
Journal of  Statistical Physics, Vol. 50, Nos. 3/4, 1988 

Weak Disorder Expansion of Liapunov 
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It is shown how the weak disorder expansion of the Liapunov exponents of a 
product of random matrices can be derived when the unperturbed matrices have 
two degenerate eigenvalnes. The general expression of the Liapunov exponents 
at the lowest nontrivial order in disorder is given. 
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1. I N T R O D U C T I O N  

The analytic calculation of the Liapunov exponents of products of random 
matrices is a problem that arises often in the physics of disordered 
systems (~) (random magnets, diffusion, or localization in random media: 
see Refs. 2 and 3 and references therein) and in the study of dynamical 
systems/4-6) It is also a very important problem in the theory of 
probability.(7,15 ls) 

Apart from a few special cases which can be solved exactly, (8"9) there 
does not exist any general method for calculating analytically the Liapunov 
exponents of products of random matrices. At present, one can only hope 
to develop a perturbation method that gives the weak disorder expansion 
of the Liapunov exponents. The problem can then be formulated as 
follows: Consider a product of N random n.x n matrices M~ : 

N 

Prod = 1-[ M~ (1) 
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510 Zanon and Derrida 

where 

Ms = A + #B= (2) 

The matrix A is fixed (i.e., does not depend on ~), the matrices B~ are 
random and independent, and one wants to calculate the expansion in 
powers of p of the Liapunov exponents. Such an expansion has recently 
been obtained in the nondegenerate case, o) i.e., when the matrix A has all 
its eigenvalues with different moduli 

21 0 ) 
A = ".. (3) 

0 2. 

with 

12~t > 1221 . - .  > I;C~l (4) 

and the weak disorder expansion of the sum of the first p Liapunov 
exponents up to the fourth order in # is 

L log ,-  L L 
j= l  Z i=1 j= l  2i2S 

#3 

i= I. j= 1 k= 1 2iZj2k 
~4 L L L L <BiJBJkBklBli> 

4 , 1 2i2j2~2l = j= l  k=l 1=1 
/,/4 
2 L L L L (BirB'*>(B~'BSi> 

i=, j= l  r>p s>p 2 i 2 j ( 2 i 2 j - - 2 r 2 s )  

p p p ~ (Bi~Bei>(BrJBJe> 
-[-#4 E E E /'~ (5) 

i=l j= l  k=l r>p 2 i 2 j 2 k ( 2 k - - 2 r )  

where <. . .  > means the average over disorder, i.e., 

�9 1 u (BiJBrS)= hm --  ~ 0 rs N ~  N =  1 B~B~ (6) 

One has assumed that <B~ ) =  0. 
The next question, of course, is whether condition (4) could be entirely 

relaxed and if one could extend the result (5) to more general cases. In par- 
ticular this would include cases where several eigenvalues of the matrix A 
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are degenerate, the matrix A being diagonalizable or not, and where some 
eigenvalues have the same modulus. This final goat has not yet been 
reached. 

In the present paper, we describe one step toward the solution of this 
question. We consider the case of a diagonalizable matrix A with only two 
degenerate eigenvalues and we calculate the Liapunov exponents up to 
order #2. 

In Section 2 we describe our main calculation, which concerns the case 
of 2 x 2 matrices, where 

Prod = [ I  (A + #B~) (7) 

where 

and 

1 +/.t2~p i /.t2~p 2 
A = (8) 

#2,~3 1 "~ /.~2~04) 

B~=( a~c~ d~b~) (9) 

The matrix A does not change with ~ and the matrices B~ are indepen- 
dently distributed. We assume that 

( a s )  = (b=) = (c~)  = (d~)  = 0  (10) 

and arbitrary correlations between the elements of B~. For simplicity we 
will consider that the elements of the matrix B~ are real. The constants ~Pi 
in (8) allow us to go continuously from the degenerate case to the non- 
degenerate case. 

