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Abstract We derive the gravitational waves for f (T, B)

gravity which is an extension of teleparallel gravity and
demonstrate that it is equivalent to f (R) gravity by linearized
the field equations in the weak field limit approximation.
f (T, B) gravity shows three polarizations: the two standard
of general relativity, plus and cross, which are purely trans-
verse with two-helicity, massless tensor polarization modes,
and an additional massive scalar mode with zero-helicity.
The last one is a mix of longitudinal and transverse breathing
scalar polarization modes. The boundary term B excites the
extra scalar polarization and the mass of scalar field breaks
the symmetry of the TT gauge by adding a new degree of
freedom, namely a single mixed scalar polarization.

1 Introduction

Albert Einstein, in 1928, made an attempt to formulate a
unified theory of gravity and electromagnetism by using the
geometric notion of teleparallelism introduced a few years
before by Cartan. For this purpose, he relaxed the hypothe-
sis of connection symmetry by Levi Civita and considered
a curvature-free connection with torsion, the Weitzenböck
one, and formulated the theory adopting a tangent space basis
that had the property to make the spacetime parallelizable.
Then, he used the tetrad {ea} based on the notion of distant or
absolute parallelism. This attempt to unify General Relativ-
ity (GR) with electromagnetism proved unsuccessful because
the components of the electromagnetic field, identified with
the additional six components of the tetrad, could be elim-
inated by imposing the local Lorentz invariance. However,
this alternative formulation, based on geometry modification
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[1–3], is equivalent to GR and was named Teleparallel Equiv-
alent General Relativity (TEGR), in the sense that it describes
the same physics because it gives the same field equations
of GR. In fact, considering the Hilbert–Einstein Lagrangian,
linear in the Ricci scalar curvature R [4,5],

LHE (g) = − 1

2κ2 R
√−g, (1)

with κ2 = 8πG/c4 and the teleparallel Lagrangian, linear in
the torsion scalar T

LT EGR (e) = e

2κ2 T, (2)

they differ from each other by a four divergence which is

LHE (e) = LT EGR (e) + ∂μ

( e

κ2 T
ρμ
ρ

)
. (3)

Several issues of today physics can be addressed by extend-
ing the geometric sector of the Einstein field equations. For
example, f (R) gravity is an extension of GR because it the
Hilbert–Einstein Lagrangian, linear in the Ricci curvature
scalar R, is extended considering a generic function of it [6].
In the same way it is possible to extend the TEGR by con-
sidering an analytical function f (T ) of the torsion scalar T
[7].

The f (T ) teleparallel gravity differs from f (R) grav-
ity because the former leads to second-order field equations
while the latter leads to fourth order field equations in met-
ric formalism. Furthermore, f (T ) gravity is not invariant
under local Lorentz transformation if the spin connection
is set to zero. f (T ) gravity can be adopted, for example,
to explain the accelerated expansion of the Universe at the
present time without the introduction of dark energy (see [5]
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for a review). If we want to study higher order telepallel the-
ories, equivalent to those expressed in terms of R, we can not
limit ourselves to f (T ), because it always produces second
order dynamical equations. We have to introduce both bound-
ary term B = 2∇μ (Tμ), depending on the derivatives of the
torsion vector Tμ and terms like �T , �kT in the teleparallel
Lagrangian [8,9]. We can therefore start from f (R) gravity,
and find its teleparallel equivalent after observing that the
boundary term is B = −T − R and then restore the f (T, B)

gravity [10]. The teleparallel theory of gravity f (T, B) is the
teleparallel equivalent of f (R) as the TEGR is the teleparal-
lel equivalent of GR as we will show below by considering
the weak field limit and the gravitational wave modes. In the
framework of f (T, B) gravity, it is possible to explore the
validity of laws of thermodynamics [11] and derive energy
constraints for de Sitter (dS), power-law, �CDM and phan-
tom models [12].

The detection of gravitational waves (GWs) opened new
perspectives in the study of the alternative theories of gravity
and, in general, in relativistic astrophysics. In generic metric
theories of gravity, it is possible to show that the GWs polar-
izations can give, at maximum of six modes in 4D spacetimes.
More precisely, according to [13,14], we have: breathing (b),
longitudinal (l), vector-x (x), vector-y (y), plus (+) and cross
(×) modes.

In order to study the further GW polarizations, beyond the
two standards plus and cross modes, it is useful to extend GR
to more general theories. If scalar or vector modes are found,
it could mean that theory of gravitation should be extended
beyond GR and some theoretical models should be excluded.

To this end, the GW170817 event [15] set constraints on
viable gravitational theories. In fact, the event was the first to
provide constraints on the speed of electromagnetic and grav-
itational waves. According to this result, it is possible to fix
possible masses of further gravitational modes [16]. This fact
is important to discriminate among concurring gravitational
theories and some alternatives to GR, including some scalar-
tensor theories like Brans–Dicke gravity, Horava–Lifshitz
gravity, and bimetric gravity, seem excluded [17]. In particu-
lar, observational constraints on f (T ) gravity can be imposed
by the combined observation of GW170817 and its electro-
magnetic counterpart GRB170817A, as discussed in [18,19].
In these papers, constraints derived from primordial gravita-
tional waves are also taken into account.

