vector meson–vector meson state can decay into two pseudoscalars, PP . This is

depicted in Figs. 19(a) and 19(b).

In Ref. 127 these decay channels are taken into account by evaluating the box

diagrams depicted in Figs. 19(c) and 19(d), which are assimilated as a part, δṼ , of

the vector–vector interaction potential Ṽ . This guarantees that the partial decay

width into different channels could be taken into account.

Since we wish to have the resonance production and this is obtained through

rescattering, the mechanism for J/ψ plus resonance production is depicted in

Fig. 20.
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Weak decays of heavy hadrons into dynamically generated resonances

K∗

K̄∗

K

π

π

K∗

K̄∗

π

K

K̄

(a) (b)

K∗

K̄∗

π

π
K K̄

K∗

K̄∗

K∗

K̄∗

K

K̄
π π

K∗

K̄∗

(c) (d)

Fig. 19. Decay mechanisms of K∗K̄∗ + ππ, KK̄ [(a) and (b)] and box diagrams considered127

to account for these decays [(c) and (d)].

B̄0

b

d̄

c c̄

W d

d̄

RV

V
B̄0

s

b

s̄

c c̄

W s

s̄

RV

V

(a) (b)

Fig. 20. Mechanisms to generate the vector–vector resonances through VV rescattering.
The dot of the vertex RV V indicates the coupling of the resonance to the different VV
components.

The amplitudes for J/ψR production are then given by

t(B̄0 → J/ψf0) = ṼP VcdpJ/ψcos θ

(

Gρ−ρ+gρ−ρ+,f0
+ 2

1

2

1

2
Gρ0ρ0gρ0ρ0,f0

+ 2
1

2

1

2
Gωωgωω,f0

+ GK∗0K̄∗0gK∗0K̄∗0,f0

)

, (62)

t(B̄0
s → J/ψf0) = ṼP VcspJ/ψcos θ

(

GK∗0K̄∗0gK∗0K̄∗0,f0

+ GK∗−K∗+gK∗−K∗+,f0
+ 2

1

2
Gφφgφφ,f0

)

, (63)

where GV V are the loop functions of two vector mesons that we take from Ref. 127

and gV V,f0
the couplings of f0 to the pair of vectors VV , defined from the residues

of the resonance at the poles

tij ≃ gigj

s − sR
, (64)

with tij the transition matrix from the channel (V V )i to (V V )j . These couplings

are also tabulated in Ref. 127. The formulas for the decay amplitudes to J/ψf2 are

identical, substituting f0 by f2 in the formulas and the factor ṼP by a different one

Ṽ ′
P suited for the hadronization into a tensor. The magnitudes ṼP and Ṽ ′

P represent

1630001-31

In
t.

 J
. 
M

o
d
. 

P
h
y
s.

 E
 2

0
1
6
.2

5
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 W

S
P

C
 o

n
 0

3
/0

4
/1

6
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



E. Oset et al.

B̄0

b

d̄

c c̄

s

d̄

W

uū + dd̄ + ss̄ B̄0
s

b

s̄

c c̄

d

s̄

W

uū + dd̄ + ss̄

(a) (b)

Fig. 21. Mechanisms for B̄0 → J/ψK̄∗
2 (1430) and B̄0

s → J/ψK∗
2 (1430).

the common factors to these different amplitudes which, before hadronization and

rescattering of the mesons, are only differentiated by the CKM matrix elements

Vcd, Vcs.

Note that as in former cases we include a factor 1/2 in the G functions for the

ρ0ρ0, ωω, and φφ cases and a factor 2 for the two combinations to create these

states, to account for the identity of the particles. The factor pJ/ψcos θ is included

there to account for a p-wave in the J/ψ particle to match angular momentum in

the 0− → 1−0+ transition. The factor pJ/ψ can however play some role due to the

difference of mass between the different resonances.

The case for B̄0 → J/ψK̄∗
2 (1430) decay is similar. The diagrams corresponding

to Figs. 18(b) and 18(d) are now written in Fig. 21.

In analogy to Eqs. (60) and (61) we now have

sd̄(uū + dd̄ + ss̄) ≡ (V · V )32 = K∗−ρ+ + K̄∗0
(

− ρ0

√
2

+
ω√
2

)

+ K̄∗0φ, (65)

ds̄(uū + dd̄ + ss̄) ≡ (V · V )23 = ρ−K∗+ +

(

− ρ0

√
2

+
ω√
2

)

K∗0 + K∗0φ, (66)

and the amplitudes for production of J/ψK̄∗
2 (1430) will be given by

t(B̄0 → J/ψK̄∗
2 ) = Ṽ ′

P pJ/ψcos θVcs

(

GK∗−ρ+gK∗−ρ+,K̄∗

2
− 1√

2
GK̄∗0ρ0gK̄∗0ρ0,K̄∗

2

+
1√
2
GK̄∗0ωgK̄∗0ω,K̄∗

2
+ GK̄∗0φgK̄∗0φ,K̄∗

2

)

, (67)

t(B̄0
s → J/ψK∗

2 ) = Ṽ ′
P pJ/ψcos θVcd

(

GK∗+ρ−gK∗+ρ−,K∗

2
− 1√

2
GK̄∗0ρ0gK̄∗0ρ0,K∗

2

+
1√
2
GK̄∗0ωgK̄∗0ω,K∗

2
+ GK̄∗0φgK̄∗0φ,K∗

2

)

. (68)

In Ref. 128 these amplitudes are written in terms of the isospin amplitudes

which are generated in Ref. 127. The width for these decays will be given by

Γ =
1

8πM2
B̄

|t|2pJ/ψ, with pJ/ψ =
λ1/2(M2

B̄
, M2

J/ψ, M2
R)

2MB̄

(69)

with MR the resonance mass, and in |t|2 we include the factor 1/3 for the integral

of cos θ, which cancels in all ratios that we will study.
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Weak decays of heavy hadrons into dynamically generated resonances

The information on couplings and values of the G functions, together with uncer-

tainties is given in Table V of Ref. 129 and Table I of Ref. 130. The errors for the

scalar mesons production are taken from Ref. 130.

7.3. Results

In the PDG we find rates for B̄0
s → J/ψf0(1370),43 B̄0

s → J/ψf2(1270)43 and B̄0
s →

J/ψf ′
2(1525).131 We can calculate 10 independent ratios and we have two unknown

normalization constants ṼP and Ṽ ′
P . Then we can provide eight independent ratios

parameter free. From the present experimental data we can only get one ratio for

the B̄0
s → J/ψf2(1270)[f ′

2(1525)]. There is only one piece of data for the scalars,

but we should also note that the data for B̄0
s → J/ψf0(1370) in Ref. 43 and in the

PDG, in a more recent paper45 is claimed to correspond to the f0(1500) resonance.

Similar ambiguities stem from the analysis of Ref. 132.

The data for f2(1270)43 and f ′
2(1525)131 of the PDG are

Γ(B̄0
s → J/ψf2(1270)) = (10+5

−4) × 10−7, (70)

Γ(B̄0
s → J/ψf ′

2(1525)) = (2.6+0.9
−0.6) × 10−4. (71)

However, the datum for Γ(B̄0
s → J/ψf ′

2(1525)) of the PDG is based on the

contribution of only one helicity component λ = 0, while λ = ±1 contribute in

similar amounts.

This decay has been further reviewed in Ref. 45 and taking into account the

contribution of the different helicities a new number is now provided,d

Γ(B̄0
s → J/ψf2(1270)) = (3.0+1.2

−1.0) × 10−6, (72)

which is about three times larger than the one reported in the PDG (at the date

of this review).

The results are presented in Table 1 for the eight ratios that we predict,

defined as,

R1 =
Γ[B̄0 → J/ψf0(1370)]

Γ[B̄0 → J/ψf0(1710)]
, R2 =

Γ[B̄0 → J/ψf2(1270)]

Γ[B̄0 → J/ψf ′
2(1525)]

,

R3 =
Γ[B̄0 → J/ψf2(1270)]

Γ[B̄0 → J/ψK̄∗
2 (1430)]

, R4 =
Γ[B̄0 → J/ψf0(1710)]

Γ[B̄0
s → J/ψf0(1710)]

,

R5 =
Γ[B̄0 → J/ψf2(1270)]

Γ[B̄0
s → J/ψf2(1270)]

, R6 =
Γ[B̄0

s → J/ψf0(1370)]

Γ[B̄0
s → J/ψf0(1710)]

,

R7 =
Γ[B̄0

s → J/ψf2(1270)]

Γ[B̄0
s → J/ψf ′

2(1525)]
, R8 =

Γ[B̄0
s → J/ψf2(1270)]

Γ[B̄0
s → J/ψK∗

2 (1430)]
.

Note that the different ratios predicted vary in a range of 10−3, such that

even a qualitative level comparison with future experiments would be very valuable

dFrom discussions with Stone and Zhang.
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E. Oset et al.

Table 1. Ratios of B̄0 and B̄0
s decays.

Ratios Theory Experiment

R1 6.2 ± 1.6 —
R2 13.4 ± 6.7 —
R3 (3.0 ± 1.5) × 10−2 —
R4 (7.7 ± 1.9) × 10−3 —
R5 (6.4 ± 3.2) × 10−1 —
R6 (1.1 ± 0.3) × 10−2 —
R7 (8.4 ± 4.6) × 10−2 (1.0 ∼ 3.8) × 10−2

R8 (8.2 ± 4.1) × 10−1 —

concerning the nature of the states as vector–vector molecules, on which the num-

bers of the Tables are based.

The errors are evaluated in quadrature from the errors in Refs. 129 and 130.

In the case of R7, where we can compare with the experiment, we put the band of

experimental values for the ratio. The theoretical results and the experiment just

overlap within errors.

From our perspective it is easy to understand the small ratio of these decay rates.

The f2(1270) in Ref. 127 is essentially a ρρ molecule while the f ′
2(1525) couples

mostly to K∗K̄∗. If one looks at Eq. (63) one can see that the B̄0
s → J/ψf0(f2)

proceeds via the K∗K̄∗ and φφ channels, hence, the f2(1270) with small couplings

to K∗K̄∗ and φφ is largely suppressed, while the f ′
2(1525) is largely favored.

8. Learning About the Nature of Open and Hidden

Charm Mesons

The interaction of mesons with charm has also been addressed from the perspective

of an extension of the chiral unitary approach. Meson–meson interactions have been

studied in many works,33,133–137 and a common result is that there are many states

that are generated dynamically from the interaction which can be associated to

some known states, while there are also predictions for new states. Since then there

have been ideas on how to prove that the nature of these states corresponds to a

kind of molecular structure of some channels. The idea here is to take advantage

of the information provided by the B and D decays to shed light on the nature of

these states. We are going to show how the method works with two examples, one

where the D∗+
s0 (2317) resonance is produced and the other one where some X, Y, Z

states are produced.

The very narrow charmed scalar meson D∗+
s0 (2317) was first observed in the

D+
s π0 channel by the BABAR Collaboration138,139 and its existence was confirmed

by CLEO,140 BELLE141 and FOCUS142 Collaborations. Its mass was commonly

measured as 2317 MeV, which is approximately 160 MeV below the prediction of

the very successful quark model for the charmed mesons.143,144 Due to its low mass,

the structure of the meson D∗±
s0 (2317) has been extensively debated. It has been

interpreted as a cs̄ state,145–149 two-meson molecular state,33,133–137,150,151 K −D-

mixing,152 four-quark states153–156 or a mixture between two-meson and four-quark
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Weak decays of heavy hadrons into dynamically generated resonances

states.157 Additional support to the molecular interpretation came recently from

lattice QCD simulations.158–161 In previous lattice studies of the D∗
s0(2317), it was

treated as a conventional quark–antiquark state and no states with the correct mass

(below the KD threshold) were found. In Refs. 158 and 160, with the introduction

of KD meson correlators and using the effective range formula, a bound state is

obtained about 40MeV below the KD threshold. The fact that the bound state

appears with the KD interpolator may be interpreted as a possible KD molec-

ular structure, but more precise statements cannot be done. In Ref. 159 lattice

QCD results for the KD scattering length are extrapolated to physical pion masses

by means of unitarized chiral perturbation theory, and by means of the Weinberg

compositeness condition162,163 the amount of KD content in the D∗
s0(2317) is deter-

mined, resulting in a sizable fraction of the order of 70% within errors. Yet, one

should take this result with caution since it results from using one of the Weinberg

compositeness162 conditions in an extreme case. A reanalysis of the lattice spectra

of Refs. 158 and 160 has been recently done in Ref. 161, going beyond the effective

range approximation and making use of the three levels of Refs. 158 and 160. As a

consequence, one can be more quantitative about the nature of the Ds0(2317), which

appears with a KD component of about 70%, within errors. Further works relating

LQCD results and the D∗
s0(2317) resonance can be found in Refs. 164 and 165.

In addition to these lattice results, and more precise ones that should be available

in the future, it is very important to have some experimental data that could be

used to test the internal structure of this exotic state.

9. D∗±
s0 (2317) and KD Scattering from B0

s
Decay

Here we propose to use the experimental KD invariant mass distribution of the

weak decay of B̄0
s → D−

s (DK)+ to obtain information about the internal structure

of the D∗+
s0 (2317) state.e There are not yet experimental data for the decay

B̄0
s → D−

s (DK)+. However, based on the 1.85% and 1.28% branching fractions

for the decays B̄0
s → D∗+

s D∗−
s and B̄0

s → D+
s D∗−

s + D∗+
s D−

s , the branching frac-

tion for the B̄0
s → D−

s D∗+
s0 decay, should not be so different from that and be seen

through the channel B̄0
s → D−

s (DK)+. It is worth stressing that in the reactions

B0 → D−D0K+ and B+ → D̄0D0K+ studied by the BABAR Collaboration,166

an enhancement in the invariant DK mass in the range 2.35−2.50 GeV is observed,

which could be associated with this D∗+
s0 (2317) state. It is also interesting to men-

tion that, in the reaction B0
s → D̄0K−π+, the LHCb Collaboration also finds an

enhancement close to the KD threshold in the D̄0K− invariant mass distribution,

which is partly associated to the D∗
s0(2317) resonance.122

In Fig. 22 we show the mechanism for the decay B̄0
s → D−

s (DK)+. One takes the

dominant mechanism for the weak decay of the B̄0
s into D−

s plus a primary cs̄ pair.

The hadronization of the initial cs̄ pair is achieved by inserting a qq̄ pair with the

eThroughout this work, the notation (DK)+ refers to the isoscalar combination D0K+ + D+K0.
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E. Oset et al.

b

s̄

c̄

s

c

s̄

ūu + d̄d + s̄s + c̄c

D−
s

D0, D+, D+
s

K+, K0, η

B̄0
s

Fig. 22. Mechanism for the decay B̄0
s → D−

s (DK)+.

quantum numbers of the vacuum: uū+dd̄+ss̄+cc̄, as shown in Fig. 22. Therefore, the

cs̄ pair is hadronized into a pair of pseudoscalar mesons. This pair of pseudoscalar

mesons is then allowed to interact to produce the D∗+
s0 (2317) resonance, which is

considered here as mainly a DK molecule.33 The idea is similar to the one used in

former sections for the formation of the f0(980) and f0(500) scalar resonances in

the decays of B0 and B0
s .

9.1. Formalism

Here the D∗+
s0 (2317) is considered as a bound state of DK and one looks at the

shape of the DK distribution close to threshold of the B̄0
s → D−

s (DK)+ decay.

9.1.1. Elastic DK scattering amplitude

We follow here the developments of Ref. 167. Let us start by discussing the S-wave

amplitude for the isospin I = 0 DK elastic scattering, which we denote T . It can

be written as

T−1(s) = V −1(s) − G(s) ⇒ T (s) = V (s)(1 + G(s)T (s)), (73)

where G(s) is a loop function which in dimensional regularization can be written as

16π2G(s) = a(µ) + log
mDmK

µ2
+

∆

2s
log

m2
D

m2
K

+
ν

2s

(

log
s − ∆ + ν

−s + ∆ + ν
+ log

s + ∆ + ν

−s − ∆ + ν

)

,

∆ = m2
D − m2

K , ν = λ1/2(s, m2
D, m2

K). (74)

In Eq. (73), V (s) is the potential, typically extracted from some effective field

theory, although a different approach will be followed here.

The amplitude T (s) can also be written in terms of the phase shift δ(s) and/or

effective range expansion parameters,

T (s) = − 8π
√

s

pKctgδ − ipK
≃ − 8π

√
s

1

a
+

1

2
r0p

2
K − ipK

, (75)
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Weak decays of heavy hadrons into dynamically generated resonances

with

pK(s) =
λ1/2(s, M2

K , M2
D)

2
√

s
, (76)

the momentum of the K meson in the DK center of mass system. In Eq. (75), a

and r0 are the scattering length and the effective range, respectively.

Taking the potential of Ref. 33 for DK scattering, we find the D∗+
s0 (2317) reso-

nance below the DK threshold, the latter being located roughly above 2360 MeV.

This means that the amplitude has a pole at the squared mass of this state,

M2 ≡ s0, so that, around the pole,

T (s) =
g2

s − s0
+ regular terms, (77)

where g is the coupling of the state to the DK channel. From Eqs. (73) and (77),

we see that (the following derivatives are meant to be calculated at s = s0):

1

g2
=

∂T−1(s)

∂s
=

∂V −1(s)

∂s
− ∂G(s)

∂s
. (78)

We have thus the following exact sum rule:

1 = g2

(

−∂G(s)

∂s
+

∂V −1(s)

∂s

)

. (79)

In Ref. 168 it has been shown, as a generalization of the Weinberg compositeness

condition162 (see also Ref. 169 and references therein), that the probability P of

finding the channel under study (in this case, DK) in the wave function of the

bound state is given by

P = −g2 ∂G(s)

∂s
, (80)

while the rest of the r.h.s. of Eq. (79) represents the probability of other channels,

and hence the probabilities add up to 1. If one has an energy independent potential,

the second term of Eq. (79) vanishes, and then P = 1. In this case, the bound state

is purely given by the channel under consideration. These ideas are generalized to

the coupled channels case in Ref. 168.

Let us now apply these ideas to the case of DK scattering. From Eq. (73) it can

be seen that the existence of a pole implies

V −1(s) ≃ G(s0) + α(s − s0) + · · · , (81)

α ≡ ∂V −1(s)

∂s

∣

∣

∣

∣

s=s0

, (82)

in the neighborhood of the pole. Assuming that the energy dependence in a limited

range of energies around s0 is linear in s, we can now write the amplitude as

T−1(s) = G(s0) − G(s) + α(s − s0), (83)

and the sum rule in Eq. (79) becomes

PDK = 1 − αg2. (84)
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E. Oset et al.