We will show that the largest Liapunov exponent 71 of the product (7) 
is given by 

71 = 2 LJ_oo 

where Po(R) and G(R) are given by the correlations between the elements 
of the matrices B~ : 

1 
R )E(a.) +2(a~b ~ )  R +  (b~) G(R)-(R 2+02)2 (02 -  2 2 R'  

- (c~) R202-2(c~d~) RO 2-  (d~) 02 ] 

402 
(R2+02)2 [(a~c~) R3+ (b~c~) R2 + (a~d~) R2+ (b~d~) R] 

2 + ~ (q), R 2 + ~o.R + q)3RO 2 + (p40=) (12) 
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exp d y  H , ( y ) [  

+ lim ( e x p [ f + ~ d  H2(y)] '~ R d x  

(13) 
where 

Hx(x ) = �89 ((c~x 2 + d . x  - a ~ x  - b~) 2 ) (14) 

H z ( X  ) = q~3 x2 -t- (p4 x - -  (pl x - -  (tO 2 

+ ( ( G x -  a = ) [ G x  2 + (d .  - a~) x - b~] ) (15) 

The expression (11) depends on G ( R )  and therefore depends in principle on 
the parameter 0 which appears in (12). It turns out that when one performs 
the integral (11), the dependence on 0 disappears as long as 0 r  and 
0 r  

Once 71 is known, the second Liapunov exponent 72 is easy to obtain, 
since 

71 + 72 = ( log[det(A + #B~)] ) (16) 

and therefore 

~ ( d ~ ) - - ( b o ~ c o ~ ) ] - - ~ l - t - O ( #  3 ) (17)  

In Section 3 we discuss two simple examples for which the integral 
(11) can be done explicitly: one example for which a~ =0 ,  d~= 0 for all c~ 
and (c~)  = 2 (b~) ,  ca and b~ being independent, and another example for 
which ( a  2) = (b~)  @2)  2 = = (d~) ,  these four elements being independent. 

In Section 4 we extend the results of Section2 to the case of two 
degenerate eigenvalues in an n x n matrix. 

2. T H E  C A S E  OF 2 x 2  M A T R I C E S  

In this section we calculate 71 up to order #2 for the case where the 
matrices A and B are given by (8) and (9). Consider the sequence of 
vectors V~ such that 

V~+I = (A +#B~) V= (18) 

If .~- (1) and u~ 2) are the two components of the vector V:, they satisfy the 
following recursion relations: 

u (D = (1 + #a~ + #2~Ol) u(~ 1) + (#b~ + #2~02) u~ 2) c~+1 
(19) 

u (2~ (#ca + #2q~3) u ~ + (1 + #d~ + #2r ) " (2) 
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The largest Liapunov exponent 71 is then given by 

71 = lim ~l-~log[(U~)z+O2(u~')2] (20) 
N -  ~ = ~  L ( . ~ o l ) ) :  + 0 : ( ~ g ~ ) : J  

Expression (20) expresses the fact that the Liapunov exponent ~/'~ measures 
the way the length of the vector V N increases with N. There are several 
ways of measuring this length [which are represented by the parameter 0 in 
formula (20)] and all these definitions should give the same result for 71. 

An often used method (a) to compute the Liapunov exponent 7t 
consists in looking for the stationary probability distribution P(R) of a 
variable R~ which gives the direction of the vector V~ : 

R~ = u~l)/u(~ ) (21) 

The recursion relation on R~ is a homographic transformation T~ [see 
Eq. (19)] 

(1 q- #a~ -I- #2~01) R~+#b~+#aqo a 
= (22) R:,+~ T~(R~)=(#c~+#zfps)R~+l+itd~+#aq~4 

The stationary probability distribution P(R) satisfies the following integral 
equation: 

P(R) = ~ P(R1) dR1 (6(R - T~(R1 )) ) (23) 
d 

where in (23) the ( - . - )  means the average over c~, i.e., the average over 
disorder. 

