Weak ϵ-nets have basis of size $\mathrm{O}(1 / \epsilon \log (1 / \epsilon))$ in any dimension

Nabil H. Mustafa ${ }^{\text {a }}$, Saurabh Ray ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Lahore University of Management Sciences, Pakistan
${ }^{\text {b }}$ Universitaet des Saarlandes, Saarbruecken, Germany

Received 4 August 2006; received in revised form 4 January 2007; accepted 13 February 2007
Available online 4 April 2007
Communicated by E. Wezl

Abstract

Given a set P of n points in \mathbb{R}^{d} and $\epsilon>0$, we consider the problem of constructing weak ϵ-nets for P. We show the following: pick a random sample Q of size $\mathrm{O}(1 / \epsilon \log (1 / \epsilon))$ from P. Then, with constant probability, a weak ϵ-net of P can be constructed from only the points of Q. This shows that weak ϵ-nets in \mathbb{R}^{d} can be computed from a subset of P of size $\mathrm{O}(1 / \epsilon \log (1 / \epsilon))$ with only the constant of proportionality depending on the dimension, unlike all previous work where the size of the subset had the dimension in the exponent of $1 / \epsilon$. However, our final weak ϵ-nets still have a large size (with the dimension appearing in the exponent of $1 / \epsilon$).

© 2007 Elsevier B.V. All rights reserved.
Keywords: Combinatorial geometry; Weak ϵ-nets; Hitting convex sets

1. Introduction

Given a set system (X, \mathcal{F}), where X is the base set, and \mathcal{F} is a family of subsets of X, the general ϵ-net problem asks for a small subset X^{\prime} of X such that for every set $S \in \mathcal{F}$ containing at least $\epsilon|X|$ elements, $X^{\prime} \cap S \neq \emptyset$. In a celebrated result, Haussler and Welzl [5] showed that if the set system has finite VC-dimension, then picking a random sample from X of size $\mathrm{O}(1 / \epsilon \log (1 / \epsilon))$ (constant dependent linearly on the VC-dimension of the set system) yields an ϵ-net with some constant probability. Subsequently the ϵ-net problem for systems of finite VC-dimension has been studied extensively [6].

Unfortunately, the existence of small ϵ-nets is no longer true for set systems of infinite VC-dimension. For example, it is easy to see that any ϵ-net with respect to convex ranges must have at least $(1-\epsilon) n$ points of P if P is in convex position. The concept of weak ϵ-nets with respect to convex ranges was introduced by Haussler and Welzl [5] in their seminal paper: the restriction that the points of ϵ-net be a subset of X is dropped. Weak ϵ-nets (w.r.t. convex ranges) have found several applications in discrete and combinatorial geometry (see Matousek's book for several examples [6]).

Let $w(d, \epsilon)$ denote the maximum size of the weak ϵ-net required for any set of points in \mathbb{R}^{d} under convex ranges. This is finite since Alon et al. [2] have shown that for any ϵ, d, there exist a weak ϵ-net of size independent of n. In

[^0]particular, they proved that $w(d, \epsilon) \leqslant \mathrm{O}\left(1 / \epsilon^{d+1-\delta_{d}}\right)$, where δ_{d} tends to zero with $d \rightarrow \infty$. This result was improved by Chazelle et al. [3] to $w(d, \epsilon) \leqslant \mathrm{O}\left(1 / \epsilon^{d} \operatorname{poly} \log (1 / \epsilon)\right)$. They also showed that for a set of points in \mathbb{R}^{2} in convex position, there exists a weak ϵ-net of size $\mathrm{O}(1 / \epsilon \operatorname{polylog}(1 / \epsilon))$.

More recently, Matousek and Wagner [7] gave an elegant algorithm that computes weak ϵ-nets in \mathbb{R}^{d} of size $\mathrm{O}\left(1 / \epsilon^{d}\right.$ polylog$\left.(1 / \epsilon)\right)$. Their basic idea is the following: given the set P in \mathbb{R}^{d}, first compute a r-simplicial partition of P, r to be set later. Let S be the set formed by choosing an arbitrary point from each subset, and compute a set A (shown to be of size $\mathrm{O}\left(r^{d^{2}}\right)$) such that a centerpoint of every subset of S is present in A. The central claim is that if a convex set contains points from a large number of the sets of the partition, then it must contain the centerpoint of those points of S chosen from these intersected sets. Otherwise if the convex set intersects few sets of the partition, then Matousek and Wagner [7] recurse on the sets.