In this way, the quantity αg2 represents the probability of finding other components

beyond DK in the wave function of D∗+
s0 (2317). The following relation can also be

deduced from Eqs. (84) and (80):

α = −1 − PDK

PDK

∂G(s)

∂s

∣

∣

∣

∣

s=s0

. (85)

We can now link this formalism with the results of Ref. 161, where a reanalysis

is done of the energy levels found in the lattice simulations of Ref. 160. In Ref. 161,

the following values for the effective range parameters are found:

a0 = −1.4 ± 0.6 fm, r0 = −0.1 ± 0.2 fm. (86)

Also, in studying the D∗+
s0 (2317) bound state, a binding energy B = MD +

MK −MD∗+
s0

= 31± 17 MeV is found in Ref. 161. We can start from the hypothesis

that a bound state exists in the DK channel, with a mass MD∗+
s0

= 2317 MeV (the

nominal one), and with a probability PDK = 0.75. This implies, from Eq. (85), that

one has a value α = 2.06×10−3 GeV−2. Then, for the subtraction constant in the G

function, Eq. (74), one takes, as in Ref. 33, the value a(µ) = −1.3 for µ = 1.5 GeV,

with this input we obtain the DK invariant mass distribution in next subsection.

Note that ∂G(s)/∂s does not depend on µ or a(µ), and it is a convergent function.

9.1.2. Decay amplitude and invariant DK mass distribution

in the B̄0
s → D−

s (DK)+ decay

Let us first show how the amplitude for the decay B̄0
s → D−

s (DK)+ decay is

obtained, and its relation to the DK elastic scattering amplitude studied above.

The basic mechanism for this process is depicted in Fig. 22, where, from the s̄b

initial pair constituting the B̄0
s , a c̄s pair and a s̄c pair are created. The first pair

produces the D−
s , and the DK state emerges from the hadronization of the second

pair. The hadronization mechanism has been explained in former sections but we

must include the cc̄ pair in the hadronization. To construct a two meson final state,

the cs̄ pair has to combine with another q̄q pair created from the vacuum. Extending

Eq. (6) to include the charm quark, we introduce the following matrix:

M = vv̄ =









u

d

s

c









(ū d̄ s̄ c̄) =









uū ud̄ us̄ uc̄

dū dd̄ ds̄ dc̄

sū sd̄ ss̄ sc̄

cū cd̄ cs̄ cc̄









, (87)

which fulfils

M2 = (vv̄)(vv̄) = v(v̄v)v̄ = (ūu + d̄d + s̄s + c̄c)M, (88)

which is analogs to Eq. (7). The first factor in the last equality represents the q̄q

creation. In analogy again with Eq. (8), this matrix M is in correspondence with
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Weak decays of heavy hadrons into dynamically generated resonances

the meson matrix φ

φ =





















η√
3

+ π0

√
2

+ η′

√
6

π+ K+ D̄0

π− η√
3
− π0

√
2

+ η′

√
6

K0 D−

K− K̄0
√

2η′

√
3

− η√
3

D−
s

D0 D+ D+
s ηc





















. (89)

The hadronization of the cs̄ pair proceeds then through the matrix element

(M2)43, which in terms of mesons reads:

(φ2)43 = K+D0 + K0D+ + · · · , (90)

where only terms containing a KD pair are retained, since coupled channels are not

considered here. We note that this KD combination has I = 0, as it should, since

it is produced from a cs̄, which has I = 0, and the strong interaction hadronization

conserves isospin.

Let t be the full amplitude for the process B0
s → D−

s (DK)+, which already

takes into account the final state interaction of the DK pair. Also, let us denote

by v the bare vertex for the same reaction. To relate t and v, that is, to take into

account the final state interaction of the DK pair, as sketched in Fig. 23, we write

t = v + vG(s)T (s) = v(1 + G(s)T (s)). (91)

From Eq. (73), the previous equation can also be written as

t = v
T (s)

V (s)
. (92)

Because of the presence of the bound state below threshold, this amplitude will

depend strongly on s in the kinematical window ranging from threshold to 100 MeV

above it. Hence, the differential width for the process under consideration is given by

dΓ

d
√

s
=

1

32π3M2
B̄0

s

pD−

s
p̃K |t|2 = CpD−

s
p̃K

∣

∣

∣

∣

T (s)

V (s)

∣

∣

∣

∣

2

, (93)

Fig. 23. Diagrammatical interpretation of Eq. (91), in which DK final state interaction is taken
into account for the decay B̄0

s → D−
s (DK)+. The dark square represents the amplitude t for

the process, in which the final state interaction is already taken into account. The light square
represents the bare vertex for the process, denoted by v. Finally, the circle represents the hadronic
amplitude for the elastic DK scattering.
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E. Oset et al.

where the bare vertex v has been absorbed in C, a global constant, and where pD−

s

is the momentum of the D−
s meson in the rest frame of the decaying B̄0

s and p̃K

the momentum of the kaon in the rest frame of the DK system.

9.2. Results

We want to investigate the influence of the D∗+
s0 (2317) state in the (DK)+ scattering

amplitude. For this purpose, we generate synthetic data from our theory for the

differential decay width for the process with Eqs. (93) and (83). We generate 10

synthetic points in a range of 100 MeV starting from threshold, using the input

discussed above and assuming 5% or 10% error. The idea is to use now these

generated points as if they where experimental data and perform the inverse analysis

to obtain information on the D∗+
s0 (2317).

The generated synthetic data are shown in Fig. 24. As explained, we consider

two different error bars, the smaller one corresponding to 5% experimental error and

the larger one to 10%. A phase space distribution (i.e., a differential decay width

proportional to pD−

s
pK , but with no other kinematical dependence of dynamical

origin) is also shown in the figure (dashed line). The first important information

extracted from the figure is that the data are clearly incompatible with the phase

space distribution. This points to the presence of a resonant or bound state below

threshold. Two error bands are shown in the same figure, the lighter and smaller

(darker and larger) one corresponding to 5% (10%) experimental error. The fitted

parameters (a(µ), MD∗+
s0

, and α) are shown in Table 2. We also show the masses

obtained and, by looking at the upper error, we observe that experimental data

with a 10% error, which is clearly feasible with nowadays experimental facilities,

can clearly determine the presence of a bound DK state, corresponding to the

D∗
s0(2317), from the DK distribution.

d
Γ
/d

√
s

√
s (MeV)

B̄
0
s → D

−
s (DK)+

phase space

10 %
5 %

central fit
synthetic data

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

2360 2380 2400 2420 2440 2460

Fig. 24. Differential decay width for the reaction B̄0
s → D−

s (DK)+. The synthetic data (gen-
erated as explained in the text) are shown with black points. The smaller (larger) error bars
correspond to a 5% (10%) experimental error. The dash–dotted line represents the theoretical
prediction obtained with the central values of the fit. The light (dark) bands correspond to the
estimation of the error (by means of a MC simulation) when fitting the data with 5% (10%)
experimental error. The dashed line corresponds to a phase space distribution normalized to the
same area in the range examined.
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Weak decays of heavy hadrons into dynamically generated resonances

Table 2. Fitted parameters (α, M
D

∗+
s0

and a(µ)) and predicted

quantities (|g|, a0, r0, PDK) for µ = 1.5GeV. The second col-
umn shows the central value of the fit, whereas the third (fourth)
column presents the errors (estimated by means of MC simula-
tion) when the experimental error is 5% (10%).

Central value 5% 10%

103 α (GeV−2) 2.06 +0.17
−0.40

+0.10
−1.09

MD∗

s0
(MeV) 2317 +14

−24
+21
−73

a(µ) −1.30 +0.15
−0.37

+0.27
−0.49

|g| (GeV) 11.0 +1.0
−0.6

+2.2
−1.1

a0 (fm) −1.0 +0.2
−0.2

+0.4
−0.5

r0 (fm) −0.14 +0.06
−0.03

+0.16
−0.04

PDK 0.75 +0.07
−0.06

+0.16
−0.11

We can also determine PDK , the probability of finding the DK channel in

the D∗+
s0 (2317) wave function. It is shown in the last row of Table 2. The central

value PDK = 0.75 is the same as the initial one, but we are here interested in the

errors, which are small enough even in the case of a 10% experimental error. This

means that with the analysis of such an experiment one could address with enough

accuracy the question of the molecular nature of the state (D∗+
s0 (2317), in this case).

Finally, it is also possible to determine other parameters related with DK scat-

tering, such as the scattering length (a0) and the effective range (r0). They are also

shown in Table 2. They are compatible with the lattice QCD studies presented in

Refs. 160 and 161. Namely, the results from Ref. 161 are shown in Eq. (86), and

their mutual compatibility is clear.

10. Predictions for the B̄0
→ K̄∗0X(Y Z) and B̄0

s
→ φX(Y Z)

with X(4160), Y (3940), Z(3930)

The XY Z resonances with masses in the region around 4000MeV have posed a

challenge to the common wisdom of mesons as made from qq̄. There has been

intense experimental work done at the BABAR, BELLE, CLEO, BES and other

collaborations, and many hopes are placed in the role that the future FAIR facility

with the PANDA collaboration and J-PARC will play in this field. There are early

experimental reviews on the topic170–173 and more recent ones.174–178 From the

theoretical point of view there has also been an intensive activity trying to under-

stand these states. There are quark model pictures179,180 and explicit tetraquark

structures.181 Molecular interpretations have also been given.182–190 The introduc-

tion of heavy quark spin symmetry (HQSS)191–193 has brought new light into the

issue. QCD sum rules have also made some predictions.194–196 Strong decays of

these resonances have been studied to learn about the nature of these states,197,198

while very often radiative decays are invoked as a tool to provide insight into this
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E. Oset et al.

problem,199–203 although there might be exceptions.204 It has even been speculated

that some states found near thresholds of two mesons could just be cusps, or thresh-

old effects.205 However, this speculation was challenged in Ref. 206 which showed

that the near threshold narrow structures cannot be simply explained by kinemat-

ical threshold cusps in the corresponding elastic channels but require the presence

of S-matrix poles. Along this latter point one should also mention a recent work on

possible effects of singularities on the opposite side of the unitary cut enhancing the

cusp structure for states with mass above a threshold.207 Some theoretical reports

on these issues can be found in other works.208–210

So far, in the study of these B decays the production of XY Z states has not

yet been addressed and we show below some reactions where these states can be

produced, evaluating ratios for different decay modes and estimating the absolute

rates.211 This should stimulate experimental work that can shed light on the nature

of some of these controversial states.

10.1. Formalism

Following the formalism developed in the former sections, we plot in Fig. 25 the

basic mechanism at the quark level for B̄0
s(B̄0) decay into a final cc̄ and another qq̄

pair. The cc̄ goes into the production of a J/ψ and the ss̄ or sd̄ are hadronized to

produce two mesons which are then allowed to interact to produce some resonant

states. Here, we shall follow a different strategy and allow the cc̄ to hadronize

into two vector mesons, while the ss̄ and sd̄ will make the φ and K̄∗0 mesons,

respectively. Let us observe that, apart for the b → c transition, most favored for

the decay, we have selected an s in the final state which makes the c → s transition

Cabibbo allowed. This choice magnifies the decay rate, which should then be of

the same order of magnitude as the B̄0
s → J/ψf0(980), which also had the same

diagram at the quark level prior to the hadronization of the ss̄ to produce two

mesons.

In the next step, one introduces a new qq̄ state with the quantum numbers of

the vacuum, ūu + d̄d + s̄s + c̄c, and see which combinations of mesons appear when

added to cc̄. This is depicted in Fig. 26. For this we follow the steps of the former

(a) (b)

Fig. 25. Diagrams at the quark level for B̄0
s (a) and B̄0 (b) decays into cc̄ and a qq̄ pair.
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Weak decays of heavy hadrons into dynamically generated resonances

(a) (b)

Fig. 26. Hadronization of the cc̄ pair into two vector mesons for (a) B̄0
s decay and (b) B̄0 decay.

section, and we have

cc̄(ūu + d̄d + s̄s + c̄c) ≡ (M · M)44 ≡ (V · V )44 (94)

and

(V · V )44 = D∗0D̄∗0 + D∗+D∗− + D∗+
s D∗−

s + J/ψJ/ψ. (95)

Note that we have produced an I = 0 combination, as it should be com-

ing from cc̄ and the strong interaction hadronization, given the isospin doublets

(D∗+,−D∗0), (D̄∗0, D̄∗−). The J/ψJ/ψ component is energetically forbidden and

hence we can write

(V · V )44 →
√

2(D∗D̄∗)I=0 + D∗+
s D∗−

s . (96)

The vector mesons produced undergo interaction and we use the work of

Ref. 212, where an extension of the local hidden gauge approach7–9,213 is adopted,

and where some XY Z states are dynamically generated. Specifically, in Ref. 212

four resonances were found, that are summarized in Table 3, together with the

channel to which the resonance couples most strongly, and the experimental state

to which they are associated. In Ref. 212, another state with I = 1 was found,

but this one cannot be produced with the hadronization of cc̄. Some of these reso-

nances have also been claimed to be of D∗D̄∗ or D∗
sD̄∗

s molecular nature182,200,217

using for it the Weinberg compositeness condition162,163,169 and also using QCD

sum rules,194,195,218 HQSS192,193 and phenomenological potentials.219

Table 3. States found in a previous work (Ref. 212), the channel
to which they couple most strongly, and the experimental states to
which they are associated (see Refs. 95 and 172) YP is a predicted
resonance.

Strongest Experimental
Energy [MeV] IG[JPC ] channel state

3943 − i7.4 0+[0+ +] D∗D̄∗ Y (3940)214

3945 − i0 0−[1+ −] D∗D̄∗ ? YP

3922 − i26 0+[2+ +] D∗D̄∗ Z(3930)215

4169 − i66 0+[2+ +] D∗
s D̄∗

s X(4160)216
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E. Oset et al.

The final state interaction of the D∗D̄∗ and D∗
sD̄∗

s proceeds diagrammatically

as depicted in Fig. 27. Starting from Eq. (96) the analytical expression for the

formation of the resonance R is given by

t(B̄0
s → φR) = VP (

√
2gD∗D̄∗,RGD∗D̄∗ + gD∗

s D̄∗

s ,RGD∗

s D̄∗

s
), (97)

where GMM ′ is the loop function of the two intermediate meson propagators and

gMM ′,R is the coupling of the resonance to the MM ′ meson pair.

The formalism for B̄0 → K̄∗0R runs parallel since the hadronization procedure

is identical, coming from the cc̄, only the final state of qq̄ is the K̄∗0 rather than

the φ. Hence, the matrix element is identical to the one of B̄0
s → φR, only the

kinematics of different masses changes.

There is one more point to consider which is the angular momentum conserva-

tion. For JP
R = 0+, 2+, we have the transition 0− → JP 1−. Parity is not conserved

but the angular momentum is. By choosing the lowest orbital momentum L, we see

that L = 0 for JP = 1+ and L = 1 for JP = 0+, 2+. However, the dynamics will be

different for JP = 0+, 1+, 2+. This means that we can relate B̄0
s → Y (3940)φ with

B̄0 → Y (3940)K̄∗0, B̄0
s → Z(3930)φ with B̄0 → Z(3930)K̄∗0, B̄0

s → X(4160)φ

with B̄0 → X(4160)K̄∗0 and B̄0
s → YP φ with B̄0 → YP K̄∗0, but in addition we can

relate B̄0
s → Z(3930)φ with B̄0

s → X(4160)φ, and the same for B̄0 → Z(3930)K̄∗0

with B̄0 → X(4160)K̄∗0. Hence in this latter case we also have a 2+ state for both

resonances and the only difference between them is the different coupling to D∗D̄∗

and D∗
sD̄∗

s , where the Z(3930) couples mostly to D∗D̄∗, while the X(4160) couples

mostly to D∗
sD̄∗

s .

The partial decay width of these transitions is given by

ΓRi
=

1

8π

1

m2
B̄0

i

|tB̄0
i
→φ(K̄∗0)Ri

|2P 2L+1
φ(K̄∗0)

, (98)

which allows us to obtain the following ratios, where the different unknown con-

stants VP , which summarize the production amplitude at tree level, cancel in the

ratios:

R1 ≡
ΓB̄0

s→φRJ=0

ΓB̄0→K∗0RJ=0

, R2 ≡
ΓB̄0

s→φRJ=1

ΓB̄0→K∗0RJ=1

, R3 ≡
ΓB̄0

s→φRJ=2
1

ΓB̄0→K∗0RJ=2
1

,

R4 ≡
ΓB̄0

s→φRJ=2
2

ΓB̄0→K∗0RJ=2
2

, R5 ≡
ΓB̄0

s→φRJ=2
1

ΓB̄0
s→φRJ=2

2

,

where RJ=0, RJ=1, RJ=2
1 , and RJ=2

2 are the Y (3940), YP , Z(3930), and X(4160),

respectively.

10.2. Results

The couplings gMM ′,R and the loop functions GMM ′ in Eq. (97) are taken from

Ref. 212, where the dimensional regularization was used to deal with the divergence

of GMM ′ , fixing the regularization scale µ = 1000MeV and the subtraction constant
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Weak decays of heavy hadrons into dynamically generated resonances

(a) (b)

Fig. 27. Diagrammatic representation of the formation of the resonances R(X, Y, Z) through
rescattering of MM ′ (D∗D̄∗ or D∗

s D̄∗
s) and coupling to the resonance.

α = −2.07. However, in Ref. 211 some corrections to the work of Ref. 212 are done,

due to the findings of Ref. 220 concerning heavy quark spin symmetry. It was found

there that a factor mD∗/mK∗ has to be implemented in the hidden gauge coupling

g = mρ/2fπ in order to account for the D∗ → Dπ decay. However, this factor should

not be implemented in the Weinberg-Tomozawa terms (coming from exchange of

vector mesons) because these terms automatically implement this factor in the

vertices of vector exchange. In Ref. 211, µ = 1000MeV and α = −2.19 are used, by

means of which a good reproduction of the masses is obtained.