If one knows the solution P(R) of this integral equation, the Liapunov 
exponent 71 is then obtained by 

1 
~1 ~- -2 f P(R) dR(log{ [(1 + #a~ + #2(~01 ) R + #b~ + #2(p212 

+ 0:[(#c~ + #:~o3) R +  1 + #d~ + #:~o4]:} 

- log(R a + 02) ) I f  P(R)dR (24) 

[the integral ~ P(R) dR in the denominator is necessary in the case that the 
solution of (23) is not normalized]. This expression (24) is rather easy to 
understand, since (20) can be written as 

N , I-(u~+i) + 0  (U~+l) q Yl = lim 1 ~, 1 ~1) 2 2 (2) 2 
N~ooN~=l~logL ( - ~ I ) ~ ~ -  J (25) 
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In principle, if one could solve exactly the integral equation for P(R), then 
(24) would give 71 for all value of/~. In practice, the integral equation (23) 
is too hard to solve for general/ t  and it is only the expansion around # = 0 
that can be done. 

Let us first determine P(R) in the limit # ~ 0. 
One can rewrite (23) as 

where 

P ( R ) = ( d T d ~ R ) p ( T ~ - I ( R ) ) I  

R(1 + #d~ + #2q)4) - #b~ -/[,/2(/)2 r l(R) = 
1 + pa~, + ,u2q01 -- R(l~C~, + p2q~3) 

For  # small, T ~ ( R )  is very close to the identity and one has 

where 

T~ I(R) = R + #E~(R) + #2F~(R) + O(1~ 3) 

(26) 

(27) 

(28) 

E~(R) = -b~ + R(d~ - am) + R2c~ (29) 

F~(R) = a~b~ - q~2 + R((P4 - q)l - a~d~ - b~c~ + a 2) 

n t- R 2 ( f p 3  -t- c~,d~ - 2a:c,,) + R3c~ (30) 

If one replaces T~-I(R) by its expansion (28) in (26), one gets 

+  -a-k -a-k-)/ ' (R+ 3) 

= e ( R )  + + E ; P ) >  

t , 1F2pt,)_.~ O(~3 ) (32) + #2 ( F'~P + F~P' + E~E~ P + 2 ~ -  

Using (10), one sees that the linear term in/~ vanishes and that the order 
#2 of (30) gives a differential equation for P: 

H'2P + [H2 + Hi]  P' + H I P " =  O(kt) (33) 

If one considers that P can be expanded, 

P(R) = Po(R) + #P~(R) + p2P2(R ) + --. (34) 

one sees from (33) that P0 must satisfy 

H'2Po + (H2 + H'I) P ;  + H~ P~ = 0 (35) 
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where the two functions H 1 and H2 are given by 

ml  2 HI(R)-~(E~), H2(R) = (F~)  (36) 

Looking at (14), (15), (29), and (30), one can easily see that the general 
solution of Eq. (33) is 

Po(R)=Kl f~ dx [f~ H2(y)] 
exp dy n l ( y ) [  

I f f  d H2(y)]  f l~ dx exp (37) 
-{-K2 ,:~ Sl(X ) ~ ? H ~ ]  

The two constants K1 and K2 in (37) are the two constants of integration 
of the differential equation (33). 

In order to determine these two constants K1 and K 2 and therefore the 
probability distribution Po(R), one needs to impose constraints. One of 
these constraints is clearly the normalization of Po(R), but can be forgotten 
because of the denominator in (24). The other can be determined by saying 
that Po(R) has the same behavior for R ~  + ~  and R ~  - ~ .  This is 
because R is a variable, which gives the angle of the vector V~, and because 
the direction R = ~ does not play any particular role. Therefore, since, 
from (37), one can see that 

A2 +m expfa YH----~ for R - ,  + m  m 2 Alim ~ dX x d 02(23 
e0(R) = ~  f_~ O1(x) (38) 

because H2(y)/Hl(y) ~ 2/y when y ~ m [see Eqs. (36), (29), (30)] and 

K1 ,2f  +~ dx fx H2(y ) (39) Po(R) =--~ A!im A exp 4 ' -  for R --+ - ~  
--oo HI(X ) A' O1(2) 

where in (38) and (39) the cutoffs A and A' are introduced because the 
integral of H2/H 1 diverges logarithmically. 