1.1. Our contributions

A long-standing open problem has been to show the existence of weak ϵ-nets in \mathbb{R}^{d} with size $o\left(1 / \epsilon^{d}\right)$. Note that this contrasts sharply with ϵ-nets for finite VC-dimension ranges, where the size of the ϵ-net depends almost linearly on $1 / \epsilon$. In fact, the current conjecture by Matousek et al. [7] is that optimal weak ϵ-nets should have size $\mathrm{O}(1 / \epsilon \operatorname{polylog}(1 / \epsilon))$ in \mathbb{R}^{d} for every integer d. This conjecture and the following observation (which follows from Lemma 5.1) is the motivation for our work:

Observation 1.1. Given a set P of n points in \mathbb{R}^{d}, a weak ϵ-net of P of size k is completely described by $\mathrm{O}\left(d^{2} k\right)$ points of P.

Essentially, each point of the weak ϵ-net is locally constructed from $\mathrm{O}\left(d^{2}\right)$ points of P. Hence if weak ϵ-nets do have size $\mathrm{O}(1 / \epsilon)$ in any dimension, then there must exist $\mathrm{O}(1 / \epsilon)$ (hidden constants depend on d) points of P from which it is constructed (we call this set a basis). So a possible first step towards confirming the conjecture is to show this linear dependence on points of P. Unfortunately all known constructions of weak ϵ-nets use $\Omega\left(1 / \epsilon^{d}\right)$ input points. In fact, a modification of [7] to compute the weak ϵ-net at one step (instead of several recursive steps) seemed to use fewer input points. However, it does not. Briefly, the construction uses an r-simplicial partition with sets of size $\Theta(n / r)$ such that no hyperplane intersects more than $\mathrm{O}\left(r^{1-1 / d}\right)$ sets of the partition. From each set in the partition, one point is chosen and then a set of points, containing a centerpoint for every subset of the chosen r points, is computed. It is then shown that if a convex set intersects $\Omega\left((d+1) r^{1-1 / d}\right)$ sets in the partition then one of the centerpoints computed is contained in the set, for otherwise there exists a hyperplane intersecting $\Omega\left(r^{1-1 / d}\right)$ sets. The case in which the convex set intersects fewer than $\mathrm{O}\left((d+1) r^{1-1 / d}\right)$ is dealt with recursively. To avoid recursion, we must choose r in such a manner that $\mathrm{O}\left((d+1) r^{1-1 / d}\right)$ sets contain fewer that ϵn points. Since the sets are of size $\Theta(n / r)$, we require that $(d+1) r^{1-1 / d} n / r<\epsilon n$ implying that $r>((d+1) / \epsilon)^{d}$. Hence, in that case too $\Omega\left(1 / \epsilon^{d}\right)$ input points are used.

Our contributions in this paper are threefold:

- We answer the above question in the affirmative, showing that for every point set P, there exists a set of $\mathrm{O}(1 / \epsilon \log (1 / \epsilon))$ points in \mathbb{R}^{d} from which one can construct a weak ϵ-net for P. So while the size of weak ϵ-nets that we compute is $\Theta\left(1 / \epsilon \log ^{d^{2}}(1 / \epsilon)\right.$, their description (i.e., points used to construct them) is in fact near-linear in $1 / \epsilon$.
- The proof establishes an interesting relation between strong ϵ-nets and weak ϵ-nets. Random sampling works for strong ϵ-nets since the number of ranges is polynomially bounded, and seems doomed when the ranges are exponential in number (since then one requires the probability of not hitting a range to be exponentially small as well). We show that sampling approaches work if one takes some 'products' over the sampled points. In particular, we show the following. In \mathbb{R}^{2}, take an ϵ-net with respect to the intersection of every six halfplanes. Then only from these $O(1 / \epsilon \log (1 / \epsilon))$ points, one can construct a weak ϵ-net of size $O\left(1 / \epsilon^{3} \log ^{3}(1 / \epsilon)\right)$. Similarly, we show that by random sampling $O(1 / \epsilon \log (1 / \epsilon))$ points in \mathbb{R}^{3}, and taking some function of them, one gets a weak ϵ-net of size $\mathrm{O}\left(1 / \epsilon^{5} \log ^{5}(1 / \epsilon)\right)$. For P in \mathbb{R}^{d}, take a random sample of size $\mathrm{O}(1 / \epsilon \log (1 / \epsilon)$) (with only the constant depending on d). Then another product function of these sampled points yields an ϵ-net with size $\mathrm{O}\left(1 / \epsilon^{d^{2}}\right)$.
- Our approach directly relates the size of the weak ϵ-nets to the 'description complexity' of these 'product' functions. We use two 'product' functions over points of P : Radon points, and centerpoints. Our proof reveals the
following connection (see Corollary 5.1 for a stronger statement): let Q be a set of m points in \mathbb{R}^{d}, and let $c(Q)$ be a set of points such that a centerpoint of every non-empty subset of Q is present in $c(Q)$. Then if $c(Q)$ has size $\mathrm{O}\left(m^{t}\right)$, one can construct weak ϵ-nets of size $\mathrm{O}\left(1 / \epsilon^{t} \log ^{t}(1 / \epsilon)\right)$. Therefore if one could show $t<d$, it improves the size of weak ϵ-nets.