In summary, GWs polarizations are a powerful tool to
probe theories of gravity. Moreover, by means of the lin-
earized gravitational energy-momentum pseudo-tensor of
f (R), f (T ) gravity [20] or more generally of f (R, R�R,

. . . R�k R) gravity [21], it is possible to express the pseudo-
tensor in terms of the further modes in order to test alterna-
tive theories of gravity. In the framework of teleparallelism,
gravitational waves have started to be studied recently. These

studies led to the interesting possibility to classify teleparallel
theories according to their degrees of freedom [22–25].

In this paper, we investigate GWs generated in theories
containing the torsion scalar T and the boundary term B and
show, from this point of view, their equivalence with f (R)

gravity.
The layout of the article is as follows: in Sect. 2 we obtain

the geometrical and physical quantities of interest after the
expansion of tetrads around the flat geometry at first order in
the weak field approximation. In Sect. 3, we prove the equiva-
lence between f (T, B) and f (R) theories and then we derive
the field equations in presence of matter for f (T, B) grav-
ity in the low energy limit. GWs in vacuum are obtained in
Sect. 4 and, finally, in Sect. 5 both polarization and helicity
of GWs are studied by mean the equation of geodesic devi-
ation and the Newman–Penrose formalism. Conclusions are
drawn in Sect. 6.

Throughout this work we will use conventions by Landau
and Lifshitz [26], that is:

(1) The metric signature is (+,−,−,−) .
(2) The Riemann tensor Rρ

λνμ for a generic connection 	 is
defined as

Rρ
λνμ = ∂ν	

ρ
λμ − ∂μ	

ρ
λν + 	ρ

ην	
η
λμ − 	ρ

ημ	
η
λν. (4)

(3) The Ricci tensor is defined as the contraction Rμν =
Rλ

μλν .

2 Weak field limit in teleparallel gravity

Dynamical variables used in teleparallelism are the compo-
nents of tetrad basis {ea} and dual basis {ea} which form a
local orthonormal basis for the tangent space at each point
{xμ} of the spacetime manifold. The components of the vier-
bein satisfy relations [27–31]

eaμe
ν
a = δν

μ , and eaμe
μ
b = δba , (5)

ηab = gμνe
μ
a eν

b , and gμν = ηabe
a
μe

b
ν , (6)

where we are going to use the Greek alphabet to denote
indices related to spacetime, and the Latin alphabet to denote
indices related to the tangent space. The Weitzenböck con-
nection is defined as

	̃ρ
μν = eρ

a ∂νe
a
μ, (7)

and its torsion tensor is

T ν
ρμ = 	̃ν

μρ − 	̃ν
ρμ = eν

a∂ρe
a
μ − eν

a∂μe
a
ρ. (8)
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Defined the contortion tensor as the connection of Weitzen-
böck minus the Levi Civita connection that is

K ν
ρμ = 	̃ν

ρμ− ◦
	

ν
ρμ = 1

2

(
T ν

ρμ + T ν
μρ − T ν

ρμ

)
, (9)

and the superpotential tensor Sρμν as

Sρμν = 1

2

(
Kμνρ − gρνT σμ

σ + gρμT σν
σ

)
, (10)

we obtain the scalar torsion T

T = TρμνS
ρμν, (11)

from the contraction of the torsion tensor with the super-
potential. The curvature of the Weitzenböck connection
is R[	̃] = 0, where the Riemann tensor Rρ

λνμ for a
Weitzenböck connection is defined as

Rρ
λνμ = ∂ν	̃

ρ
λμ − ∂μ	̃

ρ
λν + 	̃ρ

ην	̃
η
λμ − 	̃ρ

ημ	̃
η
λν. (12)

We now express the scalar curvature R[ ◦
	] of the Levi-Civita

connection in terms of the scalar torsion T and the vector
torsion T σ , that is

−R[ ◦
	] = T + 2

e
∂σ

(
eT νσ

ν

)
, (13)

with T σ obtained by contracting the first and third torsion
tensor index

T σ = T νσ
ν , (14)

where e = det
(
eaρ
)
. If we indicate the boundary term as

B = 2

e
∂σ

(
eT νσ

ν

)
, (15)

we get the relation1

−R[ ◦
	] = T + B. (16)

We now expand the tetrad field around the flat geometry
described by the trivial tetrad eaμ = δaμ as follows

eaμ = δaμ + Ea
μ, (17)

where |Ea
μ| � 1. Thus perturbing the metric tensor gμν to

first order in Ea
μ we obtain

gμν = ημν + hμν + O
(
h2
)

= ημν + ημa E
a
ν + ηνa E

a
μ + O

(
E2
)

, (18)

1 For the signature of boundary term, see the discussion in [20].

and so

hμν = ημa E
a
ν + ηνa E

a
μ. (19)

