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Abstract We investigate the detectability of weak electric

field in a noisy neural network based on Izhikevich neuron

model systematically. The neural network is composed of

excitatory and inhibitory neurons with similar ratio as that

in the mammalian neocortex, and the axonal conduction

delays between neurons are also considered. It is found that

the noise intensity can modulate the detectability of weak

electric field. Stochastic resonance (SR) phenomenon

induced by white noise is observed when the weak electric

field is added to the network. It is interesting that SR

almost disappeared when the connections between neurons

are cancelled, suggesting the amplification effects of the

neural coupling on the synchronization of neuronal spiking.

Furthermore, the network parameters, such as the connec-

tion probability, the synaptic coupling strength, the scale of

neuron population and the neuron heterogeneity, can also

affect the detectability of the weak electric field. Finally,

the model sensitivity is studied in detail, and results show

that the neural network model has an optimal region for the

detectability of weak electric field signal.

Keywords Detectability � Stochastic resonance �
Izhikevich neuron model � Weak electric field

Introduction

Noise is ubiquitous in both natural and engineered systems.

Intensive studies have revealed the enhanced effects of

noise on weak signals transmission, transduction and

detection, which is known as stochastic resonance (SR)

(Gammaitoni et al. 1998; Kanamaru et al. 2001; Zhou

et al. 2003; Cubero et al. 2007; Yu et al. 2011; Weber and

Waldman 2016). It is a phenomenon based on the coop-

erative effect between the stochastic dynamical system and

the external forcing (Wiesenfeld and Jaramillo 1998). The

phenomenon is first proposed as a plausible mechanism for

almost periodic occurrences of ice ages on earth during the

last 700,000 years (Benzi et al. 1981). The birth of SR as

an experimentally controlled physical phenomenon occur-

red in 1983, after its first laboratory demonstration in

Schmitt triggers (Fauve and Heslot 1983). Since then SR

has grown into a rapidly developing field with interdisci-

plinary research. It has been extended to many other

bistable systems, such as Josephson junctions (Bryant et al.

1987), ring laser (McNamara et al. 1988). SR was also

studied in threshold triggered monostable systems, where

the addition of noise may lead to the stochastic crossing of

a threshold, thus resulting in temporary excitation; the

system then relaxes to the equilibrium state awaiting the

next trigger event.

In particular, a well-known monostable system is the

neuron, which is fundamental element constituting bio-

logical neural networks. The main function of neurons is to

generate electrical signals in response to chemical and

other inputs, and transmit them to other neurons (Dayan

and Abbott 2005). The neuronal environment is noisy, this

is mainly due to conduction influence, membrane fluctua-

tions, channels stochastic gating and synaptic background

activity (Guo 2011; Neishabouri and Faisal 2014). The
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constructive effects of noise on signal transmission among

neurons have been extensively studied from both theoret-

ical and computational approaches (Moss et al. 2004;

Zheng et al. 2013). Array-enhanced SR has been verified in

Refs. (Stacey and Durand 2002; Kawaguchi et al. 2011),

where the results show that transmission and detection of

subthreshold signal can be enhanced with increased cou-

pling strength or neuron numbers in the network, and the

noise characteristics also play key roles in SR performance.

Besides, a close relationship between the neurons’ sensi-

tivity and the frequencies of input signal is found, sug-

gesting that the performance of SR is determined by both

the external modulation and neurons’ properties (Yu et al.

2001a, b). Furthermore, the dependence of noise intensity

on weak input signal is investigated with Hodgkin–Huxley

(HH) neuron model, evidencing the enhancement effects of

noise on the firing time reliability of neurons (Tanabe and

Pakdaman 2001; Lindner et al. 2002).

Recently, low-intensity electrical stimulation has

attracted more and more attentions, and its effects have

been investigated widely (Deans et al. 2007; Anastassiou

et al. 2010; Gordon and English 2016). Some studies have

proposed SR as a key mechanism in optimizing the per-

formance of specific functional electric stimulation devi-

ces, such as hearing implants (Morse and Roper 2000;

Zeng et al. 2000). Beside this specific application, the

functional electric stimulation technique covers a huge

class of application fields (Russell et al. 1999; Lin et al.