The condition that Po(R) has the same behavior at + ~  and - 
imposes the condition that 

K2 = K1 lim exp (40) 
A ~ ~ HI(y  ) 

Choosing, for example, A = A' gives the expression (13) for Po up to the 
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normalization constant. Once Po(R) is known, one can use (24) to 
compute 7~. If one expands (24) up to second order in #, one gets for y~ 

(41) 

where G(R) is given by (12). 
Since G(R) depends on 0 [see Eq. (12)], it is not obvious that the final 

result 7 given by (11) is independent of 0. However, this can be checked 
already on the expression (24), which can be rewritten as 

7~ = f P(R) dR <log[ (pc~ + #2q)3) R -~ 1 + #d~ + #2(p4 ] ) 

1 1 + 5 f P(R) dR<log{ [ T(R)] 2 + 02 } > -- 7 f P(R) dR log(R 2 + 02) (42) 

We see from Eq. (26) that the second integral is equal to the third one in 
(42), so the 0 dependence disappears in the expression for 71. Let us now 
look at the expression (41). Once we have the expansion for u small, from 
(12), (14), and (15), G(R) can be written as 

G(R) --- [2q93R + 2q~ 4 - <c2) R 2 -- 2<G,d~,) R -  <d:,) 

L [HI(R) 92 log(R; + 2 ] ~ 8 log(R 2 + 02)) 
8R 2 0 !A+ ~[H',(R)--H2(R)] -~  J + 

Noticing that 

82 log(R 2 + 02) 
Po(R) Hi(R)  8R 2 

d IP~ HI(R) c3 ] = ~-~ ~-~ log( R2 + 02) 

IdP dH1] O log(R 2 +02)  
- ~ Hi(R) + Po(R) dR A OR 

and using Eq. (33), that is, 

~-~ IH2(R) Po(R) + HI(R) ~ ]  =0 

(43) 

(44) 
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we can rewrite 71 as 

co 

d I ~? l~ + 02) 
+ - ~  ~HI(R) P~ OR 

- l o g ( R  2 + 02) [Ha(R) Po(R) + Hi(R)dPo~ 
dR J JJ (45) 

Here we see that the 0 dependence of 71 appears through a total derivative. 
Thus, only the behavior in the limit R --* ~ is important. 

If we consider the difference 71(0) - 71(0) for two choices 0 and 0 of 0 
in (45), we get 

IZ2 "[ Po(R) d.if__ log ~R2-k02"~ ?i(0)- ]11(0)=  w ff;,(R) de \R +o j 
, rR2+02, [ 

- , o g  I R--7-7-~) H2(R) Po(R) + Hi(R) -~  (46) 

When R --+ _+0% the total derivative vanishes, since Po(R) ~ 1/R 2 [see (38) 
and (39)], H, ~ R  4, and H2~R 3 [see (14) and (15)]. 

Expression (45) gives a 71 independent of 0. However, one cannot set 
0 = 0 or 0 = oc in this expression because the integral over R becomes 
divergent either at R = 0 or R = m. The reason the above calculation is not 
valid for 0 = 0  or 0-- oo is that in Eq. (19) we considered that lu~l)J > p  and 
lu(~ 2)] >/~ to expand in powers of/~ and that these conditions are no longer 
fulfilled if 0 = 0 or 0 = oo. 

Let us remark that the Liapunov exponent measures how the length of 
a vector increases under the multiplication of the vector by random 
matrices. There are several equivalent ways of measuring these lengths 
(corresponding to all the possible choices of 0). We have just seen that all 
choices of 0 give the same 71. It would have been possible to make more 
general choices to measure the length of the vector. For example, one could 
have used an arbitrary homogeneous function D of the coordinates in (25). 
Then the expression (45) of 71 would read 

1,2 ~+o~ ( 
~ / l = ~ J _ ~  dR Po(R)[2~p3R + 2~p4- f c2> R 2 -  2f c~d~> R -  f d~> ] 

1 d {  
+nd-R Hi(R) P~ l~ 

[ 
- log[D(R)] H2(R ) Po(R) + Hi(R) dR 3 J ]  (47) 
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where 

D(R)= ~ apR 2p (48) 
p=O 

with arbitrary coefficients ap > 0. Again 71 would not depend on the ap in 
the same way as it did not depend on 0. 