1.2. Organization

We first present an elementary proof for the two-dimensional case in Section 3. While this gives the intuition for the problem, the proof uses planarity strongly, and so the extension to higher dimensions uses a different approach based on the Hadwiger-Debrunner theorem. The general approach can be improved for \mathbb{R}^{3} with additional ideas, which are presented in Section 4. The general construction for arbitrary dimensions is then presented in Section 5.

2. Preliminaries

We define a few concepts from discrete geometry for later use [6].
VC-dimension and $\boldsymbol{\epsilon}$-nets. (See [6].) Given a range space (X, \mathcal{F}), a set $X^{\prime} \subseteq X$ is shattered if every subset of X^{\prime} can be obtained by intersecting X^{\prime} with a member of the family \mathcal{F}. The VC-dimension of (X, \mathcal{F}) is the size of the largest set that can be shattered. The ϵ-net theorem (Welzl and Haussler [5]) states that there exists an ϵ-net of size $\mathrm{O}(d / \epsilon \log (1 / \epsilon))$ for any range space with VC-dimension d.

Radon's theorem. (See [6].) Any set of $d+2$ points in \mathbb{R}^{d} can be partitioned into two sets A and B such that $\operatorname{conv}(A) \cap \operatorname{conv}(B) \neq \emptyset$.

Ramsey's theorem for hypergraphs. (See [4].) There exists a constant $R(n)$ such that given any 2-coloring of the edges of a complete k-uniform hypergraph on at least $R(n)$ vertices, there exists a subset of size n such that all edges induced by this subset are monochromatic.

Hadwiger-Debrunner (p, q)-theorem. (See [1].) Given a set S of convex sets in \mathbb{R}^{d} such that out of every $p \geqslant d+1$ set, there is a point common to $q \geqslant d+1$ of them, then S has a hitting set of finite size and the minimum size of such a set is denoted by $H D_{d}(p, q)$ (independent of $|S|$).

3. Two dimensions

Consider the range space $\mathcal{R}_{k}=(P, R)$, where P is a set of n points in the plane, and $R=\left\{P \cap \bigcap_{i=1}^{k} h_{i}, h_{i}\right.$ is any halfspace $\}$ are the subsets induced by the intersection of any k half-spaces in the plane. This range space has constant VC-dimension (depending on k), and from the result of Haussler and Welzl [5], it follows that a random sample of size $\mathrm{O}(1 / \epsilon \log (1 / \epsilon))$ is an ϵ-net for \mathcal{R}_{k} with some constant probability. Let Q be such an ϵ-net. We have the following structural claim which establishes a relation between strong ϵ-nets and weak ϵ-nets.

Lemma 3.1. Let P be a set of n points in the plane, and let Q be an ϵ-net for the range space \mathcal{R}_{k}. Then, for any convex set \mathcal{C} in the plane containing at least ϵ n points of P, either (a) $\mathcal{C} \cap Q \neq \emptyset$, or (b) there exist $\lfloor k / 2\rfloor$ points of Q in convex position, say $q_{i} \in Q, i=1, \ldots,\lfloor k / 2\rfloor$, such that \mathcal{C} intersects the edge $\overline{q_{i} q_{j}}$ for all $1 \leqslant i<j \leqslant\lfloor k / 2\rfloor$.