2000; Fraccalvieri et al. 2015). Transcranial electrical

stimulation (TES) with weak currents is actively investi-

gated to treat a range of neurological and psychiatric dis-

orders (Fregni et al. 2006; Liebetanz et al. 2006), and there

is evidence that low-intensity TES can affect ongoing brain

activity (Kirov et al. 2009; Iliopoulos et al. 2014). Animal

studies indicate that electric fields with intensities below

synaptic background activity can incrementally polarize

somatic membranes (Bikson et al. 2004). Increasing

attention in the therapeutic potential of weak transcranial

direct current (DC) and alternating current (AC) stimula-

tion to treat a range of neuropsychiatric disorders (Knot-

kova and Cruciani 2010; Loo et al. 2010) necessitates a

quantitative framework for understanding and optimizing

electrotherapeutic strategies, and exploring a cooperative

role of noise seems to be of particular significance.

Following this motivation, the detectability of weak

electric field is studied detailedly in a special neuronal

environment (a randomly connected network with similar

conduction delays, connection probability, and ratio

between excitatory and inhibitory neurons as that in

mammalian neocortex). We impose weak electric fields on

the randomly connected network model, and the signal

properties and noise intensity that may influence the elec-

tric field detectability are investigated with the network

model. Moreover, the effects of network parameters on the

electric field detectability are investigated systemically.

The rest of the paper is organized as follows: In

‘‘Mathematical model and methods’’ section, the con-

struction of the neural network model is presented together

with the introduction of the electric field and the linear

response Q. In ‘‘Weak electric field detectability’’ section,

the effects of network properties on the detectability of

weak electric field are investigated in detail. Frequency

sensitivity of the network model will also be demonstrated

in this part. Finally, discussion of this investigation is given

in ‘‘Discussion’’ section,

Mathematical model and methods

Each neuron in the randomly coupling network is described

by the simple spiking model-lzhikevich model, which is

computationally efficient and capable of reproducing rich

firing patterns similar with the real biological neurons

(Izhikevich 2003). The neural model has the following

form

_v ¼ 0:04v2 þ 5vþ 140� uþ I

_u ¼ aðbv� uÞ
ð1Þ

with the auxiliary after-spike resetting

if v� 30 mV; then
v c

u uþ d

�

ð2Þ

Here, variable v and u are dimensionless variables. v rep-

resents the membrane potential of the neuron and u rep-

resents a membrane recovery variable, which accounts for

the activation of Kþ ionic currents and inactivation of Na
þ

ionic currents, and it provides negative feedback to

v. Synaptic currents or injected currents are delivered via

the variable I. a, b, c and d are dimensionless parameters.

The parameter a describes the time scale of the recovery

variable u, b describes the sensitivity of the recovery

variable u to the subthreshold fluctuations of the membrane

potential v, c describes the after-spike reset value of the

membrane potential v caused by the fast high-threshold Kþ

conductances and d describes after-spike reset of the

recovery variable u caused by slow high-threshold Na
þ and

Kþ conductances. According to Eq. (2), the membrane

voltage and the recovery variable are reset when the spike

reaches its apex at þ30 mV. Depending on the values of

the parameters, the model can exhibit many properties of

biological neurons (Izhikevich et al. 2004). The model

does not have a fixed threshold and its resting potential is

between -70 and -60 mV according to the value of b. We

use ðb; cÞ ¼ ð0:2;�65Þ for all neurons in the network. For

excitatory neurons, we use the values ða; dÞ ¼ ð0:02; 8Þ,
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which corresponds to regular spiking neurons according to

its firing pattern. For inhibitory neurons, we use the values

ða; dÞ ¼ ð0:1; 2Þ, which corresponds to fast spiking

neurons.