Formula (45) gives the weak disorder expansion of 71 up to the second 
order in #. It would be possible to generalize it to higher orders. By 
expanding T2'(R) [see Eq. (28)] and P(R) [see Eq. (34)] to higher orders 
in # and by replacing T2 ~ and P by their expansions in (26), we get a 
hierarchy of equations corresponding to each order #. The order #2 gives 
for Po 

~-~ <F=) Po+ --ff--~j =0  

which is Eql (33). 
The orders #3 and #4 give for P~ and P2, respectively, 

_ d 

dR 

_ d 

dR 

d 
dR 

where I: and 

(E2) dP, \  
P1 + .-.--L*| 

2 aRj 

de  0 ( E  3 ) d2po~ 
- - - -  ( I " )  P~ + (E~F")--d-R + 6 -d-~J (49) 

P2 -~ (E2) dP2~ 
2 -d-RJ 

dp 1 ( E  3 ) d2pl~ 
- - - -  (I~) PI + ( E . F ~ ) - - ~ +  6 -d--~-YJ 

- - - ( ( J ~ , )  Po+(E~t~,+@) dP~ -dg 2 dR 2 ~- 4-(-. --d--l~-] 

J~ are the next terms in the expansion (28): 

(50) 

T:I(R)  = R + #E~, + #2F~, + #3I~, + #4j~ _.[_ 0(#5) (51) 

Knowing P0, we can in principle determine P, from (49) and then P2 from 
(50) and by this method get higher orders in the expansion of the 
Liapunov exponents. 

Lastly let us notice that the expression (13) of Po(R) could be 
simplified by using instead of R an angular variable ~9 (0 < ~ < 2re), 

R=tg(0 /2)  (52) 
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Then, defining a density Q0P) by 

Q(~O)=Po(tg~) 2 (l +tg2~) (53) 

one would get 

l(l+tgZ--02)~o+2~oo {exp [ f ]  ' H2(tg�89 l 2) 1 Q(~) =~  do + tg  2 
a~ Hl(tg �89 5 

x [Hl(tg �89162 '} (54) 

This expression is more symmetric than (13), since all directions ~, play a 
similar role [-the special role of the direction R =  oo in (13) has dis- 
appeared]. 

3. E X A M P L E S  

In order to illustrate the calculations presented in Section 2, we now 
study two simple examples. The first example is a case where the matrix A 
is unity (q~i = 0) and the matrices B have only off-diagonal elements, which 
are random and independent 

a~=0; d~=0; (b~c~) = 0; (b~) = (e~) (55) 

The expression (13) for Po becomes 

Po(R) = cste 
(1 q- R4) t/2 

and then 71 is given by [see Eqs. (11) and (12)] 

(56) 

(57) 

One can easily check again for this example that 7, is independent of 0 (if 
0 # 0  and 0 #  oo): 71 can be written as 

/~2 +oo I 
- o o  

f 
+~o 1 

--c~ d R  (1 -1- R4) 1/2 (58) 

R 2 d {R(1 +R4)V2\]/ 

(e~> 2 +~ dR (R2--02)(~__-n202!/f+~ dR +O(~3) 
7' =--T--~ I_co (1 +R4)1/2 (R2+0~) ~ / J  co (l +R4)1/2 
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Thus, the difference 71(0)-71(0)  vanishes: 

~ ) l ( 0 ) - - ~ l ( 0 ) = y  (C 2)  R(1 q-R4) I/2 1 " 
11~2 02 R 2 _~_ 0 j 

f +oo dR 
_co (1 +R4)  1 /2-0  

Since 71 does not depend on 0, we can choose 0 = 1: 

(C 2 ) dR aR f #2 
J (1 R4) 1/2 R4) 1/2 ~)1- 2 _~ q- (R2+ 1 7 / J _ ~  (1 q- 

Then the integrals can be expressed in terms of elliptic integrals, (1~ 

-oo ( l + R4) 1/2-F ~z, 

+~ dR (R2-1,2=2E(Ir, 4 ) _ F ( g , ~  ) f 
o ~ (1 q-R4) 1/2 ( R 2 +  1) 2 

Thus, 

71 = (C2cr #2-0.1142... 