Proof. Assume $\mathcal{C} \cap Q=\emptyset$. We then give a deterministic procedure that always finds $\lfloor k / 2\rfloor$ such points. W.l.o.g. assume that the convex set is polygonal (since there is always a polygonal convex set $\mathcal{C}^{\prime} \subseteq C$ such that $\mathcal{C}^{\prime} \cap P=\mathcal{C} \cap P$), and denote its vertices in cyclic order by p_{1}, \ldots, p_{m} for some m. Note that the next vertex after p_{m} is p_{1} again.

Define $\overrightarrow{p_{i} p_{i+1}}$ as the (infinite) half-line with apex at p_{i}, and extending through p_{i+1} to infinity (define $\overrightarrow{p_{i+1} p_{i}}$ likewise). See Fig. 1 (a). Let $T(i, j)$ be the region bounded by $\overrightarrow{p_{i-1} p_{i}}$, the segments $p_{i} p_{i+1}, \ldots, p_{j-1} p_{j}$, and $\overrightarrow{p_{j+1} p_{j}}$. Initially set $l=1, i_{l}=2$, and $j=3$, and repeat the following:

1. If $T\left(i_{l}, j\right)$ contains a point of Q, denote this point (pick an arbitrary one if there are many) to be q_{l}. Set $i_{l+1}=j$. Increment l to $l+1$, set $j=j+1$, and continue as before to find the next point of Q.
2. If $T\left(i_{l}, j\right)$ does not contain any point of Q, extend the region by incrementing j to $j+1$, and check again if $T\left(i_{l}, j\right)$ contains a point of Q.

This process ends when $j=1$. Assume we have l points q_{1}, \ldots, q_{l}, together with the indices i_{1}, \ldots, i_{l}. Note that, by construction, each point q_{t} is contained in the region $T\left(i_{t}, i_{t+1}\right)$. Consider any i_{t} and the point q_{t} that the region $T\left(i_{t}, i_{t+1}\right)$ contains. See Fig. 1(b).

Claim 3.1. The region $T\left(i_{t-1}, i_{t}-1\right)$ contains no points of Q.

Proof. By the greedy method of construction, i_{t} is the smallest index j for which the region $T\left(i_{t-1}, j\right)$ is non-empty. Hence all the regions $T\left(i_{t-1}, j\right), i_{t-1}<j<i_{t}$ are empty.

Define h_{t} to be the halfspace incident to the edge $p_{i_{t}-1} p_{i_{t}}$ and containing \mathcal{C}. Claim 3.1 immediately implies the following.

Claim 3.2. The halfspace h_{t}, defined by the line incident to the edge $p_{i_{t}-1} p_{i_{t}}$, separates q_{t} (and all the other points of Q lying in $T\left(i_{t-1}, i_{t}\right)$) from \mathcal{C}.

If the number of points found by our method is at most k (i.e., $l \leqslant k$), then take the intersection of the half-spaces h_{t}, for $t=1, \ldots, l$. By Claim 3.2, each halfspace h_{t} separates all the points in $T\left(i_{t-1}, i_{t}\right)$ from \mathcal{C}. Thus all the points of Q are now separated by this intersection (see Fig. 1(a) for the separating halfplanes), and since each halfspace contains \mathcal{C}, the intersection contains at least ϵn points of P. This contradicts the fact that Q was an ϵ-net to the range space \mathcal{R}_{k}.

Finally, note that the sequence q_{t} of points obtained, $t=1, \ldots, k$, has the property that the intersection point of any (properly intersecting) pair of segments joining non-consecutive points, lies inside \mathcal{C}. This follows from the fact that for every point q_{t}, all the non-adjacent points and q_{t} lie in the same two half-spaces incident to edges $p_{i_{t}-1} p_{i_{t}}$ and $p_{i_{t+1}} p_{i_{t+1}+1}$, both of which are incident to \mathcal{C}. Therefore picking every alternate point yields the desired set.

Set $k=8$, and compute the ϵ-net for the range space \mathcal{R}_{8}. It follows from Lemma 3.1 that if a convex set \mathcal{C} is not hit by the computed ϵ-net, then there exists a sequence of four points, say a, b, c, d, such that \mathcal{C} contains the intersection of the two segments $a c$ and $b d$. This immediately yields a way to construct weak ϵ-nets using (strong) ϵ-nets: the weak ϵ-net consists of an ϵ-net, say Q, for \mathcal{R}_{8}, and the intersection points of all segments between pairs of points of Q. By the above argument, each convex set containing at least ϵ n points of P either contains a point from Q or one of the intersection points. The number of points in the weak ϵ-net constructed above are $O\left(1 / \epsilon^{4} \log ^{4}(1 / \epsilon)\right)$. We now show that by a more careful argument, this can be reduced to $O\left(1 / \epsilon^{3} \log ^{3}(1 / \epsilon)\right)$.