In this paper, we simulated an anatomically realistic

network model that composed by excitatory (80 %) and

inhibitory 20 % neurons with conduction delay. The

ratio of excitatory to inhibitory neurons is 4 to 1, similar

as that in the mammalian neocortex. Any two neurons

are connected with the probability near 0.1, which is

again similar with the neocortex. The connections of the

neurons in the network belong to the pulse-coupled type,

where the firing of the presynaptic neuron instanta-

neously changes the membrane potential v of the post-

synaptic neurons by the synaptic weights sij. Here, we

assign excitatory synaptic weights to distribute randomly

in the range of [0, 6] and inhibitory weights in the range

of [0, 8]. The synaptic connections among neurons have

fixed conduction delays, which are random integers

between 1 and 20 ms. We assign 1 ms delay to all

inhibitory connections, and 1–20 ms delay to all exci-

tatory connections.

Inhibitory neurons were not polarized by the weak

electric field, assuming a typical symmetric morphology

(Radman et al. 2009). For excitatory neurons and weak

uniform electric fields, the change of membrane voltage is

linear with the applied field magnitude, and the polar-

ization of the Izhikevich neuron model to a current

injection exhibits low-pass characteristics (Deans et al.

2007; Reato et al. 2010). So the electrical stimulation in

the model is implemented as low-pass-filtered current IE
that is proportional to the applied electrical field (Reato

et al. 2010):

sE
oIE

ot
¼ �IE þ kEEðtÞ; ð3Þ

where kE is the sensitivity of the membrane to the field and

it depends on cell geometry and field orientation. We use

IE0 ¼ kEEðtÞ, which has the form of IE0 ¼ Assinð2pf stÞ. In
order to achieve a better match with experimentally

obtained magnitude response, the sensitivity kE ¼ 0:1 m/V

and time constant sE ¼ 10 ms, the same as in Ref. (Reato

et al. 2010). To account for the ensemble of possible noise

sources, a white Gaussian current DnðtÞ has been consid-

ered, where D represents its intensity. Here for Eq.1, we

take I ¼ IEðtÞ þ DnðtÞ þ IsypðtÞ, where IsypðtÞ is the

synaptic currents from other neurons.

To evaluate the effects of SR on the neural network, the

Fourier coefficient Q is calculated as a function of the input

frequency. The parameter Q is used instead of the power

spectrum because we are interested in the transport of the

information by the neural network. For this task, the Q

parameter is a much more compact tool than the power

spectrum (Gammaitoni et al. 1998),

Qsin ¼
x

2np

Z 2pn=x

0

2xðtÞ sinðxtÞdt;

Qcos ¼
x

2np

Z 2pn=x

0

2xðtÞ cosðxtÞdt;

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2
sin þ Q2

cos

q

;

ð4Þ

Here, n is the number of periods, and x ¼ 2pfs where fs is

the frequency of the weak signal IE0. x(t) is the average

firing rate of the network. The maximum of Q shows the

best phase synchronization between input signal and output

firing rate. It should be noted that one could expect a

response of the Q measure in the case of phase synchro-

nization but not vice versa. Other parameters used in this

paper are given in each case.

Weak electric field detectability

Network responses to different noise intensities

The effects of noise intensities on the detectability of weak

electric field are investigated firstly with the neural network

constructed above. We use white Gaussian noise to repre-

sent the noise that may exist in neuronal environment.

Figure 1 shows the spike raster and firing rates of the

neural network under different noise intensities. The net-

work activities corresponding to the same external electric

field and different noise intensities are shown in Fig. 1a–c.

When the noise intensity is lower (Fig. 1a), fewer neurons

in the network fire and the firing rate is low. But when the

noise intensity is too high (Fig. 1c), the phase sychro-

nization between the applied field and the spikes of the

network is damaged. The optimal case is represented by

Fig. 1b, which shows obvious coherence of network

activities with the applied field. This was consistent with

previous investigations that noise can modulate the phase

synchronization between the firing activities of the network

and weak electric field (Qin et al. 2014).

In order to distinguish the effects of single neuron and

neural network on SR, we recorded the synaptic currents

without electric field applied to the neurons in the decou-

pled network. Then those currents are replayed to the same

neurons in the decoupled network with the electric field

together. The results are shown in Fig. 1d, where the

coherence phenomenon of the network with the applied

electric field is not so obvious as in Fig. 1b. Thus, the

amplification effect of the network plays a key role in the

resonance phenomenon.
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Detectability for different weak signals

Frequency and amplitude are two essential factors of

alternating electric field. To study the detectability of

various weak electric fields in the neural network, the

linear response Q of the network is calculated as a function

of noise intensity under the two factors respectively.