We summarize here the results that we obtain for the ratios,

R1 = 0.95, R2 = 0.96, R3 = 0.95, R4 = 0.83, R5 = 0.84. (99)

As we can see, all the ratios are of the order of unity. The ratios close to unity for

the φ or K∗0 production are linked to the fact that the resonances are dynamically

generated from D∗D̄∗ and D∗
sD̄∗

s , which are produced by the hadronization of the cc̄

pair. The ratio for the JP = 2+ is even more subtle since it is linked to the particular

couplings of these resonances to D∗D̄∗ and D∗
sD̄∗

s , which are a consequence of the

dynamics that generates these states. Actually, the ratios R1, R2, R3, R4 are based

only on phase space and result from the elementary mechanisms of Fig. 25. One

gets the same ratios as far as the resonances are cc̄ based. Hence, even if these ratios

do not prove the molecular nature of the resonances, they already provide valuable

information telling us that they are cc̄ based.

The ratio R5 provides more information since it involves two independent res-

onances and it is not just a phase space ratio. If we take into account only phase

space, then R5 ≈ 4 instead of the value 0.84 that we obtain.

As for the absolute rates, an analogy is established with the B̄0
s → J/ψf0(980)

decay in Ref. 211, and branching fractions of the order of 10−4 are obtained, which

are an order of magnitude bigger than many rates of the order of 10−5 already

catalogued in the PDG.95

Given the fact that the ratios R1, R2, R3, R4 obtained are not determining the

molecular nature of the resonances, but only on the fact that they are cc̄ based, a

complementary test is proposed in the next section.
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E. Oset et al.

Fig. 28. Feynman diagrams for the D∗D∗ production in B0
s decays.

10.3. Complementary test of the molecular nature of the

resonances

In this section we propose a test that is linked to the molecular nature of the

resonances. We study the decay B̄0
s → φD∗D̄∗ or B̄0

s → φD∗
sD̄∗

s close to the D∗D̄∗

and D∗
sD̄∗

s thresholds.

Let us now look to the process B̄0
s → φD∗D̄∗ depicted in Fig. 28. The production

matrix for this process will be given by

t(B̄0
s→φD∗D̄∗) = VP (

√
2 +

√
2G1t(1→1) + G2t(2→1)), (100)

where 1 and 2 stands for the D∗D̄∗ and D∗
sD̄∗

s channels, respectively. The differential

cross-section for production will be given by47:

dΓ

dMinv
=

1

32π3M2
B̄0

s

pφp̃D∗ |t(B̄0
s→φD∗D∗)|2p2L

φ , (101)

where pφ is the φ momentum in the B̄0
s rest frame and p̃D∗ the D∗ momentum in

the D∗D̄∗ rest frame. By comparing this equation with Eq. (98) for the coalescence

production of the resonance in B̄0
s → φR, we find

RΓ =
M3

R

pφp̃D∗

1

ΓR

dΓ

dMinv
=

M3
R

4π2

p2L
φ (Minv)

p2L+1
φ (MR)

∣

∣

∣

∣

∣

t(B̄0
s→φD∗D̄∗)

t(B̄0→Rφ)

∣

∣

∣

∣

∣

2

, (102)

where we have divided the ratio of widths by the phase space factor pφp̃D∗ and

multiplied by M3
R to get a constant value at threshold and a dimensionless magni-

tude. We apply this method for the three resonances that couple strongly to D∗D̄∗

(see Table 3). In the case of the resonance R2 with J = 2, that couples mostly to

the D∗
sD̄∗

s channel (see Table 3), we look instead for the production of D∗
sD̄∗

s , for

which we have:

t(B̄0
s→φD∗

s D̄∗

s ) = VP (1 +
√

2G1t(1→2) + G2t(2→2)), (103)

and we use Eq. (102) but with D∗
sD̄∗

s instead of D∗D̄∗ in the final state. Equa-

tion (102) is then evaluated using the scattering matrices obtained in Ref. 212
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1 J 0

J 2

J 1

4230 4240 4250 4260 4270 4280 429
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60

80

100

120

MInv Ds Ds MeV

R
2

J 2

Fig. 29. Results of R
(1)
Γ of Eq. (102) as a function of Minv(D∗D̄∗) for the first three resonances

of the Table 3 (left) and R
(2)
Γ as a function of Minv(D∗

s D̄∗
s ) (right) for the fourth resonance of the

Table 3.

modified as discussed above, together with Eqs. (100) and (103). The results are

shown in Fig. 29.

We can see that the ratios are different for each case and have some structure.

We observe that there is a fall down of the differential cross-sections as a function

of energy, as it would correspond to the tail of a resonance below threshold. Note

also that in the case of D∗D̄∗, one produces the I = 0 combination. If instead, one

component like D∗+D∗− is observed, the rate should be multiplied by 1/2. In the

case of D∗
sD̄∗

s there is a single component and the rate predicted is fine.

4020 4040 4060 4080 4100
100

150

200

250

300

350

MInv D D MeV

R
J

0

Fig. 30. Results of R
(1)
Γ of Eq. (102) as a function of Minv(D∗D̄∗) for spin = 0.
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11. Testing the Molecular Nature of D∗
s0

(2317) and D∗
0
(2400) in

Semileptonic Bs and B Decays

In this section and the following one, we describe two processes for semileptonic

decay, one for B decay and the other for D decay. The semileptonic B decays will

be used to test the molecular nature of the D∗
s0(2317) and D∗

0(2400), while those

of the D mesons, to be studied in Sec. 12, will be used to further investigate the

nature of scalar and vector mesons.

11.1. Introduction: Semileptonic B decays

The formalism is very similar to the one presented in former sections for nonleptonic

B decays. The basic mechanisms are depicted in Figs. 31–33. In all of them, after

the W emission one has a cq̄ pair. In order to have two mesons in the final state

the cq̄ is allowed to hadronize into a pair of pseudoscalar mesons and the relative

weights of the different pairs of mesons will be known. Once the meson pairs are

produced they interact in the way described by the chiral unitary model in coupled

channels, generating the D∗
s0(2317) and D∗

0(2400) resonances.

We will consider the semileptonic B decays into D resonances in the following

decay modes:

B̄0
s → D∗

s0(2317)+ν̄ll
−,

B̄0 → D∗
0(2400)+ν̄ll

−,

B− → D∗
0(2400)0ν̄ll

−,

(104)

Fig. 31. Semileptonic decay of B̄0
s into ν̄ll

− and a primary cs̄ pair.

Fig. 32. Semileptonic decay of B̄0 into ν̄ll
− and a primary cd̄ pair.
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Weak decays of heavy hadrons into dynamically generated resonances

Fig. 33. Semileptonic decay of B− into ν̄ll
− and a primary cū pair.

where the lepton flavor l can be e and µ. With respect to the former sections we have

now a different dynamics which we discuss below, together with the hadronization

process.

11.2. Semileptonic decay widths

The decay amplitude of B → ν̄l−hadron(s), TB, is given by

−iTB = uli
gW√

2
γα 1 − γ5

2
vν × −igαβ

p2 − M2
W

× uci
gWVbc√

2
γβ 1 − γ5

2
ub × (−iVhad), (105)

where ul, vν , uc and ub are Dirac spinors corresponding to the lepton l−, neutrino,

charm quark, and bottom quark, respectively, gW is the coupling constant of the

weak interaction, Vbc is the CKM matrix element, and MW is the W boson mass.

The factor Vhad describes the hadronization process and it will be evaluated in the

sections below. Ignoring the squared three-momentum of the W boson (p2) which

is much smaller than M2
W in the B decay process, the decay amplitude becomes

TB = −i
GFVbc√

2
LαQα × Vhad, (106)

where the Fermi coupling constant GF ≡ g2
W/(4

√
2M2

W ) is introduced, and we

define the lepton and quark parts of the W boson couplings as:

Lα ≡ ulγ
α(1 − γ5)vν , Qα ≡ ucγα(1 − γ5)ub, (107)

respectively.

In the calculation of the decay widths, one needs the average and sum of |TB|2
over the polarizations of the initial-state quarks and final-state leptons and quarks.

In terms of the amplitude in Eq. (106), one can obtain the squared decay ampli-

tude as

1

2

∑

pol

|TB|2 =
|GFVbcVhad|2

4

∑

pol

|LαQα|2, (108)

where the factor 1/2 comes from the average of the bottom quark polarization.

Finally with some algebra discussed in Ref. 221 one obtains the squared decay
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E. Oset et al.

amplitude:

1

2

∑

pol

|TB|2 =
4|GFVbcVhad|2
mνmlmBmR

(pB · pν)(pR · pl). (109)

Using the above squared amplitude we can calculate the decay width. We will

be interested in two types of decays: three-body decays, such as B̄0
s → D+

s0ν̄ll
−,

and four-body decays, such as B̄0
s → D+K0ν̄ll

− and also for the similar B̄0 and

B− initiated processes. As it will be seen, both decay types can be described by

the amplitude TB with different assumptions for Vhad.

11.3. Hadronization

For the conversion of quarks into hadrons in the final stage of hadron reactions

we follow the same procedure as in former sections and assume that the matrix

element for this process can be represented by an unknown constant. Explicit eval-

uations, where usually one must parametrize some information, have been discussed

in Sec. 3.3. Since the energies involved are of the order of a few GeV or less, this

is a non-perturbative process. In some cases one can develop an approach based on

effective Lagrangians222,223 to study hadronization. Here we describe hadronization

as depicted in Fig. 34. An extra q̄q pair with the quantum numbers of the vacuum,

ūu + d̄d + s̄s + c̄c, is added to the already existing quark pair. The probability of

producing the pair is assumed to be given by a number which is the same for all

light flavors and which will cancel out when taking ratios of decay widths. We can

write this cq̄(ūu + d̄d + s̄s + c̄c) combination in terms of pairs of mesons. For this

purpose we follow the procedure of the former sections and find the correspondence,

with φ given by Eq. (89),

cs̄(ūu + d̄d + s̄s + c̄c)

≡ (φ · φ)43 = D0K+ + D+K0 + D+
s

(

− 1√
3
η +

√

2

3
η′

)

+ ηcD
+
s , (110)

cd̄(ūu + d̄d + s̄s + c̄c)

≡ (φ · φ)42 = D0π+ + D+

(

− 1√
2
π0 +

1√
3
η +

1√
6
η′

)

+D+
s K̄0 + ηcD

+, (111)

Fig. 34. Schematic representation of the hadronization cq̄ → cq̄(ūu + d̄d + s̄s + c̄c).
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Weak decays of heavy hadrons into dynamically generated resonances

cū(ūu + d̄d + s̄s + c̄c)

≡ (φ · φ)41 = D0

(

1√
2
π0 +

1√
3
η +

1√
6
η′

)

+ D+π− + D+
s K− + ηcD

0. (112)

for D∗
s0(2317)+, D∗

0(2400)+, and D∗
0(2400)0 production, respectively. As it was

pointed out in Ref. 33, the most important channels for the description of D∗
s0(2317)

(D∗
0(2400)) are DK and Dsη (Dπ and DsK̄). Therefore, the weights of the channels

to generate the D resonances can be written in terms of ket vectors as:

|(φφ)43〉 =
√

2|DK(0, 0)〉 − 1√
3
|Dsη(0, 0)〉,

|(φφ)42〉 = −
√

3

2
|Dπ(1/2, 1/2)〉+ |DsK̄(1/2, 1/2)〉,

|(φφ)41〉 =

√

3

2
|Dπ(1/2,−1/2)〉 − |DsK̄(1/2,−1/2)〉,

(113)

where we have used two-body states in the isospin basis, which are specified as

(I, I3). Due to the isospin symmetry, both the charged and neutral D∗
0(2400) are

produced with the weight of |(φφ)42〉 = −|(φφ)41〉, which means that the ratio of

the decay widths into the charged and neutral D∗
0(2400) is almost unity. Using these

weights, we can write Vhad in terms of two pseudoscalars.

After the hadronization of the quark–antiquark pair, two mesons are formed and

start to interact. The D resonances can be generated as a result of complex two-

body interactions with coupled channels described by the Bethe–Salpeter equation.

If the resonance is formed, independently of how it decays, the process is usually

called “coalescence”224,225 and it is a reaction with three particles in the final state

(see Fig. 35). If we look for a specific two meson final channel we can have it

by “prompt” or direct production (first diagram of Fig. 36), and by rescattering,

generating the resonance (second diagram of Fig. 36). This process is usually called

“rescattering” and it is a reaction with four particles in the final state. Coalescence

and rescattering will be discussed in the next sections.

Fig. 35. Diagrammatic representation of D∗+
s0 (2317) production via meson coalescence after

rescattering.
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E. Oset et al.

Fig. 36. Diagrammatic representation of DK production: directly (on the left) and via rescat-
tering (on the right) in B̄0

s decays.

11.4. Coalescence

In this section we consider D resonance production via meson coalescence as

depicted in Fig. 35. This process has a three-body final state with a lepton, its

neutrino and the resonance R. The hadronization factor, Vhad, can be written as

Vhad(D∗
s0(2317)) = C

(√
2GDKgDK − 1√

3
GDsηgDsη

)

, (114)

Vhad(D∗
0(2400)+) = C

(

−
√

3

2
GDπgDπ + GDsK̄gDsK̄

)

. (115)

Here gi is the coupling constant of the D resonance to the ith two meson chan-

nel and Gi is the loop function of two meson propagators. As mentioned above

Vhad(D∗
0(2400)0) = −Vhad(D∗

0(2400)+). We will assume that C is a constant in the

limited range of invariant masses that we discuss and hence it will be cancelled

when we take the ratio of decay widths.

The formula for the width is then given by

Γcoal =
|GFVbcVhad(D∗)|2

8π3m3
BmR

∫

dM
(νl)
inv pcm

D p̃ν [M
(νl)
inv ]2

(

ẼBẼR − p̃2
B

3

)

, (116)

where the integral range of M
(νl)
inv is [ml + mν , mB − mR]. In Eq. (116), we have

pcm
D =

λ1/2(m2
B, [M

(νl)
inv ]2, m2

R)

2mB
, (117)

p̃ν =
λ1/2([M

(νl)
inv ]2, m2

ν , m2
l )

2mB
, (118)

ẼB =
m2

B + [M
(νl)
inv ]2 − m2

R

2M
(νl)
inv

, (119)

ẼR =
m2

B − [M
(νl)
inv ]2 − m2

R

2M
(νl)
inv

, (120)

where p̃2
B = Ẽ2

B − m2
B. Here mB and mR are the masses of the B and D∗ mesons,

respectively. Further detailed can be found in Ref. 221.
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Weak decays of heavy hadrons into dynamically generated resonances

11.5. Rescattering

Now we address the production of two pseudoscalars with prompt production plus

rescattering through a D resonance, as depicted in the diagrams of Fig. 36. The

hadronization amplitude Vhad in the isospin basis is given by

Vhad(DK) = C

(√
2 +

√
2GDKTDK→DK − 1√

3
GDsηTDsη→DK

)

, (121)

Vhad(Dsη) = C

(

− 1√
3

+
√

2GDKTDK→Dsη − 1√
3
GDsηTDsη→Dsη

)

, (122)

Vhad(Dπ) = C

(

−
√

3

2
−

√

3

2
GDπTDπ→Dπ + GDsK̄TDsK̄→Dπ

)

, (123)

Vhad(DsK̄) = C

(

1 −
√

3

2
GDπTDπ→DsK̄ + GDsK̄TDsK̄→DsK̄

)

. (124)

As it can be seen, the prefactor C is the same in all the reactions. In order to

calculate decay widths in the particle basis, we need to multiply the amplitudes by

the appropriate Clebsch–Gordan coefficients.

Using Eq. (109) we can compute the differential decay width dΓi/dM
(i)
inv, where

i represents the two pseudoscalar states and M
(i)
inv is the invariant mass of the two

pseudoscalars, as

dΓi

dM
(i)
inv

=
|GFVbcVhad(i)|2

32π5m3
BM

(i)
inv

∫

dM
(νl)
inv P cmp̃ν p̃i[M

(νl)
inv ]2

(

ẼBẼi −
p̃2

B

3

)

, (125)

where P cm is the momentum of the νl system in the B rest frame, p̃ν is the momen-

tum of the ν in the neutrino lepton rest system [given in Eq. (118)], and p̃i is the

relative momentum of the two pseudoscalars in their rest frame.

11.6. The DK-Dsη and Dπ-DsK̄ scattering amplitudes

We will now discuss the meson–meson scattering amplitudes for the rescattering

to generate the D∗
s0(2317) and D∗

0(2400) resonances in the final state of the B

decay. In Ref. 33 it was found that the couplings to DK and Dsη are dominant for

D∗
s0(2317) and the couplings to Dπ and DsK̄ are dominant for D∗

0(2400). Therefore,

in the following we concentrate on DK-Dsη two-channel scattering in isospin I = 0

and Dπ-DsK̄ two-channel scattering in I = 1/2, extracting essential portions from

Ref. 33 and assuming isospin symmetry. Namely, we obtain these amplitudes by

solving a coupled-channel scattering equation in an algebraic form

Tij(s) = Vij(s) +
∑

k

Vik(s)Gk(s)Tkj(s), (126)

where i, j and k are channel indices, s is the Mandelstam variable of the scattering,

V is the interaction kernel, and G is the two-body loop function. This generalizes

what was found in Sec. 9 with just one channel.
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The interaction kernel V corresponds to the tree-level transition amplitudes

obtained from phenomenological Lagrangians developed in Ref. 33. We use dimen-

sional regularization in the loop function G.

The D resonances can appear as poles of the scattering amplitude Tij(s) with

the residue gigj :

Tij(s) =
gigj

s − spole
+ (regular at s = spole). (127)

The pole is described by its position spole and the constant gi, which is the coupling

constant of the D resonance to the i channel. Further details can be found in

Ref. 221.

Let us introduce the concept of compositeness, which is defined as the contri-

bution from the two-body part to the normalization of the total wave function and

measures the fraction of the two-body state.93,94,169,226,227 The expression of the

compositeness is given by

Xi = −g2
i

[

dGi

ds

]

s=spole

. (128)

In an analogs way we introduce the elementariness Z, which measures the fraction

of missing channels and is expressed as

Z = −
∑

i,j

gjgi

[

Gi
dVij

ds
Gj

]

s=spole

. (129)

In general both the compositeness Xi and elementariness Z are complex values for a

resonance state and hence one cannot interpret the compositeness (elementariness)

as the probability to observe a two-body (missing-channel) component inside the

resonance except for bound states. However, a striking property is that the sum of

them is exactly unity
∑

i

Xi + Z = 1, (130)

which is guaranteed by a generalized Ward identity proved in Ref. 228. Therefore,

one can deduce the structure by comparing the value of the compositeness with

unity, on the basis of the similarity to the stable bound state case. The values of the

compositeness and elementariness of the D resonances in this approach are listed in

Table 4. The result indicates that the D∗
s0(2317) resonance, which is obtained as a

bound state in the present model, is indeed dominated by the DK component. This

has been corroborated in the recent analysis of lattice QCD results of Ref. 161. In

contrast, we may conclude that the D∗
0(2400) resonance is constructed with missing

channels, although the imaginary part for each component is not negligible.