The Weitzenböck connection to first order in Ea
μ becomes

	̃ρ(1)
μν = δρ

a ∂νE
a
μ. (20)

The covariant derivative ∇μ and the covariant d’Alembert
operator � = gμν∇μ∇ν to zero order become

∇(0)
μ = ∂μ , (21)

�(0) = ημν∂ν∂μ = ∂μ∂μ. (22)

The torsion tensor Tμ
νρ and its contraction Tμν

μ can be written
as

Tμ(1)
νρ = δμ

a

(
∂νE

a
ρ − ∂ρE

a
ν

)
, (23)

and

T ρσ(1)
ρ = δμ

a ησν
(
∂νE

a
μ − ∂μE

a
ν

)
. (24)

We compute the contortion tensor as

K ρ(1)
μν = ημλδ

λ
a∂

ρEa
ν − δρ

a ∂μE
a
ν , (25)

and the superpotential Sμν
ρ , the scalar torsion T and the

boundary term B as

2Sμν(1)
ρ = δν

a∂
μEa

ρ −δμ
a ∂νEa

ρ −δν
ρ

(
δσ
a ∂μEa

σ −ηαμδaα∂σ E
σ
a

)

+δμ
ρ

(
δσ
a ∂νEa

σ − ηανδaα∂σ E
σ
a

)
, (26)

T (2) = Tμνρ(1)S(1)
μνρ , (27)

B(1) =
(

2

e
∂σ

(
eT σ

))(1)

= 2δν
a

[
�Ea

ν − ∂μ∂νE
a
μ

]
.

(28)

The Ricci curvature R, to the first order in Ea
μ, takes the

following form

R(1) = −B(1), (29)

that is, the first order boundary term B(1) contributes to the
Ricci curvature. Finally we obtain the useful relation

2∂νS
μν(1)
ρ = δν

a∂ν∂
μEa

ρ − δμ
a �Ea

ρ − δσ
a ∂ρ∂μEa

σ

+ ηρμδσ
a ∂ρ∂σ E

a
ρ

+ δμ
ρ δσ

a �Ea
σ − δμ

ρ δσ
a ηαν∂ν∂σ E

a
α , (30)

and we set

Eμν = ημa E
a
ν , E = δμ

a E
a
μ. (31)
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The first order perturbative tetrad Ea
μ is not symmetric

because the f (T, B) gravity is not invariant under a local
Lorentz transformation [22,32]

ημa E
a
ν �= ηνa E

a
μ, (32)

and then, we decompose the perturbation tetrad Eμν into
symmetric and antisymmetric parts

Eμν = E(μν) + E[μν]. (33)

However, the antisymmetric part E[μν] have no physical
meaning because it is not involved into the Lagrangian
L f (T,B) and field equations, depending on the symmetric
part E(μν) by means of T and B. Hence, we can set to zero
the antisymmetric component E[μν]

E[μν] = 0, (34)

and the metric perturbation becomes

hμν = 2ημa E
a
ν . (35)

Now we have all the ingredients to develop the analysis for
f (T, B).

3 The weak field limit of f (T, B) teleparallel gravity

Before developing the weak field limit in the context of
f (T, B) gravity, let us prove that it is the teleparallel equiv-
alent of f (R) gravity [9]. This statement can be supported
by the fact that both theories describe the same physics. It
is worth stressing that teleparallel theories are governed by
the dynamical variables eμ

a , components of the tetrad basis
{ea}. After fixing the tetrad, we can express uniquely both
the scalar torsion T and the boundary term B. Then we can
write the scalar torsion T as

T = 1

4
T ρ

μνT
μν
ρ + 1

2
T ρ

μνT
νμ
ρ − T ρ

μρT
νμ
ν . (36)

From the Weitzenböck connection 	̃
ρ
μν , defined in (7), and

the torsion tensor T ρ
μν , defined in (8), both can be expressed

in terms of the tetrad eμ
a . We get the following expression for

the scalar torsion T

T = eμ
a

◦
∇ν
(
eaαe

ρ
b e

α
c ηbc

)
ebνe

c
ρηbce

ν
a

◦∇μ eaν

−eμ
a

◦∇μ eaρe
σ
d

◦∇σ edβe
β
b e

ρ
c ηbc , (37)

where
◦∇μ is a covariant derivative for the Levi Civita con-

nection
◦
	 given in terms of the tetrad basis. The boundary

component B, expressed in terms of vierbein, is given by the
relations

B = 2

e
∂σ

(
eT νσ

ν

)
, T σ = eaν ∂σ eν

a − eσ
b e

τ
cη

bceaτ ∂νe
ν
a,

(38)

and then

B = 2

e
∂σ

[
e
(
eaν ∂σ eν

a − eσ
b e

τ
cη

bceaτ ∂νe
ν
a

)]
. (39)