As shown in Fig. 2, bell-shaped curves for different

signal amplitudes are observed, which indicates that there

exists an optimal noise intensity corresponding to the

maximal Q for each signal amplitude. The maximal

Q implies that the phase synchronization between the

spiking activities of the network and the external electric

field is optimal. It’s also found that the maximum Q in-

creases with the amplitude of input signal, which is con-

sistent with the previous investigation of mammalian

brain (Gluckman et al. 1996). Furthermore, the optimal

intensity of noise is shifted left slightly with the increase

of the amplitude of external electric field. The effects of

signal amplitudes can be illustrated as follows. The

increased amplitude of external electric field elevates the

potentials of neurons and makes the neurons more easily

fire, which further leads to the decrease of optimal noise

intensity.

The detectability of the weak signal with different fre-

quencies is also investigated. It shows clearly in Fig. 3 that

each curve has a maximal Q value corresponding to the

optimal SR between the network and the weak signal.

Different from the effects of signal amplitudes on SR, the

optimal noise intensity increases obviously with the

increase of signal frequency. When the signal frequency is

increased gradually, the maximal Q corresponding to dif-

ferent signal frequencies are increased firstly then

decreased. The variation trends of maximal Q should be

related with the frequency sensitivity of the network model,

where there is a finite time (the refractory time) for neurons

after excitation. When the signal frequency is lower than

the network’s intrinsic frequency, a reminiscent duration

with longer time is needed. When the signal frequency is

higher than the network’s intrinsic frequency, the network
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Fig. 1 Spike raster diagrams

and firing rates of the neural

network subjected to the same

external electric field for

different noise intensities of

D. Red dots denote inhibitory

spikes and blue ones denote

excitatory spikes. The frequency

of applied field is 6.7 Hz. a

D ¼ 100:4; b D ¼ 100:66; c

D ¼ 100:85; d D ¼ 100:66, the

network is in the decoupled

state and subjects to synaptic

currents which are recorded

without the electric field

application before decoupled.

(Color figure online)
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Fig. 2 Linear response Q of the neural network versus noise intensity

for different signal amplitudes. The frequency of weak signals is

fs = 6.7 Hz
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becomes more difficult to resonate with noise at original

intensity. And this makes the optimal noise intensity shift

right, in which the network can resonate with noise of

higher intensity. The sensitive frequency of the network

model will be studied in the following part.

To gain more insights into the effects of the signal

frequency on weak signal detectability, the linear response

Q is calculated as a function of the signal frequency and

noise intensity (Fig. 4). It can be seen that the signal

detectability relates to both of the noise intensity and signal

frequency. Specially, a bright elliptic area of Q is found,

which indicates that the firing rates of neural network are

more consistent with the signal when the parameters of

signal frequency and noise intensity are in that area.

Slightly increasing the amplitude of the input signal will

result in better response of SR and make the weak signal

detection more easily, which is shown clearly by compar-

ing Fig. 4a, b.

Effects of network parameters on weak signal

detectability

In the following, we will study the typical network

parameters that may influence the detectability of weak

signal, which includes the neuron population, the synaptic

coupling strength and the connection probability between

neurons. The effect of neuron population on SR is shown in

Fig. 5, where the dependence of Q on the noise intensity is

calculated for different neuron populations. Obviously,

there exists an optimal noise intensity corresponding to

maximal Q for each neuron population, and the optimal

noise intensity decreases with the increase of neuron pop-

ulation of the network. This should be related with the

increase of positive current that each neuron received. As
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Fig. 4 Linear response Q of the neural network as a function of signal

frequency and noise intensity. The color denotes the value of

Q. a As = 0.2; b As = 0.5. (Color figure online)
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for different neuron populations

Cogn Neurodyn (2017) 11:81–90 85

123



the connection probability is constant, the increase of

neuron population will make each neuron link with more

excitatory neurons, which further increases the synaptic

current from excitatory neurons. It also shows that the

variation trends of the optimal Q value for different neuron

populations first increase then decrease. Thus, there should

have an optimal neuron population and noise intensity for

the detectability of a fixed weak signal.