11.7. Numerical results

First we consider the coalescence case. The numerical results are summarized

in Table 5. The most interesting quantity is the ratio R = ΓB̄0
s→D∗

s0(2317)
+ν̄ll−/
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Weak decays of heavy hadrons into dynamically generated resonances

Table 4. Pole position
√

spole, coupling constant gi,

compositeness Xi, and elementariness Z for the D
resonances in the isospin basis.

D∗
s0(2317) D∗

0(2400)

√
spole 2317 MeV

√
spole 2128 − 160i MeV

gDK 10.58GeV gDπ 9.00 − 6.18i GeV
gDsη −6.11GeV gDsK̄ −7.68 + 4.35i GeV

XDK 0.69 XDπ 0.34 + 0.41i
XDsη 0.09 XDsK̄ 0.03 − 0.12i

Z 0.22 Z 0.63 − 0.28i

Table 5. Ratios of decay widths and branching fractions of
semileptonic B decays.

R 0.45
ΓB−→D∗

0
(2400)0 ν̄ll

−/ΓB̄0→D∗

0
(2400)+ ν̄ll

− 1.00

B[B̄0 → D∗
0(2400)+ ν̄ll

−] 4.5 × 10−3 (input)
B[B̄− → D∗

0(2400)0 ν̄ll
−] 4.9 × 10−3

ΓB̄0→D∗

0 (2400)+ν̄ll− in the coalescence treatment, which removes the unknown factor

C of the hadronization process. The decay width in the coalescence is expressed by

Eq. (116). The coupling constants of the two mesons to the D resonances are listed

in Table 4. Note that there are no fitting parameters for the ratio R in this scheme.

As a result, we obtain the ratio of the decay widths as R = 0.45. On the other

hand, we find that the ratio ΓB−→D∗

0(2400)0ν̄ll−/ΓB̄0→D∗

0 (2400)+ν̄ll− is 1.00, which

can be expected from the same strength of the decay amplitude to the charged and

neutral D∗
0(2400) due to the isospin symmetry, as discussed after Eq. (113).

The absolute value of the common prefactor C can be determined with the help

of experimental data on the decay width. The branching fraction of the semileptonic

decay B̄0 → D∗
0(2400)+ν̄ll

− to the total decay is reported as (4.5 ± 1.8) × 10−3

by the particle data group.95 By using this mean value we find C = 7.22, and

the fractions of decays B̄0
s → D∗

s0(2317)+ν̄ll
− and B− → D∗

0(2400)0ν̄ll
− to the

total decay widths are obtained as 2.0 × 10−3 and 4.9 × 10−3, respectively. The

values of these fractions are similar to each other. The difference of the fractions of

B̄0 → D∗
0(2400)+ν̄ll

− and B− → D∗
0(2400)0ν̄ll

− comes from the fact that the total

decay widths of B̄0 and B− are different.

A comparison of our predictions for B[B̄0
s → D∗

s0(2317)+ν̄ll
−] with the results

obtained with other approaches is presented in Table 6. We emphasize that our

approach is the only one where the D∗
s0(2317)+ is treated as a mesonic molecule.

Looking at Table 6 we can divide the results in two groups: the first four numbers,

which are “small” and the last three, which are “large”. In the second group, the

constituent quark models (CQM) yield larger branching fractions. In Ref. 221 one

can find some discussion on the origin of the differences based on the compact

picture of the quark models versus the more extended structure of the molecular

description.
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E. Oset et al.

Table 6. Branching fraction of the process

B̄0
s → D∗

s0(2317)
+ ν̄ll

− in percentage.

Approach B[B̄0
s → D∗

s0(2317)
+ ν̄ll

−]

This work 0.20
QCDSR + HQET229 0.09 − 0.20
QCDSR (SVZ)230 0.10
LCSR231 0.23 ± 0.11
CQM232 0.49 − 0.57
CQM233 0.44
CQM234 0.39

Now let us discuss the rescattering process for the final-state two mesons. We

keep using the common prefactor C = 7.22 fixed from the experimental value of the

width of the semileptonic decay B̄0 → D∗
0(2400)+ν̄ll

−. The meson-meson scattering

amplitude was discussed in Sec. 11.6, and now we include the Dsπ
0 channel as the

isospin-breaking decay mode of D∗
s0(2317). Namely, we calculate the scattering

amplitude involving the Dsπ
0 channel as

Ti→Dsπ0 =
gigDsπ0

s − [MD∗

s0
− iΓD∗

s0
/2]2

, (131)

for i = DK and Dsη. We take the D∗
s0(2317) mass as MD∗

s0
= 2317 MeV, while

we assume its decay width as ΓD∗

s0
= 3.8 MeV, which is the upper limit from

experiments.95 The D∗
s0(2317)-i coupling constant gi (i = DK, Dsη) is taken from

Table 4, and the D∗
s0(2317)-Dsπ

0 coupling constant gDsπ0 is calculated from the

D∗
s0(2317) decay width as

gDsπ0 =

√

8πM2
D∗

s0
ΓD∗

s0

pπ
, (132)

with the pion center-of-mass momentum pπ, and we obtain gDsπ0 = 1.32GeV.

In Fig. 37 we show our predictions for the differential decay width dΓi/dM
(i)
inv

(Eq. (125)), where i represents the two pseudoscalar states. In the figure we use

the isospin basis. When translating into the particle basis we use the following

relations:

[D0K+] = [D+K0] =
1

2
[DK], (133)

[D+
s π0] = [Dsπ

0], (134)

[D0π+] = 2[D+π0] =
2

3
[Dπ], (135)

where [AB] is the partial decay width to the AB channel. An interesting point is

that the DK mode shows a rapid increase from its threshold ≈ 2360 MeV due to

the existence of the bound state, i.e., the D∗
s0(2317) resonance. In experiments, such

a rapid increase from the DK threshold would support the interpretation of the

D∗
s0(2317) resonance as a DK bound state. The strength of the DK contribution
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Fig. 37. Differential decay width dΓi/dM
(i)
inv for the two pseudoscalars channel i in the isospin

basis. Here we consider the semileptonic decays B̄0
s → (DK)+ν̄ll

−, (Dsπ0)+ν̄ll
−, and B̄0 →

(Dπ)+ν̄ll
−. The DK and Dsπ0 channels couple to the D∗

s0(2317)
+ resonance, and Dπ to the

D∗
0(2400) resonance. The peak height for the Dsπ0 channel is dΓDsπ0/dM

(Dsπ0)
inv ∼ 1.5× 10−13.

in the M
(i)
inv � 2.4 GeV region is similar to that of Dπ, which corresponds to the

“tail” for the D∗
0(2400) resonance. On the other hand, the Dsπ

0 peak coming from

the D∗
s0(2317) resonance is very sharp due to its narrow width.

The distributions shown in Fig. 37 are our predictions and they can be measured

at the LHCb. They were obtained in the framework of the chiral unitary approach

in coupled channels and their experimental observation would give support to the

D∗
s0(2317) and D∗

0(2400) as dynamically generated resonances, which is inherent to

this approach.

Apart from comparing shapes and relative strength, one can make an analysis

of the DK mass distribution as suggested in Ref. 167 to determine gDK . With this

value and the use of Eq. (128) one can determine the amount of DK component in

the D∗
s0(2317) wave function. Note that the shape of the DK mass distribution is

linked to the potential, with its associated energy dependence, and the mass of the

D∗
s0(2317).167 With the same binding of the resonance, different models that have

different amount of DK component provide different shapes, leading to different

values of the gDK coupling, and it is possible to discriminate among models that

have a different nature for the D∗
s0(2317) resonance.

12. Investigating the Nature of Light Scalar Mesons

with Semileptonic Decays of D Mesons

Here we consider the semileptonic decay of D → hadron(s) + l+νl, extending

the work reported in the former section. The semileptonic D decays have been

experimentally investigated in, e.g., BES,235,236 FOCUS,237,238 BaBar,239,240 and
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W

νl

l
+

D
+
s

c

s

s

s

φ

(a)

W

νl

l
+

D
+
s

c

s

s

s

uu + dd + ss

P

P

(b)

Fig. 38. (a) Semileptonic decay of D+
s into l+νl and a primary ss̄ pair. (b) Semileptonic decay

of D+
s into l+νl and two pseudoscalar mesons P with a hadronization.

CLEO.241–245 In order to see how the semileptonic decay takes place, let us con-

sider the D+
s meson. Since the constituent quark component of D+

s is cs̄, we

expect a Cabibbo favored semileptonic decay of c → sl+νl and hence the decay

D+
s → (ss̄)l+νl with ss̄ being the vector meson φ(1020), which is depicted in

Fig. 38(a). Actually this semileptonic decay mode has been observed in experiments,

and its branching fraction to the total decay width is B[D+
s → φ(1020)e+νe] =

2.49 ± 0.14%95 (see Table 7, in which we list branching fractions for the semilep-

tonic decays of D+
s , D+, and D0 reported by the Particle Data Group). In this

study we consider the production of the f0(980) or f0(500) as dynamically gener-

ated resonances in the semileptonic D+
s decay, so we have to introduce an extra q̄q

pair to make a hadronization as shown in Fig. 38(b).

12.1. Formulation

In this section we formulate the semileptonic decay widths of D+
s , D+, and D0 into

light scalar and vector mesons:

D+
s , D+, D0 →

{

Sl+νl, S → PP,

V l+νl,
(136)

where S, V and P represent the light scalar, vector, and pseudoscalar mesons,

respectively, and the lepton flavor l can be e and µ. Explicit decay modes are listed

in Table 8.
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Weak decays of heavy hadrons into dynamically generated resonances

Table 7. Branching fractions for the semileptonic decays of D+
s ,

D+, and D0 reported by the Particle Data Group (Ref. 95). In
this Table we only show decay modes relevant to this study.

D+
s

Mean life [s] (500 ± 7) × 10−15

B[φ(1020)e+νe] (2.49 ± 0.14) × 10−2

B[ω(782)e+νe] < 2.0 × 10−3

B[K∗(892)0e+νe] (1.8 ± 0.7) × 10−3

B[f0(980)e+νe, f0(980) → π+π−] (2.00 ± 0.32) × 10−3

D+

Mean life [s] (1040 ± 7) × 10−15

B[K̄∗(892)0e+νe, K̄∗(892)0 → K−π+] (3.68 ± 0.10) × 10−2

B[(K−π+)s-wavee+νe] (2.32 ± 0.10) × 10−3

B[K̄∗(892)0µ+νµ, K̄∗(892)0 → K−π+] (3.52 ± 0.10) × 10−2

B[ρ(770)0e+νe] (2.18+0.17
−0.25) × 10−3

B[ρ(770)0µ+νµ] (2.4 ± 0.4) × 10−3

B[ω(782)e+νe] (1.82 ± 0.19) × 10−3

B[φ(1020)e+νe] < 9 × 10−5

D0

Mean life [s] (410.1 ± 1.5) × 10−15

B[K∗(892)−e+νe] (2.16 ± 0.16) × 10−2

B[K∗(892)−µ+νµ] (1.90 ± 0.24) × 10−2

B[K−π0e+νe] (1.6+1.3
−0.5) × 10−2

B[K̄0π−e+νe] (2.7+0.9
−0.7) × 10−2

B[ρ(770)−e+νe] (1.9 ± 0.4) × 10−3

Table 8. Semileptonic decay modes of D+
s , D+, and D0

considered in this study. The lepton flavor l is e and µ.
We also specify Cabibbo favored/suppressed process for
each decay mode; the semileptonic decay into two pseu-
doscalar mesons is classified following the discussions given
in Sec. 12.3.

D+
s

φ(1020)l+νl favored
K∗(892)0 l+νl suppressed
π+π−l+νl favored
K+K−l+νl favored
π−K+l+νl suppressed

D+

K̄∗(892)0 l+νl favored
ρ(770)0 l+νl suppressed
ω(782)l+νl suppressed
π+π−l+νl suppressed
π0ηl+νl suppressed
K+K−l+νl suppressed

π+K−l+νl favored

(Continued)
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E. Oset et al.

Table 8. (Continued)

D0

K∗(892)−l+νl favored
ρ(770)−l+νl suppressed
π−ηl+νl suppressed
K0K−l+νl suppressed
π−K̄0l+νl favored

12.2. Amplitudes and widths of semileptonic D decays

The calculation of the amplitudes proceeds exactly like in the former section chang-

ing the masses and the coefficient C.

12.3. Hadronizations

Next we fix the mechanism for the appearance of the scalar and vector mesons

in the final state of the semileptonic decay. We note that, for the scalar and vec-

tor mesons in the final state, the hadronization processes should be different from

each other according to their structure. For the scalar mesons, we employ the chi-

ral unitary approach, in which the scalar mesons are dynamically generated from

the interaction of two pseudoscalar mesons governed by the chiral Lagrangians.

Therefore, in this picture the light quark–antiquark pair after the W boson emis-

sion gets hadronized by adding an extra q̄q with the quantum number of the vac-

uum, ūu + d̄d + s̄s, which results in two pseudoscalar mesons in the final state [see

Fig. 38(b)]. Then the scalar mesons are obtained as a consequence of the final state

interaction of the two pseudoscalar mesons as diagrammatically shown in Fig. 39.

For the vector mesons, on the other hand, hadronization with an extra q̄q is unnec-

essary since they are expected to consist genuinely of a light quark–antiquark pair

[see Fig. 38(a)].

qf

qf ′

P

P

+

qf

qf ′

P

P

Fig. 39. Diagrammatic representation of the direct plus rescattering processes for two pseu-
doscalar mesons. The solid and dashed lines denote quarks and pseudoscalar mesons, respectively.
The shaded ellipses indicate the hadronization of a quark–antiquark pair into two pseudoscalar
mesons, while the open circle indicates the rescattering of two pseudoscalar mesons.
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Weak decays of heavy hadrons into dynamically generated resonances

12.3.1. Scalar mesons

In this scheme we can calculate the weight of each pair of pseudoscalar mesons in the

hadronization. Namely, the ss̄ pair gets hadronized as ss̄(ūu + d̄d + s̄s) ≡ (φ · φ)33,

where

(φ · φ)33 = K−K+ + K̄0K0 +
1

3
ηη. (137)

Here and in the following we omit the η′ contribution since η′ is irrelevant to the

description of the scalar mesons due to its large mass. In a similar manner, the ds̄,

sd̄, dd̄, sū, and dū pairs get hadronized, respectively, as

(φ · φ)23 = π−K+ − 1√
2
π0K0, (138)

(φ · φ)32 = K−π+ − 1√
2
K̄0π0, (139)

(φ · φ)22 = π−π+ +
1

2
π0π0 +

1

3
ηη −

√

2

3
π0η + K0K̄0, (140)

(φ · φ)31 =
1√
2
π0K− + π−K̄0, (141)

(φ · φ)21 =
2√
3
π−η + K0K−. (142)

By using these weights, we can express the hadronization amplitude for the scalar

mesons, V
(s)
had, in terms of two pseudoscalar mesons. For instance, we want to recon-

struct the f0(500) and f0(980) from the π+π− system in the D+
s → π+π−l+νl

decay. Because of the quark configuration in the parent particle D+
s , in this decay

the π+π− system should be obtained from the hadronization of the ss̄ pair and

the rescattering process for two pseudoscalar mesons, as seen in Fig. 39, with the

weight in Eq. (137). Therefore, for the D+
s → π+π−l+νl decay mode we can express

the hadronization amplitude with a prefactor C and the CKM matrix elements

Vcs as

V
(s)
had[D+

s , π+π−] = CVcs

(

GK+K−TK+K−→π+π− + GK0K̄0TK0K̄0→π+π−

+
1

3
· 2 · 1

2
GηηTηη→π+π−

)

. (143)

In this equation, the decay mode is abbreviated as [D+
s , π+π−], and G and T are the

loop function and scattering amplitude of two pseudoscalar mesons, respectively.

We have introduced extra factors 2 and 1/2 for the identical particles ηη, as also

discussed in former sections. The scalar mesons f0(500) and f0(980) appear in the

rescattering process and exist in the scattering amplitude T for two pseudoscalar

mesons. Note that this is a Cabibbo favored process with Vcs. Furthermore, since

the ss̄ pair is hadronized, this is sensitive to the component of the strange quark in
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E. Oset et al.

the scalar mesons. As done in former sections, we assume that C is a constant, and

hence the hadronization amplitude V
(s)
had is a function only of the invariant mass of

two pseudoscalar mesons. Here we emphasize that the factor C should be common

to all reactions for scalar meson production, because in the hadronization the SU(3)

flavor symmetry is reasonable, i.e., the light quark–antiquark pair qf q̄f ′ hadronizes

in the same way regardless of the quark flavor f . In this sense we obtain

V
(s)
had[D+

s , K+K−] = CVcs

(

1 + GK+K−TK+K−→K+K− + GK0K̄0TK0K̄0→K+K−

+
1

3
· 2 · 1

2
GηηTηη→K+K−

)

, (144)

for the D+
s → K+K−l+νl decay. In this case we have to take into account the

direct production of the two pseudoscalar mesons without rescattering (the first

diagram in Fig. 39), which results in the unity in the parentheses. On the other

hand, for the D+
s → π−K+l+νl decay mode the π−K+ system should be obtained

from the hadronization of ds̄ and hence this is a Cabibbo suppressed decay mode.

The hadronization amplitude is expressed as

V
(s)
had[D+

s , π−K+] = CVcd

(

1 + Gπ−K+Tπ−K+→π−K+ − 1√
2
Gπ0K0Tπ0K0→π−K+

)

.