Now if we calculate

−T − B = −
[
eμ
a

◦
∇ν
(
eaαe

ρ
b e

α
c ηbc

)
ebνe

c
ρηbce

ν
a

◦∇μ eaν

−eμ
a

◦∇μ eaρe
σ
d

◦∇σ edβe
β
b e

ρ
c ηbc

]

−2

e
∂σ

[
e
(
eaν ∂σ eν

a − eσ
b e

τ
cη

bceaτ ∂νe
ν
a

)]
(40)

we get exactly the curvature R of the Levi Civita connection
◦
	 expressed in terms of the tetrad basis

R[ ◦
	]=eθ

ae
ν
bη

ab
[
∂ρ

◦
	

ρ

θν + ◦
	

ρ

σρ

◦
	

σ

θν −∂ν

◦
	

ρ

θρ − ◦
	

ρ

σν

◦
	

σ

θρ

]
.

(41)

This means that, if we fix the tetrad basis eρ
a both T and

B, and therefore R, are uniquely determined. We have no
possibility to disentangle the 3 objects T , B, and R once the
tetrad is given, then the relation

R[ ◦
	] = −T − B, (42)

is fixed by the tetrad. If T and B were independent, we could
have

R[ ◦
	] �= −T − B. (43)

This would be possible, if we could express T in a tetrad
basis eρ

(1)a and B in another tetrad basis eρ

(2)a , but this is not
possible because both T and B must be expressed in terms
of the same basis eρ

a .
Let us now take into account the action of f (T, B) gravity

in presence of standard matter [9]

S f (T,B) =
∫

�

d4x

[
1

2κ2 f (T, B) + Lm

]
e. (44)

According to the previous considerations, it is that is the
teleparallel action equivalent to the f (R) gravity action. The
variation of the action (44) with respect to the vierbein fields
eaρ yields the following field equations
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4

e
∂σ

(
e fT S

ρσ
a

)+ f (T, B) eρ
a − 4 fT T

μ
νa S

νρ
μ − B fBe

ρ
a

+4 (∂λ fB) Sλρ
a + 2eρ

a� fB

−2eσ
a ∇σ ∇ρ fB = 2κ2T ρ

a , (45)

where T ρ
a is the energy momentum tensor of matter defined

as

T ρ
a = −1

e

δ (eLm)

δeaρ
. (46)

Supposing f (T, B) being an analytic function of T and B
we can expand it as

f (T, B) = f (0) + fT (0) T + fB (0) B + fT B (0) T B

+ fT T (0) T 2 + fBB (0) B2

+O
(
T B, T 2, B2

)
. (47)

The linearized field equations are

4 fT (0) ∂σ S
ρσ(1)
τ + 4 fB2 (0) δρ

τ �B(1)

−4 fB2 (0) ∂τ ∂
ρB(1) = 2κ2T ρ(0)

τ . (48)

The field equations (48) are gauge-invariant, namely under
transformations of gauge

Eμν −→ Eμν + ∂μ�ν + ∂ν�μ, (49)

remain invariant to first order, with �μ infinitesimal. We can
use the Lorentz gauge

∂μ

(
Eμν − 1

2
ημνE

)
= 0, (50)

where we set

Eμν = ημa E
a
ν , E = δμ

a E
a
μ. (51)

In the harmonic gauge, B(1) and Eq. (30) take the form

B(1) = −�Ē, (52)

2∂νS
μν(1)
ρ = −�Ēμ

ρ . (53)

Thus the Eq. (48) becomes in a simpler form

f (0)
T �Ēρ

τ + 2 f (0)

B2

(
δρ
τ �2 − ∂τ ∂

ρ�
)
Ē = −2κ2T ρ(0)

τ ,

(54)

where we called Ēμν

Ēμν = Eμν − 1

2
ημνE . (55)

Hence the trace of Eq. (54) is

f (0)
T �Ē + 6 f (0)

B2 �2 Ē = −2κ2T (0) . (56)

We have now all the ingredients to develop the GW theory
for f (T, B) teleparallel gravity.

4 Gravitational Waves in f (T, B) Teleparallel Gravity

Let us now derive the GWs for f (T, B) gravity in vacuum
as solutions of Eq. (54). We start from the trace Eq. (56) in
vacuum

f (0)
T �Ē + 6 f (0)

B2 �2 Ē = 0, (57)

that, in the k-space, becomes the algebraic equation [33]with
f (0)

B2 �= 0

(
k4 − f (0)

T

6 f (0)

B2

k2

)
Â (k0,k) = 0, (58)

where k2 = ω2 − k · k = ω2 − q2. Here kμ = (ω,k) is the
wave four-vector. If f (0)

B2 = 0, Eq. (48) becomes

2 fT (0) ∂σ S
ρσ(1)
τ = κ2T ρ(0)

τ , (59)

that is the linearized field equations of f (T ) gravity with
matter. In the harmonic gauge, we obtain

f (0)
T �Ēρ

τ = −2κ2T ρ(0)
τ , (60)

whose trace equation is

f (0)
T �Ē = −2κ2T (0). (61)