Besides the neuron population, the synaptic coupling

strength is another factor that may affect the weak signal

detectability in the neural network. In order to explore this,

the linear response Q for different synaptic strength is

shown in Fig. 6. The value of r is used to change the range

of synaptic distribution. It is found that the maximal Q in-

creases with the coupling strength between neurons. The

range that SR happens is also enlarged with the increase of

synaptic coupling strength, and the optimal noise intensity

for weak signal detection shifts leftward slightly. After

examining the changes of the network during this cir-

cumstance, it is found that the firing rates of the network

are elevated with larger coupling strength between neurons,

which further leads to the occurrence of SR more easily.

Finally, the effects of connection probability on the

detectability of weak signal are investigated. As the net-

work we concerned has similar connection probability as

that in the mammalian neocortex, we just focus on the

probability distributed around 0.1. Figure 7 is the linear

response Q of the network against the noise intensity for

different connection probabilities. With the increase of

connection probability P, the linear response Q increases

first, then it reaches a saturate state. The range of noise

intensity that enhances signal detectability becomes wider

with the increase of connection probability. This should be

related with the ratio of excitatory and inhibitory neurons

in the network as more excitatory neurons can be con-

nected to each neuron when the connection probability is

increased, which further leads to the enhancement of pos-

itive synaptic currents to neurons. It makes the neuron

more easily fire than the circumstance that the connection

probability between neurons is low. It should be noticed

that either the increase of coupling strength or connection

probability can enhance the detectability of weak signal,

and their reasons are all related with the increase of firing

rates of the neural network.

Therefore, the detectability of weak signal can be affected

by the network parameters, such as the neuron population,

the coupling strength and the connection probability of the

network. These results may have implications for the

applications of electrical stimulation device to cortical

neural network in vivo as the network parameters we choose

here are similar as that in mammalian neocortex.

Effects of neuron heterogeneity on weak signal

detectability

As heterogeneity is ubiquitous in real world and closely

related with several collective behaviors of neural networks,

the effects of it on weak signal detectability are studied here.

The best way to achieve heterogeneity for Izhikevich neural

model has been introduced in Ref.(Izhikevich 2003). Here,

we deal it with the same method by assigning the parameters

of each excitatory neuron as ðai; biÞ ¼ ð0:02; 0:2Þ and

ðci; diÞ ¼ ð�65; 8Þ þ ð15;�6Þ � k
2
i , where ki is a random

variable uniformly distributed on the interval [0, 1], and i is
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Fig. 6 Linear response Q of the neural network versus noise intensity

for different ranges of synaptic coupling strength. The excitatory

synaptic weights are distributed randomly in the range of ½0; 6þ r�,
and the inhibitory synaptic weights are distributed in ½0; 8þ r�
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for different connection probabilities P. The detectability of the weak
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the neuron index. Thus, ki ¼ 0 corresponds to the regular

spiking (RS) neuron, and ki ¼ 1 corresponds to the chat-

tering (CH) neuron. We use k2i to bias the distribution

toward RS neurons. Similarly, the parameters for each

inhibitory neuron are ðai; biÞ ¼ ð0:02; 0:25Þ þ

ð0:08;�0:05Þ � ki and ðci; diÞ ¼ ð65; 2Þ. Thus, ki ¼ 0 cor-

responds to the low-threshold spiking (LTS) neuron, and

ki ¼ 1 corresponds to the fast spiking (FS) neuron. The

neural network with the same structure as above is con-

structed using the heterogeneous neurons.

The effects of neuron heterogeneity on the detectability

of weak signal are shown in Fig. 8, where pentagram mark

is used to denote the case with fixed neuron parameters

(named case 1), and square mark is used to denote the case

with randomized neuron parameters (named case 2). As is

the amplitude of weak signal. It can be noticed that the bell

curve of linear response Q is still presented in case 2,

which verifies the reliability of the results above in this

paper. The optimal noise intensity corresponding to the

maximal Q shifts a little right compared with case 1,

meaning larger noise intensity is needed for the optimal

detection of weak signal in neural network with heteroge-

neous neurons. The neuron heterogeneity makes their firing

patterns diversity, which further hinders the phase syn-

chronization between the firing of neurons and external

weak signal. Thus, stronger noise is needed to induce the

appearance of SR for the neural network.