Zanon and Derrida 

(59) 

(60) 

(61) 

(62) 

(63) 

This result was already obtained in the case of a one-dimensional 
localization problem. (6'19'2~ 

In the second example, matrix A is again unity (q)i=0), and the 
matrices B have all their elements independent and Gaussian with the same 
width, 

The expression (13) for P0 becomes 

(64) 

(65) 

(66) 

cste 
P~ - 1 + R 2 

Since in that case G(R)  is 

G(R)  = (a  2) 
(1 -- 02)(02 -- R2)(R 2 + 1 ) 

(R 2 + 02) 2 

one finds 

~l = 0 + 0 ( #  3 ) (67) 
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This result can be checked, because this example is soluble for any value of 
#.(8,11) The probability distribution of the matrices B~ is a function of 
trtB~ - B s only and therefore is rotationally invariant. So is the probability 
distribution of the matrices M~ and of the vector vs. Therefore 
P(R) = cste/(1 + R 2) is the exact solution of (23). 

If we expand the expression 

log{[(1 +#as )  R+#b=]2+OZ(#csR+ 1 + #d~,) 2 } (68) 

in #, we can use (24) to get the expansion of 71 up to any order in #. 
Let us notice with Newman (8"1~) that the probability distribution of 

(M~V. M~V)/V.V does not depend on the choice of V, because of the 
rotational invariance of the distribution probability of tMsM s. Then it is 
simpler to consider 

7, = l ( log (M~W" M s W ) )  (69) 

where 

w(;)  <70, 
We get 

= (• log[(1 + #as) 2 + (#Cs) 23 ) (71) ~1 2 

Since as and c~ are Gaussian variables with zero means and 
( a~)  = ( c ~ ) =  1, one can reduce the calculation of the average (71) to the 
calculation of Gaussian integrals using 

( l ~  ' - ( e - t x )  

and one gets 

~ f l  o~ C - u  71 = du (72) 
/(2,u 2 ) U 

This exact expression for 71 shows that the expansion in powers of # is zero 
at all orders in # and this agrees with (67). 
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4. T W O  D E G E N E R A T E  E I G E N V A L U E S  IN AN n x n  M A T R I X  

In this section, we extend the results of Section 2 to the case of an n x n 
matrix where the pth and (p + 1)th eigenvalues are degenerate 

with 

21 0 ) 

0 2, 

~1>)L2 > "'" >~ 'p=~Lp+l  > "'" >~'n 

(73) 

(74) 

The expansion (5) gives us the weak disorder expansion of any sum 
~j~-l 7j, m #p .  

We shall show that 7p can also be calculated by the same method as 71 
in Section 2: The result will be 

Yp=�89 I Po(R)G(R)dR/I Po(R)dR (75) 

where Po(R) and G(R) are still given by formulas (13) and (12) with the q~i 
and a~, b~, ca, d~ being replaced by the ~bi and fi~, Z;~, g~, 3~ given by 

p21 1 (8.J J. > 
(Pl--  )~p j = l  ~jj \ ~ ~z 

1 p.~l 1 (BPJBjp+l> 
(P2-- ~ j_~l "~jj \ - -~ --~x 

I p~l 1 (BjpBp + 
Q~3 = ~p j = l  ~ x ~x ~ lj> (76) 

,~4- ~. Tj.-~ -~ 

~ = - - .  g ~ = - - ;  ~ , - - - ;  3~= 
'~p ' '~'p )]'p )tp 

Let us explain this result. 
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In order to get 71+ "'" +Tp, one can consider p vectors VI~ --. V p 
defined by the following recursion relations: 