Fig. 1. Constructing weak ϵ-nets in two dimensions. (a) The dotted lines indicate the at most k halfspaces that are used to separate Q from \mathcal{C}.

(a)

(b)

Fig. 2. (a) The intersection of a bisector with a segment will lie inside \mathcal{C}, (b) If \mathcal{C} intersects edges $a c$, $a d$ and $a e$, then it must intersect $a f$. Similarly for $b f$.

Theorem 3.1. Given a set P of n points in the plane, construct an ϵ-net Q for the range space \mathcal{R}_{12}. Construct the set Q^{\prime} as follows: for every ordered triple of points in Q, say a, b, c, add the intersection of the bisector of L abc with the line segment ac to Q^{\prime}. Then Q^{\prime} has size $\mathrm{O}\left(1 / \epsilon^{3} \log ^{3}(1 / \epsilon)\right)$ and is a weak ϵ-net for P.

Proof. Fix a convex set \mathcal{C} containing at least ϵn points of P. We may assume that \mathcal{C} does not contain any point of Q. Then, from Lemma 3.1, there exists a sequence of six points in convex position, say a, b, c, d, e, f, of Q where the intersection point of every pair of (properly intersecting) segments spanning these points lies in \mathcal{C}.

The sum of the interior angles of the polygon defined by the six points is 4π. Form two triangles by taking alternate points, say $\triangle a c e$ and $\Delta b d f$. The sum of the interior angles of the two triangles is 2π. By the pigeon-hole principle, there exists a point, say a, where the angle $\angle c a e$ is at least one-half of the interior angle of the polygon at vertex a, $\angle f a b$. Therefore, the bisector of the interior angle $\angle f a b$ lies inside the triangle $a c e$, and intersects the segment $b f$. This intersection lies between the intersection of $b f$ with the two segments $a c$ and $a e$. See Fig. 2(a). By assumption, these two intersections are contained inside \mathcal{C}. Therefore, by convexity, the intersection of the bisector of $\angle f a b$ with the segment $f b$ lies inside \mathcal{C}. Since Q^{\prime} contains all such intersections, \mathcal{C} is hit by Q^{\prime}.

Remark. An alternate proof follows from the fact that given any point set P in \mathbb{R}^{2}, there exist 2 orthogonal lines which equipartition P [8].

4. Three dimensions

Lemma 4.1. There exists a constant $f_{d}(t)$ for every $t \geqslant d+1$ such that given a polytope \mathcal{C} and a set of points Q in \mathbb{R}^{d} such that $\mathcal{C} \cap Q=\emptyset$, (i) either the set Q can be separated from \mathcal{C} by $f_{d}(t)$ hyperplanes or (ii) there exists $Q^{\prime} \subseteq Q$ such that $\left|Q^{\prime}\right|=t$ and the convex hull of every $d+1$ points of Q^{\prime} intersects \mathcal{C}.

Proof. Assume, without loss of generality, that the origin lies in the interior of \mathcal{C}. For $\vec{q} \in Q$ define

$$
S(\vec{q})=\left\{\vec{a} \in \mathbb{R}^{d} \mid \vec{a} \cdot \vec{q} \geqslant 1, \vec{a} \cdot \vec{x} \leqslant 1 \forall x \in \mathcal{C}\right\}
$$

where ' \because ' denotes the inner product. First note that $S(\vec{q}) \neq \emptyset$ since $q \notin \mathcal{C}$. Second, $S(\vec{q})$ is convex and closed, as it is the intersection of a family of closed convex sets (namely the closed halfspaces defined by the dual of q and the duals of the vertices of $\mathcal{C})$. Since \mathcal{C} contains the origin, $S(\vec{q})$ is also bounded and hence compact.

Since $\overrightarrow{0} \notin S(\vec{q}), \vec{a} \in S(\vec{q})$ implies that there is a hyperplane $(\vec{a} \cdot \vec{x}=1)$ which separates the point \vec{q} from the \mathcal{C}. If there are $d+1$ points q_{1}, \ldots, q_{d+1} whose convex hull does not intersect \mathcal{C}, then these $d+1$ points can be separated from \mathcal{C} by a single hyperplane (separation theorem, [6]). This implies that the corresponding convex sets $S\left(\overrightarrow{q_{1}}\right), \ldots, S\left(\overrightarrow{q_{d+1}}\right)$ have a common intersection.