The solutions of Eq. (61) are the gravitational waves of f (T )

gravity whose polarizations are the two standard + and ×
modes of GR, as demonstrated in [50]. Therefore the f (T, B)

gravity, for f (0)

B2 = 0, reproduces the results of f (T ) gravity.
The general solution of Eq. (57) can be expressed as a

Fourier integral

Ē (t, x) =
∫

d4k

(2π)2 Â (k0,k) eik
αxα . (62)

Then, we obtain two solutions of Eq. (58) for A (k0,k) �= 0,
that is

k2
1 = 0, and k2

2 = f (0)
T

6 f (0)

B2

�= 0, (63)
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and the integral of trace equation (57) in vacuum is

Ē (t, x) =
2∑

m=1

∫
d3k

(2π)3/2

(
Âm (k) eik

α
mxα + c.c.

)
. (64)

Therefore substituting Eq. (64) into Eq. (54), in vacuum, we
get

�Ēρτ (x) =
∫

d3k
(2π)3/2

{(
−k2

2

3

) [
ηρτ

− (k2)ρ (k2)τ

k2
2

]}(
Â2 (k) eik

α
2 xα + c.c.

)
.

(65)

Finally, the general solution of Eq. (54), in vacuum, expressed
as a homogeneous plus a particular solution is

Ēρτ (x) =
∫

d3k

(2π)3/2 Ĉρτ (k) eik
α
1 xα

+
∫

d3k

(2π)3/2

{(
−1

3

)[
ηρτ − (k2)ρ (k2)τ

k2
2

]}
Â2 (k) eik

α
2 xα

+ c.c. . (66)

From Eq. (55), it is possible to derive the GWs for f (T, B)

gravity, that is

Eρτ (x) =
∫

d3k
(2π)3/2 Ĉρτ (k) eik

α
1 xα

+
∫

d3k
(2π)3/2

{
1

3

[
ηρτ

2
+ (k2)ρ (k2)τ

k2
2

]}
Â2 (k) eik

α
2 xα

+ c.c. . (67)

Starting from this solution we can analyze the polarizations
and the helicity of GWs.

5 Polarizations and helicity

A useful way to visualize the polarizations of gravitational
waves is to derive the geodesic deviation that they generate
via the equation for geodesic deviation. Let us consider the
wave propagating in +ẑ direction, in a local proper refer-
ence frame, and take into account the equation for geodesic
deviation

ẍ i = −Ri
0k0x

k, (68)

where the Latin index range over the set {1, 2, 3} and Ri
0k0

are so-called “electric” components of the Riemann tensor,
the only measurable components [30]. Substituting the lin-
earized electric components of the Riemann tensor R(1)

i0 j0,
expressed in terms of the tetrad perturbation Eμν ,

R(1)
i0 j0 = (Ei0, j0 + E j0,i0 − Ei j,00 − E00,i j

)
, (69)

into Eq. (68), we obtain

⎧
⎪⎪⎨
⎪⎪⎩

ẍ(t) = − (xE11,00 + yE12,00
)

ÿ(t) = − (xE12,00 + yE11,00
)

z̈(t) = (2E03,03 − E33,00 − E00,33
)
z

. (70)

From Eq. (67), for k2
1 = 0 the massless plane wave, travel-

ling in +ẑ direction, whose propagation speed is equal to c,
keeping k fixed and kμ

1 = (ω1, 0, 0, kz), we have

E (k1)
μν (t, z) = √

2
[
ε̂(+) (ω1) ε(+)

μν + ε̂(×) (ω1) ε(×)
μν

]

eiω1(t−z) + c.c. (71)

where

ε(+)
μν = 1√

2

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

⎞
⎟⎟⎠ . (72)

ε(×)
μν = 1√

2

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠ , (73)

and ω1 = kz . Furthermore, always from Eq. (67) for k2
2 �= 0,

the massive plane wave propagating in +ẑ direction, is

E (k2)
μν (t, z) =

[(
1

2
+ ω2

2

k2
2

)
ε(T T )
μν −

√
2ω2kz
k2

2

ε(T S)
μν

− 1√
2
ε(b)
μν +

(
k2
z

k2
2

− 1

2

)
ε(l)
μν

]
Â2 (kz)

3
ei(ω2t−kz z)

+c.c. . (74)

Here, the propagation speed is less then c, keeping k fixed
and kμ

2 = (ω2, 0, 0, kz). The polarizations are

ε(T T )
μν =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , ε(T S)

μν = 1√
2

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎟⎠ ,

(75)

ε(b)
μν = 1√

2

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎠ , ε(l)

μν =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎠ .

(76)

In more compact form, the tetrad linear perturbation Eμν ,
traveling in the +ẑ direction assuming k fixed, is

Eμν (t, z) = √
2
[
ε̂(+) (ω1) ε(+)

μν + ε̂(×) (ω1) ε(×)
μν

]
eiω1(t−z)

+ε̂(s)
μν (kz) e

i(ω2t−kz z) + c.c. , (77)
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where ε̂
(s)
μν is the polarization tensor associated to the scalar

mode

ε̂(s)
μν (kz) =

[(
1

2
+ ω2

2

k2
2

)
ε(T T )
μν −

√
2ω2kz
k2

2

ε(T S)
μν

− 1√
2
ε(b)
μν +

(
k2
z

k2
2

− 1

2

)
ε(l)
μν

]
Â2 (kz)

3
. (78)

The only degree of freedom Â2 produces the scalar polariza-
tion ε̂

(s)
μν . It is worth noticing that, for f (R) gravity, we have

the three d.o.f.: ε̂(+), ε̂(×) and Â2 [34–36]. The scalar mode
is a combination of longitudinal and breathing scalar modes.
In fact, the polarization tensor ε̂

(s)
μν , restricted to spatial com-

ponents ε̂
(s)
i, j , is provided by

ε̂
(s)
i, j = − 1

3
√

2
Â2 (kz) ε

(b)
i, j + 1

3

(
k2
z

k2
2

− 1

2

)
Â2 (kz) ε

(l)
i, j , (79)

where (i, j) range over (1, 2, 3). Hence, for massless plane
wave E (k1)

μν , Eqs.(70) give

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẍ(t) = ω2
1

[
ε̂(+) (ω1) x + ε̂(×) (ω1) y

]
eiω1(t−z) + c.c.

ÿ(t) = ω2
1

[
ε̂(×) (ω1) x − ε̂(+) (ω1) y

]
eiω1(t−z) + c.c.

z̈(t) = 0

,

(80)

where we obtain the two standard polarizations of GR, the
purely transverse plus and the cross polarization, two-helicity
massless tensor modes.
Instead, for a massive plane wave E (k2) with M2 = ω2

2 − k2
z ,

the geodesic deviation Eq. (70) becomes

⎧
⎪⎪⎨
⎪⎪⎩

ẍ(t) = − 1
6ω2

2 Â2 (kz) xei(ω2t−kz z) + c.c.

ÿ(t) = − 1
6ω2

2 Â2 (kz) yei(ω2t−kz z) + c.c.

z̈(t) = − 1
6 M

2 Â2 (kz) zei(ω2t−kz z) + c.c.

. (81)

This system of equations can be integrated assuming that
Eμν (t, z) is small. Hence we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(t) = x(0) + 1
6 Â2 (kz) x(0)ei(ω2t−kz z) + c.c.

y(t) = y(0) + 1
6 Â2 (kz) y(0)ei(ω2t−kz z) + c.c.

z(t) = z(0) + 1
6ω2

2
M2 Â2 (kz) z(0)ei(ω2t−kz z) + c.c.

.

(82)

When a GW strikes a sphere of particles of radius r =√
x2(0) + y2(0) + z2(0), this will be distorted into an ellip-

soid described by

(
x

ρ1(t)

)2

+
(

y

ρ1(t)

)2

+
(

z

ρ2(t)

)2

= r2, (83)

where ρ1(t) = 1 + 1
3 Â2 (kz) cos (ω2t − kzz) and ρ2(t) =

1 + M2

3ω2
2
Â2 (kz) cos (ω2t − kzz) both varying between their

maximum and minimum values. This swinging ellipsoid rep-
resents an additional scalar polarization, zero-helicity which
is partly longitudinal and partly transverse [37].

According to these considerations, the d.o.f. of f (T, B)

gravity are three: two of these, ε̂(+) and ε̂(×), generate the
tensor modes while the degree of freedom Â2 generates the
mixed scalar mode. In summary, f (T, B) gravity has three
polarizations namely, two tensor modes and one mixed scalar
mode exactly like f (R) gravity (see [36] for a discussion).

It is possible to derive the same results adopting the
Newman–Penrose (NP) formalism. It is not directly appli-
cable to massive waves because it was, in origin, worked
out for massless waves. However, it is possible to adopt its
generalization to massive waves propagating along non-null
geodesics [38]. It is worth noticing that the little group E (2)

classification fails for massive waves. One can introduce a
local quasi-normal null tetrad basis (k, l,m, m̄) as

k = 1√
2

(∂t + ∂z) , l = 1√
2

(∂t − ∂z) , (84)

m = 1√
2

(
∂x + i∂y

)
, m̄ = 1√

2

(
∂x − i∂y

)
, (85)

which satisfies the relations

k · l = −m · m̄ = 1 ,

k · k = l · l = m · m = m̄ · m̄ = 0 ,

k · m = k · m̄ = l · m = l · m̄ = 0 . (86)

Let us consider the four-dimensional Weyl tensor Cμνρσ

defined as

Cμνρσ = Rμνρσ − 2g[μ|[ρRσ ]|ν] + 1

3
gμ[ρgσ ]νR. (87)