V l +  I = 

V? ((M~'V~)'VI~t+I~ 1 
V~+1=M~ ~ - ~ 1 - - - i - - -  V,+ 

~ V~+l " Vu+l / 1 
(77) 

V~+~ =M~V p -  i / f --_ -7"-- V~:+I 
~, V~+ 1 V~+I 

By construction, for any ~, the vectors VI~ ..- V g are orthogonal and for p 
small we can write them as 

1 

and 

for j<~p-  1 (78) 

/~tl(~ ) 

~t~ ~(~) 

+ 

#t.(~) 

(79) 

The multiplicative constants v~ are normalization factors, which allow us to 
keep the j th component of the vector V{ normalized for 1 ~< j ~< p -  1 and 
to keep x2(c0 + y2(e) = 1. 

Because all the eigenvalues have different moduli except the pth and 
the ( p +  1)th ones, one knows that in the limit / t ~ 0  each vector V~, 

822/50/3-4-4 
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j~< p - 1 ,  becomes an eigenvector of matrix A, whereas VP belongs to the 
degenerate subspace associated with the eigenvalue 2p. 

Moreover, since they are orthogonal, we have 

zj(~)+z{(~)=O Vi, j<~p- 1 (80) 

ti(ot)+x(~)z~(~)+ y(~)Zp+l(~)=O Vi<~p-1 (81) 

Then the pth Liapunov exponent is given by 

1 L logV~+l"VP+l (82) 

This method is very often used in the numerical determination of Liapunov 
exponents. (12'14) From (77) we get the recurrence between the components 
of V~ and V~, 

+ J 1) 2pv~ZYp(~) B:P+v:/+ v=+lzp(~ + = + 0(~) (83) 

V~+ j ,ZpJ+l(~+l)=)~pV=Zp+Y j I ( ~ ) + B p + l J v J + O ( # )  (84) 

% ,  #(~ + 1) = ~+v;#(~) + Byv~x(~)  + By+ 'v~(~) + O(~) (85) 

Using these relations, we also get 

vg+lx (~+  1) 

= ,~pvgx(~) + ~ [ B ~ v g x ( ~ )  + Bg~ + ~v~ y(~)] 
p--1 

- -  B ~ v ~ ]  fl 
j= V~+I 

X {;~pV~X(~)[,~pV j j ~i J ~zp(a) + B= v~] 
p J Y + ,Lpv~ y(~)[2pV~Zp+ ,(~) + B~ +'jr{] 

P JP P --]- [~jvc~tj(o~)-JF B vetx(o~)"~ OJp+ lvp fl(o~)] "VJ+I}> 

Jr- O([~ 3 ) (86) 

v~+ 1Y(~ + 1) 

= 2pvg y(~) + u[Bg + 1~+ lu~ y(~) + B~+ l~vgx(~)l 

; i '  __~2 E j~-'-- <[)~PYJZJp+I( O~)~-Bp+IjVjl 
Y~+l 

x {,~ ~ x ( ~ ) [ ~  v~z~(~) + ~+v~] 

B~ v~] + ;~pVp y(~)[ ,~pyjZ~+l(O~)q_ p + l j  j 

Bjp+ lvp + .~ �9 + [ ; g v g t g ~ ) + B ~ v g x ( ~ ) +  = ~ Yt~)Jv~+l}> 

-~ 0<~3> (87) 
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The leading order in p gives 

vJ~+,=2jv~+O(p) for l<~j<~p (88) 

Therefore, one can replace v~+ l/v~ by 2j for j ~< p -  1 in Eqs. (83) and (84) 
p p and in the term of order ]22 in (86), and one also can replace v~+ ~/v~ by 2p 

in Eq. (85). We have averaged the terms of order ]2 2 in (86) and (87) and 
neglected the fluctuations, which would contribute to higher orders in ]2. 