Let $S=\{S(\vec{q}) \mid \vec{q} \in Q\}$ be the set of convex sets corresponding to the points in Q. If every subset $Q^{\prime} \subseteq Q$ of size t has $d+1$ points whose convex hull does not intersect \mathcal{C}, then $d+1$ of every t convex sets in S intersect. Therefore applying the (p, q)-Hadwiger-Debrunner theorem with $p=t$ and $q=d+1$ on the convex sets in S, we
deduce that Q can be separated from \mathcal{C} using $f_{d}(t)$ hyperplanes, where $f_{d}(t)=H D_{d}(t, d+1)$ and $H D_{d}(p, q)$ is the Hadwiger-Debrunner hitting set number for p and q in d dimensions.

Lemma 4.2. There exists a constant $g(t)$ for every $t \geqslant 5$ such that given a convex set \mathcal{C} in \mathbb{R}^{3} and set Q^{\prime} of $g(t)$ points in \mathbb{R}^{3} where the convex hull of every 4 points in Q^{\prime} intersects \mathcal{C}, one can find $Q^{\prime \prime} \subseteq Q^{\prime}$ of size at least t such that the convex hull of every 3 points in $Q^{\prime \prime}$ intersects \mathcal{C}.

Proof. Consider a hypergraph with the base set Q^{\prime} and every 3-tuple of points in Q^{\prime} as a hyperedge. Color a hyperedge 'red' if the convex hull of the corresponding 3 points intersects \mathcal{C} and 'blue' otherwise. Then, by Ramsey's theorem for hypergraphs [4], there exists a constant $g(t)$ such that if $\left|Q^{\prime}\right| \geqslant g(t)$, there exists a monochromatic clique, say $Q^{\prime \prime}$, of size t. A monochromatic 'blue' clique implies that there exists a set of t points such that \mathcal{C} does not intersect the convex hull of any 3 -tuple of these points. Take any 5 points of $Q^{\prime \prime}$, and partition their convex hull into two tetrahedra sharing a face. Since both these tetrahedra must intersect \mathcal{C}, their common face must also intersect \mathcal{C}, a contradiction. Therefore, the clique returned must be monochromatic 'red', implying the existence of a subset Q " of size t such that the convex hull of all three points in $Q^{\prime \prime}$ intersects \mathcal{C}.

To prepare for the next lemma, we need the following geometric claim.
Claim 4.1. Let $T=\{a, b, c, d, e\}$ be a set of five points in convex position in \mathbb{R}^{3}. Then, if a convex set \mathcal{C} intersects the convex hull of every 3-tuple of T, it intersects at least one edge (convex hull of a 2-tuple) spanned by the points in T.

Proof. By Radon's theorem, in every set of five points in convex position, there exists a line segment which intersects the convex hull of the remaining three points (the Radon partition). Assume the line segment $a b$ intersects the convex hull of c, d, and e. Then, we claim that \mathcal{C} must intersect $a b$. Otherwise, there exists a hyperplane h separating $a b$ from \mathcal{C}. Since $a b$ intersects the convex hull of c, d and e, h separates at least one point in $\{c, d, e\}$ from \mathcal{C} and convex hull of a, b and this third point does not intersect \mathcal{C}, a contradiction.

Lemma 4.3. Given a convex set \mathcal{C} in \mathbb{R}^{3}, there exists a constant $h(t)$ such that for any set $Q^{\prime \prime}$ of $h(t)$ points where the convex hull of every 3 points in $Q^{\prime \prime}$ intersects \mathcal{C}, one can find a subset $Q^{\prime \prime \prime} \subseteq Q^{\prime \prime}$ of size t such that the convex hull of every two points in $Q^{\prime \prime \prime}$ intersects \mathcal{C}.

Proof. Again consider a hypergraph with the base set $Q^{\prime \prime}$ and every 2-tuples of these points as a hyperedge. Color a hyperedge 'red' if the convex hull of the corresponding 2 -tuple intersects \mathcal{C} and 'blue' otherwise. Then again by Ramsey's theorem, there exists a positive integer $h(t)$ such that if $\left|Q^{\prime \prime}\right| \geqslant h(t)$, there exists a monochromatic clique of size t. We can assume (again by Ramsey's theorem) that if $t \geqslant k$ where k is a constant, then the points of the monochromatic clique have 5 points in convex position. From Claim 4.1, it follows that the convex hull of two of the points of these 5 points intersects \mathcal{C}, thereby implying that the color of the monochromatic clique cannot be 'blue' and hence the convex hull of every pair of points in the clique intersects \mathcal{C}.