Frequency sensitivity

SR is a phenomenon typically exhibited in nonlinear sys-

tems for the detection, transmission and processing of weak

input signal, and the occurrence of it is strictly related to

the model sensitivity. So the weak signal detection is easier

when model sensitivity increases. On the other hand, when

the signal frequency is away from sensitive frequency of

the network model, higher amplitudes of the input signals

will be needed for detection with the same noise intensity.

Therefore, a preliminary study on frequency sensitivity

of network model should be carried out to confirm the

range for the detectability of weak electric field. The linear

response Q is calculated as a function of signal frequency

for different noise intensities and the same signal amplitude

As, which is shown in Fig. 9. It can be found that the

optimal signal frequency is enhanced with the increase of

noise intensity in the network. The variation trends of the

maximal Q for different noise intensities first increase then

decrease, indicating that there is an optimal signal fre-

quency which can lead to more obvious SR phenomenon

than any other signal frequencies.

To further understand the mechanism underlying the

frequency sensitivity of network model and weak signal

detectability, signals with different frequencies and

amplitudes are investigated. Figure 10 is the linear

response Q of the network as a function of the signal fre-

quency and amplitude. Each point in the heat map repre-

sents the value of Q. It’s found that the linear response

Q relates to both of the signal amplitude and frequency.

When the amplitude and the frequency are chosen at a

proper range, the optimized response of the network (the

bright region) is obtained, which corresponds to the most

sensitive region of the network for input signal. Comparing

Fig. 10a, b, it is found that the bright region expands and

shifts rightward with proper increase of noise intensity,
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Fig. 9 The frequency sensitivity of the model. Curves represent the

linear response Q versus signal frequency. The neural network has

different optimal frequencies for different noise intensities. Here,

As = 0.2

Cogn Neurodyn (2017) 11:81–90 87

123



which is also consistent with the above investigations of

the effects of frequency and noise on the detectability of

weak signal.

Therefore, frequency sensitivity of network model plays

an important role in weak signal detectability. When the

signal frequency is in the range of sensitive frequency of

the network model, it can be easily detected with noise at

certain intensity.

Discussion

Throughout the paper, the capability of neural network to

detect weak electric fields is discussed for different neuron

populations, neuron types, coupling strength, connection

probabilities and noise intensities. Results show that the

noise can improve the detectability of weak electric field in

the randomly connected network, which is strictly related

with the occurrence of SR. Moreover, the weak signal

detection is found to be dependent on the parameters of

neural network, such as the neuron heterogeneity, the

coupling strength, the sensitive frequency of the network

and so on.

We have systemically investigated the factors of the

neural network that may affect the detectability of the weak

signal. It is found that the linear response Q of the network

increases with the coupling strength between neurons,

indicating that better detectability of weak signal is

attained. The effects of coupling strength on SR have been

investigated previously. Mahmut et al. constructed small-

world networks with HH neurons and found that SR is

intensively associated with the coupling strength among

neurons (Ozer et al. 2009). Yu et al. further studied SR

with the spike-time-dependent plasticity (STDP) rule in

small-world neural network constituted by FitzHugh–

Nagumo (FHN) neural model, and found that SR can be

further improved via fine-tuning of the average coupling

strength between neurons (Yu et al. 2014). Our investiga-

tion shows that SR will be more obvious with the increased

coupling strength between neurons, which extends the

previous results although different network structures and

neural models are used. The effects of neuron population

are also investigated, where the detectability of weak signal

first increases then decreases obviously with the enlarge-

ment of neural population, and the optimal noise intensity

corresponding to each neuron population shifts leftward.