Since the random M(e) are statistically independent, it is clear that 

k l j  (Bdz;(oO) = 0  (89) 

for all indices i, j, k, l. 
Moreover, (83) and (84) give us, at the lowest order in ]2, 

1 
(z~(~) 2 ) = 22 _ 2p 2 ((B~,J) 2 ) (90) 

1 
: ( ( B P  + 1,j)2 ~ (91) ~<zJ+ 1(0~)2) ~j,2 __ 22 

1 
= ( R p , j B p  + 1,j > (92) <zJ(~) zJ+ 1(0~)) 22 - 22 \--c~ --~ 

We can rewrite vP+lx(c~+ 1) and vP+l y ( a +  1), 

vP+l x(~ + 1) = 2pVP[x(~) + #(8~x(~) + b~ y(~)) 

+ ]22(r x(~) + r y(~))] (93) 

and 

~- ~2((P3X(~) + r  Y(~))]  

where the coefficients t~, b~, ~ ,  ~ and the r are given by (75). 
Thus, we see that if we define R' and R by 

(94) 

R' = vP+ I x(o~ + 1)/vP~+ 1 Y(7 + 1) 

R = vPx(~z)/vP~ y(o~) 

(95) 

(96) 

one has 

R + p([l~,R + ~)~,) + #2(r + ~P2) 
R '= 

1 + ]2(g~ R + 3~,) -k- p2(r~3 R + g34) 
(97) 
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Using (82) and (97), we can extend the result (24) of Section 2 to the 
calculation of yp : 

l i m  l l o g  vp (98) 
7p = u ~ v~ 

1 yN 1og/VP+,\z{~ 
y p =  N lim+oo (99) 

,, v: / 

This can be calculated by taking the sum of the squares of Eqs. (93) and 
(94) and using the fact that x(c~) 2 + y(~)2 = 1. This gives 

1 
= log 2p +2 1 P(R) dR<log{ [(I + #fi~ +/~2~b, R + #~ + #2@212 Yp 

"]- [(#Cc~ -'~ ~2(p3) R -~- 1 -{-- ]~dcl ~- ~2(P412} --  log(R 2 + I )> / I  P(R) dR 

(10o) 

We recognize the same expression as in Section 2 [compare (22) and (97), 
(24) and (100)]. Therefore 7p can be expanded for/~ small as 

7p=log2p+ I#2 f+~ Po(R) G(R)dR/I+~ _ (101) 

where Po(R) and G(R) are still given by formulas (13) and (12), where the 
q)i and a~, b~, %, d~ are replaced by the ~ and 8~, ~ ,  ~ ,  d~. 

5. C O N C L U S I O N  

In this work we have developed a method which gives the weak 
disorder expansion of the Liapunov exponents when the matrix A has two 
degenerate eigenvalues. It would be interesting to generalize this 
calculation to many cases. (1) a degeneracy larger than 2; (2) non- 
diagonalizable matrices; (3) the case where matrix A has several complex 
eigenvalues with the same modulus. 

In principle the main result (11 )-(15) of the present work can be com- 
pared with the nondegenerate expansion (5). Consider the ease where the 
matrix A has the form 

1 +/~2r 0 ) (102) 
A = 0 1 + ~2(p4 
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when the difference @ 1 -  @4 becomes large 

Aq) = ~ol -- ~04 ~ oo (103) 

In that limit the two eigenvalues of  matrix A can be considered as non-  
degenerate and therefore we can use expression (5). The term of order  #4 
gives the 1/A~o correction, and so from (5) one gets in the limit A~o ~ oo 

7 1 = #  2 ~Pl 2 A~o (a~b~)(a~c~) (b2)(c~4 + 0  

(104) 

We tried to see whether this result could be recovered from expressions 
(11)-(15) in the limit Aq0 ~ oo, but  we have not  succeeded in proving or 
disproving it. We could only compute  ~1 in some examples; for example, 
cases when 

fA H2(x) = 0 (105) 

and in all the cases we could solve, we found an agreement  between the 
degenerate expansion (11) (15) and the nondegenerate  expansion (5). 

To conclude, we ment ion  that  the problem of the sensitivity of the 
L iapunov  exponents of products  of r andom matrices to small per turbat ions 
has been discussed in the mathematics  literature (is 18) and that  there exist 
condit ions under  which L iapunov  exponents are smooth  functions of  the 
perturbation.  
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