Lemma 4.4. Given a set of points R in convex position in $\mathbb{R}^{3},|R| \geqslant 5$, and a convex set \mathcal{C} that intersects every edge spanned by the points in R, a Radon point of R is contained in \mathcal{C}.

Proof. Take the Radon partition of any five points in R. See Fig. 2(b). Say the edge $a b$ intersects the facet spanned by $\{c, d, e\}$. It is easy to see that if \mathcal{C} intersects the edges $a c, a d$ and $a e$, it must intersect the segment $a f$. Similarly, if \mathcal{C} intersects the edges $b c, b d$ and $b e$, it intersects the segment $b f$. By convexity, it must contain the intersection of the edge $a b$ with $\triangle c d e$.

We come to our main theorem in this section:
Theorem 4.1. Let P be a set of n points in \mathbb{R}^{3}. Then there exists a constant $c=f_{3}(g(h(5)))$ such that the followings holds: take any ϵ-net, say Q, with respect to the range space $\left(P, \mathcal{R}_{c}\right)$. Construct a weak ϵ-net, say Q^{\prime}, as follows: for every ordered 5 -tuple, say a $, b, c, d, e$, add the intersection (if any) of $\triangle a b c$ with $\overline{d e}$. Then Q^{\prime} is a weak ϵ-net for P of size $\mathrm{O}\left(1 / \epsilon^{5} \log ^{5}(1 / \epsilon)\right)$.

Proof. Fix any convex set \mathcal{C} containing at least ϵn points of P. Without loss of generality, we can assume that \mathcal{C} is a polytope (e.g., take the convex hull of the points of P contained in \mathcal{C}). Furthermore, one can assume that \mathcal{C} is a full-dimensional polytope (since for a fixed weak ϵ-net Q^{\prime}, and each lower-dimensional polytope \mathcal{C}^{\prime} not hit by Q^{\prime}, there exists a full-dimensional polytope containing \mathcal{C}^{\prime} also not hit by Q^{\prime}).

For a large enough constant c (depending on $f_{d}(\cdot), g(\cdot), h(\cdot)$), by Lemmas 4.1, 4.2 and 4.3, there exists a set of at least five points such that \mathcal{C} intersects every edge spanned by these points. Lemma 4.4 then implies that Q^{\prime} is a weak ϵ-net.

Remark. In [7], in order to construct a set that contains a centerpoint of all subsets of a set of r points in dimensions, $r^{d^{2}}$ points are used. The techniques described above can be used to reduce this to r^{3} and r^{5} (instead of r^{4} and r^{9}) for dimensions two and three respectively. This improves the logarithmic factors in their result.

5. Higher dimensions

Although the optimal weak ϵ-net can consist of any subset of \mathbb{R}^{d}, arguing similar to [7], we show that there is a discrete finite set of points in \mathbb{R}^{d} from which an optimal weak ϵ-net can be chosen. Given P, this subset is constructed as follows: consider the set of all hyperplanes spanned by the points of P (each such hyperplane is defined by d points of P). Every d of these hyperplanes intersect in a point in \mathbb{R}^{d}. Consider all such points formed by the intersection of d hyperplanes (i.e. the vertex set of the hyperplanes spanned by the point set). This is the required point set, which we denote by $\Xi(P)$.

Lemma 5.1. Let P be a set of n points in \mathbb{R}^{d}. Then the set $\Xi(P)$, of size $\mathrm{O}\left(n^{d^{2}}\right)$, contains an optimal weak ϵ-net for P, for any $\epsilon>0$.

Proof. Let S be any weak ϵ-net for P. We show how to locally move each point of S to a point of $\Xi(P)$. Wlog assume that each convex set is the convex hull of the points it contains. Take a point $r \in S$, and consider the (nonempty) intersection of all the convex sets which contain r. The lexicographically minimum point of this intersection, t, is the intersection of d of these convex sets [6]. Note that t lies on a facet of each of these convex sets, and each facet is a hyperplane passing through d points of P. Replacing r with t still results in a weak net, since by construction, t is also contained in all the convex sets containing r. The proof follows.