(145)

In a similar way we can construct every hadronization amplitude for the scalar

meson. The resulting expressions are as follows:

V
(s)
had[D+, π+π−] = CVcd

(

1 + Gπ+π−Tπ+π−→π+π− +
1

2
· 2 · 1

2
Gπ0π0Tπ0π0→π+π−

+
1

3
· 2 · 1

2
GηηTηη→π+π− + GK0K̄0TK0K̄0→π+π−

)

, (146)

V
(s)
had[D+, π0η] = CVcd

(

−
√

2

3
−

√

2

3
Gπ0ηTπ0η→π0η + GK0K̄0TK0K̄0→π0η

)

,

(147)

V
(s)
had[D+, K+K−] = CVcd

(

Gπ+π−Tπ+π−→K+K−

+
1

2
· 2 · 1

2
Gπ0π0Tπ0π0→K+K− +

1

3
· 2 · 1

2
GηηTηη→K+K−

−
√

2

3
Gπ0ηTπ0η→K+K− + GK0K̄0TK0K̄0→K+K−

)

, (148)
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Weak decays of heavy hadrons into dynamically generated resonances

V
(s)
had[D+, π+K−] = CVcs

(

1 + Gπ+K−Tπ+K−→π+K−

− 1√
2
Gπ0K̄0Tπ0K̄0→π+K−

)

, (149)

V
(s)
had[D0, π−η] = CVcd

(

2√
3

+
2√
3
Gπ−ηTπ−η→π−η

+ GK0K−TK0K−→π−η

)

, (150)

V
(s)
had[D0, K0K−] = CVcd

(

1 +
2√
3
Gπ−ηTπ−η→K0K−

+ GK0K−TK0K−→K0K−

)

, (151)

V
(s)
had[D0, π−K̄0] = CVcs

(

1 +
1√
2
Gπ0K−Tπ0K−→π−K̄0

+ Gπ−K̄0Tπ−K̄0→π−K̄0

)

. (152)

Some of these expressions are further simplified using isospin symmetry in Ref. 246.

From the above expressions one can easily specify Cabibbo favored and suppressed

processes for the semileptonic decays into two pseudoscalar mesons, which are listed

in Table 8.

12.3.2. Vector mesons

Next we consider processes with the vector mesons in the final state. As done before,

they are associated to q̄q states.

In order to see how the production proceeds, we consider the semileptonic decay

D+
s → φ(1020)l+νl as an example. The decay process is diagrammatically repre-

sented in Fig. 38(a), and the amplitude V
(v)
had can be expressed with a prefactor C′

and the CKM matrix element Vcs as

V
(v)
had[D+

s , φ] = C′Vcs, (153)

where the decay mode is abbreviated as [D+
s , φ] in the equation. Here we empha-

size that the prefactor C′ should be common to all reactions for vector meson

production, as in the case of the scalar meson production, because the SU(3) fla-

vor symmetry is reasonable in the hadronization, i.e., the light quark–antiquark

pair qf q̄f ′ hadronizes in the same way regardless of the quark flavor f . We further

assume that C ′ is a constant again. This formulation is straightforwardly applied

to other vector meson productions and we obtain the hadronization amplitude for
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E. Oset et al.

vector mesons

V
(v)
had[D+

s , K∗0] = C′Vcd, (154)

V
(v)
had[D+, K̄∗0] = C′Vcs, (155)

V
(v)
had[D+, ρ0] = − 1√

2
C′Vcd, (156)

V
(v)
had[D+, ω] =

1√
2
C′Vcd, (157)

V
(v)
had[D0, K∗−] = −C′Vcs, (158)

V
(v)
had[D0, ρ−] = C′Vcd, (159)

where we have used K∗, ρ, and ω states in the isospin basis. We note that these

equations clearly indicate Cabibbo favored and suppressed processes with the CKM

matrix elements Vcs and Vcd, respectively.

12.4. Numerical results

12.4.1. Production of scalar mesons

In order to calculate the branching fractions of the scalar meson productions, we first

fix the prefactor constant C so as to reproduce the experimental branching fraction

which has the smallest experimental error for the process with the s-wave two

pseudoscalar mesons, that is, B[D+ → (π+K−)s-wavee
+νe] = (2.32 ± 0.10) × 10−3.

By integrating the differential decay width, or mass distribution, dΓ4/dM
(hh)
inv in an

appropriate range, in the case of π+K− [mπ + mK , 1 GeV], we find that C = 4.6

can reproduce the branching fraction of (π+K−)s-wavee
+νe.

By using the common prefactor C = 4.6, we can calculate the mass distributions

of two pseudoscalar mesons in s wave for all scalar meson modes, which are plotted

in Figs. 40–42 for D+
s , D+ and D0 semileptonic decays, respectively. We show the

mass distributions with the lepton flavor l = e; the contribution from l = µ is almost

the same as that from l = e in each meson–meson mode due to the small lepton

masses. As one can see, the largest value of the mass distribution dΓ4/dM
(hh)
inv is

obtained in the D+
s → π+π−e+νe process, in which clear peak due to f0(980) is

observed. In the D+
s → π+π−e+νe process we find a clear f0(980) signal while the

f0(500) contribution is negligible, which strongly indicates a substantial fraction

of the strange quarks in the f0(980) meson. For the D+
s semileptonic decay we

also observe a rapid enhancement of the K+K− mass distribution at threshold,

as a tail of the f0(980) contribution, although its height is much smaller than

the π+π− peak. For the D+ and D0 semileptonic decays, we can see the π+K−

and π−K̄0 as Cabibbo favored processes, respectively. We note that the π+K−

and π−K̄0 mass distributions are almost the same due to isospin symmetry. The

πη mass distributions in Figs. 41 and 42 of the D+ and D0 decays show peaks

corresponding to a0(980), but its peak is not as high as the f0(980) peak in the π+π−
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Fig. 40. Meson–meson invariant mass distributions for the semileptonic decay D+
s → PPe+νe

with PP = π+π−, K+K−, and π−K+ in s wave. We multiply the π−K+ mass distribution,
which is a Cabibbo suppressed process, by 10.
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Fig. 41. Meson–meson invariant mass distributions for the semileptonic decay D+ → PPe+νe

with PP = π+π−, π0η, K+K−, and π+K− in s wave. We multiply the π+π−, π0η, and K+K−

mass distributions, which are Cabibbo suppressed processes, by 10.

mass distribution of the D+
s decay since they correspond to Cabibbo suppressed

processes. The D+ → π+π−e+νe decay is Cabibbo suppressed and it has a large

contribution from the f0(500) formation and a small one of the f0(980), similar to

what is found in the B̄0 → J/ψπ+π− decay in Sec. 3. A different way to account

for the PP distribution is by means of dispersion relations, as used in Ref. 63 in the

semileptonic decay of B, where the π+π− s-wave distribution has a shape similar

to ours.
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Fig. 42. Meson–meson invariant mass distributions for the semileptonic decay D0 → PPe+νe

with PP = π−η, K0K−, and π−K̄0 in s wave. We multiply the π−η and K0K− mass distribu-
tions, which are Cabibbo suppressed processes, by 10.
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Fig. 43. π+π− invariant mass distribution for the semileptonic decay D+
s → π+π−e+νe. The the-

oretical calculation is folded with the size of experimental bins, 25 MeV. The experimental data242

are scaled so that the fitted Breit–Wigner distribution (dashed line) reproduces the branching frac-
tion of B[D+

s → f0(980)e+νe, f0(980) → π+π−] = 0.2% by the Particle Data Group (see Table 7).

The theoretical π+π− mass distribution of the semileptonic decay Ds →
π+π−e+νe is compared with the experimental data242 in Fig. 43. We note that

we plot the figure in unit of ns−1/GeV, not in arbitrary units. The theoretical

mass distribution is folded with 25 MeV spans since the experimental data are col-

lected in bins of 25 MeV. The experimental data, on the other hand, are scaled

so that the fitted Breit–Wigner distribution reproduces the branching fraction of

B[D+
s → f0(980)e+νe, f0(980) → π+π−] = 0.2%.95 The mass and width of the
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Weak decays of heavy hadrons into dynamically generated resonances

Breit–Wigner distribution are fixed as M = 966 MeV and Γ = 89 MeV, respec-

tively, taken from Ref. 242. In Fig. 43 we can see a qualitative correspondence

between the theoretical and experimental signals of f0(980). We emphasize that,

both in experimental and theoretical results, the π+π− mass distribution shows a

clear f0(980) signal while the f0(500) contribution is negligible. This strongly indi-

cates that the f0(980) has a substantial fraction of the strange quarks while the

f0(500) has a negligible strange quark component. It is interesting to recall that

the appearance of the f0(980) in the case one has a hadronized ss̄ component at

the end, and no signal of the f0(500), is also observed in B0
s and B0 decays.39–43

The explanation of this feature was already discussed in Sec. 3. In the experimental

analysis of Ref. 242 different sources of background are considered that make up

for the lower mass region of the distribution. The width of the f0(980) extracted

in the analysis of Ref. 242 is Γ = 91+30
−22 ± 3 MeV, which is large compared to most

experiments,95 including the LHCb experiment of Ref. 45, although the admitted

uncertainties are also large. One should also take into account that, while a Breit–

Wigner distribution for the f0(980) is used in the analysis of Ref. 242, the large

coupling of the resonance to KK̄ requires a Flatte form that brings down fast the

π+π− mass distribution above the KK̄ threshold. Our normalization in Fig. 43 is

done with the central value of the B[D+ → (π+K−)s-wavee
+νe] and no extra uncer-

tainties from this branching fraction are considered. Yet, we find instructive to do

an exercise, adding to our results a “background” of 10 ns−1/GeV from different

sources that our calculation does not take into account, and then our signal for the

f0(980) has a good agreement with the peak of the experimental distribution. It

is instructive to see that in a reanalysis of the data of Ref. 242 done in Ref. 247,

taking a window of 60MeV around 980MeV and using a Flatte form, one obtains

a rate about half of that in Ref. 242.

Integrating the mass distributions we calculate the branching fractions of the

semileptonic D mesons into two pseudoscalar mesons in s wave, which are listed in

Table 9. We note that the branching fraction B[D+ → (π+K−)s-wavee
+νe] = 2.32×

10−3 is used as an input to fix the common constant, C = 4.6. Among the listed

values, we can compare the theoretical and experimental values of the branching

fraction B[D+
s → (K+K−)s-wavee

+νe]. Namely, in Ref. 239 this branching fraction is

obtained as (0.22+0.12
−0.08±0.03)% of the total D+

s → K+K−e+νe, which is dominated

by the φ(1020) vector meson. Hence, together with the branching fraction D+
s →

φ(1020)e+νe, we can estimate B[D+
s → (K+K−)s-wavee

+νe] = (5.5+3.1
−2.1) × 10−5,

and theoretically this is 1.42 × 10−4. Although our value overestimates the mean

value of the experimental data, it is still in 3σ errors of the experimental value.

12.4.2. Production of vector mesons

Let us now address the vector meson productions in the semileptonic D decays.

For the vector mesons we fix the common prefactor C′ so as to reproduce the

ten available experimental branching fractions listed in Table 7. From the best fit
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E. Oset et al.

Table 9. Branching fractions of semileptonic D decays into two

pseudoscalar mesons in s wave. The branching fraction of the
D+ → (π+K−)s-wavee+νe mode is used as an input.

Mode Range of M
(hh)
inv [GeV] l = e l = µ

D+
s

π+π− [0.9, 1.0] 5.10 × 10−4 4.71 × 10−4

K+K− [2mK , 1.2] 1.42 × 10−4 1.30 × 10−4

π−K+ [mπ + mK , 1.0] 8.11 × 10−5 7.63 × 10−5

D+

π+π− [2mπ , 1.0] 5.11 × 10−4 4.85 × 10−4

π0η [mπ + mη , 1.1] 6.37 × 10−5 5.86 × 10−5

K+K− [2mK , 1.2] 2.24 × 10−6 2.01 × 10−6

π+K− [mπ + mK , 1.0] 2.32 × 10−3 2.16 × 10−3

D0

π−η [mπ + mη , 1.1] 4.93 × 10−5 4.53 × 10−5

K0K− [2mK , 1.2] 5.47 × 10−6 4.88 × 10−6

π−K̄0 [mπ + mK , 1.0] 8.99 × 10−4 8.38 × 10−4

we obtain the value C′ = 1.563 GeV, which gives χ2/Nd.o.f. = 22.8/9 ≈ 2.53. The

theoretical values of the branching fractions are listed in Table 10 and are compared

with the experimental data in Fig. 44, where we plot the ratio of the experimental

to theoretical branching fractions. We calculate the experimental branching fraction

of the D+ → K̄(892)0l+νl (l = e and µ) process by dividing the value in Table 7 by

the branching fraction B[K̄∗(892)0 → K−π+] = 2/3, which is obtained with isospin

symmetry. As one can see from Fig. 44, the experimental values are reproduced well

solely by the model parameter C′.

Next, for the D+
s → φ(1020)e+νe decay mode, we consider the differential decay

width with respect to the squared momentum transfer q2, which coincides with the

squared invariant mass of the lepton pair: q2 = [M
(lν)
inv ]2. This differential decay

width was already measured in an experiment242 for the D+
s → φ(1020)e+νe

Table 10. Branching fractions of semileptonic D
decays into vector mesons.

Mode l = e l = µ

D+
s

φ(1020) 2.12 × 10−2 1.94 × 10−2

K∗(892)0 2.02 × 10−3 1.89 × 10−3

D+

K̄∗(892)0 5.56 × 10−2 5.12 × 10−2

ρ(770)0 2.54 × 10−3 2.37 × 10−3

ω(782) 2.46 × 10−3 2.29 × 10−3

D0

K∗(892)− 2.15 × 10−2 1.98 × 10−2

ρ(770)− 1.97 × 10−3 1.84 × 10−3
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Weak decays of heavy hadrons into dynamically generated resonances
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Fig. 44. Ratio of the experimental to theoretical branching fractions for the semileptonic D
decays into vector mesons.

decay mode. The differential decay width for the vector meson production is

expressed as246:

dΓ3

dq2
=

|GFV
(v)
had|2

16π3m3
DmV

Pcmp̃νM
(lν)
inv

(

ẼDẼV − 1

3
|p̃D|2

)

. (160)

In Fig. 45 we compare our result for this reaction with the experimental one. As

one can see, our theoretical result reproduces the experimental value of the differ-

ential decay width quantitatively well. This means that our method to calculate

the semileptonic decays of D mesons is good enough to describe the decays into

vector mesons.
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Fig. 45. Differential decay width of the D+
s → φ(1020)e+νe decay mode followed by φ(1020) →

K+K−, with q2 = [M
(lν)
inv ]2, compared with experimental data.242 The theoretical value is multi-

plied by the branching fraction of the φ(1020) meson to K+K−, B[φ(1020) → K+K−] = 48.9%.95
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12.5. Comparison between scalar and vector meson contributions

Finally we compare the mass distributions of the two pseudoscalar mesons in s-

and p-wave contributions. In the present approach the s-wave part comes from the

rescattering of two pseudoscalar mesons including the scalar meson contribution,

while the p-wave appears in the decay of a vector meson. In this study we consider

three decay modes: D+
s → π+π−e+νe, D+

s → K+K−e+νe, and D+ → π+K−e+νe.

The D+ → π+π−e+νe decay mode would have a large p-wave contribution from

ρ(770), but we do not consider this decay mode since it is a Cabibbo suppressed

process.

First we consider the D+
s → π+π−e+νe decay mode. This is a specially clean

mode, since it does not have vector meson contributions and is dominated by the

s-wave part. Namely, while the π+π− can come from a scalar meson, the primary

quark–antiquark pair in the semileptonic D+
s decay is ss̄, which is isospin I = 0 and

hence the ρ(770) cannot contribute to the π+π− mass distribution. The primary

ss̄ can be φ(1020), but it decays dominantly to KK̄ and the φ(1020) → π+π−

decay is negligible. This fact enables us to observe the scalar meson peak without

a contamination from vector meson decays and discuss the quark configuration in

the f0(980) resonance as in Sec. 12.4.1.

Next let us consider the D+
s → K+K−e+νe decay mode. As we have seen, the

K+K− mass distribution in s wave is a consequence of the f0(980) tail. However, its

contribution should be largely contaminated by the φ(1020) → K+K− in p wave,

which has a larger branching fraction than the (K+K−)s-wave in the semileptonic

decay. In order to see this, we calculate the p-wave K+K− mass distribution for

D+
s → K+K−e+νe, which can be formulated as

dΓ3

dM
(hh)
inv

= −2mV

π
Im

Γ3 × B[V → hh]

[M
(hh)
inv ]2 − m2

V + imV ΓV (M
(hh)
inv )

, (161)

where mV is the vector meson mass and the energy dependent decay width

ΓV (M
(hh)
inv ) is defined as

ΓV (M
(hh)
inv ) ≡ Γ̄V

(

poff(M
(hh)
inv )

pon

)3

, (162)

poff(M
(hh)
inv ) ≡ λ1/2([M

(hh)
inv ]2, m2

h, m′2
h )

2M
(hh)
inv

, (163)

pon ≡ λ1/2(m2
V , m2

h, m′2
h )

2mV
. (164)

For the φ(1020) meson we take Γ̄φ = 4.27 MeV and B[φ → K+K−] = 0.489.95

The numerical result for the (K+K−)p-wave mass distribution is shown in Fig. 46

together with the (K+K−)s-wave. From the figure, compared to the (K+K−)p-wave

contribution we cannot find any significant (K+K−)s-wave contribution, which was
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Weak decays of heavy hadrons into dynamically generated resonances
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Fig. 46. K+K− invariant mass distribution for the semileptonic decay D+
s → K+K−e+νe both

in s and p waves.

already noted in the experimental mass distribution in Ref. 239. Nevertheless, we

emphasize that the (K+K−)s-wave fraction of the semileptonic D+
s decay is large

enough to be extracted.239 Actually in Ref. 239 they extract the (K+K−)s-wave

fraction by analyzing the interference between the s- and p-wave contributions.

This fact, and the qualitative reproduction of the branching fractions in our model,

implies that the f0(980) resonance couples to the KK̄ channel with a certain

strength, which can be translated into the KK̄ component in f0(980), in a sim-

ilar manner to the KD component in D∗
s0(2317), as discussed in Secs. 9 and 11.1,
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Fig. 47. π+K− invariant mass distribution for the semileptonic decay D+ → π+K−e+νe both
in s and p waves.
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in terms of the compositeness.169 However, to be more assertive on the structure of

the f0(980), it is important to reduce the experimental errors on the (K+K−)s-wave.

Finally we consider the D+ → π+K−e+νe decay mode. In this mode the

(π+K−)s-wave from the K∗
0 (800) and the (π+K−)p-wave from the K∗(892) are com-

peting with each other. In a similar manner to the D+
s → K+K−e+νe case, we

calculate the mass distribution also for the p-wave π+K− contribution dΓ3/dM
(hh)
inv

with Γ̄K∗ = 49.1 MeV,95 and the result is shown in Fig. 47. As one can see, thanks

to the width of ∼50 MeV for the K∗(892), the s-wave component can dominate the

mass distribution below 0.8 GeV. We note that one obtains essentially the result

for the D0 → π−K̄0e+νe decay mode due to isospin symmetry.