The five complex Weyl-NP scalars, classified by the spin
weight s, can be expressed from the Weyl tensor in a null
tetrad basis as

s = +2�0 ≡ Ckmkm ,

s = +1�1 ≡ Cklkm ,

s = 0�2 ≡ Ckmm̄ ,

s = −1�3 ≡ Cklm̄l ,

s = −2�4 ≡ Cm̄lm̄l , (88)
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while the ten Ricci-NP scalars, can be expressed from Ricci
tensor in a null tetrad basis as

s = 2�02 ≡ −1

2
Rmm ,

s = 1

{
�01 ≡ − 1

2 Rkm

�12 ≡ − 1
2 Rlm

,

s = 0

⎧
⎪⎪⎨
⎪⎪⎩

�00 ≡ − 1
2 Rkk

�11 ≡ − 1
4 (Rkl + Rmm̄)

�22 ≡ −Rll

,

s = −1

{
�10 ≡ − 1

2 Rkm̄ = �∗
01

�21 ≡ − 1
2 Rlm̄ = �∗

21

,

s = −2�20 ≡ −1

2
Rmm̄ = �∗

02 ,

� = R

24
. (89)

The driving-force matrix S(t) can be expressed in terms of
the six new basis polarization matrices WA(ez) along the
wave direction k̂ = ez , where the index A ranges over
{1, 2, 3, 4, 5, 6} [13,14]. It is

S (t) =
∑
A

pA (ez, t)WA (ez) , (90)

where

W1 (ez) = − 6

⎛
⎝

0 0 0
0 0 0
0 0 1

⎞
⎠ , W2 (ez) = − 2

⎛
⎝

0 0 1
0 0 0
1 0 0

⎞
⎠ ,

W3 (ez) =2

⎛
⎝

0 0 0
0 0 1
0 1 0

⎞
⎠ , W4 (ez) = − 1

2

⎛
⎝

1 0 0
0 −1 0
0 0 0

⎞
⎠ ,

W5 (ez) =1

2

⎛
⎝

0 1 0
1 0 0
0 0 0

⎞
⎠ , W6 (ez) = − 1

2

⎛
⎝

1 0 0
0 1 0
0 0 0

⎞
⎠ .

(91)

Here pA (ez, t) are the amplitudes of the wave [39–43]. Tak-
ing into account that the spatial components of matrix S(t)
are the electric components of Riemann tensor, we have

Si j (t) = Ri0 j0. (92)

The amplitudes of six polarizations can be expressed both
in terms of the electric components of the Riemann tensor
Ri0 j0, and in Weyl and Ricci scalars [34,44–49], that is

p(l)
1 = −1

6
R0303 = −1

3
[Re (�2) + �11 − �] ,

p(x)
2 = −1

2
R0301 = −1

2
[−Re (�1) + Re (�3) − Re (�01)

+Re (�12)] ,

p(y)
3 = 1

2
R0302 = 1

2
[−Im (�1) − Im (�3) − Im (�01)

+Im (�12)] ,

p(+)
4 = −R0101 + R0202 = −Re (�0)

− Re (�4) − 2Re (�02) ,

p(×)
5 = 2R0102 = Im (�0) − Im (�4) − 2Im (�02) ,

p(b)
6 = −R0101 − R0202 = 2Re (�2) − �00 − �22 + 4� ,

(93)

where the six polarizations modes are: the longitudinal mode
p(l)

1 , the vector-x mode p(x)
2 , the vector-y mode p(y)

3 , the plus

mode p(+)
4 , the cross mode p(×)

5 , and the breathing mode

p(b)
6 . Under the Lorentz gauge and by Eqs.(71) and (74) for

non-null geodesic congruences of gravitational waves, trav-
eling along the +ẑ direction, we obtain the six polarization
amplitudes pA (ez, t)

p(l)
1 = −1

6

[
ω2 − k2

z

ω2 + k2
z

(
ω2E33 − k2

z E00

)]
,

p(x)
2 = −1

2

(
ω2 − k2

z

)
E13 ,

p(y)
3 = 1

2

(
ω2 − k2

z

)
E23 ,

p(+)
4 =

(
ω2 − k2

z

ω2 + k2
z

)
ω2 (E00 + E33) + 2ω2E22 ,

p(×)
5 = 2ω2E12 ,

p(b)
6 =

(
ω2 − k2

z

ω2 + k2
z

)
ω2 (E00 + E33) .

Finally we get for a massless mode ω1 and massive mode ω2,
keeping k fixed, the following amplitudes

p(l)
1 (t, z) = 1

36

(
ω2

2 − k2
z

)
Â2 (kz) e

i(ω2t−kz z) + c.c. ,

p(x)
2 (t, z) = p(y)

3 (t, z) = 0 ,

p(+)
4 (t, z) = −2ω2

1 ε̂
(+) (ω1) e

iω1(t−z) + c.c. ,

p(×)
5 (t, z) = 2ω2

1 ε̂
(×) (ω1) e

iω1(t−z) + c.c. ,

p(b)
6 (t, z) = ω2

2

3
Â2 (kz) e

i(ω2t−kz z) + c.c. . (94)

It is evident, from Eqs.(94), that the two vector modes p(x)
2

and p(y)
3 are suppressed while the two standard plus and cross

transverse tensor polarization modes p(+)
4 and p(×)

5 survive
together with the two longitudinal and transverse breathing
scalar modes p(l)

1 and p(b)
6 . However only one degree of free-

dom Â2 intervenes in both b and l scalar modes, giving rise
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to their mixed state s. This reduces polarizations from four
to three.