Similar results have also been found in small-world net-

work with both chemical and electrical synaptic couplings

between FHN neurons, where the optimal noise intensity of

SR shifted left slightly when the neuron number of the

network is increased (Wei et al. 2015). Stacey et al. sim-

ulated noisy neural networks with CA1 neurons by NEU-

RON software and found that detection of subthreshold

signal is improved when the neuron number or the coupling

strength in the network is increased (Stacey and Durand

2002). Furthermore, the investigation here found that

increasing connection probability between neurons can

elevate the maximal value of Q to a saturated state and

make the optimal noise intensity shift left slightly. This is

also consistent with the results of SR in small-world net-

work with STDP, where an optimal probability of adding

shortcuts is convenient for the noise-induced transmission

of weak periodic signal (Yu et al. 2014). It should be

noticed that the new shortcuts also increase the connection

probability of the neural network. Heterogeneity is also

essential to the mathematical simulation of neural networks

as the neurons in real-world should be different with each

other. The investigation indicates that noise with higher

intensity is needed in the neural network with heteroge-

neous neurons to synchronize the weak signal than the
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Fig. 10 Linear response Q as a function of noise intensity and weak

signal amplitude. The color denotes the value of Q. a D ¼ 100:5; b

D ¼ 100:7. (Color figure online)
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neural network with homogeneous neurons. However, the

maximal Q of the network with heterogeneous neurons are

larger than the network with homogeneous neurons, sug-

gesting the network activities are more synchronous with

weak signal than that of homogeneous neurons. The

improvement of SR with neuron heterogeneity has also

been reported by previous investigation with scale-free

network, where the maxima of SR measurement are

enhanced as the heterogeneity is increased (Wang et al.

2012). The heterogeneity here is set as constant, but an

enhancement effect on SR corresponding to different signal

amplitudes is still found by comparing SR with homoge-

neous neurons. In short, it is concluded that the network

parameters mentioned above play key roles in determining

the detectability of the weak signal.

Low-intensity electrical stimulation has led to many

achievements in recent years. The effects of TES should be

cumulative as multiple consecutive sessions are often

needed to make it become effective for subjects (Charvet

et al. 2015). Although it has been verified effective in

improving sensory, cognitive and psychiatric processes,

there still has not unified illustration for its principles. How

and what kind of neural plasticity are induced by weak

electric stimulation is still unclear. It is also difficult to

investigate the mechanism of TES due to the absence of

techniques to observe microscopic changes of subject’s

cortex together with the application of TES. A well

established tool for TES investigation is the hippocampal

slice of rat, where the network activity under weak elec-

trical field can be obtained with intracellular recording

technique (Fröhlich and McCormick 2010). Weak electri-

cal fields can incrementally polarize somatic membranes

and further affect the firing rates and spike timing of neural

network in hippocampal slices (Reato et al. 2010). As SR

is a possible mechanism for the illustration of TES, a

randomly connected neural network that utilizes the

structural parameters of anatomical mammalian cortex is

constructed with Izhkevich neural model in this investi-

gation, where the effects of different parameters of neural

networks on SR can be studied detailedly. The investiga-

tion here indicates that the frequency and amplitude of

weak electrical field play key roles in modulating the

cortical activities, and weak electrical field with suit-

able frequency can be effective even at a small amplitude.

The application region of TES is also important as it is

related with the network properties investigated above,

where suitable neuron populations and coupling strength

between neurons can aid the performance of TES.

Recently, the importance of endogenous field on network

activities is emphasized (Fröhlich and McCormick 2010;

Wei et al. 2015). Investigations indicate that endogenous

field also interacts with the external electrical field and

local field potentials of neural network. Thus, further

investigations will focus on the effects of endogenous field

on TES performance. Moreover, the effects of STDP on the

evolution of cortical network can also be investigated,

which is more vivid to simulate the effects of TES on

subjects.

The results shown in this paper should be significant to

the field of neuroscience. Since there is not clear inter-

pretation for the functional mechanism of weak electric

stimulation devices, studies of weak signal detectability

here may be helpful to understand the interaction mecha-

nisms between the weak electric stimulation and the

activity of a biological system. It also makes sense to use

this network model to investigate how the endogenous field

affects the network activities and the neural coding and

encoding.
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