13. Predictions for the Λb → J/ψ Λ(1405) Decay

Through Secs. 13–15 we report upon decays of Λb and Λc into different channels

with the aim of learning about the Λ(1405), Λ(1670) and other resonances appearing

in the meson–baryon interaction.

13.1. Introduction

The reason to suggest the measurement of the Λ(1405) in the Λb decay is the

relevance of the Λ(1405) as the most significant example of a dynamically generated

resonance. Indeed, very early it was already suggested that this resonance should

be a molecular state of K̄N and πΣ.248,249 This view has been also invoked in

Ref. 250. However, it was with the advent of chiral unitary theory that this idea

gained strength.11,12,14,15,17,18,20,21,23,251–255

One of the surprises of these works is that two poles were found for the Λ(1405).f

The existence of two states was hinted in Ref. 256, using the chiral quark model,

and it was found in Ref. 12 using the chiral unitary approach. A thorough search

was conducted in Ref. 17 by looking at the breaking of SU(3) in a gradual way, con-

firming the existence of these two poles and its dynamical origin. One of the conse-

quences of this two-pole structure is that the peak of the resonance does not always

appear at the same energy, but varies between 1420MeV and 1480MeV depend-

ing on the reaction used.257–264 This is because different reactions give different

weights to each of the poles. While originally most reactions gave energies around

1400MeV, the origin of the nominal mass of the resonance, the K−p → π0π0Σ0

was measured260 and a peak was observed around 1420MeV, narrower than the

one observed in Refs. 257 and 258, which was interpreted within the chiral unitary

approach in Ref. 265. Another illustrating experiment was the one of Ref. 266 where

a clear peak was observed around 1420MeV in the K−d → nπΣ reaction, which was

also interpreted theoretically in Ref. 267 along the same lines (see also Refs. 268 and

269). Very recently it has also been suggested that the neutrino induced production

f In fact, one might thus speak of two Λ(1405) particles. Indeed, in the next edition of the PDG,
two distinct resonances will be officially catalogued.
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Weak decays of heavy hadrons into dynamically generated resonances

of the Λ(1405) is a good tool to further investigate the properties and nature of

this resonance.270

The basic feature in the dynamical generation of the Λ(1405) in the chiral uni-

tary approach is the coupled channel unitary treatment of the interaction between

the coupled channels K−p, K̄0n, π0Λ, π0Σ0, ηΛ, ηΣ0, π+Σ−, π−Σ+, K+Ξ−, and

K0Ξ0. The coupled channels study allows us to relate the K−p and πΣ production,

where the resonance is seen, and this is a unique feature of the nature of this res-

onance as a dynamically generated state. It allows us to make predictions for the

Λ(1405) production from the measured Λb → J/ψ K−p decay.

13.2. Formalism

In this section we describe the reaction mechanism for the process271 Λb →
J/ψΛ(1405), which is divided into three parts. The first two parts describe the

decay mechanism Λb → J/ψBφ, with Bφ the meson–baryon system of strangeness

S = −1, in the language of the quark model. Then, after hadronization, the final-

state interaction is described in terms of the effective (hadronic) degrees of freedom

of chiral perturbation theory (ChPT). After a resummation of the chiral meson–

baryon potential to an infinite order, the Λ(1405) is generated dynamically. In the

following, we describe each single step of this reaction mechanism in more detail.

Weak decay: The b quark of the Λb undergoes the weak transition to a cc̄ pair

and an s-quark as depicted in the left part of Fig. 48. This transition is quantified

by the matrix elements of the CKM matrix VcbV
∗
cs and it is favored compared to

b → cc̄d leading to the Λb → J/ψpπ−, which was observed for the first time by the

LHCb collaboration, see Ref. 272.

Hadronization: The cc̄ pair forms the well-known J/ψ, while the virtual uds

three quark state undergoes hadronization to form a meson–baryon pair. This hap-

pens due to the large phase space available (≤ 2522MeV for MΛb
= 5619MeV,

MJ/ψ = 3097MeV), so that a quark–antiquark pair can become real, forming

together with the three available quarks a meson–baryon pair. In principle, different

b

u

d d

u

ūu + d̄d + s̄s

s

c c̄

W

Weak decay Hadronization

Fig. 48. Production of a K−p pair from the weak decay Λb → ΛJ/ψ via a hadronization mech-
anism. The full and wiggly lines correspond to quarks and the W -boson, respectively.
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J/ψ

φj

Bj

φi

Bi

Λb

Fig. 49. Final-state interaction of the meson–baryon pair, where the double, full and dashed lines
denote the J/ψ, the baryons and the pseudoscalar mesons, respectively. The circle and square
denote the production mechanism of the J/ψBiφi as depicted in Fig. 48 as well as meson–baryon
scattering matrix tij , respectively.

meson–baryon states can be produced in such a mechanism. To determine their

relative significance, we assume first that the u and d quarks of the original Λb

state are moving independently in a potential well. Further, we note that the Λb

(Jp = 1/2+) is in the ground state of the three-quarks (udb). Therefore, all relative

angular momenta between different quarks are zero. After the weak transition, but

before the hadronization, the three-quark state (uds) has to be in a p-wave since

the final Λ(1405) is a negative-parity state. On the other hand, since the u and d

quarks are considered to be spectators and they were originally in L = 0, the only

possibility is that the s quark carries the angular momentum, L = 1. Moreover,

since the final mesons and baryons are in the ground state and in s-wave to each

other, all the angular momenta in the final state are zero. Consequently, the q̄q

pair cannot be produced elsewhere, but between the s quark and the ud pair as

depicted in Fig. 48. There are other possibilities to hadronize in which one of the

original u, d quarks goes into a meson and the s quark into a baryon, followed by

rescattering. However, these mechanisms are discussed in the next section and are

suppressed due to large momentum transfers to the u or d quarks.

The flavor state of the initial Λb can be written as

|Λb〉 =
1√
2
|b(ud − du)〉,

turning after the weak process into

1√
2
|s(ud − du)〉,

since the u and d quarks are considered to be spectators. Thus, after hadronization,

the final quark flavor state is

|H〉 ≡ 1√
2
|s(ūu + d̄d + s̄s)(ud − du)〉 =

1√
2

3
∑

i=1

|P3iqi(ud − du)〉,

where we have defined

q ≡





u

d

s



,
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Weak decays of heavy hadrons into dynamically generated resonances

and P denotes here the M matrix defined in Eq. (6). We recall that it is in corre-

spondence with the pseudoscalar meson matrix φ defined in Eq. (8). The hadronized

state |H〉 can now be written as

|H〉 =
1√
2

(

K−u(ud − du) + K̄0d(ud − du) +
1√
3
(−η +

√
2η′)s(ud − du)

)

.

We can see that these states have overlap with the mixed antisymmetric baryon

octet states273: octet baryons can be written as

|p〉 =
1√
2
|u(ud − du)〉,

|n〉 =
1√
2
|d(ud − du)〉,

|Λ〉 =
1√
12

|(usd − dsu) + (dus − uds) + 2(sud − sdu)〉.

Consequently, the hadronized state can be expressed in terms of the ground state

meson and baryon octets as

|H〉 = |K−p〉 + |K̄0n〉 −
√

2

3
|ηΛ〉 +

2

3
|η′Λ〉, (165)

which provides the relative weights between the final meson–baryon channels. Note

that there is not direct production of πΣ and KΞ, however, these channels are

present through the intermediate loops in the final state interaction as described

below. Moreover, the final η′Λ channel will be neglected since it has a small effect

due to its high mass and can be effectively reabsorbed in the regularization param-

eters as will be explained below.

Formation of the Λ(1405): After the production of a meson–baryon pair, the

final-state interaction takes place, which is parametrized by the scattering matrix

tij . Thus, after absorbing the CKM matrix elements and kinematic prefactors into

an overall factor Vp, the amplitude Mj for the transition Λb → J/ψφjBj can be

written as

Mj(Minv) = Vp

(

hj +
∑

i

hiGi(Minv)tij(Minv)

)

, (166)

where, considering Eq. (165),

hπ0Σ0 = hπ+Σ− = hπ−Σ+ = 0, hηΛ = −
√

2

3
,

hK−p = hK̄0n = 1, hK+Ξ− = hK0Ξ0 = 0, (167)

and Gi denotes the one-meson-one-baryon loop function, chosen in accordance with

the models for the scattering matrixg tij . Further, Minv is the invariant mass of the

gMore precisely, tij denotes the s-wave contribution to the scattering matrix.
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E. Oset et al.

meson–baryon system in the final state. Note also that the above amplitude holds

for an s-wave only and every intermediate particle is put on the corresponding mass

shell. Finally, the invariant mass distribution Λb → J/ψφjBj reads

dΓj

dMinv
(Minv) =

1

(2π)3
mj

MΛb

pJ/ψpj |Mj(Minv)|2, (168)

where pJ/ψ and pj denote the modulus of the three-momentum of the J/ψ in the

Λb rest-frame and the modulus of the center-of-mass three-momentum in the final

meson–baryon system, respectively. The mass of the final baryon is denoted by mj .

As already described in the introduction, the baryonic JP = 1/2− reso-

nance Λ(1405) has to be understood as a dynamically generated state from the

coupled-channel effects. The modern approach for it is referred to as chiral uni-

tary models.11,12,14–18,20,21,251–255,274 In the present approach we use the scattering

amplitude from two very recent versions of such approaches, one from Ref. 23, that

we call Bonn model and the other from Refs. 275 and 276, which we call MV model.

While the basic motivation is the same for both approaches there are some differ-

ences, such as the order of truncation the underlying chiral potential as described

in Ref. 271.

13.3. Results

After having set up the framework, we present here the predictions for the πΣ and

K̄N invariant mass distributions from the Λb decay.

In Fig. 50 we show the final results for both the Bonn and MV models. In the πΣ

final state channel the peak of the Λ(1405) is clearly visible. In fact, this is mostly

due to the higher mass pole of the Λ(1405) since the contribution proportional to

tK̄N,πΣ of Eq. (166) is the dominant one. The difference in the πΣ mass distribution

between both models is reminiscent of the fact that the Bonn model gets a narrower

(24 MeV) highest Λ(1405) pole than the MV model (58 MeV).

1350 1400 1450 1500 1550 1600
M

inv
 [MeV]

0

1

2

3

4

5

6

7

d
Γ

/d
M

in
v

  
[a

rb
. 
u
n
it

s]

πΣ

_
KNMV

MV

Bonn

Bonn

Fig. 50. Results for the πΣ and K̄N invariant mass distributions for the Λb → J/ψπΣ and
Λb → J/ψK̄N decays, respectively, for both models considered in the present work.

1630001-76

In
t.

 J
. 
M

o
d
. 

P
h
y
s.

 E
 2

0
1
6
.2

5
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 W

S
P

C
 o

n
 0

3
/0

4
/1

6
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



Weak decays of heavy hadrons into dynamically generated resonances

In the K̄N final state, the dominant contribution comes from the part propor-

tional to tK̄N,K̄N which again is more sensitive to the higher mass Λ(1405) pole.

However, in this channel only the effect of the tail of the resonance is visible since

the threshold of the K̄N mass distribution is located above the position of the

Λ(1405) peak. Nevertheless, that tail is enough to provide a high strength close to

the threshold, what makes the line shape of the K̄N invariant mass distribution to

be very different from just a phase-space distribution. The dependence on the choice

of the model in this channel is due to the fact that the highest pole is slightly closer

to threshold in the Bonn model compared to the MV one. Because of this feature,

the Bonn model produces a narrower bump close to K̄N invariant mass threshold

than the MV one. This observable is then very sensitive to the exact position of the

resonance pole, due to the proximity between the threshold and the pole. As men-

tioned in the introduction, different reactions can reflect different weights for both

poles of the Λ(1405) resonance, depending on the particular production dynamics.

In the present case, the highest pole is the one that shows up dominantly.

On the other hand, the agreement in Fig. 50 of the results between the MV and

Bonn models is remarkable, given their theoretical differences and fitting strategies

used in them. Nonetheless we can regard the difference between the models as the

main source of the theoretical uncertainty.

While the overall normalization of the invariant mass distributions is unknown,

the shape and the ratio between the πΣ and K̄N distributions is unchanged and it

is a genuine prediction. Indeed, the ratio between the maximum values of the πΣ

and K̄N distribution is 3.3 for the MV and 3.5 for the Bonn model. The value of

that ratio as well as the shape of the distributions are then genuine predictions of

the chiral unitary approach. In conclusion, Fig. 50 serves to predict the invariant

mass distributions of either πΣ or K̄N , once the absolute normalization of the

mass distribution of the other channel has been measured. For instance, if the

LHCb272 and CDF277 collaboration were to measure the K−p mass distribution

in the Λb → J/ψ K−p decay, then the shape should agree with the prediction of

Fig. 50 and once normalized, the K̄N and πΣ distributions would be given both in

size and shape.

14. The Λb → J/ψKΞ Decay and the Higher Order Chiral Terms

of the Meson–Baryon Interaction

This work is complementary to the one shown in the former subsection.

14.1. Formalism

14.1.1. The Λb → J/ψMB process

At the quark level, the Cabibbo favored mechanism for J/ψ production in Λb decay

is depicted by the first part of the diagram of Fig. 48. This corresponds to internal

emission in the classification of topologies of Ref. 112, and is also the dominant
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E. Oset et al.

mechanism in the related B̄0 → J/ψππ decay.48 As we can see in the figure, a sud

state is obtained after the weak decay. The next step consists in the hadronization

of this final three quark state by introducing a q̄q pair with the quantum numbers

of the vacuum, ūu+ d̄d+ s̄s, which will then produce an initial meson–baryon pair.

As in the former section, in this reaction the u and d quarks act as spectators. This

means that the ud pair in the final sud state after the weak decay has I = 0 and,

since the s quark also has I = 0, the final three-quark system has total I = 0.

Hence, even if the weak interaction allows for isospin violation, in this case the

process has filtered I = 0 in the final state. Since isospin is conserved in the strong

hadronization process and in the subsequent final state rescattering interaction, the

final meson–baryon component also appears in I = 0.

As already discussed in Sec. 13, another observation concerning the hadroniza-

tion is that, since the sud quark state after the weak decay has JP = 1/2− and the

ud quarks have the same quantum numbers as in the original Λb state (JP = 1/2+

each) in an independent quark model used for the argumentation, it is the s quark

the one that must carry the minus parity, which would correspond to an L = 1 orbit

of a potential well. Since the final meson–baryon states are all in their ground state,

the s quark must de-excite and hence it must participate in the hadronization. This

latter process gives rise to some meson–baryon states with the weight given earlier

in Eqs. (167). As usual in these studies, we neglect the η′Λ component, and we

only have primary K−p, K0n or ηΛ production. We can see that a KΞ pair is not

produced in the first step.

Next, one must incorporate the final state interaction of these meson–baryon

pairs, which is depicted in Fig. 49. The matrix element for the production of the final

state, j, is given by Eq. (166). The factor Vp, which includes the common dynamics

of the production of the different pairs, is unknown and we take it as constant.

Finally, the invariant mass distribution Λb → J/ψφjBj is given by Eq. (168).

14.2. Results

We start this section by presenting in Fig. 51 the cross-section data of the K−p →
K0Ξ0 reaction (top panels) and of the K−p → K−Ξ+ reaction (bottom panels),

obtained employing Model 1 (left panels) or Model 2 (right panels).285 The figure

shows the complete results (solid lines), as well as the results where only the isospin

I = 1 component (dashed lines) or the I = 0 one (dash–dotted lines) have been

retained. It is interesting to see that, in both models, the I = 1 component is

dominant and is concentrated at lower energies. The smaller I = 0 component

at higher energies adds up destructively to the cross-section in the case of the

K−p → K0Ξ0 reaction, while it contributes to enhance the cross-section in the

K−p → K−Ξ+ process. We note that the tree-level chiral contributions to these

reactions come entirely from the NLO Lagrangian and, upon inspecting the size of

the coefficients, their strength in the I = 0 channel would be nine times larger than

that in the I = 1 channel. The reversed trend observed in Fig. 51 is a consequence
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Fig. 51. (Color online) The total cross-sections of the K−p → K0Ξ0 reaction (top row) and the
K−p → K−Ξ+ reaction (bottom row) for the two different models (Models 1 and 2) discussed in
the text. The solid lines show the results of the full amplitude, while the dashed and dash–dotted
lines denote the I = 1 and I = 0 contributions, respectively. Theoretical values are compared with
experimental data Refs. 278–284.

of the unitarization in coupled channels with coupling coefficients determined by

the fit and, consequently, by the data.

As we can see in Fig. 51, the contribution of I = 0 in the K−p → KΞ cross-

section has a maximum around 2300MeV for Model 1 or around 2400MeV and

less pronounced for Model 2, far from the peak of the data and of the complete

amplitude, around 2050MeV. The K−p → KΞ reactions contain a mixture of both

isospin components, while the decay process Λb → J/ψ K Ξ, studied in this paper,

filters I = 0 and therefore provides additional information to the one obtained from

the scattering data.

Since the models of Ref. 285 make a fitting to all K−p → X data in a range from

threshold to KΞ production, we start presenting, in Fig. 52, what are the predictions

of Models 1 and 2 for the decay reactions Λb → J/ψK̄N and Λb → J/ψπΣ, already

studied in the former section. These are averaged distributions over the possible

different charged states. We can see that the results of both models are similar

to those found in Sec. 13, with the shape of the πΣ and K̄N distributions lying

somewhat in between those of the Bonn and Murcia-Valencia models studied there

(a different normalization is used in that work). We note that our πΣ distributions

shown in Fig. 52 stay over the K̄N ones, in contrast to what one observes in

Fig. 50, where the πΣ distributions cross below the respective K̄N ones just above

1630001-79

In
t.

 J
. 
M

o
d
. 

P
h
y
s.

 E
 2

0
1
6
.2

5
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 W

S
P

C
 o

n
 0

3
/0

4
/1

6
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



E. Oset et al.

1300 1350 1400 1450 1500 1550 1600
M

inv
  [MeV]

0

20

40

60

80

100

120

d
Γ

/d
M

in
v
  
 [

ar
b
. 
u
n
it

s]
Model 2
Model 1

πΣ

KN

Fig. 52. Invariant mass distributions of πΣ and K̄N states in the decay modes Λb → J/ψπΣ
and Λb → J/ψK̄N , for the two models discussed in the text: Model 1 (dashed lines) and Model 2
(solid lines). The units in the y-axis are obtained taking Vp = 1.

the threshold for K̄N states. This is a peculiarity of the NLO contributions, since

one also obtains a crossing behavior when the interaction models are restricted

to only the lowest order terms. It is also interesting to see that the numerical

results in Fig. 52 depend on the model, indicating their sensitivity on different

parametrizations that fit equally well the K−p → X data. We obtain ratios of 4.9

and 3.5 for Models 1 and 2, respectively. These values are of the order of those

found in the former section.