6 Discussion and conclusions

TEGR is equivalent to Einstein’s GR because they are two
representations of the same dynamics. This is not true for
their extensions f (T ) and f (R) theories and, in general, for
higher order gravity theories constructed by the torsion T
and curvature R scalars [50]. To restore the equivalence, we
must take into account the boundary term B which relates T
and R. Because T and B are derived from the same tetrad,
R is univocally defined, so f (T, B) ≡ f (R) according to
dynamics.

Thus, we have obtained the exact field equations of
f (T, B) gravity (in presence of matter) and then we have
linearized them in the low energy limit. This allows to get
gravitational waves and then to study their polarization and
helicity. To this end, one can adopt the geodesic deviation
and the NP formalism.

In this framework. it is possible to show that both f (R)

gravity and f (T, B) teleparallel gravity have three polariza-
tions [34,35,42,43,52]. The third polarization, with respect
to the standard × and + of GR, emerges as a combination of
longitudinal and breathing scalar modes.

Same authors claims that the polarization of f (R) theory
are four because count two scalar polarizations instead of
the single scalar state [53]. This is true for a gravitational
wave without mass, where the longitudinal and transverse
breathing modes are independent of each other. However, for
a massive gravitational wave, both longitudinal and breathing
modes are determined by a unique degree of freedom, i.e. Â2

and then cannot be, in principle, disentangled. According to
this result, they can be combined giving only a scalar mode.

In f (T, B) teleparallel gravity, the presence of a massive
scalar mode mixes the transverse breathing and the longitu-
dinal modes, in addition to the two standard massless tensor
polarizations. This further term is due to the boundary terms
B, which survives to first order in Ea

μ. It is worth stressing
that in f (T ) gravity only the two standard modes of GR are
present [50].

More precisely, it is the first order boundary terms B(1)

that generates the massive scalar mode and then adds, to the
2-spin massless tensor modes of GR, an extra 0-spin massive
scalar mode. Furthermore, as it is well known, f (R) grav-
ity is equivalent to a scalar-tensor theory [54,55]. It means
that under a conformal transformation, it is equivalent to GR
plus a scalar field, justifying the three d.o.f. coinciding with
polarizations. It is worth stressing again that, the above anal-
ysis includes the sub-cases f (T, B) = f (−T,−B) = f (R)

and f (T, B) = f (T ) + B = f (T ) reported in literature.

Clearly, the number of polarizations in f (R) and f (T ) grav-
ity are recovered. See [22–25].

Another motivation for the presence of scalar mode is the
symmetry breaking of the TT gauge due to the massive wave,
that is, the mass of scalar field brakes the symmetry of the
TT gauge. In GR the absence of scalar, longitudinal, and
vector modes implies that the response of detectors is gov-
erned entirely by the transverse-trace free modes. This fact
is relevant to compare alternative theories with GR. In the
case of f (T, B) gravity, it is not possible to perform a gauge
transformation on Eμν that makes it traceless and completely
spatial at the same time, namely performing a TT gauge.
According to these considerations, f (T, B) gravity shows
three polarizations: the two standard plus (+) and cross (×)

2-helicity massless transverse tensor polarization modes and
a 0-helicity massive scalar polarization mode (s), resulting as
a mixed state of longitudinal and breathing transverse polar-
izations. Being dynamically equivalent to f (R) gravity, it is
possible to show that, in the post-Newtonian limit, a Yukawa-
like correction emerges in general [56]. This correction can
be considered to put upper bound on the graviton mass as
discussed in [57–59]. Being f (R) gravity not excluded by
observations [15–17], this could be a pathway to test also
f (T, B) gravity by a possible massive mode.

An important remark is in order at this point. Besides per-
turbations around the Minkowski background, it is interest-
ing to develop a similar analysis around a cosmological back-
ground. This approach results useful to investigate primordial
gravitational waves. For example, assuming a Friedmann–
Robertson–Walker spatially flat metric as

ds2 = dt2 − a2(t)δi j dx
i dx j , (95)

with a(t) the scale factor, we can perturb the tetrad eaμ =
diag(1, a(t), a(t), a(t)) obtaining

eaμ = ēaμ + Ea
μ, (96)

where ēaμ is the unperturbed part of the tetrad. See [18,19] for
details. Then, inserting the above cosmological metric into
the field Eqs. (45), we obtain the related Friedmann equa-
tions. From Eq. (96), it is possible to derive the differential
equations for Ea

μ giving rise to cosmological gravitational
waves as solutions. This kind of analysis has been devel-
oped in [51] for f (R). In a forthcoming paper, cosmological
gravitational waves for generalized TEGR theories will be
discussed.
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