We now show that $\Xi(Q)$, where Q is a random sample of P of $\operatorname{size} O(1 / \epsilon \log (1 / \epsilon))$, is a weak ϵ-net with constant probability.

Theorem 5.1. Let P be a set of n points in \mathbb{R}^{d}, and let Q be a random sample of size $O(1 / \epsilon \log (1 / \epsilon))$ from P. With constant probability, $Q^{\prime}=Q \cup \Xi(Q)$ is a weak ϵ-net for P.

Proof. Clearly Q^{\prime} has size $\mathrm{O}\left(\epsilon^{-d^{2}} \log ^{d^{2}}(1 / \epsilon)\right)$ since each point in Q^{\prime} is defined by at most d^{2} points of Q (intersection of d hyperplanes, each defined by d points).

First, with constant probability, Q is an ϵ-net with respect to the range space $\left(\mathrm{P}, \mathcal{R}_{c}\right)$ for $c=f_{d}\left((d+1)^{2}\right)$, where $f_{d}(\cdot)$ is as in Lemma 4.1. Let \mathcal{C} be any convex set containing at least ϵn points of P and assume $\mathcal{C} \cap Q=\emptyset$. Then \mathcal{C} cannot be separated from Q by c hyperplanes, otherwise the intersection of the halfspaces containing \mathcal{C} defined by these c hyperplanes has ϵn points and no point of Q, a contradiction to the fact that Q is an ϵ-net for ($\mathrm{P}, \mathcal{R}_{c}$). Again assume, as in Theorem 4.1, that \mathcal{C} is a full-dimensional polytope. By Lemma 4.1, there exist a set S of at least $(d+1)^{2}$ points of Q such that the convex hull of every $d+1$ of them intersects \mathcal{C}.

By Lemma 1 of [7], Q^{\prime} contains a centerpoint, say q, of the set S. We claim that q is contained in \mathcal{C}. Otherwise, by the separation theorem, there exists a halfspace h^{-}containing q such that $h^{-} \cap \mathcal{C}=\emptyset$. By the centerpoint property, h^{-} contains at least $(d+1)^{2} /(d+1)=d+1$ points of S. The convex hull of these $d+1$ points lies in h^{-}and therefore does not intersect \mathcal{C}, a contradiction.

Given a set Q, a deep-point is a point $q \in \mathbb{R}^{d}$ such that any halfspace containing q contains at least d points of Q. Let $c(Q)$ be the set of points in \mathbb{R}^{d} such that a deep-point of every subset of Q of size at least $(d+1)^{2}$ is present in $c(Q)$. The proof above implies the following.

Corollary 5.1. If $c(Q)$ has size $\mathrm{O}\left(m^{t}\right)$ for any set Q of size m, one can construct a weak ϵ-net for any point set of size $\mathrm{O}\left(1 / \epsilon^{t} \log ^{t}(1 / \epsilon)\right)$.

Acknowledgements

The second author would like to thank Raimund Seidel and Hansraj Tiwary for insightful discussions.

References

[1] N. Alon, D. Kleitman, Piercing convex sets and the Hadwiger Debrunner ($p ; q$)-problem, Adv. Math. 96 (1) (1992) $103-112$.
[2] N. Alon, I. Bárány, Z. Füredi, D.J. Kleitman, Point selections and weak ε-nets for convex hulls, Combin. Probab. Comput. 1 (1992) 189-200.
[3] B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, M. Sharir, E. Welzl, Improved bounds on weak ε-nets for convex sets, in: STOC '93: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, 1993, pp. 495-504.
[4] R. Diestel, Graph Theory, Springer-Verlag, New York, 2000.
[5] D. Haussler, E. Welzl, ε-nets and simplex range queries, Discrete Comput. Geom. 2 (1987) 127-151.
[6] J. Matousek, Lectures in Discrete Geometry, Springer-Verlag, New York, 2000.
[7] J. Matousek, U. Wagner, New constructions of weak ε-nets, Discrete Comput. Geom. 32 (2) (2004) 195-206.
[8] E.A. Ramos, Equipartition of mass distributions by hyperplanes, Discrete Comput. Geom. 15 (2) (1996) 147-167.

[^0]: * Corresponding author.

 E-mail addresses: nabil@lums.edu.pk (N.H. Mustafa), saurabh@cs.uni-sb.de (S. Ray).