In Fig. 53 we present the invariant mass distributions of the K+Ξ− states

from the decay process Λb → J/ψK+Ξ−. We do not show the distribution for
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Fig. 53. (Color online) Invariant mass distributions of K+Ξ− states produced in the decay
Λb → J/ψK+Ξ−, obtained for the two models discussed in the text: Model 1 (dashed lines) and
Model 2 (solid lines). The thin lower lines correspond to omitting the NLO terms of the potential.
The normalization is the same as in Fig. 52.
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Weak decays of heavy hadrons into dynamically generated resonances

the decay process Λb → J/ψK0Ξ0, because, except for minor differences associ-

ated to the slightly different physical masses of the particles, it is identical to that

of the charged channel, since these processes involve only the I = 0 part of the

strong meson–baryon amplitude. The fact that this decay filters the I = 0 com-

ponents makes the differences between Model 1 (thick dashed line) and Model

2 (thick solid line) to be more evident, not only in the strength but also in the

shape of the invariant mass distribution. If, in order to eliminate the depen-

dence on undetermined loop functions and on the unknown weak parameter Vp,

we represented each Λb → J/ψK+Ξ− distribution relative to its corresponding

Λb → J/ψK̄N one shown in Fig. 52, the difference would even be somewhat

enhanced. Therefore, measuring the decay of the Λb into J/ψK+Ξ− and into

J/ψK̄N could help in discriminating between models that give a similar account

of the scattering K−p → K0Ξ0, K+Ξ− processes. The figure also shows that the

I = 0 structure observed around 2300MeV results from the terms of the NLO

Lagrangian. When they are set to zero, the invariant mass distributions of the two

models, shown by the thin dashed and thin solid lines in Fig. 53, become small

and structureless.

We have observed a similar behavior in the mass distributions of the reac-

tion Λb → J/ψηΛ which are shown in Fig. 54. In this case, as the coefficient

hηΛ does not vanish, we see from Eq. (166) that the tree level term also con-

tributes here, unlike the case of KΞ production. This makes the magnitude of

the Λb → J/ψηΛ mass distribution about twenty times bigger than that of

the Λb → J/ψKΞ one.

The invariant mass distributions from the Λb → J/ψK+Ξ− and Λb → J/ψηΛ

decays obtained in Models 1 and 2 are compared with phase space in Fig. 55.
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Fig. 54. (Color online) Invariant mass distributions of ηΛ states produced in the decay Λb →
J/ψηΛ, obtained for the two models discussed in the text: Model 1 (dashed lines) and Model 2
(solid lines). The thin lower lines correspond to omitting the NLO terms of the potential. The
normalization is the same as in Fig. 52.
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The phase-space distributions (dotted lines for Model 1 and dash–dotted lines for

Model 2) are obtained by taking the amplitude Mj as constant in Eq. (168) and

normalizing to the area of the invariant mass distribution of the corresponding

model. The comparison allows one to see that there are dynamical features in the

meson–baryon amplitudes leading to a distinct shape of the mass distributions. In

the case of Model 1, we observe a peak between 2250MeV and 2300MeV for both

Λb → J/ψK+Ξ− and Λb → J/ψηΛ distributions. The peak resembles a resonance,

but we should take into account that the limitation of the phase space at about

2500MeV produces a narrower structure than that of the cross-sections of the

K−p → KΞ reactions, as we can see from the I = 0 contribution in Fig. 51 (left

panels), which is much broader. Actually, the I = 0 contribution of Model 2 to the

cross-sections of Fig. 51 (right panels) does not indicate any particular structure,

and the very different shapes that this model predicts for Λb → J/ψK+Ξ− and

Λb → J/ψηΛ (see the thick solid lines in Fig. 55), peaking at about 2400MeV

and 2200MeV, respectively, do not indicate the presence of a resonance since it

would necessarily appear in both final states at the same energy. In our models,

it is the energy dependence in the parametrization of the next-to-leading order

contribution and the interference of terms what creates this shape. In any case,
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Fig. 55. (Color online) Comparison of the invariant mass distributions of K+Ξ− states (upper

panel) and ηΛ states (lower panel) states obtained with Model 1 (dashed lines) and Model 2 (solid
lines) with a pure phase-space distribution (dotted lines).
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Weak decays of heavy hadrons into dynamically generated resonances

what is clear is that the experimental implementation of this reaction will provide

valuable information concerning the meson–baryon interaction at higher energies,

beyond what present data of scattering has offered us.

Although we have given the invariant mass distributions in arbitrary units, one

should bear in mind that all the figures, from Figs. 52–54 have the same normal-

ization. Since measurements for the Λb → J/ψK−p reaction are already avail-

able from the CDF286 and LHCb272,287,288 collaborations, the measurements of the

reactions proposed here could be referred to those of the Λb → J/ψK−p reaction

and this would allow a direct comparison with our predictions. In this spirit, we

note that the recent resonance analysis of Ref. 288 shows a Λ(1405) contribution

which lies in between the distribution found by the Bonn model in Ref. 271 and

that of the Murcia–Valencia model in Ref. 271 or the Barcelona models presented

here. Further details and discussions on the reaction and the results can be seen

in Ref. 289.

15. Weak Decay of Λ+
c

for the Study of Λ(1405) and Λ(1670)

15.1. Formulation

We consider the decay process Λ+
c → π+Λ∗ → π+MB, where MB stands for

the final meson–baryon states such as πΣ and K̄N . We show that, when the MB

invariant mass is restricted in the Λ(1405) region, the dominant contribution of this

decay process is given by the diagram shown in Fig. 56. First, the charm quark in Λ+
c

turns into the strange quark with the π+ emission by the weak decay. Second, the q̄q

creation occurs to form M(B) from the s quark (ud diquark). Finally, considering

the final state interactions of the hadrons, we obtain the invariant mass distribution

for the Λ+
c → π+MB process. In the following, we will discuss these three steps

separately.

Fig. 56. The dominant diagram for the Λ+
c → π+MB decay. The solid lines and the wiggly line

show the quarks and the W -boson, respectively.

1630001-83

In
t.

 J
. 
M

o
d
. 

P
h
y
s.

 E
 2

0
1
6
.2

5
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 W

S
P

C
 o

n
 0

3
/0

4
/1

6
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



E. Oset et al.

15.1.1. Weak decay

We first discuss the decay of Λc to produce π+ and the sud cluster in the final

state. The Cabibbo favored weak processes are given by

c → s + u + d̄ : c decay, (169)

c + d → s + u : cd scattering. (170)

The diagram shown in Fig. 56 is obtained by the c decay process. Another con-

tribution with the c decay is to form π+ using the u quark in Λc [Fig. 57(a)]. In

this process, however, the color of the ud̄ pair from the W+ decay is constrained to

form the color singlet π+. This process is therefore suppressed by the color factor

in comparison with Fig. 56. In addition, because the ud diquark in Λc is the most

attractive “good” diquark,290 the process to destruct the strong diquark correla-

tion [Fig. 57(a)] is not favored. The contribution from the cd scattering Eq. (170)

[Figs. 57(b) and 57(c)] is suppressed by the additional creation of a q̄q pair not

attached to the W -boson as well as the 1/Nc suppression, compared with Fig. 56.

Figures 57(b) and 57(c) are called “absorption diagrams” in the classification of

Ref. 112, and they are two body processes, involving two quarks of the original Λc,

which are suppressed compared to the one body process (Fig. 56) involving only

the c quark, the u, d quarks acting as spectators. A discussion of this suppression

is done in Sec. 5.

As discussed in Ref. 291, the kinematical condition also favors the diagram

shown in Fig. 56. When the Λc decays into π+ and MB system with the invariant

mass of 1400MeV, the three momentum of the final state is ∼700MeV in the

rest frame of Λc. Thus, the π+ should be emitted with a large momentum. It

is kinematically favored to create the fast pion from the quarks involved by the

weak process, because of the large mass of the c quark. Figure 57(a) and 57(c) are

suppressed because one of the spectator quarks is required to participate in the π+

formation.

In this way, the diagram in Fig. 56 is favored from the viewpoint of the CKM

matrix, color suppression, the diquark correlation, and the kinematical condition.

We note that this diagram has a bigger strength than the dominant one of the

Λb → J/ψΛ(1405) decay discussed in the two former sections, in which the weak

Fig. 57. The dominant diagram for the Λ+
c → π+MB decay. The solid lines and the wiggly line

show the quarks and the W -boson, respectively.
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Weak decays of heavy hadrons into dynamically generated resonances

process contains the necessary Cabibbo suppressed b → c transition and pro-

ceeds via internal emission112 where the color of every quark in the weak process

is fixed.

In this process, because the ud diquark in Λc is the spectator, the sud cluster

in the final state is combined as

1√
2
|s(ud − du)〉.

This combination is a pure I = 0 state. Because the q̄q creation does not change

the isospin, we conclude that the dominant contribution for the Λc → π+MB

process produces the MB pair in I = 0. We note that the unfavored diagrams

that we neglect can produce the sud state with I = 1. We will revisit the I = 1

contribution at the end of Sec. 15.2.

15.1.2. q̄q creation

To create the MB final state, we must proceed to hadronize the sud state, creating

an extra q̄q pair, as we have done in the former sections. Since the total spin-

parity of the MB pair is JP = 1/2−, the s quark should be in L = 1 after the c

quark decay, together with the spectator ud diquark. To achieve the final MB state

where all quarks are in the ground state, the q̄q creation must involve the s quark to

deexcite into L = 0. Then the hadronization proceeds as depicted in Fig. 56, where

the s quark goes into the meson M and the ud diquark is used to form the baryon

B. Another possibility, the formation of the baryon from the s quark, is not favored

because of the correlation of the good ud diquark and the suppression discussed

above by forcing a spectator quark from the Λc to form the emerging meson. Other

possibilities of hadronization are also discussed in Ref. 292, concluding that they

are suppressed.

To evaluate the relative fractions of the MB state, we follow the same procedure

with Ref. 271. Using these hadronic representations, we obtain the meson–baryon

states after the q̄q pair production as

|MB〉 = |K−p〉 + |K̄0n〉 −
√

2

3
|ηΛ〉. (171)

Here we neglect the irrelevant η′Λ channel because its threshold is above 2GeV. We

can see that we obtain the isospin I = 0 K̄N combination in the phase convention

that we use where |K−〉 = −|I = 1/2, Iz = −1/2〉.

15.1.3. Final state interaction

Here we derive the decay amplitude M, taking the final state interaction of the

MB pair into account. As shown in Fig. 58, the final state interaction consists

of the tree part and the rescattering part. The rescattering of the MB pair is

described by the chiral unitary approach,11,12,251,253,293 which is based on the chiral
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E. Oset et al.

Fig. 58. The diagram for the meson–baryon final state interaction (filled circle) as the sum of the
tree part (dot) and the rescattering part with the meson–baryon scattering amplitude (unfilled
circle).

Lagrangians and is constructed to treat the non-perturbative phenomena. Though

only the K−p, K̄0n, ηΛ states appear in Eq. (171) in the tree-level production, the

coupled-channel scattering leads to the other MB states, π0Σ0, π−Σ+, π+Σ−, π0Λ,

K−p, K̄0n, ηΛ, ηΣ0, K+Ξ−, K0Ξ0.h The decay amplitude for the Λc → π+(MB)j

with the meson–baryon channel j can then be written as Eq. (166), with the same

weights for hi. The weak decay and the q̄q pair creation are represented by the

factor VP in Eq. (166), which is assumed to be independent of the invariant mass

Minv in the limited range of invariant masses that we consider. Explicit forms for

the t-matrices of Eq. (166) can be found in different works.11,12,251,253,293 It is also

instructive for practical calculations to show the amplitude in the isospin basis. If

we assume the isospin symmetry, the amplitude of the decay to the πΣ and K̄N

channels are written as

Mπ0Σ0 = Mπ−Σ+ = Mπ+Σ− = VP

(

−
√

2

3
GK̄N tI=0

K̄N,πΣ +

√
2

3
√

3
GηΛtI=0

ηΛ,πΣ

)

,

(172)

MK−p = MK̄0n = VP

(

1 + GK̄N tI=0
K̄N,K̄N − 1

3
GηΛtI=0

ηΛ,K̄N

)

. (173)

The partial decay width of the Λc into the π+(MB)j channel is given by

Γj =

∫

dΠ3|Mj|2, (174)

where dΠ3 is the three-body phase space. The invariant mass distribution is

obtained as the derivative of the partial width with respect to Minv. In the present

case, because the amplitude Mj depends only on Minv, the mass distribution

dΓj/dMinv is obtained by integrating the phase space as

dΓj

dMinv
=

1

(2π)3
pπ+ p̃jMΛ+

c
Mj

M2
Λ+

c

|Mj|2, (175)

where Mj is the baryon mass, and pπ+ and p̃j represent the magnitude of the

three momentum of the emitted π+ by the weak decay in the Λc rest frame and

hThe π0Λ and ηΣ0 channels are accessible only through the isospin breaking processes.
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Weak decays of heavy hadrons into dynamically generated resonances

of the meson of the final meson–baryon state in the meson–baryon rest frame,

respectively.

Since the Λ(1405) is mainly coupled to the πΣ and K̄N channels, we calculate

the invariant mass distribution of the decay to the πΣ and K̄N channels. For the

study of the Λ(1670), we also calculate the decay to the ηΛ channel.

15.2. Results

We present the numerical results of the MB invariant mass spectra in the Λc →
π+MB decay. We first show the results in the energy region near the K̄N threshold

where the Λ(1405) resonance plays an important role. We then discuss the spectra

in the higher energy region with the emphasis of the Λ(1670) resonance. The decay

branching fractions of Λc into different final states are discussed at the end of this

section.

15.2.1. Spectrum near the K̄N threshold

To calculate the region near the K̄N threshold quantitatively, the final state interac-

tion of the MB system should be constrained by the new experimental data from the

SIDDHARTA collaboration,294,295 because the precise measurement of the energy-

level shift of kaonic hydrogen significantly reduces the uncertainty of the scattering

amplitude below the K̄N threshold. Here we employ the meson–baryon amplitude

in Refs. 16 and 296, which implements the next-to-leading order terms in chiral

perturbation theory to reproduce the low-energy K̄N scattering data, including

the SIDDHARTA constraint. The isospin symmetry breaking is introduced by the

physical values for the hadron masses. In this model, the two resonance poles of the

Λ(1405) are obtained at 1424 − 26iMeV and 1381− 81iMeV.

We show the spectra of three πΣ channels in Fig. 59. From this figure, we

find the Λ(1405) peak structure around 1420MeV. It is considered that the peak

mainly reflects the pole at 1424 − 26iMeV. Because the initial state contains the

K̄N channel with vanishing πΣ component as shown in Eq. (171), the present

reaction puts more weight on the higher energy pole which has the strong coupling

to the K̄N channel.

To proceed further, let us recall the isospin decomposition of the πΣ channels.297

The particle basis and the isospin basis are related as follows,

|π0Σ0〉 = − 1√
3
|πΣ〉I=0 −

√

2

3
|πΣ〉I=2,

|π−Σ+〉 = − 1√
3
|πΣ〉I=0 − 1√

2
|πΣ〉I=1 − 1√

6
|πΣ〉I=2,

|π+Σ−〉 = − 1√
3
|πΣ〉I=0 +

1√
2
|πΣ〉I=1 − 1√

6
|πΣ〉I=2.

(176)
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E. Oset et al.

Fig. 59. (Color online) Invariant mass distribution of the decay Λ+
c → π+MB near the K̄N

threshold. The solid line represents the spectrum for πΣ channels and the dashed line for K̄N
channels. The meson–baryon amplitude is taken from the work of Ikeda et al. (Ref. 16).

In general reactions, the initial state of the MB amplitude is a mixture of the

I = 0 and I = 1 components.i The charged πΣ spectra thus contain the I = 1

contribution as well as the interference effects of different isospin components.

It is therefore remarkable that all the πΣ channels have the same peak posi-

tion in Fig. 59. This occurs because the present reaction picks up the I = 0 initial

state selectively, as explained in Sec. 15.1. In this case, the I = 1 contamination

is suppressed down to the isospin breaking correction, and hence all the charged

states exhibit almost the same spectrum.j The differences of the spectra, because

of the I = 0 filter in the present reaction, are much smaller than in photoproduc-

tion,262,298 where the explicit contribution of the I = 0 and I = 1 channels makes

the differences between the different πΣ channels much larger, even changing the

position of the peaks. In this respect, the Λc → π+πΣ reaction is a useful process

to extract information on the Λ(1405), because even in the charged states (the

π0Σ0 automatically projects over I = 0) one filters the I = 0 contribution and the

charged states are easier to detect in actual experiments.

The spectra for the K̄N channels are also shown in Fig. 59. In the K̄N channels,

the peak of the Λ(1405) cannot be seen, because the K̄N threshold is above the

Λ(1405) energy. However, the enhancement near the threshold that we observe in

Fig. 59 is related to the tail of the Λ(1405) peak. The shape of the K̄N spectrum,

as well as its ratio to the πΣ one, is the prediction of the meson–baryon interaction

model. The detailed analysis of the near-threshold behavior of the K̄N spectra,

together with the πΣ spectra, will be important to understand the nature of the

Λ(1405).

iIn most cases, the small effect of I = 2 can be neglected.
jThe small deviation is caused by the isospin violation effect in the meson–baryon loop functions.
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Weak decays of heavy hadrons into dynamically generated resonances

15.2.2. Spectrum above the K̄N threshold

The spectrum above the K̄N threshold is also interesting. The LHCb collaboration

has found that a substantial amount of Λ∗s is produced in the K−p spectrum in

the Λb → J/ψK−p decay.288 Hence, the K−p spectrum in the weak decay process

serves as a new opportunity to study the excited Λ states.

For this purpose, here we adopt the model in Ref. 254 for the meson–baryon

final state interaction, which reproduces the Λ(1670) as well as the Λ(1405) in

the I(JP ) = 0(1/2−) channel. The pole position of the Λ(1670) is obtained at

1678− 20iMeV.k Since the width of the Λ(1670) is narrow, the pole of the Λ(1670)

also affects the invariant mass distribution of the Λ+
c decay.

In Fig. 60, we show the invariant mass distribution of the Λ+
c decay into the

πΣ, K̄N and ηΛ channels. Because the meson–baryon amplitude in Ref. 254 does

not include the isospin breaking effect, all the isospin multiplets {K−p, K̄0n},
{π0Σ0, π+Σ−, π−Σ+} provide an identical spectrum. Because the Λ(1520) reso-

nance in d wave is not included in the amplitude, such contribution should be

subtracted to compare with the actual spectrum.

As in the previous subsection, we find the Λ(1405) peak structure in the πΣ

channel and the threshold enhancement in the K̄N channel. Furthermore, in the

higher energy region, we find the additional peak structure of the Λ(1670) around

1700MeV in all channels. Especially, the peak is clearly seen in the K̄N and ηΛ

channels, as a consequence of the stronger coupling of the Λ(1670) to these channels

than to the πΣ channel.254 The ηΛ channel is selective to I = 0, and the Λ(1520)

production is kinematically forbidden.

Fig. 60. (Color online) Invariant mass distribution of the decay Λ+
c → π+MB. The solid, dotted,

and dash–dotted lines represent the K̄N = {K−p, K̄0n}, πΣ = {π0Σ0, π−Σ+, π+Σ−}, and ηΛ
channels, respectively. The meson–baryon amplitude is taken from Oset et al.254 where the Λ(1520)
contribution in d wave is not included.

kThe present pole position is different from the one of the original paper.254 This is because the
original pole position is calculated with physical basis though the present position is with isospin
basis.
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E. Oset et al.

We expect that the structure of the Λ(1670) can be analyzed from the measure-

ments of the Λ+
c decay to the K̄N and ηΛ channels.

15.2.3. Branching fractions

Experimentally, the decay branching fractions of Λc → π+MB are determined as95:

Γ(Λc → pK−π+, nonresonant) = 2.8 ± 0.8% (177)

Γ(Λc → Σ+π+π−) = 3.6 ± 1.0% (178)

Γ(Λc → Σ−π+π+) = 1.7 ± 0.5% (179)

Γ(Λc → Σ0π+π0) = 1.8 ± 0.8% (180)

where the nonresonant component is obtained by subtracting the contributions

from the K∗(892)0, ∆(1232)++, and Λ(1520) in the K−π+, pπ+, and pK− spectra,

respectively. Taking the ratios of the central values, we obtain

Γ(Λc → Σ+π+π−)

Γ(Λc → pK−π+, nonresonant)
= 1.29 (181)

Γ(Λc → Σ−π+π+)

Γ(Λc → pK−π+, nonresonant)
= 0.61 (182)

Γ(Λc → Σ0π+π0)

Γ(Λc → pK−π+, nonresonant)
= 0.64. (183)

In principle, these ratios can be calculated in the present model by integrating

Eq. (175) over Minv. However, in the present calculation, we consider the process

which is dominant in the small Minv region, as explained in Sec. 15.1. At large Minv

region, processes other than those considered can contribute. Also, higher excited Λ∗

states and resonances in the π+M and π+B channels may play an important role,

as shown in the former section.l In this way, the validity of the present framework

is not necessarily guaranteed for the large Minv region.

Nevertheless, it is worth estimating the branching ratios by simply extrapolating

the present model. The theoretical estimate of the ratio of the decay fraction is

obtained as

Γπ−Σ+

ΓK−p

=

{

1.05 (Ref. 16)

0.95 (Ref. 254)
. (184)

Given the uncertainties in the experimental values and the caveats in the extrapola-

tion discussed above, it is fair to say that the gross feature of the decay is captured

by the present model. We note that the difference of the charged πΣ states in our

model is of the order of the isospin breaking correction. The large deviation in the

experimental data, albeit nonnegligible uncertainties, may indicate the existence

lThe largest contributions from K∗, ∆ and Λ(1520) are subtracted in the data of Eq. (177).
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Weak decays of heavy hadrons into dynamically generated resonances

of mechanisms which are not included in the present framework. It is worth not-

ing that in the theoretical model of Ref. 16 the π−Σ+π+ channel has the largest

strength as in the experiment.

Let us also mention the measured value of the branching fraction B(Λc →
Λπ+π0) = 3.6 ± 1.3%.95 Because π0Λ is purely in I = 1, the present model does

not provide this decay mode. The finite fraction of this mode indicates the exis-

tence of other mechanisms than the present process. In other words, the validity

of the present mechanism for the I = 0 filter can be tested by measuring the π0Λ

spectrum in the small Minv region. We predict that the amount of the π0Λ mode

should be smaller than the πΣ mode, as long as the small Minv region is concerned.

16. Repercussions for the Pentaquark State of LHCb

Although baryons with open charm and open beauty have already been found, the

recent experiment of Ref. 288 that finds a neat peak in the J/ψp invariant mass

distribution from the Λb → J/ψK−p decay, is the first one to report on a hidden

charm baryon state. Although two states are reported from the J/ψp invariant mass

distribution, the first one, at lower energies, is quite broad and one does not see

any peak in that distribution. However, broad peaks are seen when cuts are done

in the K−p invariant mass. On the other hand, the hidden charm state around

4450MeV, called pentaquark Pc(4450)+ in the experimental work Ref. 288, shows

up as a clear peak in this distribution, with a width of about 39±5± 19MeV, and

this is the state we would like to discuss in this section. We shall take the work of

Ref. 299 as reference. We find there, in the I = 1/2 sector, one state of JP = 3/2−

mostly made of D̄∗Σc at 4417MeV, with a width of about 8 MeV, which has a

coupling to J/ψN , g = 0.53, and another one, mostly made of D̄∗Σ∗
c at 4481MeV

and with a width of about 35MeV, which has a coupling to J/ψN , g = 1.05.

The 3/2− signature is one of the possible spin-parity assignments of the observed

state and its mass is in between these two predictions, although one must take

into account that a mixture of states with D̄∗Σc and D̄∗Σ∗
c is possible according to

Refs. 300 and 301.

On the other hand, in Sec. 13 we have discussed the Λb → J/ψK−p reaction

and more concretely, Λb → J/ψΛ(1405). Interestingly, the work of Ref. 288 also

sees a bump in the K−p invariant mass distribution just above the K−p threshold

which is interpreted as due to Λ(1405) production.

In this section we combine the information obtained from the experiment on

the K−p invariant mass distribution close to threshold and the strength of the

peak in the J/ψp spectrum and compare them to the theoretical results that one

obtains combining the results of these two former works. We find a K−p invariant

mass distribution above the K−p threshold mainly due to the Λ(1405) which is in

agreement with experiment, and the strength of this distribution together with the

coupling that we find for the theoretical hidden charm state, produces a peak in the

J/ψp spectrum which agrees with the one reported in the experiment. These facts
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Fig. 61. Mechanisms for the Λb → J/ψK−p reaction implementing the final state interaction.

together provide support to the idea that the state found could be a hidden charm

molecular state of D̄∗Σc − D̄∗Σ∗
c nature, predicted before by several theoretical

groups.

In Ref. 271, described in Sec. 13, it was shown that the relevant mechanisms

for the Λ(1405) production in the decay are those depicted in Fig. 61. The upper

figure shows the basic process to produce a K−p pair from the weak decay of the

Λb. The u and d quarks of the Λb remain as spectators in the process and carry

isospin I = 0, as in the initial state, producing, together with the s quark, an I = 0

baryon after the weak process, and hence a meson–baryon system in I = 0 after the

hadronization of the sud state. The final meson–baryon state then undergoes final

state interaction in coupled channels, as shown in the lower left part of Fig. 61,

from where the Λ(1405) is dynamically produced. Therefore the contribution to the

Λb → J/ψK−p amplitude from the Λ(1405) resonance is given by (see Sec. 13):

T (K−p)(MK−p) = Vp

(

hK−p +
∑

i

hiGi(MK−p)tiK−p(MK−p)

)

, (185)

where MK−p is the K−p invariant mass, hi are numerical SU(3) factors relating

the production of the different meson–baryon channels i in the hadronization [see

Eq. (167)], and Vp accounts for CKM matrix elements and kinematic prefactors.

Since we do not need the absolute normalization of the invariant mass distributions,

the value of Vp can be taken as appropriate, as explained below when discussing the

results. In Eq. (185), Gi represents the meson–baryon loop function and tij stands

for the s-wave meson–baryon unitarized scattering amplitudes from Ref. 276. Note

that the Λ(1405) is not included as an explicit degree of freedom but it appears

dynamically in the highly nonlinear dynamics involved in the unitarization proce-

dure leading to the tij amplitudes. Actually two poles are obtained for the Λ(1405)

resonance at 1352 − 48iMeV and 1419 − 29iMeV.276 The highest mass Λ(1405),
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Weak decays of heavy hadrons into dynamically generated resonances

coupling mostly to K̄N , is the one of relevance in the present work since it is closer

to the energy region of concern.

On the other hand, in Refs. 299 and 302, it was shown that the J/ψN final

state interaction in coupled channels, considering also the D̄∗Λc, D̄∗Σc, D̄Σ∗
c and

D̄∗Σ∗
c , produces poles in the JP = 3/2−, I = 1/2, sector at 4334 + 19i MeV,

4417 + 4i MeV and 4481 + 17i MeV which couple sizeably to J/ψp (see Table II in

Ref. 299). Therefore we can expect to see a resonance shape in the J/ψp invariant

mass distribution in the Λb → J/ψK−p decay, maybe a mixture of the different

poles. The mechanism for the final J/ψN state interaction is depicted in the lower

right part of Fig. 61. The filled circle in that figure represents the final J/ψp → J/ψp

unitarized scattering amplitude. Since the shape of this amplitude in the real axis

is very close to a Breit-Wigner,299 for the numerical evaluation in the present work

we can effectively account for it by using

tJ/ψp→J/ψp =
g2

J/ψp

MJ/ψp − MR + i
ΓR

2

, (186)

where MJ/ψp is the J/ψp invariant mass and MR (ΓR) the mass (width) of the

Pc(4450)+. The amplitudes in Refs. 299 and 302 provide poles from where MR and

ΓR can be directly obtained, but we fine tune these values to the experimental

results of Ref. 288, MR = 4449.8 MeV and ΓR = 40 MeV which lay indeed in

between the two heaviest poles obtained in Ref. 299, as quoted above. In Eq. (186),

gJ/ψp stands for the coupling of the dynamically generated resonance to J/ψp, for

which a range of values from about 0.5 to 1 are obtained in Refs. 299 and 302,

which are genuine and non-trivial predictions of the theory.

The contribution of the J/ψp final state interaction to the amplitude is then

T (J/ψp)(MJ/ψp) = VphK−pGJ/ψp(MJ/ψp)tJ/ψp→J/ψp(MJ/ψp), (187)

with GJ/ψp the J/ψp loop function regularized by dimensional regularization as in

Ref. 299.

Since the main building blocks of the Pc(4450)+ state in Ref. 299 are D̄∗Σc

and D̄∗Σ∗
c , in principle the main sequence to produce this baryon should be of the

type Λb → K−D̄∗Σ∗
c → K−pJ/ψ (the argument that follows hold equally for Σc),

where one produces K−D̄∗Σ∗
c in the first step and the D̄∗Σ∗

c → pJ/ψ transition

would provide the resonant amplitude accounting for the Pc(4450)+ state in the

J/ψp spectrum. However, as discussed in the former sections and in Ref. 303, these

alternative mechanisms are rather suppressed, and one is thus left to produce the

Pc(4450)+ resonance from rescattering of J/ψp after the primary production of

Λb → J/ψK−p through the mechanism depicted in Fig. 61 discussed above. This

feature of the reaction is important and is what allows us to relate the Pc(4450)+

production with the K−p production, i.e., the factor VphK−p enters the production

of both the Λ(1405), via Eq. (185), and of the Pc(4450)+, via Eq. (187).

In Fig. 62 we show the results for the K−p and J/ψp invariant mass distribu-

tions compared to the experimental data of Ref. 288. The absolute normalization
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Fig. 62. Results for the K−p and J/ψp invariant mass distributions compared to the data
(Ref. 288).

is arbitrary but the same for both panels. In the data shown for the K−p mass

distribution only the Λ(1405) contribution is included, i.e., it shows the result

of the Λ(1405) component of the experimental analysis carried out in Ref. 288.

Therefore, in order to compare to this data set, only the amplitude of Eq. (185) is

considered. Similarly, the experimental J/ψp mass distribution shown in Fig. 62

(right panel) only considers the contribution from the Pc(4450)+ and, thus,

the theoretical calculation for Fig. 62 (right panel) only includes the amplitude

of Eq. (187).

The different curves are evaluated considering different values for the coupling

of the Pc(4450)+ to J/ψp, (gJ/ψp = 0.5, 0.55 and 0.6). For each value of gJ/ψp,

VP has been normalized such that the peak of the J/ψp distribution agrees with

experiment, and this is why there is only one curve for the J/ψp mass distribution.

Since the higher Λ(1405) resonance lays below the K−p threshold, the accumulation

of strength close to threshold is due to the tail of that resonance.

The results are very sensitive to the value of the J/ψp coupling since the J/ψp

partial decay width is proportional to g4
J/ψp. We can see in the figure that a value

for the coupling of about 0.5 can account fairly for the relative strength between

the J/ψp and K−p mass distributions. This value of the coupling is of the order

obtained in the extended local hidden gauge unitary approach of Refs. 299 and 302

which is a nontrivial output of the theoretical model since the value of this coupling

is a reflection of the highly nonlinear dynamics involved in the unitarization of the

scattering amplitudes.

It is also worth noting that the values of gJ/ψp used, lead to a partial decay

width of Pc(4450)+ into J/ψp (Γ = MNg2
J/ψp pJ/ψ/(2πMR)) of 6.9MeV, 8.3MeV

and 9.9MeV, which are of the order of the experimental width, but smaller as it

should be, indicating that this channel is one of the relevant ones in the decay of

the Pc(4450)+ state.

The fact that we can fairly reproduce the relative strength of the mass distri-

butions with values of the coupling in the range predicted by the coupled channels

unitary approach, provides support to the interpretation of the Pc(4450)+ state
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Weak decays of heavy hadrons into dynamically generated resonances

as dynamically generated from the coupled channels considered and to the 3/2−

signature of the state.

The findings of Ref. 288 prompted the work of Ref. 304 where, using a boson

exchange model,305 molecular structures of D̄∗Σc and D̄∗Σ∗
c are also obtained with

similarities to our earlier work of Ref. 299. However, the interrelation between the

J/ψp and K−p invariant mass distributions is not addressed in Ref. 304.

The experimental observation of Ref. 288 has prompted quite a few works

aiming at interpreting those results with different models. It is not our purpose

to discuss them here. A compilation of all these different works can be seen

in Ref. 306.

17. Further Developments

The developments in this area in the last year have been spectacular, as shown by

the different problems discussed in this review. The agreement of the results with

experiment when data are available, using the approach discussed all along, has been

reasonably good, and many predictions have been made for other observables that

are at reach in the different facilities where the experiments have been performed.

The fast experimental developments in the present facilities and the prospects for

new facilities that are now under construction, make it a fertile land to apply these

theoretical tools and there is much to learn.

In this last section we would like to make a very short review of other problems

that we have not reviewed here and which are under study or just recently finished

at the time the review was written.

In Ref. 307 the B+ decay into D−
s K+π+ is been studied in order to learn about

the D∗
0(2400) resonance.

In Ref. 308 the B+ → D̄0D0K+, B0 → D̄−D0K+ and B+
s → D̄0K−π+ are

studied. In this case the aim is to see how the D∗
s0(2317) resonance is formed

and learn about the KD molecular structure which has been determined in lattice

calculations.161

Further developments are done in Ref. 57 where the B0 and B0
s decays to

J/ψKK̄ are investigated to compare with measurements done and under analy-

sis at LHCb.

The advent of the LHCb pentaquark experiment has also prompted the investi-

gation of another reaction,309 Ξ−
b → J/ψK−Λ, where using the results of Ref. 302,

where a hidden charm with strangeness is predicted, invariant mass distributions

of K−Λ and J/ψΛ are evaluated and a neat peak in the J/ψΛ invariant mass

distribution is observed.

The semileptonic Λc → νll
+Λ(1405) is addressed in Ref. 310.

The B0 → D0D̄0K0 reaction is studied in Ref. 311 in order to find evidence for

a bound state of DD̄ predicted in Ref. 33.

The D+
s → πππ and D+

s → πKK̄ reactions are investigated in Ref. 312 to

compare with existing and coming data of LHCb.
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A study is also conducted for the B0
s → J/ψf1(1285) reaction in Ref. 313 sug-

gesting a model independent method to find the molecular component of resonances.

The Λb → D̄sΛc(2595) is also investigated in Ref. 314.

Finally, an incursion is also done in Bc states,315 studying the Bc → J/ψD∗−
s

reaction in order to learn about the D∗
s0(2317) state.

18. Conclusion

We do not want to draw conclusions on each of the many subjects dealt along

this review. We can recall the basic lessons learned from this general overview.

The decays studied have shown that weak decays, even when they do not conserve

parity and isospin, are many times better filters for isospin or other quantities than

strong or electromagnetic interactions. Selection rules as OZI, Cabibbo allowed or

suppressed processes, details on the hadronization, etc. have as a consequence that

one can isolate certain quantum numbers at the end, allowing a better study of

some resonances or aspects of the hadron interaction. The selection rules and the

hadronization of the quarks formed in the primary step lead to pairs of hadrons with

very specific weights which allow to understand the basic features of some reactions.

Particular relevance have some processes where one looks for a pair of mesons

which are not produced in a primary step. In this case it is only the rescattering

of the primary mesons produced what gives rise to this hadron pair in the final

state. Hence, the amplitude for the process is directly proportional to the scattering

amplitudes of these hadrons and one gets rid of unwanted background which could

blur the interpretation of the process. If resonances are produced, this gives us a

way to learn about their couplings to these primary channels.

We have seen that one can learn about properties of resonances, and particularly,

when one is dealing with resonances which are deemed as dynamically generated

from the interaction of other hadrons, one can even find from the data the amount

of molecular component.

When dealing with charmed particles, the study of these processes allows to

learn about the interaction of these hadrons. In the absence of D-meson beams,

unlike for pions or kaons, the study of this final state interaction is our only source

of information on the interaction of the charmed hadrons.

As to light mesons, the study done here presents further evidence to that gath-

ered from other processes, that the light scalars are generated from the interaction

of pseudoscalar mesons, while the vector mesons respond very well to the standard

picture of qq̄ states. Other mesons, scalar and tensor, that are theoretically pro-

duced from the interaction of vector mesons or a vector and a pseudoscalar, were

also investigated, and support for this picture was also obtained.
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